
Graph-based Representations
and Coupled Verification

of VLSI Schematics and Layouts

RLE Technical Report No. 547

October 1989

Cyrus S. Bamji

Research Laboratory of Electronics
Massachusetts Institute of Technology

Cambridge, MA 02139 USA

A--

rAp-

oi

- Massachusetts Institute of Technology. 1989. All rights reserved.

0

A

S

a

6t

Graph-based Representations and
Coupled Verification of

VLSI Schematics and Layouts
by

Cyrus S. Bamji

Submitted to the Department of Electrical Engineering and Computer Science
on September 28, 1989, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Structural verification of VLSI schematics and layouts is formalized. Both schematics
and layouts are modeled as graphs and structural correctness is tied to a rigorous set of
graph composition rules which define how blocks of schematics and layouts may be com-
posed. Novel, non-heuristic verification techniques which allow structural verification to
be performed for a continuum of schematic and layout block sizes are introduced. Using
one potent structural verification mechanism, these techniques provide a unified approach
to schematic design style verification, layout design rule verification and schematic vs.
layout comparison. The verification techniques are fast and can be performed incremen-
tally as the schematics and layouts are created.

For schematic design style verification the composition rules are captured by graph
transformations akin to context free grammatical productions. The productions describe
how a small set of module symbols may be composed. Using these productions a hier-
archical parse tree that can demonstrate the correctness of the schematic is constructed.
For layouts the composition rules are represented by graph templates. Design rule ver-
ification is achieved by covering the layout graph with these templates. Schematic vs.
layout correspondence verification is achieved by allowing individual templates to span
both schematics and layouts and simultaneously covering the schematic and layout with
these templates.

Thesis Supervisor: Jonathan Allen

Professor

1

___ __

Acknowledgments

I would like to thank my advisor, Professor Jonathan Allen, for providing focus to
this work while at the same time allowing me considerable lattitude to explore my own
ideas which have led this dissertation into some of the uncharted areas of VLSI design.
The content and style of this thesis has been greatly influenced by this freedom.

I thank Filip Van Aelten, Robert Armstrong and Bernard Szabo for their help and
many useful discussions which have substantially helped clarify my own ideas.

Thank you Mom and Dad, your love and support are still the pillars of my educational
accomplishments.

Lastly and above all I wish to say "thank you" to my lovely wife Nagja for her pa-
tience and support in the face of my seemingly ever receeding graduation date. Through
careful proofreading she has considerably sanitized the writeup of this document and the
committed reader will be truly grateful to her for this.

This work has been supported by the Air Force Office of Scientific Research Grant
AFSOR 86-0164, IBM and Analog Devices.

3

OF

-4

aw

.a

I _

A-I

1 Introduction
1.1 Overview .
1.2 Thesis Organization.

2 Schematic Design Style Verification
2.1 Introduction.
2.2 Existing Work .

2.2.1 Simulation
2.2.2 Electrical Model based Techniques
2.2.3 Electrical Models.
2.2.4 Pattern Matching Techniques

2.3 Main Contributions
2.4 Existing Grammars.

2.4.1 Overview
2.4.2 String Grammars
2.4.3 Graph Grammars.

3 Circuit Grammars
3.1 Circuit Representation & Circuit Grammars

3.1.1 Circuit Representation
3.1.2 Circuit Grammars.
3.1.3 Network Expansion and Reduction
3.1.4 Context Free Circuit Grammar Definition
3.1.5 Reducibility Condition.
3.1.6 Parsing.
3.1.7 Deterministic Reduction.
3.1.8 Waveform Generators
3.1.9 Net Bundles
3.1.10 Equality of Boundary Sets
3.1.11 Minimum Number of Pins
3.1.12 Net Bundle Definition.
3.1.13 Examples of Net Bundles .
3.1.14 Creation of Net Bundles.
3.1.15 Conditions on Net Bundles

5

Contents

15
15
17

19
.. . 19
.. . 20
.. . 21
.. . 21
.. . 21
.. . 23
.. . 23
.. . 25
.. . 25
.. . 25
.. . 30

33
... . 33
*. ... 33
*. ... 37
... . 38
... . 42
... . 43
. . . . 47
... . 48
.... 54

... . 55

... . 58
... . 59
... . 60
... . 62
.... .. 62
.... .. 63

..............

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............

.

.

.

.

.
.

.

.

.

.

.

I 4 - - r

6

3.1.16 The Disjoint Network Problem
3.1.17 Reducibility Condition Revisited.

3.2 Behavioral Verification.

CONTENTS

. 63
.... . 66

. 67

4 Examples 69
4.1 A Classical CMOS Grammar 69
4.2 Two Phase Clocking Methodology Grammar 76

4.2.1 Domino Grammar Productions 76
4.2.2 Two Phase Clocking Methodology Grammar Productions 80

4.3 Detecting Common Errors 83
4.3.1 Detecting Open Circuits 84
4.3.2 Detecting Short Circuits 84
4.3.3 Detecting Loops 85

5 Schematic Verification Algorithm & Implementation
5.1 Event Driven Parsing Algorithm .

5.1.1 Overview.
5.1.2 Servicing an Event.
5.1.3 Determining Production Applicability .
5.1.4 Parsing Complexity.
5.1.5 Rescheduling due to Absence Conditions .
5.1.6 Incremental Update .
5.1.7 Error Reporting .

5.2 Implementation
5.3 Experiments.

6 Layout Verification
6.1 Introduction.
6.2 Overview
6.3 Layout Correctness

6.3.1 Criteria for Layout Correctness
6.3.2 Layout Verification using Templates

6.4 Review of RSG Connectivity Graphs
6.4.1 Cells, Interfaces and Connectivity Graphs . .

6.5 Connectivity Graph based Layout Verification
6.5.1 Differences between Layouts and Connectivity
6.5.2 Normalizing the Graph Representation
6.5.3 Template Occurrences in Connectivity Graphs
6.5.4 Criteria for Connectivity Graph Correctness .
6.5.5 Dealing with Encoded Cells

89
.......... . .89
.......... . .89

.......... . .90

.......... . .91
.......... . .97

........... 102

........... 102
........... 106

........... 107

........... 110

. . .

. . .

. . .

. . .

Graphs

. . .

. . .

113
113
114
115
115
116
116
120
123
123
125
126
128
128

131
131
131
133

7 Layout Verification Algorithm & Implementation
7.1 Verification Algorithm.

7.1.1 Overview.
7.1.2 Preparing the Graph

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.

CONTENTS

7.1.3 Finding Template Occurrences .

7.2
7.3

7.1.4 Algorithm Complexity
7.1.5 Incremental Update .
7.1.6 Error Reporting .
Implementation.
Experiments .

8 Schematic vs. Layout Comparison
8.1 Introduction.

8.1.1 Signature Calculation .
8.1.2 Path Tracing
8.1.3 Rule based Pattern Matching

R.9 qShnrtc.rnminE of F ¥t.in n TPchnrialp

8.2.1 Error Reporting.
8.2.2 Incremental Comparison
8.2.3 Equivalence Flexibility.

8.3 Benefits of Template based Correspondence Verification .
8.3.1 Benefits of Operating Directly on

the Schematic and Layout Domains
8.3.2 Benefits of User Defined Equivalences

9 Template based Correspondence Verification
9.1 Overview .
9.2 Correspondence Templates.

9.2.1 Mappings
9.2.2 Regions of Equivalence.
9.2.3 Correspondence Templates Definition
9.2.4 Correspondence Template Occurrence .
9.2.5 Net Connection Graph

9.3 Template based Criteria for Netlist Isomorphism
9.3.1 Preliminaries.
9.3.2 Netlist Isomorphism Criteria

9.4 Extensions.
9.4.1 Equivalence Flexibility.
9.4.2 Dealing with Bus Instances
9.4.3 Dealing with Encoded Layout Cells . . .
9.4.4 Schematic vs. Schematic Correspondence

10 Correspondence Verification Algorithm
10.1 Verification Algorithm.

10.1.1 Overview.
10.1.2 Preliminaries
10.1.3 Servicing an Event
10.1.4 Complete Algorithm.
10.1.5 Algorithm Complexity.

Verification
. a .

& Implementation
. e.

. e.

..

.

.. o

.

133
137
138
139
139
142

143
143
144
145
146
146
146
147
148
148

149
150

151
151
151
152
154
154
155
157
158
158
161
163
163
168
171
173

175
175
175
176
177
180
181

�_I� _�· �·· ··_^ I__ _ __

7

....................

....................

....................

....................

....................

....................

....................

....................

....................

.

.

.
.
.

.

. . .

. . .

. . .

. . .

. . .

. . .
. . .
. . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

.

.

.

.

.

CONTENTS

10.1.6 Incremental Update to the Layout or Schematic 184
10.1.7 Error Reporting 185

10.2 Implementation 186
10.3 Experiments 189

10.3.1 Bit Systolic Multiplier 190
10.3.2 PLA 190

11 Conclusions
11.1 Summary
11.2 Future Work

11.2.1 Extensions
11.2.2 New Directions.

193
.... 193
.... 194
.... 194
.... 196

8

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24

Examples of Design Errors
Fragment of RNL file
Equivalent Module and Network
Circuit Represented by the String NlV1,5,2P,3,21 2,3,4,5 ·
Two String Representations of the three Inverter Cycle
Three Inverter Cycle
Circuit and Graph Equivalents
Graph with no Corresponding Circuit

Graphical Description
Incorrect Circuit Representation
Isomorphic Circuits
Example of a Circuit Production . . .
Circuit C before Expansion
Latch Production R
Network NM of C
Expanded Network NE

Resulting Circuit C' after Expanding C.
Circuit with Illegal Connection
Illegally Reduced Network NM . . .
Circuit with Sneakpath Connection . . .
Reducibility Condition
NAND Gate and Inverter Circuit
NAND Gate and Inverter Parse Tree . . .
Presence Condition Modules
Absence Condition
Expanded Absence Module
Expanded Non-absence Condition Module
Waveform Generator Production .
Example of Net Bundles
Net Bundle Creation
Disjoint Network Problem
Relations between Nets

3-25 Complex Circuit Mapping

9

}· w ---- r
... ,~~~

List of Figures

20
27
28
28
29
29
31
31

34
35
37
38
39
40
40
41
42
44
44
45
46
49
49
51
52
53
53
55
62
63
65
66
66

1 1_1_1 1_ ···.·911---·LI·----·-----^�- -II�-------·II)-

.

.
.
.
.
.
.
.

I.
.
.

.

.
.
.
.
.

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............

.............
............

.............

.............

.............

.............

.............

.

.

.

.

.

.

.

.

.
.
.
.
.
.

LIST OF FIGURES

4-1 Classical CMOS Productions
4-2 Classical CMOS Grammar.
4-3 Transistors in Different CMOS Gates
4-4 CMOS Presence Condition Modules
4-5 Parse Sequence.
4-6 Production 1
4-7 Production 2.
4-8 Production 3
4-9 Production 4.
4-10 Production 5
4-11 Production 6.
4-12 Non Series Parallel Domino Blocks
4-13 bisection Block Diagram
4-14 LSB Production
4-15 Complex Oisection Production
4-16 Osection Production .
4-17 Start Symbol Production.
4-18 Loop Checking Production Plop .
4-19 Parallel LSB Composition
4-20 Unbalanced Parse Tree

5-1 Positions of Modules Cblk

Network and Corresponding
Module and Net Slots . . .
Network and Instructions fc
Procedure Execute Instruct,
Efficient and Inefficient Inst
Augmented Parse Tree . .
Six Transistor XOR Gate .
Example of an Error Produ
Textual Representation of a
Circuit Input Netlist . . .
Xwindow Graphic Display
Systolic Multiplier

......................... . ..92
g Instruction 94
. 95
)r Superior and Inferior Nets 96
ion 97
:ructions 100

... 10 3

... 10 5
ction 107
Production 109

... 110

... 1111

... 11 11

PLA Layout
PLA Instances
Examples of Templates
Instance of Cell B in Cell A.....
Interface between A and B
Graph and Layout Equivalents . . .
Cycles in the Graph
Equivalent Graphs
Graph Representation for Templates

117
118
119
120
121
122
124
125
126
1276-10 Template Occurrence

71
72
73
74
75
77
77
78
79
79
80
81
81
82
82
82
83
86
86
........ 88

5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

I� _ I _ _ _ _ _� __ __

10

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LIST OF FIGURES

Encoded Cell Templates .130

Components of the Algorithm
Graph and Corresponding Instructions
Procedure execute.vertexinstruct ion
Textual Representation of a Connectivity
Xwindows Graph Display.

Mapped Module and Vertex
Mapped Schematic and Layout Regions .
Simple Correspondence Template
Correspondence Template
Net Connection Graph
Equivalence Templates
Equivalence Criterion
Full-adder Cell Implementations
Bus Cells
Correspondence Templates for Bus Cells

. .

. . .

. . .

Graph
. . . .

Mapping Validation
Inverter Template
Verification Example
Textual Representation of a Corresponden
Schematic Input Netlist
Layout Input Graph
PLA Path

... 178

... 181

... 182
Ice Template 187

... 188
. 188
. 191

11-1 Program Inputs and Outputs

6-11

7-1
7-2
7-3
7-4
7-5

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10

132
135
136
140
141

153
153
155
156
157
163
164
166
170
172

10-1
10-2
10-3
10-4
10-5
10-6
10-7

·�-._1I1I.I1I1I-I �lll^liUI_--·^·----�·-·-------·-L---1L·_ -14�---�1_�-�1 ·.1 C--._-- - .^·_.··-.__- ---���-

11

..............

..............

..............
I
..............

..................

..................
..................
..................
..................
..................
..................
..................
..................
..................

195

12 LIST OF FIGURES

.__�_. I I I __ �_IC.

List of Tables

5-1 Parsing Complexity Summary 101
5-2 Parse Times 110

7-1 Verification Times 142

10-1 Multiplier Correspondence Verification Times 190
10-2 PLA Correspondence Verification Times 191

13

I q F I

-

14 LIST OF TABLES

e

a

a

t.00a

0.

a

rW

_ � ___ I

1

Introduction

1.1 Overview

The design and validation of VLSI circuits having millions of components represents

a challenge to both the human designer and the computer-aided design tools. To reduce

design time and cost, it is crucial that errors be caught early in the design. Due to the

size of today's circuits, the process of identifying design errors can be reliably performed

only through the use of computer aids. These verification tools sift through the design,

locate errors and report them back to the designer.

One of the tests that can be applied to a design to find errors is structural verification.

Structural verification is the process of validating the structure or arrangements of objects

in the design. The behavior of the design and design objects is not considered. Rules

are used to specify how a collection of design objects can connect together regardless

of their functionality. Design errors are found by verifying that the way in which the

objects are connected in the design satisfies these rules. Alternatively, the structure of

the design may be compared with the structure of another design known to be correct.

Inconsistencies between the two structures are reported to the designer as errors.

Structural verification is used in three major areas.

1. Electrical Rules Checking (ERC for short) in which a circuit schematic is checked

for errors that arise from incorrect electrical connections such as short circuits,

illegal signal loops etc.

2. Layout Design Rule Checking (DRC for short) in which a set of mask patterns to be

transferred to a silicon wafer are checked to see if they belong to a set of permissible

mask geometries.

15

._ I_ _1 _�111
- ------- ---- III -^-_I Y- --

CHAPTER 1. INTRODUCTION

3. Connectivity Verification (cv for short) in which a netlist extracted from a lay-

out mask description is compared with another netlist, usually extracted from a

schematic.

Existing structural verification techniques use radically different computer models and

verification strategies in each of these three major areas. In this dissertation, a single

potent technique with a unified view of all three areas of structural verification and with

substantial advantages over conventional techniques in each of these areas is presented.

Both schematics and layouts are modeled as graphs. The vertices in these graphs

represent modules in the schematic and cell instances in the layout. The modules repre-

sented by vertices can be single transistor devices or large aggregates of many transistors.

Similarly, the vertices for cell instances can represent single polygons or complex cell in-

stances of hundreds of polygons. This allows the techniques proposed in this thesis to

be applicable over a continuum of module and cell sizes enabling the designer to choose

between fine grained or coarse grained verification.

The rules which govern structural correctness are defined by graph transformations

on the schematic and layout graphs. For schematics, these transformations are captured

by user defined graph-grammar productions and verification is performed by parsing the

schematic using these grammatical productions. For layouts, correctness is captured by

graph templates which define small fragments of layout which are known to be struc-

turally correct. Layout verification is performed by covering the layout graph with these

templates.

A more general form of connectivity verification, referred to in this thesis as Schematic

vs. Layout correspondence verification, is made possible by allowing graph templates to

simultaneously span both schematics and layouts. These templates, called correspon-

dence templates, consist of two graphs; one of a small region of layout and the other of a

small region of schematic whose netlists are equivalent. By simultaneously covering both

the layout and schematic graphs with correspondence templates the equivalence between

their netlists can be verified.

The major contributions of this dissertation are:

* A new set of representations and formalisms for both schematics and layouts which

cleanly and precisely capture the structural design constraints.

* Fast and incremental non-heuristic verification techniques, both novel and radically

different from traditional techniques, with one basic verification method for all three

structural verification areas (ERC, DRC and cv).

16

1.2. THESIS ORGANIZATION

* Evidence that practical designs and methodologies can be effectively verified within

this framework.

For each of the major structural verification areas described above, a detailed intro-

duction as well as an overview of existing verification techniques is provided in subsequent

chapters. Benefits of the proposed methods over existing techniques are also expanded

upon in these chapters.

1.2 Thesis Organization

This thesis is organized into three major parts which correspond to the three major

areas of structural verification. In the first part, circuit grammars are used to perform

schematic design-style verification (a form of ERC). In the second part, layout graph

templates are used to perform layout verification (a form of DRC). Finally in the third

part, correspondence templates are used to perform schematic vs. layout correspondence

verification (a more general case of cv). The formalisms and techniques in part three

build on those developed in parts one and two. Part three also assumes that the graph for

the layout has been successfully verified by the verification technique in part two. Finally,

the efficiency and flexibility of part three can be enhanced by using the grammatical

reduction capabilities of part one.

Each major part of this thesis has a similar structure. First, the associated major

area of structural verification is introduced and existing work is summarized. Secondly,

the techniques proposed in this thesis are presented and their advantages over existing

verification techniques are listed. Next, precise mathematical models for the graph repre-

sentations are provided and conditions which guarantee structural correctness are proved.

Then an algorithm capable of verifying that these structural correctness conditions are

met in a given schematic and/or layout is defined. Each part concludes with experiments

in which the verification methods are applied to examples of schematics and layouts using

a computer program which implements the verification algorithm.

A chapter by chapter breakdown of this document is given below:

Chapter 2 first describes the problem of schematic design style verification, summarizes

existing verification techniques and lists the main contributions of the schematic verifi-

cation method proposed in this thesis. The second part of this chapter introduces string

grammars and explains why they are inadequate for schematic design style verification.

Chapter 3 introduces a new kind of grammar called circuit grammars which are specif-

ically tailored for performing schematic design style verification. Precise definitions for

�_·I^ _^II ___ _ I�_ ·__--·-L-ll -�---_1_1 1·· �I.I-_I_-I-.-�L-_L ..�-·LI�--l__11_1.__-.111_1_111^^-11111111111~-1111 --̂---- 1-

17

CHAPTER 1. INTRODUCTION

schematics and circuit grammars are given and conditions based on grammatical parsing

which ensure schematic structural correctness are derived and proved.

Chapter 4 gives examples of circuit grammars for various design styles and how grammars

catch various design errors.

Chapter 5 describes the event driven parsing algorithm which implements the verifica-

tion methods of chapter 3. This chapter concludes with a description of a computer

implementation of this algorithm called GRASP (for Gramar-based Schematic Parser)

and experiments using GRASP to verify a large bit systolic multiplier.

Chapter 6 introduces layout design rule verification and presents a method for verifying

the design rule correctness of layouts constructed from instances of library cells. Layouts

are modeled as graphs and conditions for layout design rule correctness based on layout

graph templates are derived and proved.

Chapter 7 describes the event driven layout verification algorithm which implements the

verification techniques of chapter 6. A computer program of this algorithm called GLOVE

(for Graph-based Layout Verifier) and experiments using glove to verify a large PLA are

then presented.

Chapter 8 describes schematic vs. layout correspondence verification and summarizes

existing correspondence verification techniques. A template based correspondence ver-

ification technique capable of verifying the correspondence between a schematic and a

layout built from instances of library cells is then introduced and it's advantages over

existing techniques are highlighted.

Chapter 9 builds upon the formalisms of chapters 3 and 6 to derive and prove conditions

on schematics and layouts based on correspondence template graphs which guarantee

that the schematic and layout have equivalent netlists.

Chapter 10 describes the event driven correspondence algorithm which implements the

correspondence verification methods of the previous chapter. This chapter ends with a

description of a computer program for this algorithm called SCHEMILAR (for Schematic

vs. Layout Comparator) and experiments using SCHEMILAR to verify a large multiplier

and PLA.

Chapter 11 summarizes the work presented in this thesis, shows how the parts of this

thesis interact and concludes with future directions.

� _

18

2

Schematic Design Style Verification

2.1 Introduction

A circuit schematic is a specification of how a set of electronic components, called

modules, are electrically connected together. One of the intermediate steps required for

carrying a VLSI design from concept to implementation is building a schematic for the

design. Schematic verification is the process of verifying that a circuit schematic obeys a

certain set of design constraints. In some cases the schematic is generated mechanically in

a correct by construction manner. This is accomplished by a sequence of transformations

applied to a functional specification of the design. Often however, the schematic is not

generated in this correct by construction manner and therefore it becomes necessary to

perform schematic verification.

Given present levels of integration, it is no longer possible for a human circuit designer

to manually perform schematic verification. In this chapter, an effective method for

automating this task is proposed. Many faulty schematics can be weeded out quickly

because they violate some simple design criteria such as a short circuit, an illegal signal

loop path etc. To facilitate the design as well as the validation of the design, schematics

are made to conform to design methodologies (e.g., classical CMOS, ratioed NMOS, domino

logic) which impose restrictions on circuits deemed acceptable. These design styles specify

how the modules in the circuit can be connected together so that the schematic is well-

formed.

By demanding that a candidate circuit conform to a design methodology, it becomes

possible to establish a first line of defense guarding against design errors, irrespective of

circuit functionality. For example, the schematic of figure 2-1 has two errors: the output

of the bottom inverter is connected to the output of a precharged gate, and because of

19

___11_1__ _·___·_1____ ____�I_ I_ I___ _^�_ ·_ �---�--ll�-·IP·llllllllllllllllll�llC�i-·------L·-·-·�·l�---·L-_�-�1111-�-1

SCHEMATIC DESIGN STYLE VERIFICATION

FIGURE 2-1: Examples of Design Errors

rising and falling signal edge considerations, the output of the leftmost precharged gate
must go through a static inverter before it can feed the rightmost gate. Both errors
can be detected without any knowledge about the circuit's functionality. This form of
verification is called design style or design methodology verification and is the object of
this chapter.

After the circuit's membership in a design methodology has been established, a func-
tional check of the circuit [1], [52] remains to be performed by some other more complex
and slower means. In section 3.2, a method related to the techniques described in this
chapter is used to perform functional verification.

In the first part of this thesis a formal technique is proposed that is capable of veri-
fying that an electrical circuit is well-formed by ensuring that the circuit conforms to a
circuit design methodology. The technique has been implemented in a computer program
called GRASP [9] (Grammar-based Schematic Parser). GRASP incorporates several novel
techniques and formalisms which allow a clean capture of a circuit design methodology
and very fast verification speeds. The use of context free circuit grammars to describe
a circuit design methodology coupled with GRASP's event driven verification algorithm
results in a technique that is one to two orders of magnitude faster than previous heuris-
tic approaches. GRASP's algorithm is also incremental and can verify the circuit as it is
being edited and modified by the circuit designer.

2.2 Existing Work

Well-formedness verification techniques can be split into two basic categories. In the
first technique a set of electrical constraints that all well-formed circuits must satisfy
is derived. In digital design these constraints are typically requirements that guarantee

_ _ _ �__

20 CHAPTER 2.

2.2. EXISTING WORK

that the voltages on the inputs and outputs of logic gates, latches etc. can be abstracted

by 0 and 1 values. Knowledge of these principles is built into the system.

In the second technique the syntax of the schematic is examined. Portions of the

schematic are matched against patterns of interconnected modules provided by the user.
Electrical knowledge about correct circuit configurations is embedded in the patterns.
They are known to have certain specific electrical properties and their presence or ab-
sence in the schematic determines whether the schematic is well-formed. The verification

system manipulates the patterns but the underlying electrical meaning of the patterns is

not known to the verification system.

The schematic verification technique in this thesis falls in the latter of these two

categories. It differs significantly from existing techniques. Instead of an ad hoc collection

of illegal module configurations that must not occur in the schematic, the patterns are

used to define a context free circuit grammar which precisely defines a set of well-formed

circuits.

2.2.1 Simulation

Simulation [13], [48], [51] is sometimes used to find schematic design errors. Simula-
tion differs from design style verification in two major respects.

1. Simulation is not independent of circuit functionality. The functionality of the
circuit must be known in order to interpret the results of the simulation.

2. Simulation shows errors rather than looking for them. In order to demonstrate the

error via simulation, an appropriate set of inputs needs to be applied. The task of

determining this set of inputs lies with the user.

2.2.2 Electrical Model based Techniques

2.2.3 Electrical Models

Techniques such as [12], [52], [14], [26], have an electrical model for correct schematics.

The models impose conditions on the electrical properties of nets and conditions on the
electrical and signal paths between the nets. For example, to avoid problems associated

with charge sharing there are constraints on the capacitances of each net. Examples of

constraints on electrical and signal paths between nets would be that electrical short

circuit paths between vdd and gnd are to be avoided as are signal paths through an odd

number of inverters.

I r4 '
-I-_.__-..

21

CHAPTER 2. SCHEMATIC DESIGN STYLE VERIFICATION

These techniques are based on fundamental electrical principles common to many

different design styles and technologies. The correctness of a wide range of designs can

be verified by a succinct set of electrical principles and the electrical characteristics of

circuits that follow them can be accurately characterized.

It is important to note that these techniques use simplified models of the underlying

electrical devices. For example, transistors are modeled as resistors, capacitances are

linear and are always to ground etc. Each model exhibits a different set of tradeoffs

between completeness and verification efficiency. The models try to be conservative

so that incorrect circuits are not reported as correct. In certain cases however some

electrical phenomena may not be accurately captured and the model breaks down. The

changes to the model required to accommodate these cases may be substantial and hence

impractical to implement. Given that verification knowledge is embedded within the

system, augmenting the system to handle these special cases is difficult and awkward to

incorporate within the same framework.

Verification Methods

Once the electrical constraints that characterize well-formed schematics are defined,

it remains to create an algorithm capable of deciding whether a given schematic meets

these constraints.

Verifying that the electrical constraints are met at each net may require that a large

number of different possible electrical paths from that net need to be examined. Different

paths can be formed from a net depending on which transistors are conducting. For

example, in order to verify that the output of a logic gate is not simultaneously pulled high

and low a variety of different input combinations to the gate may have to be considered.

The number of possible configurations that have to be considered may get large and

hence these methods are computationally expensive.

To reduce verification time [52]' exploits hierarchy already present in the schematic.

In [12], heuristics which recognize certain patterns that are known to be well-formed are

used to increase verification speeds for commonly used subcircuits.

In [26], subcircuits are represented by matrices representing the corresponding switch

graph. Conditions on these matrices equivalent to the electrical conditions on the nets

are derived. Matrix manipulation techniques are used to verify that the conditions on

the matrices are met.

1[52] is principally concerned with behavioral verification but well-formedness verification is performed
as a prerequisite to behavioral verification.

22

2.3. MAIN CONTRIBUTIONS

2.2.4 Pattern Matching Techniques

Techniques such as [31], [27] and [40] rely on user supplied rules to verify the schematic.

These rules contain patterns of connected transistors which when encountered in the

schematic, trigger some action by the verification system.

The rules capture electrical constraints similar to those described in section 2.2.2.

The patterns of transistors in the rules represent configurations which either satisfy or

violate the electrical requirements. Since the verification knowledge is contained in the

rules and not in the verification program itself, the verification strategy and the electrical

constraints underlying the rules can be changed without modifying the program.

An expert system with a rule language suitable for describing circuit design styles

is described in [31]. In the database technique of [27], attributes are first computed for

each net. These attributes as well as the patterns of transistors surrounding them are

matched with configurations and conditions on nets stored in a data base. The program

described in [40] is an expert system where the rules describe sets of illegal configurations

that must be avoided in well-formed schematics.

2.3 Main Contributions

The main contributions of this work are to:

1. Cast the problem of circuit design methodology verification into that of parsing a

circuit network in accordance with a network grammar. The grammar is a spec-

ification of the range space of the methodology. As a result, a clean and precise

description of circuit correctness is captured by the grammar specification. The use

of grammars is made possible by introducing the concept of net bundles, described

in section 3.1.9, which allows packets of nets in the circuit to be combined and

dealt with as one object. GRASP is inspired by graph grammar theory [19] which

is modified and augmented to deal with practical circuits.

2. Show that practical circuit methodologies can be described by grammars which

can be efficiently parsed. GRASP's efficient, incremental and hierarchical parsing

algorithm allows rapid verification of any circuit in the range space of the grammar.

There are no false positives or false negatives. The algorithm allows addition and

deletion of modules even after the circuit has been fully parsed. Errors such as

shorts, ill-formed modules, rising and falling edge violations, illegal loops, or any

error that would cause a circuit not to be in the range space of the grammar, can

be caught by the GRASP verifier.

__1_ 1·11.1111· 11IIl -- --II_ �--CI-___ -^_ll�LI1l I·.-l^l�il�C�- .··-�_-1�... 1----^·.·11111^·_�---Y-·-1C--·-�-� 1
_ X· I--.·-II_ - --

23

CHAPTER 2. SCHEMATIC DESIGN STYLE VERIFICATION

In the same way that a programming language parser (such as that contained in
the front end of a compiler) reads a program source file and checks for syntax errors
in the program while building a parse tree, GRASP reads a circuit netlist file and
builds a circuit parse tree in accordance with a user specified circuit grammar.

A circuit methodology grammar is described by a set of circuit grammar productions
specified in a Lisp-like syntax. The grammatical productions (also called grammar rules)

used in GRASP are very different from heuristic production rules [31], [40] or database
techniques [27]. The grammar is simply a compact hierarchical specification of the set
of circuits that conform to the methodology. The use of heuristic production rules by
contrast, is more a programming style that describes the action to be taken if a certain
set of conditions holds true. The entire operation of the GRASP verifier is restricted
to replacing subcircuits by modules. This operation is called parsing. The process is
guaranteed to succeed if the circuit is in the range space of the grammar and to fail
otherwise. Since the entire checking process is performed using this one potent operation,
algorithmic speed, tractability and simplicity is achieved.

Unlike the techniques described in [26], [27], [31] and [40] which search for illegal
circuit configurations, GRASP uses a specification of the methodology itself in a fast,
non-heuristic and incremental verification technique which identifies syntactically correct
structures.

The class of circuit grammars that can be handled by GRASP's parsing algorithm be-
longs to a subset of deterministic context free grammars. These grammars are sufficiently
restricted in structure to be parsed efficiently. The next major class of grammars beyond
context free grammars is the class of context sensitive grammars [25]. This class is much
too unstructured and unwieldy for efficient parsing techniques to be applicable.

The remainder of this chapter introduces the reader to grammars. Existing grammars,
namely string grammars, are described and the reason for their unsuitability for verifying
circuits is explained.

Section 3.1 introduces a special kind of grammar called circuit grammars which is
used to precisely define the set of schematics that obey a design methodology. Using
a technique called net bundling the problem of design style verification is then cast
into grammatical parsing using a circuit grammar. The formalisms of this chapter are
extended to incorporate behavioral verification as described in [1].

In chapter 4 a deterministic context free grammar for the common CMOS two phase
clocking methodology [53] is described. With this grammar, GRASP can verify whether a
transistor level description of a circuit obeys the CMOS two phase clocking methodology.
This methodology consists of classical CMOS gates, dynamic gates (e.g. domino) and

_

24

2.4. EXISTING GRAMMARS

latches combined in accordance with the two phase clocking requirements. This section
concludes with an example of a parse on a CMOS static gate.

Chapter 5.1 describes the event-driven parsing algorithm used in GRASP and its ca-
pability of allowing modules to be incrementally added or deleted from the circuit even
after the circuit has been parsed. The chapter also provides experimental timing results
obtained by applying GRASP to a large circuit, namely a bit systolic retimed multiplier.

2.4 Existing Grammars

2.4.1 Overview

Grammars specify how a set of objects called the alphabet of the grammar may be
connected together. The purpose of this section is to familiarize the reader with some of
the terminology and formalisms of grammars and to show that the types of grammars
used in programming languages, namely string grammars, are not suitable for design
methodology verification. The discussion of this section is informal. In chapter 3 a
precise definition is provided for some of the terms informally discussed in this section.

In this section string and graph grammars are described. String grammars are shown
to be inadequate for describing circuit methodologies. The shortcomings of string gram-

mars lie in the fact that strings are inadequate representations for circuits. The class
of string grammars necessary to encode useful circuit methodologies is too general to
be effectively handled by a grammar based methodology verification algorithm. Graphs
can be used to effectively represent circuits, however as shown in section 2.4.3, for some

graphs there is no corresponding circuit equivalent. A representation specifically tailored
for circuits and a new kind of grammar called circuit grammars that operates directly on
circuit representations is introduced in chapter 3.1.

Section 2.4.2 introduces string grammars and the basic formalisms common to all
grammars. The shortcomings inherent in string grammars that render them useless for
representing circuits are then described. Section 2.4.3 briefly introduces graph grammars,
gives references for their definition and uses and also sets the stage for the graph-like
circuit representation of chapter 3.1.

2.4.2 String Grammars

String grammars are widely used in Computer Science and are at the heart of the
Theory of Computation [29], [24]. Only certain classes of string grammars can be readily

_ _141 11·-·1111-^_·11111-1_ 1- I- --^�1_·_--11 - IIII�I -I·--_l-�l(�·�Y-l·--rm-��.�� ---�CIIIIILIIII-� ._-·�--X

25

CHAPTER 2. SCHEMATIC DESIGN STYLE VERIFICATION

used for syntax verification. The most widely used are deterministic context free gram-
mars. Syntax verification using these grammars is called parsing. The computer program
that accomplishes this is called a parser. These grammars can capture most hierarchical
programming language constructs and efficient parsers for them can be built.

During the design of a compiler for a programming language such as the C program-
ming language, a grammar specification of the C language is first generated. A parser
for the C language is then derived from the grammar. Programs such as YACC [4] can
automatically generate a parser from a grammar. Given a specification of the grammar
for a language L, YACC generates C language source code which when compiled acts as
a parser for the language L.

String Representation of Circuits

A string is a sequence of string symbols juxtaposed. For example, if , y and z are
symbols zyz is a string. Circuits can be described by strings. In fact the input to most
circuit simulators [51], [48], [13] is a file containing a string (text) description of the
circuit. One of the simplest formats for such a description is the format used in the
RNL [48] simulator. Each line of this type of file begins with the name of a module type
followed by net numbers. A line such as:
ntrans 3 2 5

signifies that there is a module of type ntrans connected to nets 3 2 and 5. The ith
net in the list connects to the ith pin of the module. By convention, pins 0, 1 and 2 of
an ntrans type module refer to the gate, source and drain of the n-channel transistor.
Similar conventions are used for every other module type.

Since circuits can be encoded by strings, it is theoretically possible to encode the
circuit to be verified by a string and use a string grammar to verify the circuit. This
strategy is, however, not practical as is explained in the following subsections. First,
string grammars which are compact formal descriptions of a finite or infinite set of strings
are introduced. This introduction to grammars will also familiarize the reader with
grammars before circuit grammars are introduced in section 3.1.2.

String Grammar Definition

A context free string grammar G (CFSG for short) is denoted by G = (N, T, P, S)
where N and T are finite sets of string symbols [24] (called nonterminals and terminals
respectively) with N n T = . P is a finite set of productions of the form A -- x where
A N and x is a string of symbols in N U T. S is a distinguished symbol in N called

�. I ___

26

2.4. EXISTING GRAMMARS

ntrans 1 5 2
ptrans 1 3 2
inverter 2 3 4 5

FIGURE 2-2: Fragment of RNL file

the start symbol. The relation =* between strings is defined as follows: If A - x is a

production in P and a and #/ are two strings then crA/9 = axs/. The relation 4 is the

transitive closure of =' defined by: for any strings a,/9, y a 4 a and if a 4 / and

/ =X 7y then a 4 y. The set of strings that obey the grammar G is called the language

of G denoted by LG and is defined by a E LG if and only if S =4 a and a contains only

symbols in T. Any set of strings that is the language of some CFSG is called a context

free language.

Context free attribute string grammars [23] (CFASG for short) are a variant of CFSG,

more convenient than CFSG for describing circuits. A variant of CFASG grammars are

used in this section. It will be shown in section 2.4.2 that even this more powerful form

of grammars is inadequate for circuit verification due to the inherent weaknesses of string

grammars for adequately representing circuits.

A CFASG G = (N, T, P, S) is similar to a CFSG except that the symbols in N U T have

attributes. For example, symbol A might have attributes x, y, z and this is denoted by

Afar,. The productions in P are of the form A,Y,,Z -- where y is a string of attributed

symbols in N U T and x, y, z are functions of the attributes of the symbols in the string

-y. For the purposes of this section it will be assumed that the attributes are integers

which represent net numbers.

Circuits are readily expressed by a string of attributed symbols. Each symbol rep-

resents a module of a certain type and it's attributes represent the nets it is connected

to. For example, if N,P and I are symbols for n-channel transistor, p-channel tran-

sistor and inverter respectively, then the RNL circuit file in figure 2-2 can be expressed

by N 1,5,2P 1,3, 212, 3, 4,5. The underlying meaning of a production of the form I.,,,t

Nsl,,,Px,,z is that an n-channel and a p-channel transistor connected as in Nt,,P,,z

(pictorially represented by figure 2-3 (a)) is equivalent to and can be replaced by an in-

verter connected as in I,y,z,t (pictorially represented by figure 2-3 (b)). The language of

the grammar represents the set of all circuits expressed by strings that can be derived

by expanding the start symbol S.

_____ ·_ __ �II II_ �
I _ -^·11---^ �--1-_�·�11�-·-·1----·I._IIIY·I�·�UYli�-

27

CHAPTER 2. SCHEMATIC DESIGN STYLE VERIFICATION

i y

x 2 Z

(a) (b)
FIGURE 2-3: Equivalent Module and Network

1

FIGURE 2-4: Circuit Represented by the String N1,5,2P1,3, 21 2,3,4,5

Problems with String Grammars

The problem with string representations of a circuit is that the order of the symbols
as they appear in the string is not relevant. Changing the order of the symbols in the
string does not change the underlying circuit represented by the string. For example, the
circuit represented by the string N 1,5,2 P1,3,212,3, 4,5 is the same circuit as those represented
by I2,3, 4,5P 1,3,2N1,512, P1,3,21 2,3,4,5N 1,5, 2 or I2,3,4,5 N 1,5,2P1,3,2. All four strings represent the
circuit of figure 2-4. If grammar G is to be useful for verifying circuits then if s is a string

in LG any string s' obtained by permuting the symbols in s must also be in LG. CFASGs

and CFSGs are unfortunately sensitive to the order and location of symbols in the string.
This incompatibility makes string grammars unsuitable for verifying circuits as is shown
by an example in the next paragraph.

Let G be a grammar whose language represents CMOS transistor circuits which form
cycles of inverters. Without loss of generality it is assumed that the only production in G
which manipulates the N and P symbols is the I,,,,z,t - N,,tzPY,,,, production. In any

28

2.4. EXISTING GRAMMARS

P1,4, 2N1, 5,2P2, 4,3N2, 5,3P3 4,1 N3,5,1
(a)

P1 ,4,2P 3 ,4,1 P2 ,4 ,3 N2 ,5 ,3 N 1,5,2N 3 ,5, 1

(b)

FIGURE 2-5: Two String Representations of the three Inverter Cycle

FIGURE 2-6: Three Inverter Cycle

string s in LG, symbols derived from the application of a given production will appear
close to each other in the string s. Hence in any string s in LG, transistor symbols N
and P derived from the same inverter symbol I will appear at consecutive locations.

Figure 2-5 (a) shows one possible string s in the grammar. The string s represents

the three inverter cycle circuit shown in figure 2-6. Figure 2-5 (b) shows another string

representation s' of the same circuit. The 2 d and 5 th transistor symbols in s' belong to
the same inverter but appear at non consecutive locations in the string and therefore s'

cannot be in LG.

in order to verify the circuit represented by the string s' using grammar G, the order

of the symbols in s' must be rearranged so that the N and P symbols derived from the

same inverter appear at consecutive locations. It is unfortunately not always possible

to rearrange the string so that neighboring modules in the circuit appear at consecutive

locations in the string encoding of the circuit. For example, the power supply module

connects to a large number of modules all of which cannot be adjacent to the supply

module in a string representation of the circuit. In fact the appropriate ordering is

not intrinsic to the circuit but depends also on the grammar. In general, finding the

appropriate ordering of symbols in a string s in order for a grammar G to be able to

�1__11 ___ __111 _11 I I_ 1 _1___1____1 __11__ �__�____LPU_ .�I�I�IIII�-·LUI- .��··-Y·ll�s�-·l-----I�n�--_IEIIIY---_·- -1

29

I

CHAPTER 2. SCHEMATIC DESIGN STYLE VERIFICATION

parse it is a difficult problem for which no practical solution exists.

Constructing a grammar whose language contains all symbol permutations of strings

in G is not a practical solution. Given a CFASG G, let G' = Per(G) be a grammar such

that for any string s in LG any string s' obtained by permutation of the symbols in s is

in LcG. For a string grammar G, such as the ring inverter grammar described above, the

language of G' = Per(G) consists of all strings representing transistor networks of inverter

rings regardless of the order of the symbols in the string. Not only is N1,2,4P1,3 ,414,3,2,5 in

LG but so are: 14 ,3 ,2 ,5 P1 ,3 ,4 N 1, 2,4 , P1 ,3 ,4 14 ,3 ,2 ,5 N1 , 2, 4 and 14 ,3,2,51V 1,2 ,4P1,3,4 -

In general G' is not a CFASG and belongs to a more general class of string grammars

for which the verification techniques required are much more complex making circuit

verification using G' impractical. For example, it can be shown that the string language

LG = {anbncpdp} is context free but using the pumping lemma for context free string
grammars[22] it can be shown that for G' = Per(G), LG is not context free.

Because attribute string representations of circuits are not sensitive to the order of

the symbols in the string and since CFSGs (and CFASGS) lack the ability to deal effectively

with symbol permutation within the string, string grammars are unsuitable for circuit

design style verification.

2.4.3 Graph Grammars

The objects manipulated in graph grammars are the graphs themselves and as such

graph grammars (GGs for short) do not suffer from the string permutation problems

inherent in string grammar representations of graphs. Work has been done on graph

grammars particularly as they relate to biology and computer science [19]. Various forms

of graph grammars and a description of their applications can be found in [20] and [19].

[34] is an extensive list of references for various sorts of graphs and their applications.

Many of the graphs and graph grammars in [20], [19] and [34] are tailored for a specific

application.

Circuits can be represented by graphs with two kinds of vertices: module vertices and

net vertices. The module vertices connect to the net vertices via the graph edges. The

labels on the edges represent the pin types of the various modules. Figure 2-7(b) shows

the equivalent graph representation of the circuit of figure 2-7(a). In this representation

not all graphs can represent circuits. For example, the graph of figure 2-8 cannot represent

a circuit because transistor modules have only one gate connection.

In the next chapter a representation for circuits based on graphs similar to the rep-

resentation of the previous paragraph is described. An associated grammar type called

I

30

2.4. EXISTING GRAMMARS

(a) (b)

FIGURE 2-7: Circuit and Graph Equivalents

FIGURE 2-8: Graph with no Corresponding Circuit

__·I�__ X�--PL�---�CIII II -·- .-̂·^--. -^-lll·�^IC- -·---�-_I �--�-_I_----------·�·III XIIIIII-.I�-Y- -�.1)--_ 11·-4(--·)

31

32 CHAPTER 2. SCHEMATIC DESIGN STYLE VERIFICATION

circuit grammar specifically tailored for the new representation is introduced. These

grammars are inspired by the graph grammars of [20] and [19]. The representations for

circuits of chapter 3.1 are closer to the usual representations for circuits. The vocabulary

used to describe this new representation is derived from circuits rather than from graphs

thus making their discussion easier. Also some of the problems related to the fact that

there may be instances of the representation for which there is no corresponding circuit

(such as the graph of figure 2-8) are not present in this new representation.

3

Circuit Grammars

3.1 Circuit Representation & Circuit Grammars

The problem with string and graph grammars is that strings and graphs are inad-
equate representations for circuits. Because of the shortcomings of string and graph
grammar for effectively handling circuit methodologies a new kind of grammar called

circuit grammar with operates on circuits is introduced.

In this chapter first a suitable representation for circuits is described. Then a new
kind of grammar which preserves the spirit of string and circuit grammars and directly
manipulates the circuit representation is introduced. Just as string and graph gram-

mars describe sets of strings and graphs, circuit grammars describe sets of circuits. In
section 3.1.9, net-bundles, a necessary ingredient for casting the problem of design style
verification into grammatical parsing is described. In that section the benefits of having

the grammar directly manipulate the representation will become clear. Each section first
gives an intuitive feel for the issues involved and then introduces the necessary formalisms
for precise definitions.

3.1.1 Circuit Representation

In this section a representation for circuits is described. The representation closely
parallels our intuitive understanding of what a circuit netlist is. It consists of a list of
modules and a description of how the modules are electrically related. Each module
is an instance of a module type. Modules have various points called pins at which
electrical connections can be established. Describing how the modules electrically relate is
accomplished by defining which pins are electrically connected together. The underlying

33

X _·1�1I 1__� I I_ II____�I__L _l··__^IIl_·_l__lyl_�·-L-·I)II1^·II�L·--�I �__

CHAPTER 3. CIRCUIT GRAMMARS

x

gnd

(a) (b)
FIGURE 3-1: Graphical Description

electrical meaning of the connections is that all the pins connected together are at the

same voltage and they satisfy KCL in that the sum of the currents flowing into them is
zero.

Figure 3-1 (a) shows the traditional pictorial representation for a circuit consisting of

a CMOS NOR gate and an inverter. The modules are drawn using different symbols for

each module type and the pins are identified by distinguished locations on each symbol.

Nets are drawn by wires connecting the pins. A more suitable pictorial representation

of the circuit for our purposes is shown in figure 3-1 (b). Both nets and pins appear

explicitly in figure 3-1 (b) as do the connections between them. The nets appear as small

circles. The pins are denoted by a symbol, usually a number, inside the parent module's

boundary. An arc between a pin and a net signifies that the pin is connected to the net.

Each net must be connected to at least one pin and each pin must be connected to

exactly one net. Hence figure 3-2 does not depict a valid circuit because net i does not

connect to any pins and pin 3 of the inverter module does not connect to a net.

Formal definitions of pins, nets, connections, module types and modules specifically

suitable and relevant to grammar based verification are described in the remainder of

this section.

x

I -

34

.

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

x

gnd

FIGURE 3-2: Incorrect Circuit Representation

Nets, Pins and Module-types

Nets, pins and module types are the atomic objects from which modules, circuits

and circuit grammars are built. Each module type T has an attribute which is called

numberofpins. Nets are drawn by small circles as shown in figure 3-1. The identifiers

next to them are unique names given to the nets for explanatory purposes.

Definition 1 Let P , .A, T be three distinct sets whose elements are called pins, nets
and module types respectively. Let numberofpins denote a function from T to R. For

T E T numberofpins(T) is denoted by aT.

Connections between pins and nets drawn by arcs in figure 3-1 (b) are associations

between pins and nets.

Definition 2 A connection is a pair (p, A7) where E .N and p E P. Net 7 is said to be

connected to pin p and pin p is said to be connected to net 77. The set of all connections

is P x n/.

Modules

Modules drawn as rectangles in figure 3-1 (b) consist of a module type and an indexed

set of pins. The pins are all unique to each other and to the module in that they are

_11 ··__1^·_1_1 --*111111---·111-1 -- 1_ _111^1_I1 _111 �l·_C I-------·-·�·�·)--·LII----L--·��--�---Y_ -11I�I UI-�II�·LIC--I

35

CHAPTER 3. CIRCUIT GRAMMARS

not shared by other modules. The number of pins is determined by the numberofpins
attribute of the module type. The pins are indicated by numbers inside the boundary of
the module. A large symbol inside the module denotes the module type. The subscript or
symbol next to the module type is a name given to the module for explanatory purposes.

Definition 3 A module M is an n-tuplet (T, Po, P1 " ' P,,r-) where T E T and Po ." P,-1
are pins distinct from each other each of which is unique to M. The set Po ... P,,- 1 is
denoted by PM. T is called the type of module M. For a Pi pinnumber(Pi) = i and
module(P) = Al is defined. The set of all modules is denoted by M.

Circuits

A circuit consists of a set of modules Me, a set of nets A/c and a set of connections Cc
between the set of nets and the set of all the pins PMc of the modules. In this model for
circuits, the electrical connections between the modules have zero resistance. Resistances
must appear explicitly by using resistor modules. Figure 3-1 is an example of a valid
circuit.

Definition 4 A circuit C is a triplet (Mc,Arc,Cc) where Mc C M, A/c C and

CC PMC x A/, PMc = UMiEgc Mi and finally V(p, V) E Cc, ({p} x n/c) n Cc is a
singleton and PMc x {7} 0.

Me is called the set of modules in C, A/rc is called the set of nets in C and Cc is
called the set of connections of C. The set of all circuits is denoted by C.

It is often necessary to deal with portions of a circuit C consisting of some but not
necessarily all modules and nets in C. These portions of C must themselves be legal
circuits and are called networks of C.

Definition 5 N = (MN, JAN,CN) is a network of circuit C if and only if N C C and
each set MN, A/N, and CN obeys the constraints of definition 4. The set of networks in
circuit C is denoted by Nc.

Circuit Isomorphism

The circuits in figures 3-3 (a) and (b) are not one and the same since they have mod-
ules and nets that are distinct from one another. They are however identical in every
other respect. A relation "" between circuits, such that circuits which are not neces-
sarily one and the same but are structurally identical are in relation with one another, is
defined. C1 - C2 is read "C1 is isomorphic to C2". The _~ relation is similar in spirit to

_ I� I __ �

36

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

(a) (b)
FIGURE 3-3: Isomorphic Circuits

the Lisp list comparison function "similar" [42] which returns true if and only if its two

arguments represent the same list even if they are built with different concells.

Informally, two networks are isomorphic if there is a one to one mapping between

their modules, nets and pins such that:

1. The image of the ith pin P of module M is the ith pin of the image of M.

2. If pin P is connected to net 77 then the image of P is connected to the image of r.

Formally:

Definition 6 Two networks N1 = (M 1A, A, C1) and N 2 = (M 2, A/2, C2) are isomorphic

N1 - N2 if and only if there exist three one to one mappings fM : -M1 M 2 , fN :

Arl - A/2 and fc : C1 -- C2. such that: VM E M 1 , typeof(M) = typeof(fM(M)), and

V(pi,771) E C1 if (p2 , 2) = fC(pl,771) then '72 = fN(711), module(p2) = f(module(p))
and pinnumber(pi) = pinnumber(p2)

3.1.2 Circuit Grammars

In this section a precise definition for context free circuit grammars (CFCG for short)

is given. Because the productions in these grammars involve circuits and since circuits

I is o I

37

CHAPTER 3. CIRCUIT GRAMMARS

v

0

9

N NE
R

(a) (b)

FIGURE 3-4: Example of a Circuit Production

are much more complex constructs than strings, a precise definition for circuit production

must first be given.

Circuit Production

Just as string productions describe how a string symbol can be ezpanded in a string,

circuit productions describe how a module M or rather how a network consisting of one

module Al can be expanded in a circuit. A circuit production is an association between

a singleton network' NR and a network NE in which all the nets in NR also appear in

ANE.

Definition 7 A production R is a pair of circuits (NR, NE) E CXC, NR = (MR, /KR, CR)

and NE = (ME,AKE, CE) where MR is a singleton and .R C AE. NR is called the LHS
of the production denoted RLHS and NE is called the RHS of the production denoted RRHS.

The set of all productions is denoted by 1R.

Figure 3-4 shows a pictorial representation of a circuit production. The LHS of the

production is the buffer shown in figure 3-4 (a) and the RHS of the production is the two

inverter circuit of figure 3-4 (b). Notice that all the nets in NR appear in NE.

3.1.3 Network Expansion and Reduction

In this section a new relationship between circuits denoted by "4" which closely

parallels the •= relationship for strings is defined.

1A circuit which has one module in it.

38

i

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

i

kVP

0

gnd

FIGURE 3-5: Circuit C before Expansion

A local operation on a module M in a circuit C called module expansion is defined.

The result of applying this operation on M in C is a new circuit C' such that C 4 C'.

Let C = (MN,NN,CN) be a circuit, M a module in C and R = (RLHS,RRHS) a

production such that the type of the module in RLHS is the same as typeof(AI). A

pictorial example for C is shown in figure 3-5, an example for R is shown in figure 3-6.
Let]NM be the singleton network in N consisting of the module M, (NM = ({AI},AM, CM)

where CM = (7 x M)n CN). NM is shown in figure 3-7.

Let NE = (ME, NE, CE) be a network isomorphic to RRHS with fN being the corre-

sponding net isomorphism, with NE such that:

* AE has no modules in common with ME, ME n AN = 0

* The set of nets of network NE includes the nets in the singleton network /M,

X/E C JnM.

* If V is the net connected to pin i of MLHS then n' = fN(r) is2 the net connected to pin

i of M. Formally: V(p, r7) E CRLHS, (', fN(77)) E CM and indexof(p) = indexof(p').

Figure 3-8 shows an example of the network NE where C, R and NM are the networks

of figures 3-5, 3-6 and 3-7 respectively. Notice that the i h pin of M connects to the image

net of the net connected to the ith pin of MLHS.

Definition 8 Expanding module M in N via production R is the process of replacing

network AM in N by network NE. The new network N' obtained by this process is

AT' = ((gN - {M}) U ME, NN U A/E, (CN - CM) U CE).

The relationship between N and N' is denoted by N t N'.

2Since is a net in RLHS rq is also a net in RRHS and therefore f(q) is defined.

II� `^"-'� I-�-�l-yll"".�l�-�-�L·l_�lll-·lllll. I�- · l·ll-�-�·-LII�-� - � _ -�-�-�--��---_ _ _I ---_-- ---II --II I -·�-----L�·-·C-�YI-·111

39

,,

40

v

out =

CHAPTER 3. CIRCUIT GRAMMARS

FIGURE 3-6: Latch Production R

t

gnd

FIGURE 3-7: Network NM of C

-dk

in

dk

It

g

_r

-4

i

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

fN(in

i = fN(in

dd = tN(v)

= fN(a)

t = fN(out)

y fN(b)

gnd = fN(g)

FIGURE 3-8: Expanded Network NE

41

· .o..

CHAPTER 3. CIRCUIT GRAMMARS

o

FIGURE 3-9: Resulting Circuit C' after Expanding C

The resulting circuit C' for the case where C, R, NR and NE are the networks of
figures 3-5, 3-6 3-7 and 3-8 respectively is shown in figure 3-9.

With N, M , R, NE and N' being defined as above the reverse operation from network
expansion is now defined.

Definition 9 Reducing network NE in N' via production R is the process of replacing
network NE in N by network NM. The resulting network N is such that N 4 N'.

3.1.4 Context Free Circuit Grammar Definition

The definition of context free circuit grammars parallels that of CFSGs. The differences
are that module types are used instead of string symbols and the circuit productions
defined in section 3.1.2 are used instead of string productions.

Definition 10 A context free circuit grammar G is a quadruple (AG, TG, SG, RG)

where TG C AG C T and AG is finite, SG E M, typeof(SG) E AG, RG C R where

VR E RG the type of the module in the RLHS is in (AG - TG) and the types of the mod-
ules in RRHS are elements of AG. AG, TG, SG, RG are called the alphabet, terminals, start

42

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

symbol and productions of G respectively. The set of all context free circuit grammars is
denoted by S.

The "" relationship between circuits is now defined by "C C"' if and only if
"C 4 C"' where R is a production of G.

The relation != is the transitive closure of :$ defined by: for any circuits C 1, C2 and
C3, C, C, and if Cl • C2 and C2 g C3 then Cl • C3.

Let NSG be a network consisting of a module of type SG.

Definition 11 The range space or language LG of a context free circuit grammar G =
(AG, TG, SG, PG) is defined as the set of all networks Ji which contain modules only in

TG such that NsG Ai.

3.1.5 Reducibility Condition

In this section a condition on any candidate network to be reduced, called the re-
ducibility condition is introduced. A network can be reduced only if it obeys the reducibil-
ity condition. First by using the examples of figures 3-10, 3-11 and 3-12 the consequences
of reducing a network that does not obey the reducibility condition is examined. Then
by using the formal definitions for network expansion and reduction described in sec-
tion 3.1.3, a condition on the network to be reduced that guarantees a correct reduction
is derived.

Module Internal Sneakpath

In figure 3-9, the nets x and y are connected only to modules in NE. Figure 3-10
depicts a situation where one of these nets, x, is also connected to the inverter module E.
The result of replacing NE by the network of NM1 of figure 3-11 is shown in figure 3-12.
The net x is still present in the network in order to accommodate the connection to
pin 0 of module E. However the underlying electrical meaning of the module Ml is not
equivalent to and cannot be abstracted from the network NE because All violates our
intuitive understanding of what a module is.

A module can electrically interface with the circuit it is used in only via its pins. There
is a sneakpath connection from the interior of module M to net x. The circuitry internal
to an abstracted module cannot connect to circuitry outside the module. Therefore if
any of the nets x or y are connected to modules not in NE, the reduction of NE is illegal
and has no electrical significance.

43

CIRCUIT GRAMMARS

w

FIGURE 3-10: Circuit with Illegal Connection

t

gnd

FIGURE 3-11: Illegally Reduced Network NM,

CHAPTER 3.44

.

i

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

FIGURE 3-12: Circuit with Sneakpath Connection

Reducibility Condition Definition

When module M is expanded in circuit C to yield network C', new nets (x and y) in

figure 3-9 are introduced. These new nets are the nets in N/E - NM and by construction

of network N' they connect only to the pins of modules in NE. They are the images

by fN of the nets in RRHS - RLHS. They are referred to as the internal nets of R and

their images in NE by fN are referred to as internal nets for the expansion (respectively

reduction) of NM (respectively NE) via production R.

This result holds for any circuit C' and network NE of C'. Since reduction is the

exact reverse operation from expansion, for there to be a module M, a circuit C and a

production R such that the expansion of NM into NE via production R yields C' it must

be true that the images of the internal nets of R via fN connect only to pins of modules

in NE. This requirement on the nets of NE is referred to as the reducibility condition.

Before reducing any network NE in any circuit C by any production R, the internal nets

of NE must satisfy the reducibility condition.

Using the examples for N, N', NE and R defined in section 3.1.2, figure 3-13 shows

the production R and the circuits N and N'. The image nets of the internal nets of R

(nets a and b) in NE are the internal nets of the reduction and are allowed to connect

only to modules in NE in order for the reduction to be well formed.

45

A,

CIRCUIT GRAMMARS

Nets a and b
,t cannot be

connected to
other modules

I/

I

FIGURE 3-13: Reducibility Condition

-cdk

in

cldk

out

CHAPTER 3.46

,

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

3.1.6 Parsing

Given a CFCG G and a circuit C, methods for verifying if C is in the range space of G
(C E LG) are examined in this section. Having captured a circuit style by its grammar
G, verifying that C obeys the circuit style is accomplished by verifying that C is in the
range space of G. An efficient technique for solving the range space membership problem
is therefore central to our verification process.

Verifying that C is in the range space of G is equivalent to verifying that CSG = C,
where CsG is a singleton circuit consisting of a start symbol module of G. The two
major techniques for accomplishing this are top down parsing and bottom up parsing
both described in this section.

Top Down Parsing

Top down parsing is the process of finding a sequence of networks Co ... Ci ... Cn such
that Co - CSG, Ci Ci+l and Cn - C. For each circuit Ci in the sequence, a production
Ri of G and a singleton network NNfM on which an expansion via Ri will be performed is
selected. Each of these expansions yields a new circuit Ci+l. The difficulty in top town
parsing is choosing the right production R and network NJM for each Ci.

Top down parsing is unsuitable for incremental circuit verification. The choice of the
very first production Ro and network NoM has an impact on the entirety of each of the
circuits Ci and hence affects the entirety of C,. Therefore top down parsing in general
requires knowledge about the entirety (or at least certain strategic key features) of the
circuit C, before the very first derivation can be performed. Therefore verification of C
can begin only after C has been completed.

Unlike strings, circuits have no beginning from which to start parsing. Since there is
no natural ordering of the components in the circuit, in order to search for a distinctive
feature in the circuit for selecting the next expansion, the whole circuit may have to be
examined. Because the very first expansion affects the entirety of Cn, an examination of a
large portion of C, must be performed before it can be executed. Subsequent expansions
may require examination of smaller portions of C, but there will be several expansions
requiring examination of large portions of C,. This suggests that the selection process
for each NJM and R/ will require a non local and possibly complex decision algorithm.

Bottom Up Parsing

Bottom up parsing is the process of finding a sequence of networks Co ... Ci ... Cn
such that Co = C, Ci+l = Ci and C,, ~ CSG. For each circuit Ci in the sequence, a

47

CHAPTER 3. CIRCUIT GRAMMARS

production Ri of G and a network NfE of Ci on which the reduction via Ri is performed
is selected. Each of these reductions yields a new circuit Ci+l. The difficulty in bottom

up parsing is choosing the right production Ri and network N/E for each Ci.

Bottom up parsing is especially suited for incremental circuit verification. Each of the
first few reductions affects only a small network of C. The reductions can be performed

almost as soon as these networks are completed. In section 3.1.7 it will be shown that
the selection process for each N M and Ri can be accomplished by a simple and local

decision algorithm. This algorithm examines the neighboring modules of a network N

and how they are connected to the modules in N and decides which production R in G if

any should be applied to reduce N. Thus reduction for production Ri may be performed

almost as soon as the corresponding N/E is completed. These reductions create new

composite modules which ultimately form new networks NfE. Reduction of these new
networks may also be performed almost as soon as they are completed.

Given that bottom up parsing encourages incremental verification and that a simple

bottom up network and production selection algorithm exists, bottom up parsing is used

to solve the grammar range space membership problem for circuits. Henceforth in any

reference to parsing it will be assumed that bottom up parsing is being performed.

Parse Tree

A useful aid for visualizing the sequence of reductions during parsing is the parse tree.
The parse tree contains a log of which networks were reduced, which new modules got

created in the process and the production involved. Given a circuit C and a sequence of
reductions on C which yields the start symbol module for the grammar, the parse tree

can be thought of as the proof that the circuit is in the range space of the grammar.

If P (respectively P2) is a production which expands a 2 input NAND gate (respec-

tively inverter) into its constituent transistors and P3 is a production which expands an
AND gate into a NAND gate followed by an inverter, then the parse tree for the circuit in
figure 3-14 might look like figure 3-15.

The parse tree is used in section 5.1.6 for efficiently checking the consistency of in-

cremental additions and deletions to the circuit. It is also useful when reporting errors

back to the user.

3.1.7 Deterministic Reduction

It is not necessarily true that a network which satisfies the reducibility condition, and

for which there is an applicable rule in the grammar, should be reduced. Sometimes such

48

1 -

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

out

FIGURE 3-14: NAND Gate and Inverter Circuit

A

-A G

PA PB Nc ND

H

PE NF

FIGURE 3-15: NAND Gate and Inverter Parse Tree

N

P3

PiE P 2

49

I

CHAPTER 3. CIRCUIT GRAMMARS

reductions can result in a situation where further reductions on the resulting circuit are
not possible even though the initial circuit obeys the circuit methodology being checked
for.

Consider the string grammar G whose productions are:

S - AC A ab

C -cd W bc

Then S = AC :: abC = abcd so abcd E LG however aWd :: abcd but S # aWd.
Therefore even though bc can be reduced into W this reduction should not be performed

because it leads to aVd from which no more reductions are possible even though the
string is in the language of the grammar. The same holds for circuit grammars and hence
a mechanism for deciding which of any possible reductions to apply is necessary.

If for any circuit that obeys the design methodology there is a procedure for deciding
which networks to reduce such that the sequence of reductions is guaranteed to result
in the start symbol SG, then the grammar is said to be deterministic. For grammars
that are not deterministic, many reductions must be tried and then later undone when
it can be shown that they lead to dead ends. This typically results in parse times that

are exponential in the number of modules in the circuit.

Given a subnetwork, GRASP decides whether or not to reduce it by examining its
connected neighborhood. In this neighborhood GRASP looks for conditions that guarantee
that the subnetwork can be reduced. These conditions are the presence or absence of
certain modules referred to as condition modules. The modules whose presence is required

are referred to as presence condition modules. The modules whose absence is required

are referred to as absence condition modules. Presence and absence condition modules

correspond to look-ahead and pushdown automata state [3] for string grammars.

Presence Condition Modules

Checking for the presence condition modules comes down to identifying the augmented

networks NE which consist of the networks NE isomorphic to some RRHS plus the required
presence condition modules. The network formed by the RHS of the production RmRs plus
the presence condition modules is called the augmented production RHS. With the above
criterion, deterministic parsing corresponds to identifying the augmented network(s) NE,
but only the modules in NE are removed from the circuit and replaced by a new composite

module; the presence condition modules in NE are left in the circuit. In the rule in
figure 3-16 the augmented subnetwork NE consists of the two transistors which constitute

50

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS 51

in
=-- in

--------- I
I Condition Module

I I

I Supply:
:I 0

… - - L-........-

FIGURE 3-16: Presence Condition Modules

the associated subnetwork NE and the power supply module which is a presence condition

module. During the application of this rule only the transistor modules in NE get reduced.

The power supply module, which was necessary for the rule to be applied, is left in the

circuit.

Absence Condition Modules

Checking for absence condition modules comes down to identifying the networks NE

and verifying that specific pins numbers of specific module types do not connect to

certain external nets of the network NE. Figure 3-17 shows a hypothetical3 case where

the production P produces an inverter and the corresponding reduction R requires that

the output of the inverter not be connected to the input of a latch. This requirement

is referred to as an abscence condition and module z in figure 3-17 is referred to as an

absence condition module. A better example will be given in section 4.2.1.

Absence conditions are used much more rarely than presence conditions. They are
generally used to enforce production precedence which blocks certain productions from

firing until some other productions (of higher precedence) cannot be fired first.

Consider the string grammar G whose productions are:

S - AB

A - aA A a

B - Bb B - b

During a parse of the string y = aAB6 where a and are strings, the production

3This production is for explanatory purposes only and has no electrical meaning.

CHAPTER 3. CIRCUIT GRAMMARS

d

!
_ I Jl!

FIGURE 3-17: Absence Condition

S -, AB should be used only if there is no a to the left of the A and no b to the right of
the B.

In a circuit there is no natural left to right ordering of modules and hence no stan-

dard left to right parsing techniques such as LALR [3] parsing are applicable for circuit

grammars. Networks in the circuit get reduced in pseudo random fashion and therefore

the situation described above for strings does (occasionally) occur.

Absence condition modules suffer from the serious problem that the absence module

for reduction R may not be present at the time the reduction R is applied but may

appear later from the result of some other reduction. For example, consider the circuit

of figure 3-18 which is similar to figure 3-17 except that the transistors constituting the

latch have not yet been reduced into a latch module. Thus the attempted reduction of

circuit figure 3-17 will be performed. Sometime later the latch transistors will have been

replaced by the latch module but the reduction R will already have been performed.

In order to correctly prevent R from being performed not only must pin 1 of a latch

moduletype on net "o" be an absence condition but so must any module susceptible of

being reduced into a latch module. In the case of figure 3-18 it would appear that pin

0 of any module of type n-tran or p-tran should also be an absence condition module.

However adding those two absence conditions will incorrectly prevent the circuit on the

left hand side of figure 3-19 from being reduced. Only those cases which necessarily lead

to a latch module have pin 1 connected to net o and no other condition must inhibit the

reduction from being performed. A safe and easy way to use absence conditions is when

the absence module is a primitive module type.

In order to use non terminal absence modules and avoid the problems described above,

a special case of absence conditions with well behaved properties is used. In this scheme

instead of listing which modules should not be present the modules that are allowed to

52

i

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

a

b

FIGURE 3-18: Expanded Absence Module

0i

FIGURE 3-19: Expanded Non-absence Condition Module

53

i

-

CHAPTER 3. CIRCUIT GRAMMARS

be present are listed. Only specific pins of specific moduletypes are allowed to connect to

certain external nets of the network being reduced. All other connections (excluding the

connections by the modules in the network being reduced) will inhibit the reduction from

being performed. Section 5.1.5 describes how GRASPs event driven algorithm is used to

schedule the reduction when all of the absence conditions are finally met.

In the case of figure 3-17, a reasonable absence condition could be "allow no con-

nections other than pin 0 of an inverter type on net o". Only when no other module

except perhaps pin 0 of an inverter connects to net o can the reduction be performed.

In section 5.1.5 a technique for using GRASP's event driven parsing algorithm to schedule

the reduction after the inverter has been created is described.

Ambiguous Grammars

Ambiguous grammars are grammars for which there are several different parse trees

for a given schematic. A grammar can be both deterministic and ambiguous at the same

time. Determinism guarantees that if the schematic is in the range space of the grammar,

the sequence of reductions will yield the start symbol of the grammar. This sequence of

reductions is characterized by the parse tree. Determinism does not require the parse

tree to be unique. If the grammar is ambiguous4, there may be several different parse

trees for a given schematic. Any one of them can be used to prove the membership of

the schematic to the range space of the grammar. Therefore ambiguous grammars pose

no problem5 for the grammar based verification method proposed in this chapter.

3.1.8 Waveform Generators

The correct function of a circuit depends not only on its structure but also on how

it is connected to external waveform generators such as power, ground and clocks. Even

the circuitry connected to the chips input and output pins can be thought of as external

waveform generators. By considering these waveform generators as modules that are

part of the circuit, circuit methodologies can be expressed by a grammar whose alphabet

consists of both the circuit (e.g., transistor) and the generator (e.g., power and clocks)

module types. Recognizing that a net is, for instance, a vdd net is achieved by observing

that it is properly connected to the power generator module.

4Many of the grammars described in chapter 4 are highly ambiguous.
5During incremental design, grammatical ambiguity can in fact be advantageous. Because of the

larger number of reduction options available, a greater part of the parse tree can be constructed from a
partially finished circuit and therefore errors in the design can be detected earlier.

54

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

vdd 1

gnd 2

FIGURE 3-20: Waveform Generator Production

In terms of the grammar formalisms developed so far these waveform generators are
treated as presence condition modules. Since these waveform generator modules are now
truly part of the circuit to be verified, typically the production(s) that expand the start
symbol module of the grammar have the form shown in figure 3-20. In this type of
production the start symbol module Ms is expanded into the actual circuit to be verified
represented by module Mc and the waveform generator modules Mpowr,,,, and Mclock.

3.1.9 Net Bundles

Overview

A circuit to be verified by GRASP typically consists of modules of type transistor, clock
and power supply. As parsing proceeds, networks which correspond to the RHS of a rule
are replaced by new composite modules which correspond to the LHS of the rule. These
new modules form new smaller networks, which are in turn replaced by other composite
modules using the same process. After several such reductions, each resulting composite
module Ali will typically correspond to a rather large network Ni of the initial circuit.
The size of these networks Ni and the number of connections they may have to the rest
of the initial circuit is unbounded.

By virtue of being reductions of the networks Ni, the composite modules Ali must
necessarily connect to all the nets in common between Ni and the rest of the initial
circuit. Because the new composite modules Mi must also belong to one of the module
types in AG, the maximum number of pins they can have is fixed by AG and is bounded.
Therefore, since the number of nets a composite module must connect to is unbounded,
whereas the number of pins it can have is not, the concept of a net bundle is introduced.
Net bundles allow composite modules with a small set of pins to represent arbitrarily
large networks with an arbitrary number of connections to the outside world.

Because net bundles are central to allowing the grammatical techniques described in

55

Start >

CHAPTER 3. CIRCUIT GRAMMARS

this thesis to be applied to design style verification, the following subsections describe in

more rigor and detail the problems described above. Section 3.1.9 describes net bundles

and how their use solves the above problems. Definitions that will be used in the following

sections are first provided.

Definitions

* pins(M) is the number of pins of module M.

* R max is the maximum number of modules in any rule of grammar G.

* Co is the set of all circuits and given a circuit C, Nc is the set of all networks

included in C.

*· Mc is the set of all modules which occur during a parse of circuit C with grammar

G (M E M if and only if M N where N E Nc).

* For any circuit C (respectively network N) sizeof(C) (respectively sizeof(N))

denotes the number of modules in C (respectively N).

* For a module M which is a multistep reduction of a network N in the initial circuit

(M 4 N and N has only terminal modules) sizeof(M) = sizeof(N) is defined.

* For network N, v is a boundary net if and only if v is connected to at least one

module in N and at least one module not in N. The set of boundary nets of N is

denoted by boundaryset(N).

* For the trivial network N consisting of the sole module M boundaryset(M) =

boundaryset(N) is defined.

* The number of connections a network N has to the rest of the circuit is denoted

by connections(N) and is defined as the number of boundary nets for N.

* If M is a module which is a multistep reduction of N (M 4 N) then connections(M) =

connections(N) is defined.

Maximum Module Size

Circuits for most useful design methodologies can be of arbitrary size. Therefore the

range space of any useful circuit grammars must include circuits of arbitrary size. Since at

the end of a successful parse only the start symbol module Ms, remains, sizeof(Mso) =

sizeof(C) can be arbitrarily large.

56

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

Maximum Number of Connections

In this subsection it is sought to establish that it is not possible to design a grammar
such that for any module Mi created during parsing (Mi E MCG), connections(M) is

bounded by a constant independent of C as will be shown in theorem 3. If the reader

is convinced of this he can safely skip the remainder of this subsection and go on to

section 3.1.12. Theorems 1 and 2 are used to prove theorem 3. Finally theorem 4 is used

to prove equation 3.6 which shows that if each pin connects to only one net, an infinite

alphabet set AG and mapping set MG is necessary.

Theorem 1 During the parse of any circuit C for any positive number n less than

sizeof(C) it is always possible to find a composite module Mi such that sizeof(Mi) is
within a factor of RGaz from n. More formally stated:

VC E Co, Va,/ E R*+, < 1, > RGax 3Mi E M such that
O' G (3.1)a sizeof(C) < sizeof(M,) < #-3 sizeof (C)

Proof 1 Since at the end of a successful parse only one module remains, there is at least

one module Ms, such that sizeof(Ms) > 3. sizeof(C). Let MF be the first module

created such that sizeof(MF) > 3. sizeof(C). Let NF be the network MF was derived

from in one step (MF = NF) and MNF the module with the largest size in NF. By

definition of MF, sizeof(M ax") < 3 sizeof(C) because MjN2 was created before MAF.

Also:

a. sizeof(C) < · sizeof(C) < sizeof(MF) < sizeof(Mx)

therefore: a sizeof(C) < sizeof(MN) ~) < . sizeof(C)

therefore Mi = MNa can always be chosen.

Theorem 2 In order to divide a circuit C obeying methodology M into two very roughly

comparable parts the size of the cut set required cannot be bounded by a constant inde-

pendent of C. More formally stated:

Vn E , 3C e Co, a,/ E R3*+,> , 2> RGa, such that

VN E Nc, a sizeof(C) < sizeof (N) < 3. sizeof(C) (3.2)

It is true that: connections(N) > n

Proof 2 Connections(M) is the number of connections that have to be cut to separate N

from C. Since the ratio !.'5 Of (C is an element of a closed interval in]0,1[this number

is also the bisection width of the graph formed by circuit C. The bisection width of many

I��XII_ ·__�I··___·__·�___1_1__1111_11_11__1--_41111_111_1_11_- _.-.

57

CHAPTER 3. CIRCUIT GRAMMARS

graphs for many useful circuits such as FFTs is known to grow at least linearly with

sizeof (C) [49], (O(mrT) for the FFT). Hence connections(M) > O(sizeof (C)).

Given the two previous theorems it will now be proved that for any n E R a circuit

C E Co and a module Mi E Mca such that connections(M) > n can be found. In other
words, connections(Mi) cannot be bounded by a constant independent of C.

Theorem 3
Vn E , 3C E Co, M, E M such that

connections(Mi) > n

Proof 3 Given n let a,/ E R*+,C E Co satisfy the requirements on them specified

in theorem 3.2 and Al a module satisfying the conditions in theorem 3.1. Let Ai be a

module then satisfying the requirements of equation 3.1 (ca sizeof(C) < sizeof(Mi) <

/. sizeof(C)). It is known that such a module exists because of theorem 3. . Let N be

the network in the initial circuit that Mi was derived from. Ni must necessarily satisfy a

sizeof (C) < sizeof (N) < l. sizeof(C) because Mi was derived from Ni and Mi satisfies

the constraints in theorem 3.1. Because N; satisfies the constraints in theorem 3.2 it must

be the case that connections(N) > n. Therefore connections(N) = connections(Ai) >
n.

3.1.10 Equality of Boundary Sets

In this section it will be established that boundary sets are preserved under network

reduction operations.

Theorem 4
VC E Co, N' E Nc, If N = N'

then boundaryset(N) = boundaryset(N')

Proof 4 Let v be a boundary net for N. v connects to a module M not in N and therefore

obviously not in N'. v also connects to a module M in N. If M was not involved in

the N •S N' expansion then M is in N' and therefore v connects to a module in N'.

Otherwise M was replaced by a network NM which must necessarily also have a module

connected to v by definition of a well formed expansion defined in section 3.1.3. Since

NM is a subnet work of N', v connects to at least one module in N'. Therefore it can be

concluded that boundaryset(N) C boundaryset(N')

Let v' be a boundary net for N'. v' connects to a module M not in N' and therefore

obviously not in N. v' also connects to a module M' in N'. If M' is not in NM then M is

I

58

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

also in N and v' is therefore a boundary net for N. Otherwise v' cannot be an internal net

for the network NM because it connects to M and therefore also connects to M (M = NM)

by definition of a well formed expansion. Therefore boundaryset(N') C boundaryset(N).

Therefore it can be concluded that boundaryset(N) = boundaryset(N').

3.1.11 Minimum Number of Pins

It will now be proved that pins(M) connections(M), i.e. the number of nets
a module M connects to is equal to the number of connections the network N it was
derived from had with the rest of the circuit. By induction on theorem 4 it can easily be

shown that if N 4 N' it is necessarily true that boundaryset(N) = boundaryset(N'). In
the case where N consists of one sole module M, boundaryset(M) = boundaryset(N) =

boundaryset(N'). The boundary set for M consists of those nets connected to AM that
are also connected to other modules. If each pin of M connects to exactly one net then:

Pins(M) > Cardinality(boundaryset(M))

Cardinality(boundaryset(M)) = Cardinality(boundaryset(N'))
(3.5)

= connections(N')

= connections(M)

Using the inequality of equation 3.5 and the results from theorem 3 it can be concluded

that:

If each pin connects to exactly one net (3.6)

Vn E X, 3C E Co, M E McG such that Pins(M) > n

Equation 3.6 poses a serious problem. It says that if each pin of every module connects

to only one net then the number of pins a module must have is unbounded. The number of

pins for each module is determined by its module type which is an element of the symbol

set AG. Allowing the maximum number of pins a module can have to be unbounded

requires that the alphabet set AG be infinite. From section 3.1.4 recall that in order for

G to be a grammar, AG must be a finite set. This clearly conflicts with the requirements

of equation 3.6.

The problems associated with having an infinite alphabet set AG are more deep rooted
than simply requiring a departure from standard grammar methodology. An infinite al-

phabet set AG requires that MG contain an infinite number of mappings. These mappings

must then be specified in parametric form so that a finite representation of the mappings
can express the infinite set MG. Allowing too much freedom in the specifications of these

59

CHAPTER 3. CIRCUIT GRAMMARS

mappings causes a substantial departure from the formalisms and techniques applicable
to grammars and can result in ad hoc and unwieldy methods.

Section 3.1.12 defines a technique which effectively deals with the problem posed by

equation 3.6 while preserving the grammatical formalisms of section 3.1.2.

3.1.12 Net Bundle Definition

For many types of modules (mostly composite) that occur in practice, pins can be
grouped into a few small classes. For example, for any static gate module, pins can
be grouped into 4 basic classes: input, output, power and ground pins. In a well-

formed circuit each class of pins of a module should be connected (via a net) to other

specific module types and pin classes. For example, the power pin of a module should

be connected to the vdd pin of a 5V supply, and the input pin of a static gate should

be connected to output pins of other static gates etc.. Permuting the connections of two
pins (of the same module) in different classes will very likely cause the circuit to become

ill-formed. For example, permuting the nets connected to the output and power pins of
a static module will cause the output pin to be connected to the power supply and as

a result the circuit will become ill-formed. By contrast, permuting the connections of
two pins in the same class may change the functionality of the circuit but will not cause

the circuit to become ill-formed. This observation will be used as the definition for pin

equivalence class.

Definition 12 For a given methodology M and module type T, two pins are in the same

pin equivalence class if and only if in any circuit C which obeys methodology M and any

module MI in C of type T, the new circuit C' obtained by permuting the connections to

the corresponding pins of M, still obeys the methodology M.

In equation 3.6 it has been shown that it is not possible to have an alphabet set
with modules having an a-priori bounded set of pins. However it is possible to construct

useful alphabet sets where each module symbol has a finite set of pin classes. Com-

mon methodologies, such as static CMOS and NORA, are designed to be used by human
designers capable of handling only a few pin classes at a time. Therefore the module
blocks used to build circuits in these common design styles have less than half a dozen
pin classes. Useful module symbols with a finite set of pin classes include:

* Combinatorial block module. Pin classes are: input pins, output pins, power pin(s),
and ground pin(s).

60

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

* Precharged block module. Pin classes are: input pins (they typically come from

other precharged blocks after passing through an inverter), output pins (they go

to other output pins after passing through an inverter), precharge clock pin(s),

evaluate clock pin(s), power pin(s) and ground pin(s).

* Latch block module . Pin classes are: input pins, output pins, latch-open pin(s),

latch-open pin(s), power pin(s) and ground pin(s).

It is possible to define the mappings in MG in terms of the pin classes. The mappings

need not distinguish between pins in a given class because permuting the connections

of those pins does not change whether the circuit is well-formed or not. Furthermore,

since the mappings are derived from methodology considerations and typically define

conditions that each pin class must satisfy, the form of the mappings is almost always

independent of the number of pins in each class. For example, if there is a mapping which

involves static modules with 4 inputs there is usually a related mapping involving static

modules with 5 inputs. In this case it is possible to describe the mappings independent

of the number of pins in each class. In the three module block types described above

the composition rules can be described independent of the number of pins in each class.

Keeping these properties in mind the concept of a net bundle is introduced.

Definition 13 Given a circuit C and a methodology M, for any module M the set of

nets B which connects to all the pins of M of a particular class is called a net bundle.

For a given module, a pin class can be said to connect to a net bundle because each

pin in the pin class connects to a net in the net bundle. It is therefore tempting to replace

the concept of pin with pin class and net with net bundle.

By modifying some of the definitions for: Module type, Module, Pin, Net, Network

and Circuit defined in section 3.1.1 almost all the formalisms developed in previous

sections can be maintained. The only modification to the definitions of section 3.1.1 that

need to be performed is to replace pins with pin classes and nets with net bundles. With

these new definitions any module symbol can potentially represent a module with any

number of pins. Now for any grammar G, the alphabet set AG is finite but actually

represents an infinite set of module types. Similarly the set of mappings MG is finite

but represents an infinite set of mappings. The pictorial representations for networks

remain the same except that small circles now represent net bundles and the connections

to those net bundles are now accomplished by pin equivalence classes.

Pin classes will henceforth be referred to simply as pins and net bundles as nets

except where it becomes necessary to draw the attention to attributes of pin classes or

1..�111_11�_-- .-.·� 1-1-1.1� �� II *·... �·-_1111--- ·-��--�. �--·--^I II -^· -III_·-·---�IIIY·I^L---�-��

61

CHAPTER 3. CIRCUIT GRAMMARS

A

vdd

net bundles

's out

gnd ~ net bundlesgnd 2:>

out

gnd

(a) (b)
FIGURE 3-21: Example of Net Bundles

net bundles not found in pins or nets. Almost all of the formalisms developed in the

previous sections will carry through except where specified.

3.1.13 Examples of Net Bundles

Figure 3-21 (a) shows a static gate symbol which represents all static gate modules

irrespective of the number of inputs as described in section 3.1.12. This gate can be

derived by reducing a network such as the one in figure 3-21 (b). The input and output

pins 0 and 2 (actually pin classes) of the module now connect to net bundles which

typically contain many individual nets. The power and ground pins 1 and 3 also connect

to net bundles which happen to be singletons6 containing only one individual net.

3.1.14 Creation of Net Bundles

A circuit to be verified by GRASP typically consists of primitive modules connected

together via singleton net bundles (also called individual nets). The circuit to be verified

6 A set with only one element in it is called a singleton.

62

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

vdd

)02

gnd

gnd

(a) (b)
FIGURE 3-22: Net Bundle Creation

can be described using these simpler building blocks because the problems related to

equation 3.6 occur only when large composite modules are created. It is during the

process of creating new composite modules that new net bundles are created in terms of

the existing net bundles. The new net bundles are typically the set union, set intersection

and set subtraction of existing net bundles. For example, in figure 3-22 assuming 01 n

02 = 0 the two static block modules of figure 3-22 (a) can be combined into the static
block module of figure 3-22 (b). Two new net bundles are created during the reduction

of the network of figure 3-22 (a) into the static block module of figure 3-22 (b). They are

13 = I U I2 and 03 = 01 U 02. A better example of the creation of new net bundles is

described later in section 4.1.

3.1.15 Conditions on Net Bundles

In the previous section the reduction of figure 3-22 (a) is legal only if 01 l 02 = 0.
This is because the output pins (pins 2) of the two module blocks x and y cannot have

any individual nets connected to the output of both x and y. Thus before performing

the reduction it is necessary to check that 01 n 02 = 0. This condition on the two nets

01 and 02 can be specified in the productions.

3.1.16 The Disjoint Network Problem

It is rarely the case that the set of nets connected to one particular pin class of a

given module happens to be the same set of nets connected to another pin class of another

1� 4__1^11 __ __I __ �_II�L-_-·lll�lli---- 4111 �.�--1111111111111111111
_ _� -- �� ---- II�---LII�·-UI-Yl��l-- II___

63

I

CHAPTER 3. CIRCUIT GRAMMARS

module. Therefore modules rarely share net bundles. As larger modules and larger net
bundles get created, the chances of two modules being connected to the same net bundle
diminishes. Many of the modules in the circuit end up being connected to their own set
of net bundles which are not shared with other modules and the circuit begins to appear
disconnected.

For example, the circuit of figure 3-23 (a) contains three static gates. After a few
reductions the resulting circuit may look like figure 3-23 (b) 7. The connected circuit of
figure 3-23 (a) is transformed into a seemingly disconnected circuit in figure 3-23 (b).

In order for a grammar G to be parsed effectively, the network on the RHS of each
mapping in MG must be connected. This is because finding the candidate network to
be reduced is an operation performed on a locally connected neighborhood of the circuit
(as described in section 3.1.7). The parser moves from module to connected module in
search of a network to be reduced. When the network appears disconnected from module
S., as in figure 3-23 (b), the parser cannot access any other modules because S- does not
share any nets with other modules.

In order for the parser to be able to access other nets besides those connected to S.
and be selective in that only relevant nets be examined, operations to move from one net
bundle to other associated net bundles must be provided. Associated net bundles of a
given net bundle 7r may be any other net bundles which have nets in common with 77.

In the implementation of the GRASP parser, given a net bundle three operations for
accessing other nets from 77 are provided. These three operations have been shown to be
sufficient for describing common methodologies such as NORA, static CMOS etc.. They
are:

1. Yield the set of net bundles contained in . This set is referred to as the set of
inferior nets of q7.

2. Yield the set of net bundles which contain a/. This set is referred to as the set of
superior nets of 7.

3. Yield the set of net bundles which have at least one individual net in common with
i7. This set is referred to as the set of adjacent nets of 7.

These operations yield only the net bundles that are currently connected to pins of
existing modules. For example, the first operation will not yield net bundles that were
connected to modules which no longer exist.

7 For explanatory purposes the connections to power and ground are ignored in figure 3-23 (b).

�-' --- --

64

3.1. CIRCUIT REPRESENTATION & CIRCUIT GRAMMARS

(a)

I - ': 1
I

0 12 = C 0I----

13 = A U C 03

(b)

FIGURE 3-23: Disjoint Network Problem

65

t 3

03

I1 =AUB

I C_ _� �__ I __IIIIL__I____L__I�-I__) _�--L^_�_.._�IIII�-1I�·-�l-OL�IX .·-^--�··l^·LI -^-�-- *-..-.-..--�·--�-I-C·11�)11·111�--�--- �l�p�-ll·ll II IIIPIIIII�-·-·lll)-·1111

CHAPTER 3. CIRCUIT GRAMMARS

11 =AUB

FIGURE 3-24: Relations between Nets

vdd

(a) (b)

FIGURE 3-25: Complex Circuit Mapping

In a pictorial representation of a network, a small arrow is drawn from each net bundle

to its inferior bundles. A wiggly line between two nets signifies that they are adjacent.

Figure 3-24 shows the relations between the nets for the circuit of figure 3-23 (b).

For productions that operate on circuits consisting mainly of composite modules and

non singleton net bundles, the RHS of the mapping might look like figure 3-25 (b) and

the LHS like figure 3-25 (a). The parser uses these relationships between net bundles and

the three operations described above to move from module to module in search of the

network of figure 3-25. The relations between nets appear implicitly as conditions (see

section 3.1.15) on the net bundles. Before reducing the network the parser checks to see

that all the relations between nets are verified.

3.1.17 Reducibility Condition Revisited

If a non singleton net bundle 77 is an internal net for a network A/ to be reduced,

it is not sufficient that be connected only to modules in A/. It is possible that 7 has

an adjacent net which connects to modules outside A/'. The reducibility condition for

66

0 2

i
5

3.2. BEHAVIORAL VERIFICATION

net bundles follows the spirit of the reducibility condition defined in section 3.1.5. The

individual nets in 77 that are not in one of the external nets of A cannot be in a net

connected to a module not in Ar.

Formally stated, if £ is the set of external nets for network /, and 77' is a net connected

to a module not in /, then:

n _c U i (3.7)
In the implementation of the parser a stronger condition which requires that have

no adjacent nets connected to modules not in /, is used. This is equivalent to replacing

UniEs ri with 0 in equation 3.7 which forces 71 n 77 = 0 which means that no such qR' can
exist.

3.2 Behavioral Verification

Overview

Behavioral verification is the process of proving or disproving that the actual behavior

of a circuit matches a user supplied specification of its intended behavior. In [1] the

techniques described in this chapter are extended to perform behavioral verification.

Through the use of parsing techniques, the behavioral verification process is facilitated

and verification speed is increased.

Relation to GRASP

In [1] the Denotational Semantics [43], [36] paradigm is used to perform behavioral

verification. During behavioral verification in [1] a parse tree for the circuit is generated

using GRASP. A single grammar whose range space is not restricted to any particular

design methodology is used to parse the schematic. The range space of this grammar

covers most circuits of practical value. In the same way as the parse tree of a program

text captures the structure of underlying algorithm implemented by the program, the

parse tree of the schematic captures the structure of computational process implemented

by the schematic.

The behavior of a composite module M (nonterminal) in the parse tree can be com-

puted in terms of the behavior of the modules in the network NM whose reduction

produced M. The modules of NM appear as children of M in the parse tree. The behav-

ior of the modules in NAM can in turn be computed in terms of their children in the parse

tree. The behavior of the entire schematic can be determined by recursively computing

_ __1 _1·11 1 IY_ IPI� I��_��� _I__ 11_ III__ IIII�·IIYIII�-�-X1�.�

67

CHAPTER 3. CIRCUIT GRAMMARS

the behavior of the root of the parse tree. Finally, the derived behavior is matched with
a procedural specification of the intended behavior of the circuit.

Benefits of the Method

By operating on the parse tree, which is a structured representation of the schematic,
instead of directly on the collection of interconnected modules in the schematic, the
behavioral verification process is substantially facilitated. The parse tree organizes in-
formation in the schematic into a format suitable for extracting its behavior. It provides
a hierarchical specification of the schematic in which each composite module in the hier-
archy is derived from a (small) finite set of familiar circuit configurations. For each such

configuration a procedure for computing the behavior of the composite module in terms
of the behavior of its constituent modules is provided. Using one of these procedures,
the behavior of any composite module can be computed in terms of the behavior of its

children in the parse tree.

All behavioral verification techniques in one form or another extract the behavior of

the schematic from its structure. By separating the structure finding phase from the
rest of the verification the verification algorithm is partitioned along a natural boundary.
By casting the structure finding phase into grammatical parsing using a deterministic
context free circuit grammar, efficient parsing techniques for deterministic context free
grammars described in section 5.1 can be applied.

Implementation

A computer program called SEMANTICIST [1] which implements the behavioral verifi-
cation techniques described in this section has been written and tested on various circuits.
SEMANTICIST uses the GRASP parser to create the parse tree, then recursively extracts
the behavior of the circuit from the parse tree as described and finally compares this
behavior with a user specification of the intended behavior.

n�

68

4

Examples

This chapter provides examples of grammars for common design styles, parse se-
quences on actual circuits and how circuit grammars catch various simple design errors.
These examples are especially useful as they attempt to provide the reader with an intu-
itive feel of how the formalisms described in the previous chapters apply to real circuits.
Many of the formalisms defined in the previous chapters are but one of the many possible
ways of packaging the problem of design style verification into grammatical parsing. It is
necessary to have an intuitive understanding of how grammatical parsing catches design
errors and the impact of the formalisms of the previous chapter to grasp the insights
required for further extending these techniques.

Section 4.1 gives an example of a grammar for classical CMOS capable of reducing n
and p channel transistors into classical CMOS gates. Section 4.2.1 describes a grammar
for domino gates. Section 4.2.2 gives an example of a grammar for the two phase CMOS
clocking methodology which is capable of verifying a transistor level description of clas-
sical CMOS gates, dynamic gates (e.g. domino) and latches combined in accordance with
the CMOS two phase clocking requirements. Finally section 4.3 concludes with examples
of how grammars catch various simple design errors such as open circuits, short circuits
and illegal loops.

4.1 A Classical CMOS Grammar

In this thesis, classical CMOS gates are defined as static CMOS gates in which the
pulldown structure is formed by series-parallel connections of n-channel transistors and
the pullup structure is the DeMorgan complement of the pulldown structure. In this
section, a grammar capable of parsing a netlist of transistors into a classical CMOS gate
is described. This grammar can be used as a component of a grammar in a more complex

69

_ _11_1 _ __ ·I·_I_ ·_ _�__11_____1·0·�__·^_111�-^�1_·__�·-.-· _� ·- ·L�r -

CHAPTER 4. EXAMPLES

circuit methodology that incorporates classical CMOS gates. It also provides good ex-
amples of presence condition modules and net bundles. Similar grammars which reduce

transistors into modules have been designed for static NMOS, domino logic, precharged

NMOS, latches etc.

Module Co in figure 4-1 (al) is of type C-blk (short for Complementary Block). For
modules of this type, the internals of the module are such that the internal electrical path
between pins 1 and 2 is composed of series-parallel connections of p-channel transistors.
The electrical path between pins 3 and 4 is composed of series-parallel connections of

n-channel transistors and is the conjugate of the p-channel path between pins 1 and 2.

Pin 0 connects to the net bundle corresponding to the connections to the gates of all the

transistors on both paths.

A C-blk module can be created by reducing a p and an n-channel transistor as shown

in figure 4-1 (al). Two C-blk modules can then be composed into a new C-blk module

by connecting the two p-channel paths in series and the n-channel paths in parallel as
shown in figure 4-1 (a2). The resulting module C3 in figure 4-1 (a2) is also of type C-blk
and is such that its p-path (between pins 1 and 2) is the series combination of the two
p-paths of C, and C2 and the n-path (between pins 3 and 4) is the parallel combination

of the two n-paths of C, and C2. The input pin (pin 0) of C 3 now points to the union of

the two bundles i and i 2.

Figure 4-2 shows the two productions of figure 4-1 as well as all the other produc-

tions in the classical CMOS grammar. A companion production of the production of

figure 4-1 (a2) or figure 4-2 (a2) or which composes the p-paths in parallel and the n-

paths in series is shown in figure 4-2 (a3). The productions in figures 4-2 (bl), (b2) and

(b3) are similar to the productions in figures 4-2 (al), (a2) and (a3) except that they

have a module of type G-blk (short for Gate Block) on their LHS. Modules of type G-blk

are almost identical to modules of type C-blk. The electrical path between pins 1 and 2

is composed of series-parallel connections of p-channel transistors and is the conjugate

of the n-channel path between pins 2 and 3. Pin 0 is again the pin corresponding to
the gates of the transistors in both paths. Modules of type G-blk differ from modules of
type C-blk only in that they have 4 pins instead of 5 because both the p-channel and the

n-channel paths share pin 2. A final production shown in figure 4-2 (c) with a presence

condition module' PO of type power, similar to the production in figure 3-16 reduces a

G-blk into the classical CMOS gate SO.

It can be proved that the range space of the grammar defined by the productions in

1The presence condition modules for productions (al), (a2), (a3) and (bl), (b2), (b3) are not
shown.

70

4.1. A CLASSICAL CMOS GRAMMAR 71

(al)

il Ui 4

(a2)

FIGURE 4-1: Classical CMOS Productions

^ -- I -·~- ~-·-~---L-·~ IIY-II-- -__--I-P-··--·sl~ i I-~--~--~-ll·---- ---- - I....-IX_-_l

i
i

4

CHAPTER 4. EXAMPLES

i np

n

(al) (bl)

il L ii

(a2) (b2)

ii

P

n1 6
(a3) (b3)

(a3) ()

P - -

Po
= cv 0 G5 2 I type:

U i npL 1power

nL -- .-- -
n

(C)

FIGURE 4-2: Classical CMOS Grammar

p

ii

72

i i
4

P

,2

12~~~~~~~~~~~~~~~~~~~~~~

4

_4

4 4

nl~~~~~~~~~~~~~~~

4.1. A CLASSICAL CMOS GRAMMAR

01 03

FIGURE 4-3: Transistors in Different CMOS Gates

figure 4-2 exactly describes the set of complementary CMOS gates characterized in [53].

However proving that the range space of a grammar coincides with an independently

characterized set of circuits is beyond the scope of this thesis.

Condition Modules

In figure 4-1 the condition modules for productions (al), (a2), (a3) and (bl), (b2),
(b3) are not shown. Production (al) requires one of several presence modules in order

to be deterministically applicable. Consider the case of figure 4-3. The network formed

by modules v and j (or modules u and 1) is isomorphic to the RHS of production (al)

in figure 4-1. The intent of this production is to group corresponding n and p-channel

transistors within a static gate. However transistors v and j belong to different gates.

Performing the reduction of production (al) on transistors v and j leads to a circuit which

cannot be reduced into two classical CMOS gates although figure 4-3 does indeed consist

of two well-formed classical CMOS gates.

Because net np in figure 4-2 is connected to the drain of both the n and p-channel

transistors these transistors necessarily belong to the same CMOS gate. Therefore pro-

duction (bl) does not require a presence module to ensure that the transistors belong to

the same gate. It can be shown that the RHS of production (bl) appears in every classical

CMOS gate circuit.

In order to ensure that the n and p-channel transistors for production (al) belong to

11·___^_l_____m__l^ � I- �_--- --- .� _II � �11111 -^-· 11 111 .-- 111^-

73

74 CHAPTER 4. EXAMPLES

GC

t : type
G-bl

n1 nl

(a) (b)
FIGURE 4-4: CMOS Presence Condition Modules

the same gate, the presence condition modules of figures 4-4 (a) and (b) are introduced.
The presence of the augmented network of figure 4-4 (a) anywhere in the circuit guaran-
tees that the n and p-channel transistors belong to the same gate. A similar augmented
network with a G-blk condition module shown in figure 4-4 (b) is also required. Finally,
companion augmented networks for both figures 4-4 (a) and (b) with the p-channel paths
in series (instead of in parallel) are needed.

Parse Sequence

Figure 4-5 shows the evolution of a CMOS NOR gate circuit during parsing. In the first
step, production (al) is applied to reduce transistors y and z of figure 4-5 (a) yielding
the circuit of figure 4-5 (b). Then production (bl) is applied to reduce transistors x and
t in figure 4-5 (b) yielding figure 4-5 (c). During this reduction module GO is used as
a presence condition module in a fashion analogous to figure 4-4 (a). Production (b2)
is then used to reduce CO and GO in figure 4-5 (c) yielding the circuit of figure 4-5 (d).
Notice that during this reduction a new net bundle C = A U B is created. Finally, if nets
vdd and gnd are appropriately connected to the power supply module then module G1
can be reduced to a gate module via the production of figure 4-2.

II
I

-o 0
,type
t C-bl
i,,

___ ___�

A.

-

4.1. A CLASSICAL CMOS GRAMMAR

. -i AI

n

4-

B

gnd

(a)

vdd

B

gnd

(b)

vdd

4
AU

Beau

(C) (d)
FIGURE 4-5: Parse Sequence

1�__ __1�-1_1.11_ �-.-�__1�_1111--1_1�l.-.l)__· -

75

t

CHAPTER 4. EXAMPLES

4.2 Two Phase Clocking Methodology Grammar

In this section a grammar for verifying a CMOS two phase clocking methodology is

described. The grammar combines latches with precharged and static gates in accordance

with the CMOS two phase clocking rules. These modules are assumed to have been created

by (sub) grammars (such as the grammar of section 4.1) capable of reducing netlists of

transistors into modules. This is an example of how grammars can be combined to yield

new grammars.

First a grammar for verifying domino logic [53] is described. Then a grammar for

the two phase clocking methodology similar to NORA [18] that builds on the domino

grammar is introduced. For simplicity's sake only p-channel precharge and n-channel

evaluate domino gates are used.

4.2.1 Domino Grammar Productions

The grammar for domino gates described in this section implements just one of the

various strategies for checking domino gates. Each of these strategies exhibits different

trade-offs between parsing efficiency, how early errors are detected, conceptual simplicity

and number of productions. A grammar that exercises several of the concepts described

in the previous sections is chosen.

The domino grammar described in this section verifies that the inputs to all domino

gates are connected to the output of an inverter driven by the output of another domino

gate or a latch. For the circuit to function properly, the domino gates and latches

must be connected to the proper clocks. For example, a domino gate precharged on ,

and evaluating on 2 can only be fed by the output of an inverter driven by a domino

gate connected to the same clocks or a latch open on X1. This is easily verified by

making the clock nets 1, 02, 41 and 02 and possibly the clock module (used as a presence

condition module) appear in the productions. In this section for simplicity's sake it will be

assumed that all modules are consistently connected to the clocks and hence all the clock

connections will be omitted. This will greatly simplify the figures and focus attention on

the pertinent parts of the grammar. For the same reason, power and ground connections

are also omitted.

Module y on the RHS of figure 4-6 is of type precharged gate. These modules consist of

a p-channel precharging transistor capable of charging the output high and a pull down

path to ground consisting of a series-parallel path of n-channel transistors. Pin 0 is the

input to the precharged gate and pin 1 is the output. The connections to the clocks,

power and ground have been omitted. These precharged gate modules are generated

76

4.2. Two PHASE CLOCKING METHODOLOGY GRAMMAR

FIGURE 4-6: Production 1

I v

I°PB k'
- Ik

FIGURE 4-7: Production 2

by a grammar capable of recognizing precharged gates in a transistor level netlist and
reducing them to a precharged gate module.

Module x on the LHS of figure 4-6 is of type precharged block (PB for short). A
precharged block can be derived from a precharged gate and an inverter via production
1 shown in figure 4-6. The input to a precharged block such as module x can be taken
from the output of another precharged block or the output of a latch module. The
productions 3,4 and 5 (described later in this section) combine precharged blocks into
larger precharged blocks which exhibit the same properties.

Modules h, i and j in figure 4-7 are parallel combinations of inverting latches (referred
to simply as latches). The transistor level representation for an inverting latch (which is
considered to be a degenerate parallel combination of inverting latches) has been shown
in figure 3-6. The connections to the clocks, power and ground have been omitted. Pin
O represents the input of the latch and pin 1 the output. The latches can be combined
in parallel to form new composite latches.

Production 2 shown in figure 4-7 combines in parallel two latches which have some of
their outputs connected to the input of a common PB module. The wiggly line between
nets / and x and nets v and x signifies that each of these pairs of net bundles are adjacent
(see section 3.1.16) which means that they have some individual nets in common. The
strategy of productions 1,3, 4 and 5 (described later) is to group all precharged gates and
inverters into one large PB module. Assuming the strategy works, only one PB module

--

77

CHAPTER 4. EXAMPLES

a

(~&,va

I I
I I
I I
I I

I I
I I
I .. IL……,,I

FIGURE 4-8: Production 3

will exist in the end and hence the outputs of all the latches will be adjacent to the inputs

of the same (large) PB module. Production 2 will therefore combine all latches into one

large latch module2 .

Before combining the two latches in production 2 it is necessary to verify that an = 0
(two outputs cannot connect together) as depicted in figure 4-7 so that the internals of

the new latch will be well-formed. Because feedback from the output of a latch to the

input of any other latch (connected to the same clocks) is disallowed it is also necessary

to verify that a n v = 0 and fi n yi = 0.
Production 3 shown in figure 4-8 is similar in spirit to production 2. It's purpose

is to combine PB modules. As in production 2 it must be the case that a n t = 0.
It is however legal for the outputs of module j to be the inputs of module k and vice

versa (in this grammar signal feedback loops in domino logic are allowed). These nets

are driven nets and hence must be removed from the inputs of the new composite PB

module. Therefore the input net bundle of module h is (v - a) U (- 3) (which is also

equal to (U v) - (a U) since a n = 0).

Production 4 shown in figure 4-9 is identical to production 3 except that instead of a

latch module a PB module is used as a condition module to group PB modules together.

Production 5 shown in figure 4-10 combines two PB modules in series. All the inputs

of module z must be connected to the outputs of the same PB module y. Therefore net

d must be superior to net p (see section 3.1.16) which means that all the individual nets

in /s must be contained in P. Feedback from the output of module z to the input of y is
allowed but the input of the new PB module must be a - v so it does not contain any

individual nets that are connected to some driven output.

Production 6 shown in figure 4-11 combines the latch and PB module into a Oisection

2Except those latches whose output is not connected to anything.

78

=0

4.2. Two PHASE CLOCKING

(I&VVHau
PB ' --I y

, :
V

FIGURE 4-9: Production 4

FIGURE 4-10: Production 5

-..... 1--- I ___L(III --~~-L~III-1~- - · -- - - -- - -

METHODOLOGY GRAMMAR 79

CHAPTER 4. EXAMPLES

Absence Condition:
No connections other than
inputs of latches oro i sections
to these nets

==>0(- L ' 1 ;"
PB 1

z

I I aMV=0

FIGURE 4-11: Production 6

module which is a basic building block of the two-phase clocking methodology described
in section 4.2.2. Since the output of the PB module cannot feed the inputs to the latch,
a n v = 0. Before this reduction is performed it must be ensured that no more PB or
latch modules remain to be combined via productions 3, 4 or 5. For this purpose absence
conditions are used in production 63.

The outputs of a isection block created by production 6 can connect only to the
inputs of a latch or another disection block (connected to the alternate phase clocks)
as described in section 4.2.2. Hence if the latch and PB modules are complete the nets
adjacent to nets or v can connect only to the inputs of a latch or disection. Therefore
an absence condition requiring that there be no connections to adjacent nets of and v
by pins other than the input pins of a latch or a isection is required to guarantee that
both the latch and PB module cannot be reduced into larger modules of the same type.
Because of these absence conditions additional productions are required as described later
in section 5.1.5.

It is important to note that the domino grammar accepts more than just series parallel
combinations of PB modules. The domino grammar will reduce the circuit of figure 4-12
which cannot be expressed in terms of series parallel combinations of PB modules into a
single PB module.

4.2.2 Two Phase Clocking Methodology

Grammar Productions

The two phase clocking methodology grammar is similar to the domino grammar
except that the isection blocks are more complex and can themselves be composed into

3In this case the absence condition can be avoided by rearranging the productions.

I�-�--- I - - -

80

4.2. Two PHASE CLOCKING METHODOLOGY GRAMMAR

U

x

FIGURE 4-12: Non Series Parallel Domino Blocks

FIGURE 4-13: isection Block Diagram

larger Osection blocks. First the new, slightly more complex qisection is described, then
productions for the qsection are described.

Building bisection Blocks

Each qisection block consists of a latch L, a static block SB and a precharged block
PB as shown by the block diagram of figure 4-13 4. The static block SB consists of com-
binations of static gates. The productions for building the SB blocks are such that the
signal flow within each SB block is guaranteed not to have any loops. This is achieved by
using the loop detecting grammatical productions described in section 4.3.3 which pro-
duce a combined latch static-block module of type LSB in which there is no signal loop
path through static gates. The net effect of these productions is to yield a LSB module

equivalent to that generated by the production of figure 4-14. The clock nets are not
shown in the figures of this subsection. The LSB and PB modules are then combined to
yield a isection block as shown in figure 4-15. The productions of figures 4-14 and 4-15

are related to the domino production of figure 4-11. Absence conditions associated with
both productions are needed but are not shown.

Care must be taken in defining the grammar productions for classical CMOS so that
inverters which are needed in the domino grammar do not get reduced into static gates.

4 Another SB block can also be added after PB block.

--11�1I--��c Il--~--��~^lyl-lllll��-__1-·---11�.� -.. ·I

81

V

CHAPTER 4. EXAMPLES

=0

=0

FIGURE 4-14: LSB Production

FIGURE 4-15: Complex bisection Production

In a more general version of the domino grammar, NAND and NOR gates as well as

inverters (which can be thought of as degenerate NAND and NOR gates) can be used

between precharged gates. A slightly more complex classical CMOS grammar could easily

be made to differentiate between NAND, NOR, inverter gates and other static gates.

Building section Blocks

A isection precharged on 2 and evaluating on 1 is called a l1section. The same

block precharged on 0l and evaluating on 2 is called a 0 2section. In the figures of this

subsection the clocks X1 and 2 are shown to differentiate between q1 and 2 sections.

The complement of these clocks q and 2 and power and ground are not shown. Fig-

ure 4-16 shows how a l1section and 2 section block can be combined to yield a 4section

block. Absence conditions which guarantee that each bisection is complete (similar to

the absence conditions of section 4.2.1 figure 4-11) before this production is applied are

needed but are not shown.

FIGURE 4-16: section Production

82

4.3. DETECTING COMMON ERRORS

FIGURE 4-17: Start Symbol Production

The Osection blocks can themselves be composed into larger qsection blocks using

productions similar to those used to combine PB blocks in figures 4-9 and 4-10 (which

combine PB blocks not necessarily in a series parallel fashion). Finally the production

of figure 4-17 which involves the I/O waveform generator module which simulates the

inputs and outputs to the circuit is used to yield the start symbol of the grammar. The

power and ground nets are shown in this figure.

4.3 Detecting Common Errors

Unlike the techniques in [26], [30] and [52], GRASP's verification strategy checks for

the right structure rather than any particular type of error. The set of context free

circuit grammars is not closed under range space intersection. Let G, (respectively Go),

be a context free grammar with range space La (respectively La) for design error type

a (respectively /3). The grammar G,t, whose range space is L, = L, n L and is

capable of simultaneously verifying both design error types a and 3, is not necessarily

context free. Thus for comparing the capabilities of grammatical parsing with that of

existing techniques, it is not meaningful to show that context free circuit grammars can

be designed for catching any specific error type. This is because even if that were feasible,

it may not be possible to construct a context free grammar which simultaneously verifies

all of the error types5 .

When the structural constraints can simultaneously be expressed in terms of a hierar-

chy of permissible module configurations (as often occurs with common design method-

5It is of course possible to have a different parser associated with each grammar Ga.

I U - 5I
I -----p CI -�� Il"-�".lll-IIIIY��---I --I_ I��^

83

Start. ==>

CHAPTER 4. EXAMPLES

ologies), context free grammars can be used to capture the structural constraints.
Although GRASP's parsing strategy is not centered around catching individual error

types, this section attempts to provide some intuition as to the way in which parsing
catches a few of the common design errors. Section 4.3.1 (respectively section 4.3.2) de-
scribes how, irrespective of the circuit grammar, parsing identifies any open (respectively
short6) circuits that cause an otherwise structurally correct circuit to become ill-formed.
Finally section 4.3.3 describes a particular grammar whose sole purpose is checking for
illegal loops.

4.3.1 Detecting Open Circuits

Suppose a circuit C obeys methodology M. The effect of creating an open circuit in C
by removing some connections between two modules M 1 and M2 in C is investigated. In
particular the difference in behavior of the parser on the two circuits C and C', identical
to each other except for the open circuit, is examined.

Since only one module remains at the end of a parse of C there is necessarily a
reduction R involving two modules M and M2 such that M, is in the expanded circuit
of Al and M2 is in the expanded circuit of M2°.

The difference between the two circuits can manifest itself in one of the following two
ways during reduction R.

1. Some pin of M and some pin of M2 which used to be connected to the same net
in C are no longer in C'.

2. Two nets on the RHS of R which were in relation to each other in C (by one of the
three relations described in section 3.1.16) are no longer in C'.

Either of these two conditions can prevent R from firing and the open circuit (if
it were truly the case that the circuit has become ill-formed), will stop C' from being
successfully parsed.

4.3.2 Detecting Short Circuits

Suppose a circuit C obeys methodology M. The effect of creating a short circuit in
C by merging the connections of two nets r1 and qr2 into one net r7 is investigated7 . In

6This is different from identifying a particular kind of short circuit such as power to ground shorts.
7Both r71 and i72 are singleton net bundles.

__ _I ____

84

4.3. DETECTING COMMON ERRORS

particular the difference in behavior of the parser on the two circuits C and C', identical
to each other except for the short circuit, is examined.

Since only one module remains at the end of a parse of C one of the following two
situations holds true.

1. There is a reduction which involves both 7r1 (or one of its superiors) and 2 (or one
of its superiors).

2. There is a reduction which does not involve 771 (or one of its superiors) and has as
an internal net rl (or one of its superiors) or vice versa.

In the first case the short circuit could cause pins that were connected to different
nets to be connected to the same net or could cause some of the disjointed relationships
(the nil intersection requirements of section 3.1.15) to no longer be satisfied. For each
production the set of nets that must be disjointed so that the new composite module is
well-formed must be described and hence the short circuit will be caught if it leads to
the circuit being ill-formed.

In the second case the short circuit will cause the reducibility condition to no longer
be satisfied.

Either of the two conditions can halt the corresponding reduction from being fired
and can halt C' from being successfully parsed.

4.3.3 Detecting Loops

Loop detection is often necessary in design style verification. For example, the SB

module of section 4.2.2 consists of static gate modules which must be composed in such
a way that there are no signal loops which would cause the circuit to oscillate.

A regular grammar [24] can be used to detect loops. The set of regular grammars is a
subset of deterministic context free grammars and therefore loop detection can described
in terms of our grammatical formulations. During the parse of any circuit using a regular
grammar at most one composite module can exist at any given time.

A regular grammar can be used to reduce static gates and latch modules into one
combined Latch and Static block LSB of section 4.2.2. This grammar can be used as a
component of the NORA grammar. The classical CMOS grammar (which reduces transis-
tors into static gates) as well as several other component grammars are context free so
the NORA grammar as a whole will be context free.

Given a LSB module (obtained by reducing a latch and a static gate module) whose
internals are such that there are no loops, figure 4-18 incorporates a static gate into

I · ·

85

CHAPTER 4. EXAMPLES

FIGURE 4-18: Loop Checking Production P,,,p

(QiWr)

FIGURE 4-19: Parallel LSB Composition

the LSB module. The new LSB module is guaranteed not to have any loops because the
static gate is driven solely by the LSB module and does not drive any circuitry in the LSB

module.

The grammar induces an implicit (partial) ordering of the static gates. This ordering

is such that if the output of a static gate Sx influences an input of a static gate Sy, then

order(S) < order(Sy). During parsing gates are reduced in order i.e. if the output of

S, influences the input of S then S, is reduced before S,.

The production of figure 4-19 is used to compose LSB blocks in parallel. This pro-

duction causes the grammar for building LSB blocks to become non-regular. However

there is no induced ordering between a static gate in LSB 1 and a gate in LSB 2 because the

production guarantees that no output of LSB 1 influences any static gate of LSB 2 and vice

versa. The part of the grammar which performs the ordering of the modules however is

regular.

Regular grammars can cause the parse tree to become unbalanced. Unbalanced parse

trees can become a problem during incremental modifications to the circuit because

more than O(log nmod) reductions may have to be undone. A parse tree for the circuit

of figure 4-20 (a) is shown in figure 4-20 (b). The height of the tree is greater than

the length of the longest signal path through static logic. In practice the length of any

such chain is limited to a few static modules to minimize signal delay between latches.

86

-__ IN
7

4.3. DETECTING COMMON ERRORS 87

Parse trees for the LSB grammar appear as subtrees of the parse tree for the entire NORA

circuit. Since the height of each of these subtrees is limited the parse tree for the entire

circuit will not become too unbalanced.

I _ 1___11_ _ _II_ _I ·1 I II L-.·-_-�·Ill-l..·�-^ �I--CIIIIIIIII^-PI�-·�L�··Pi�·IIl�-�·�·

88

(a)

LSB

P A

LSB S
!~~~~~~~~~~~~~

L

LSB S

(b)

FIGURE 4-20: Unbalanced Parse Tree

CHAPTER . EXAMPLES

5

Schematic Verification
Algorithm & Implementation

5.1 Event Driven Parsing Algorithm

5.1.1 Overview

The operation of the algorithm for GRASP described in this chapter as well as the
algorithms for layout verification and schematic vs. layout comparison described in chap-
ters 7 and 10 is organized into actions that the algorithm must perform but has not yet
processed. The execution of an action may result in the creation of new actions that
the algorithm must also process. At any given point during verification, the collection
of actions that remain to be executed is an unordered set. The actions in this set can
be performed in any sequence without changing the outcome of the verification process.
Computation time however can depend on the order in which the actions are executed.
The actions will henceforth be referred to throughout this thesis as events without in-
ferring any associated time at which they occur or when they should be processed. The
term event driven will be used throughout this thesis for algorithms whose operation is
organized around the creation and processing of events.

GRASP uses an event driven bottom up parsing algorithm to parse circuits. Parsing
effort is expended in an area of a circuit only when a change is detected in that area. An
event queue' is maintained to schedule GRASP's activities. Each event in the queue is
associated with a module in the circuit. The event queue is initialized when the circuit

1A first created, first processed event ordering strategy has been found to be computationally efficient
on average.

89

--- --1__.1__ -.^.IX.-- III III·I· . 111 1~-1--XL^~-_ II---I_-- �-·---X_-ll I11^-- -L-C-·II(III�II� �-----� .

90 CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

to be verified is read into GRASP by inserting into the queue an event for each module in
the circuit.

As parsing proceeds, each event is in turn removed from the queue and serviced.
Servicing an event involves firing any applicable reductions in which the module M
associated with that event appears either as a module to be reduced or as a presence
condition module. New events associated with each new composite module created by
this process are generated and put on the event queue. The algorithm terminates when
the event queue becomes empty.

5.1.2 Servicing an Event

Servicing an event with associated module M requires finding a network Naug con-
taining 11 isomorphic to the RHS of an augmented production (see section 3.1.7). The
RHS of these augmented productions consist of the RHS of a production plus any presence
condition modules. Once such a network is found, the corresponding production RHS (see
section 3.1.7) is replaced by the LHS of the production if the reducibility condition, any
possible absence conditions and all intersection conditions on nets are satisfied.

Events that correspond to modules which have already been reduced by previous
events are removed from the queue and ignored. For example, suppose that A and B
are two modules corresponding to two events in the queue with the event for A being
scheduled for servicing first. Let us presume that during servicing the event for A, a
reduction is performed which causes module B to be removed (abstracted) from the
circuit. When the event for B gets serviced, B no longer exists and the event is therefore
discarded.

In order to determine if the event module M of type T belongs to an augmented
production RHS N,ug the following operation is performed. For each position in which a
module of type T appears in an augmented production Rs8 N 9, the parser checks if the
circuit module M appears in a network isomorphic to N,,g at the same position. The
parser maintains a list of positions in which modules of type T appear in an augmented
production RHS and sequentially tries each position in the list for a potential match. The
concise notation M appears in position P will be used to denote that module M appears
in the circuit within a network isomorphic to some augmented production RHS in position
P.

When a match in the list of positions is found and all other conditions are satisfied,
the corresponding reduction is applied and an event associated with the new composite
module created is placed on the event queue. If the event module M is a condition

�_ � �___

5.1. EVENT DRIVEN PARSING ALGORITHM

module, it remains in the circuit after the reduction. In this case M may also be used in

another reduction (typically also as a condition module). The position list must therefore

be retraversed from the beginning in order to find another potential match. If M is not

a condition module it disappears from the circuit after reduction and the parser begins

processing the next event.

Example

The Cblk module type described in section 4.1 appears in the RHS of the productions

of figures 4-2 (a2), (a3), (b2) and (b3) (which require no presence condition modules).

Modules of type Cblk can also appear as presence condition modules for the production

of figure 4-2 (al) as described in section 4.1. The corresponding augmented production

RHSs are shown in figures 5-1 (a), (b), (c), (d), (e) and (f). Two modules of type Cblk

appear in the augmented production networks of (a) and (b) and only one in (c), (d)

(e) and (f). The list of positions for module type Cblk contains the eight positions for

modules of type Cblk in figures 5-1 (a), (b), (c), (d), (e) and (f). For each of the positions

in the list the parser checks if the event module M appears in a network isomorphic to

the corresponding augmented production RHS at that position. If a match is found for

the positions of figures 5-1 (e) or (f), then M is a condition module and the positions list

is traversed again for a new potential match.

5.1.3 Determining Production Applicability

Determining if a module M is in position P is performed using the search algorithm

described in this section. This algorithm implements an efficient depth-first search of the

circuit surrounding the event module. The algorithm is divided into two parts. In the first

part an augmented production RHS and a position in that network are transformed into a

sequence of instructions. These instructions are a sequence of elementary operations that

need to be performed for determining if M is in position P. This operation is performed

only once when GRASP starts up and the productions are read into GRASP. Given a

module M in the circuit and a sequence of instructions for a position P (generated by

part 1), the second part of the algorithm interprets these instructions to verify that M

appears in position P in the circuit. By dividing the algorithm into two parts, coding and

debugging the code is greatly facilitated. Execution speed is also improved because much

of the work is done just once when the production is compiled into a set of instructions.

The rest of this subsection describes the details of this search algorithm.

For each augmented production RHS Na,,, the parser assigns consecutive numbers

91

92 CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

(a)

(c)

(b)

(d)

pi

nl

(f)

FIGURE 5-1: Positions of Modules Cblk

(e)

Pii

i

P

5.1. EVENT DRIVEN PARSING ALGORITHM

starting from 0 to the modules and nets in Na,,, (as in figure 5-2 (a)). The parser
maintains a set of module and net slots and it's goal is to fill these slots with modules and
nets from the circuit so that the network formed by these modules and nets is isomorphic
to Nau,. The slots are filled in such a way that the module in slot i corresponds to module
i in N,,, and the net in slot j corresponds to net j in N,,,.

The instructions for position P describe how to find the modules in Naug starting
from the event module M and put them in their corresponding slots. Each instruction
describes which type of module to search for next, the net to perform the search on and
which slot to put the newly found module in. The form of an instruction is:
I = (I.net-slot, I.netrelation, I.pin-number, I.moduletype, I.module.slot). The inter-
pretation of such an instruction is as follows: scan the pins of all nets related to the
net in slot I.netslot by relation I.netrelation and find a pin whose pin number is
I.pin-number and belongs to a module of type I.module-type. Having found such a pin,
insert its module in slot I.module-slot. The net relation field I.net-relation is one of:
identity, superior, inferior or adjacent as described in section 3.1.16. The instructions
are generated by a simple (depth-first) traversal of the modules in Naug.

Figure 5-2 (a) is the same circuit as figure 4-4 (a) except that the modules and
nets have been relabeled with consecutive numbers. Figure 5-2 (b) shows the set of
instructions for the position of the module of type Cblk in the augmented production RHS

of figure 5-2 (a). A description of the meaning of each instruction is provided alongside
the instructions in figure 5-2. Figure 5-3 shows the state of the module and net slots for
the production of figure 5-2 (a) after a network isomorphic to the production's RHS (the
network formed by the modules X, Y and Z) has been found.

Figure 5-4 (a) is the same circuit as figure 4-12 with the modules and nets relabeled
with consecutive numbers. Figure 5-4 (b) shows the set of instructions for the position of
module 0 in the augmented production RHS of figure 5-4 (a). These instructions require
that superior and inferior nets be searched.

Figure 5-5 describes in pidgin algol the recursive procedure for executing instructions.
This procedure calls another procedure insertodulein-slot which inserts a module
into a given slot number. Before a module M can be inserted into a slot however, various
checks and operations must be performed. If any of the checks fail, the value "failure"
is returned and all the slots revert back to the state when insert module inslot was
called. The operations and checks that need to be performed by insert-module in-slot
are:

1. Verify that M is not already inserted in some other module slot. This is necessary
in productions that combine modules of the same type in parallel in order to make

93

94 CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

I - --I

I

6 ' type:

j Il

: 3
k

5

Instructions for module 1
(a)

1 (Begin,1)
2 (2, Identity, 2, P, 0)

3 (4, Identity, 2, N, 2)

4 (Done)

Put the event module in slot 1
Search net in slot 2 for a connected pin numbered 2 of a
module of type P and put the module in module slot 0
Search net in slot 4 for a pin numbered 2 of a module of type
N and put the module in module slot 2
All modules have been found and put in their proper slots.
Fire reduction after checking if all other conditions are met

(b)

FIGURE 5-2: Network and Corresponding Instruction

5.1. EVENT DRIVEN PARSING ALGORITHM

0

2

0

1

2

3

4

5

6

FIGURE 5-3: Module and Net Slots

sure that the same module (which can be considered in parallel with itself) does

not appear twice.

2. Insert the nets connected to all the pins of M in their appropriate slots. These slots

can be determined by examining the connections of the ith module (the module

corresponding to M) in N,,g. If pin x of the ith module in N,,g connects to net j,

then the net connected to pin x of M must go into net slot j. Before inserting a

net 77 into a net slot j the following verifications must be performed.

* Verify that nr is not already inserted in another slot. Were this verification not

performed, the algorithm would not be able to detect short circuits and would

end up firing almost any reduction on the bogus circuit consisting of a large

number of modules all of whose pins are connected to just one net.

* If slot j is already full it must contain 77. Were this verification not performed

the algorithm would not be able to detect open circuits and would end up

firing almost any reduction on the bogus circuit consisting of a large number

of modules all of whose pins are connected to different nets.

95

96 CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

2

4

Instructions for module 0
(a)

1 (Begin,O)
2 (1, (Inferior,3), 0, PB, 2)

3 (4, (Superior,2), 0, PB, 1)

4 (Done)

Put the event module in slot 0
Search all the inferiors of net in slot 1 and find one which is.
connected to a pin numbered 0 belonging to a PB module.
Put the newfound net in slot 3, and module in slot 2
Search all the superiors of net in slot 4 and find one which is.
connected to a pin numbered 0 belonging to a PB module.
Put the newfound net in slot 2, and module in slot 1
All modules have been found and put in their proper slots.
Fire reduction after checking if all other conditions are met

(b)

FIGURE 5-4: Network and Instructions for Superior and Inferior Nets

I 4 W

;

5.1. EVENT DRIVEN PARSING ALGORITHM

Procedure executeinstruction(instruction)
if isfirstinstruction(instruction)

insertmoduleinslot(theeventmodule,instruction.moduleslot)
executeinstruction(nextinstruction(instruction))

else if islastinstruction(instruction)
firereduction()
return (success)

else For each net n in
(instruction.netrelation(netslots instruction. netslot]))

For each pin p in connections(n)
If ((pinnumber(p) == instruction.pinnumber) and

(typeof(moduleof(p)) -= instruction.moduletype)
If issuccessful(insertmoduleinslot(moduleof(p),

Instruction.moduleslot))
If issuccessful(executeinstruction

(nextinstruction(instruction))
return(success)

return (failure)

FIGURE 5-5: Procedure Execute Instruction

5.1.4 Parsing Complexity

Number of Events

The total number of events is equal to the number of modules nmod initially in the

network plus the number of new modules created during parsing. The number of modules

created during parsing is equal to the number of reductions applied. Generally, the

number of modules in the circuit is reduced by at least one every time a reduction

is fired because most productions have at least two modules (which are not condition

modules) on the RHS. In this case the number of reductions applied is less than nmod.

Hence the number of events is linear (less than 2nmod) in the number of modules in the

circuit.

The above result holds even when there are productions with only one module on

the RHS provided certain conditions on these productions are met. Let Po ... Pj ... Pn

be a sequence of productions with one module on the RHS such that the module type

of the LHS of Pi is the same as that of the module on the RHS of Pi+1. If there is no

sequence such that the module type on the LHS of Pn is the same as that of the RHS of

Po then the maximum length of any such Po ... Pj ... P sequence is bounded. It is quite

safe to assume that such a sequence does not exist otherwise it would be possible to fire

97

98 CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

a sequence of reductions corresponding to Po... Pj ... P, and end up with a module of

the same module type as the RHS of the first reduction (albeit perhaps connected to the

circuit differently).

Let n,,m be the maximum length of any Po . Pj ' Pn sequence. For explanatory

purposes the productions are divided into two categories: "regular reductions" which have

two or more modules on the RHS and "transformations" which have only one module on

the RHS. Firing a sequence of reductions Ro .. Ri ... R, (corresponding to a sequence

Po PO j . P, as described above) where the module resulting from applying Ri is the
RHS of Ri+1 can be thought of as applying a series of "transformations" to the RHS of

Ro. Using the same arguments as in the first paragraph it can be shown that during the

parse of a circuit with nmod modules not more than nmod "regular reductions" are fired.

Therefore not more than 2 nmod modules existed initially in the circuit or were created by

a "regular reduction". To each of these modules not more than nma,, transformations can

be applied. Therefore a total of nmar,(2 nmod) "transformations" could have been executed.

Each applied "transformation" results in the creation of a new event. Therefore the total

number of events is less than nm,,(2 nm,,d) + 2 nmod = 2 nmod(nmax + 1) and the total

number of reductions is less than nm,,,(2nmod) + nmod = nmod(2 nm,, + 1). Therefore the

number of events is linear in the number of modules initially in the circuit.

In practice nmaxz 1 and few "transformation" type reductions get applied. Also

many of the productions have more than two modules on the RHS. Finally about half of

the events correspond to modules that no longer exist because they have been reduced

by previous events (as described in section 5.1.2). Therefore in practice the number of

effective events (those for which the event module is still in the circuit at the time the

event is processed) is approximately nmod.

Servicing an Event

Servicing an event requires scanning through the list of positions for that module

type and possibly firing a reduction. This process may have to be repeated several times

in the case of condition modules. Each time this procedure is repeated a reduction is

necessarily fired as described in section 5.1.2. Since the total number of repetitions is

less than the total number of reductions applied, the former is less than n,,d(2 nma, + 1).

The total. number of scans, which is the total number of events plus the number of repeat

scans of a position list (possibly followed by a reduction), is therefore:
2 nmod(nmax + 1) + nmod(2nma, + 1) = nmod(4nmax + 3)

Let L,ma be the maximum length of a position list i.e. the maximum number of

times any given module type appears in an augmented production RHS. Let ama,, be

---- -

5.1. EVENT DRIVEN PARSING ALGORITHM

the maximum amount of time required to process an element in the list and /mar the

maximum amount of time required to fire a production. In the worst case all the lists

have to be traversed completely. The total parse time is comprised of the time taken to

traverse the lists plus the time required to fire the reductions and hence is:

nmod(4nfmax + 3)Lmaxmax + nmod(2 nmax + 1) 3max

= nmod((4nmax + 3)Lmaxcma: + (2 nmax + 1) 3 max)

Since typically the number of effective events and the number of reductions fired is

nmod and since list retraversal is a comparatively rare event, the parsing complexity is
typically less than nmod(Lmaxrmax + max).

Processing an Event in the Positions List

The time taken to process an element in the positions list is the time taken for the

first call to execute-instruction to return. cma,, is defined as an upper bound on this

execution time.

During a call to executeinstruction let us suppose that a maximum of m pins are

examined, that is to say the variable p in procedure executeinstruction gets bound

to a new value a maximum of m times. In the worst case each assignment of p will

result in a new call to executeinstruction. If the number of modules in the current

augmented production RHS is k then in the worst case only every kth recursive call to

execute_instruction will result in failure. At that time a maximum of mk (actually

m=0nmi) pins will have been examined. If the maximum number of modules in any

augmented production RHS is Rmax then not more than mRa pins are examined.

The number of pins p examined during a call to executeinstruction depends not

only on the circuit and the production RHS but also on the instructions generated for

that production in part 1 of the algorithm. Figures 5-6 (a) and (b) show two different

possible instruction sets for the position of the leftmost inverter in figure 5-6 (a). In

the instructions of figure 5-6 (b) nets x and y are scanned in search of the next inverter

module. In figure 5-6 (c) the vdd net is scanned instead. In the worst case all modules2

connected to vdd must be tried and rejected by procedure insert-module which checks

to see that the other connections of the newly found inverter are correct.

In a circuit consisting of a huge chain of nmod inverters the maximum number of pins

examined during a call to execute-instruction for the instructions of figure 5-6 (a) is

ml = 2. On the other hand for figure 5-6 (b) this number is m 2 = nmod because all the

nmod modules can be connected to vdd (net 0). In the case of figure 5-6 (a), the number

2In the worst case all the modules in the circuit are inverters.

99

CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

(a)

Instructions for module 0

1 (Begin,O) 1 (Begin,O)
2 (3, Identity, 1, I, 1) 2 (0, Identity, 2, I, 1)
3 (4, Identity, 1, I, 1) 3 (0, Identity, 2, I, 1)
4 (Done) 4 (Done)

(b) (c)

FIGURE 5-6: Efficient and Inefficient Instructions

of pins examined is approximately ml 2: 1. For figure 5-6 (b) this number is m = n 20 .

In the worst case m = n mod. Instructions should therefore be generated in such a way

that nets which typically have the least number of connected pins (usually internal nets)
are scanned.

Instructions such as those in figure 5-4 (b) require that every net in relation (via

the three basic relations) to the net in slot i be scanned. The criteria for selecting an
appropriate net is to choose the one which has the fewest number of nets in relation with

it each of which has a small number of pins connected to it.

By carefully choosing which nets to scan, the average time required to process an

element in the positions list (which is proportional to m the number of pins examined)

is largely independent of circuit size.

Some augmented production RHSs contain modules such that in order to access them

it is necessary to scan nets with a large number of connections. For example, if the power

supply module appears as a condition module of an augmented production's RHS, then

it might be necessary to scan the vdd (or gnd) net to access the power supply module.

By having each net capable of quickly accessing pins only connected to certain module

types without having to scan all the pins connected to it, the time required to scan the

net is considerably reduced.

100

5.1. EVENT DRIVEN PARSING ALGORITHM

Operation Worst Case Typical
Number of events O(nmod) O(nmod)
Number of reductions O(nmod) O(nmod)
Number of list traversals O(nmod) O(nmod)
Per element in List O(nRnod') 0(2Rn--)
Per reduction O0(1)
Total m O(n(/'+l) O(nmod)

Table 5-1: Parsing Complexity Summary

Firing a Reduction

Firing a reduction involves deleting some modules from the circuit, creating a new
module and inserting it into the circuit. This operation is independent of circuit size.
During this operation new net bundles also may have to be created. The time complexity
of creating these new net bundles depends on the implementation of the net bundle data
structures. In practice, for circuits up to several hundred transistors (even for a very
crude implementation of net bundles) the time required to create a new bundle is largely

independent of circuit size.

Interaction with Virtual Memory

GRASPs event driven algorithm is well behaved with respect to virtual memory man-
agement schemes. Memory references made during the servicing of an event occur in

a connected neighborhood of the event module. If care has been taken to generate effi-
cient parsing instructions (see section 5.1.4), the number of modules (respectively nets)
accessed during an event is typically 10 (respectively 15) and rarely exceeds 100 (respec-
tively 150). Page faults during the servicing of an event are rare because the amount of
memory accessed is usually a few dozen kilobytes which is small enough to fit in RAM

memory or even in large cache memories.

Parsing Complexity Summary

Table 5-1 summarizes the basic asymptotic results of this section. The right set of
instructions can have a profound impact on the time complexity of the parsing algorithm
and the implementation of this algorithm described in section 5.2 allows the user to
specify which nets to scan making the typical parsing complexity linear in the number
of modules in the circuit.

101

*:

102 CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

5.1.5 Rescheduling due to Absence Conditions

In section 3.1.7 a subset of absence conditions with well-behaved properties was in-
troduced. These absence conditions for a production P list the only module types and

pin numbers (other than those in the network NE being reduced) allowed to connect to
certain external nets of the network NE. The presence of modules (or pin numbers) not
in this list will inhibit the reduction from being fired. It is possible for these modules to
be reduced later into modules in the allowed list of this production. It could be the case
that at that time no events for any of the modules of NE remain on the event queue and

hence the reduction does not have a chance of firing even though all its requirements are
satisfied.

For each module Mi in the allowed list, a new production identical to P but with Ai
as a condition module needs to be created. In this case when modules not in the allowed
list are reduced to modules Mi in the allowed list, during the processing of the event

for an Mi the reduction for NE (augmented by Mi as a condition module) will again
be attempted. This ensures that only when modules in the allowed list remain will the

reduction be applied.

5.1.6 Incremental Update

GRASP's algorithm allows for incremental additions and deletions to the circuit. The
parse tree data structure built during parsing maintains a log of which networks were
reduced, which new composite modules were created in the process and of the grammar

production involved. For each reduction the condition modules (if any) involved are also

recorded3 . The parse tree plus the condition module information is called the augmented

parse tree. The augmented parse tree is used when, due to modifications to the circuit
by the user, some of the reductions must be undone.

Undoing a Reduction

Undoing a reduction R consists of replacing the resulting reduced module M for that
reduction with the modules Mi it was derived from. These modules must be put back
on the event queue so that they can be reduced again (presumably the rest of the circuit

has also changed so that the same reduction is not applied again when these events are

processed). Processing of events can then be enabled.

3 This causes the parse tree to actually be an acyclic graph.

5.1. EVENT DRIVEN PARSING ALGORITHM 103

RE
G H

C D E F

A B

FIGURE 5-7: Augmented Parse Tree

Before reduction R can be undone, all reductions Ri which use module M on the RHS,

even as a condition module, must first be undone. This in turn requires that for each Ri,

all reductions Ri,j that use the module resulting from the reduction Ri be undone first.

Thus in order to undo a reduction R with resulting reduced module M all reductions
on all paths between M and the root of the augmented parse tree must first be undone

in top down fashion. If the circuit has not been completely parsed then there may be

several roots in the augmented parse tree4. For each root that can be reached from M all

reductions on all paths from M to that root must be undone. If the augmented parse tree
(parse forest) is balanced, the number of reductions that must be undone is O(log n,mod)
where nmod is the number of modules in the initial network .

Figure 5-7 shows an augmented parse tree. The dependence of a reduction on condi-
tion modules is shown by a dotted line. If reduction Rx is to be undone then reductions

Rt, R., R, and R. must be undone in that order. Events for modules H, C, A and B

(actually events for G, H, C,D, A and B but modules G and D get deleted) must be
created and placed on the event queue.

Deleting a Module

Before deleting a module M from the (initial) circuit, any reductions in which M is
used must first be undone (causing all other necessary reductions to be undone). Only
after the reduction has been undone can the module be deleted. Enabling the processing

4 At this time the augmented parse tree is actually a parse forest.

CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

of events will then rebuild the parse tree efficiently.

Sectioning the Circuit

The initial circuit can be divided into two disjoint parts in such a way that much of

the parsing information for each part can be retained. This can be achieved by undoing

those reductions whose RHSs consist of modules of both parts. The two parts of the circuit

can then be cut apart resulting in two separate augmented parse trees (parse forests).

This procedure is more efficient than having to parse each part from scratch.

Adding a Module

Before adding a module M from the (initial) circuit, two kinds of reductions must be

undone:

1. Reductions for which any of the nets connected to M are internal nets. This is

because for those reductions the reducibility condition is no longer satisfied.

2. Reductions which have an absence condition that will be violated when module M

is inserted. Absence conditions are of the form: if this reduction is to be fired then

net z cannot be connected to pin y of some module type Z. Each net records the

negative conditions associated to it as well as the pertaining reduction. For each

net to be connected to M those reductions which become violated must be undone.

After the appropriate reductions have been undone the module M can be added to

the circuit. An event associated with M must also be created and placed on the event

queue.

Merging Two Circuits

Two fully or partially parsed circuits can be merged together in such a way that

the parsing information for each part is combined into one augmented parse tree. This

operation is much more efficient than rebuilding the parse tree for the combined circuit

from scratch.

First, those reductions in both parts which become illegal because of the new con-

nections between the two parts (see previous subsection) must be undone. The events

generated by the undoing of the reductions as well as the events from the event queues

of both parts that have not yet been processed must be placed on one common event

queue. The two circuits can then be connected. The effects of these connections must be

104

5.1. EVENT DRIVEN PARSING ALGORITHM

FIGURE 5-8: Six Transistor XOR Gate

propagated back up both parse trees. That is to say the connections to all the net bundles

and the relations between the net bundles must be updated to reflect the connections

between the two circuits.

Those modules in each of the reduced circuits (after some of the reductions have been

undone) which are connected to net bundles, whose connections have changed or whose

relations have changed since the merger, must be placed on the event queue. The reason

for this is that these modules can now be used in a reduction with modules from the other

part. Enabling the processing of events will then build the joint parse tree appropriately.

Library Modules

The merging techniques described in the previous subsection are especially useful

when dealing with library modules. Library modules such as full adder or or modules

which consist of many transistors can be preparsed before being used. Preparsing library

modules consists of parsing the circuit for that module. When these library modules are

used in a circuit the parsed version of the module and of the circuit are merged together

as described previously in this section. Because parsing effort is not expended to reduce

the circuit of each library module instance into its parsed version, a considerable savings

in parse time can be achieved especially for large library modules.

Preparsing library modules can be used as a way to incorporate subcircuits that use

____ �_X·l _ I_·I _ II _ _I-..--ll-----II�X_·l·CI --_

105

BB

CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

special non standard design techniques into the circuit and still have the parser recognize

the circuit as error free. For example the XOR gate circuit of figure 5-85 can be manually

parsed into a complementary CMOS gate. The significance of this is that for the purposes

of design style verification the circuitry of the XOR gate is equivalent to that of a classical

CMOS gate. When this library module is instantiated in a circuit the parser uses the

preparsed version and hence is fooled into thinking that circuits which use this XOR gate

obey the design style.

Mixing Grammars

Merging techniques can also be used to parse different portions of a schematic with dif-

ferent grammars. This might become necessary when different portions of the schematic

are designed using different incompatible design methodologies. The schematic S is di-

vided into sub-schematics Si and each Si is parsed using a grammar Gi. The partially

parsed schematics S' derived from the Si are then merged together into a single schematic

S'. A partial parse tree T' for the combined circuit is also built from the parse trees of

the S'. The parse of S' can then be completed using a grammar G' (capable of combining

the composite modules in each Si') and the partial parse tree T'.

5.1.7 Error Reporting

When the circuit to be verified does not obey the design style it is not enough for

the verification system to merely report that the circuit is incorrect. Feedback must be

given to the user as to the type and location of the error so that he may fix it. GRASP

provides valuable feedback to the user which can help him locate the source of the error.

When the circuit to be verified is not in the range space of the grammar, GRASP will

fail to produce a sequence of reductions resulting in the start symbol of the grammar.

Typically after having applied several reductions to the circuit there will come a point

where no more reductions are possible. This manifests itself by the event queue becoming

empty while there remains more than one module in the circuit.

At this point the resulting circuit consisting of the new composite modules must be

examined. Locating errors is greatly facilitated by the fact that most of the circuit is now

expressed in terms of large composite modules (such as combinatorial blocks, precharged

blocks etc..) whose internals are known to be well-formed. Errors are usually localized

5For clarity's sake this figure is shown using the traditional pictorial representation of figure 3-1 (a)
instead of the representation of figure 3-1 (b) used in this thesis in which the nets appear explicitly as
circles.

106

5.2. IMPLEMENTATION

Error Message:

Output of static gates

connected together.

FIGURE 5-9: Example of an Error Production

in regions where few reductions have been performed and the parse tree can be used to

quickly locate these regions.

GRASP's structure finding capability can also be used to help locate errors by using

special error productions which look for illegal configurations in terms of the composite

modules in the reduced circuit. The RHS of the error productions consist of a network

just as for regular productions however their LHS is an error report that needs to be sent

to the user when a RHS match is found. Because the error productions are expressed in

terms of composite modules and operate on the partially parsed circuit they make use

of the existing parsing information and hence are a much more powerful error finding

mechanism than simply looking for illegal configuration in the initial circuit.

Figure 5-9 shows an example of an error production which fires when the output of two

static gates are connected together. An error report is sent back to the user along with

the modules involved in the production. Catching this sort of error from the partially

parsed version of the circuit is much easier than identifying this error directly from the

initial transistor netlist.

5.2 Implementation

Source Code

GRASP is written in c and runs on a HP 9000 series model 350 workstation running

UNIX and Xwindows. The source code is approximately 15000 lines out of which the core

of the parsing algorithm takes approximately 3000 lines. The code makes extensive use

of data abstractions and is written much like a program in C++[44].

The core parsing algorithm accesses abstract data types such as modules, pins, and

I I� P_ __------ _ I- ~ -···L~. --- ~--I L-l - l_..- I

107

CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

net bundles through procedural interfaces and never manipulates the underlying data

structures for these data types directly. By providing these procedural interfaces to the

data types the core parser code can be incorporated as is into an existing CAD tool such

as a schematic editor.

The parsing algorithm code is extremely efficient and as such the sophistication and

efficiency of the code implementing the abstract data types has a large impact on run

time. In one of the earlier versions of GRASP these data types allocated memory using a

simple c library memory allocator. By simply using a more efficient memory allocator a

speedup of 3x in parse time was achieved. Similar optimizations will most likely result

in a further speedup especially for large circuits.

GRASP first reads in the grammar productions, then the circuit netlist and then

proceeds to parse the circuit. The productions are described using a Lisp like syntax.

A YACC[4] front end reads the text descriptions and transforms them into an internal

representation for productions which consists of module, net and pin data types. After

each production is read, the instruction generator is called to generate instructions for

all positions in the production.

Input Files

Figure 5-10 shows a textual representation of the classical CMOS grammar production

of figure 4-1 (a2).

The circuit to be parsed is read from a netlist file whose format is similar to [48].

Figure 5-11 shows an example of such a file consisting of a 4 input NAND gate and an

inverter.

Graphics Display

An Xwindow interface built into GRASP can display on a graphics window either a

grammatical production or a portion of the circuit surrounding the event module. The

display shows the circuit just before and after a reduction is performed. The event module

appears at the top of the screen. The modules participating in the reduction and the

condition modules are distinguished by different colors. The network is displayed with

the modules on the LHS and the nets on the RHS. Superior and inferior relations between

the displayed nets are also shown.

Figure 5-12 shows what an Xwindow display might look like. A grab screen feature

built into GRASP was used to generate this figure. The figure represents a snapshot of

the netlist of figure 5-11 during parsing. In this snapshot the event module Module 19

I a-

108

5.2. IMPLEMENTATION

(production Cfrom_2Cnparallel (2 7 1)
% Production has: 2 modules, 7 nets (0-6)
% and creates 1 new net (net 7)

(LHStype C)
% Module type of the LHS is ''C"'

(LHSconnections 7 1 2 3 4)
% Connections of the LHS module
% Pin 0 connects to net 7, pin to net 1, etc....

(moduletypes C C)
% module types of the RHS. The first module is referred to as

% module 0, the second one as module 1 etc..
(rulemodules 0 1)

% Both modules 0 and 1 get reduced when the production is fired.
% Modules not in this list are presence condition modules.

(moduleconn (O (6 1 2 5 4)) % Connections of module 0
(1 (O 1 2 3 5))) % Connections of module 1

(eqgroups)
% If for example net 0 is defined as superior to net 1 then
% (eqgroups (O 1)) allows them to also be equal (same net)

(superiors (6 7) (O 7))
% Net bundle 7 is superior to 6 and to 0.

(adjacents) X No adjacent relations. Superiors and
% inferiors are automatically declared adjacent.

(nonintersecting)
% No empty intersection requirements between the nets.

(unwanted) % Absence condition list.
(hintlist 5 2 1) % Optional precedence list for nets. Allows

/, optimized instructions by having the user indicate which nets
% to scan preferentially

printproduction % print production debugging information
printinstructions % print instruction debugging information

)

FIGURE 5-10: Textual Representation of a Production

__�1�1 �1�11_ 1- --

109

CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

Numberofnets: 12
7. Contents: Nand Gate + Inverter + Power Supply
ptrans 0 2 7
ntrans 0 3 7
ntrans 7 6 4
ptrans 10 2 4
ntrans 8 5 6
ptrans 11 2 4
ptrans 8 2 4
supply 2 3
ptrans 7 2 4
ntrans 10 9 5
ntrans 11 3 9

FIGURE 5-11: Circuit Input Netlist

Circuit Transistors Parse Time
4 input CMOS NAND Gate 8 0.05s
4x4 Systolic Multiplier 978 14s
8x8 Systolic Multiplier 3746 168s

Table 5-2: Parse Times

of type C2 is about to be replaced by a static gate module as per the production of
figure 4-2 (c). The power supply module, module 7 is a condition module and is outlined
in dashed line. The third module is not involved in the production and is outlined in
dotted line. Net 7 is contained in net 9 and the relation between these two nets is shown
by a thin arc directed from net 9 to net 7.

The display interface is a useful tool for debugging the code and demonstrating the
operation of the parsing algorithm. It is not intended as a schematic editor and provides
no features for incremental additions and deletions to the circuit.

5.3 Experiments

Grammars for static CMOS and NMOS gates, domino gates, NMOS precharged gates
and the two phase non-overlapping clocking methodology have been designed.

To evaluate the parsing speed of GRASP the grammar for the CMOS two phase clocking
methodology [53] introduced in section 4.2 has been tried out on a large bit-systolic
multiplier circuit [21]. The grammar consists of about 50 small grammar productions
(there are usually 2-3 modules in each augmented production RHS) and takes about 3

- --

110

5.3. EXPERIMENTS

FIGURE 5-12: Xwindow Graphic Display

0

0

0

0

0

1
O

b0

P

Pl

P2

P3
t4

15

FIGURE 5-13: Systolic Multiplier

I 4 ' - r I

111

CHAPTER 5. SCHEMATIC VERIFICATION ALGORITHM & IMPLEMENTATION

seconds 6 to load into the GRASP program.

Figure 5-13 shows the bit-systolic multiplier for the 6 x 6 case. Each circle represents

a precharged full adder cell. The dots represent CMOS latches whose number and location

are obtained by the retiming theorem [28]. Each column operates on an alternate clock
phase. Table 5-2 summarizes the parsing time required for various circuit sizes. The

computation times are shown for the case where each circuit is input as a flat netlist file

of transistors and waveform generator modules (power, ground, and clocks). Parse time is
roughly 35 modules/second which compares favorably to the 1 module/second VAX 8800

required by [40]. The computation times can be substantially reduced by preparsing the

basic multiplier cell as described in section 5.1.6.

As the circuit gets large an increasing proportion of time is spent creating new bundles.
This accounts for the slightly worse than linear parse times for large circuits. In the
current implementation of GRASP, net bundles are implemented in a rather brute force

fashion. For each net bundle a separate list of all its superiors, inferiors, adjacents as

well as all the individual nets contained in it is maintained. When each new net bundle

is created these lists for many other net bundles must also be updated. The rational for
this is that most of the productions that are tried are not applied and hence creating a

net bundle is a comparatively rare event. By contrast adjacent, superior and inferior net
access is a common operation and hence needs to be optimized. When the net bundles

become large however, the number of nets in relation with each other become large. In
this case not only do the relations list for many net bundles have to be updated but
each list is also large and hence can take time to update'. This accounts for much of the

nonlinearity in the parse times of table 5-2.

6Includes the time required for generating the instructions.
7The lists are kept sorted so insertion and deletion time increases as the list size grows.

112

6

Layout Verification

6.1 Introduction

Layout design rule verification (abbreviated as DRC for design rule checking) is the

process of verifying that a given set of mask patterns to be used during wafer fabrication

belongs to a set of permissible geometries. The set of permissible geometries can be

described by geometrical constraints that all patterns in this set must satisfy. Usually

these constraints, called design rules, take the form of minimum and maximum allowable

values between features of the various patterns. The task of verifying that a mask pattern

obeys a set of design rules has received considerable attention [7], [6].

In a typical layout the number of geometrical features that need to be verified is large

and hence the verification process requires large amounts of computation time. Various

techniques for reducing processing time include special purpose hardware [37], exploiting

parallelism [15] or incremental verification [47]. When the mask patterns are described

using hierarchically defined cells, hierarchical DRC techniques [54] can be used to verify

the mask patterns of subcells only once thus saving computation time.

In each of the techniques described above when a layout expressed entirely in terms

of library cells needs to be design rule verified, the mask geometries of the layout are first

generated and then DRC verification is performed on them. The number of geometrical

values needed to describe the mask pattern is typically several orders of magnitude greater

than the number of library cell instances used. Thus verification based on geometrical

values requires manipulation of a vastly greater number of parameters than the number

of cell instances. Also errors are reported back to the user in terms of violations of

the minimum and maximum permissible values of geometric features. The burden of

identifying which cell instance placement is at fault then rests with the user.

113

___ _ 11 1_11 1_·_�_ __ I�---_I-------·-·--·--�·1111._1�111I^- --IIIIIY-II·LI_-U�-�-X-L---�--II-"

CHAPTER 6. LAYOUT VERIFICATION

In this chapter a technique for verifying the DRC correctness of a layout built from

library cells is presented. The method operates directly on the library cells and their

placements and never accesses or manipulates mask patterns. It is applicable to a con-

tinuum of cell sizes ranging from cells consisting of a single polygon (though this can

lead to a huge number of templates) to cells containing several hundred polygons. The

method is not restricted to any particular layout style and allows a great deal of flexibility

in the library cells and their placements.

Because mask geometries are not manipulated the verification algorithm has to deal

with comparatively few objects, hence verification time and memory requirements are

greatly reduced. Errors are reported to the user in terms of placement conflicts between

the cell instances considerably facilitating the task of identifying the cause of the error

and fixing it. Finally in chapter 8 a method for verifying the correspondence between

a schematic and a layout is introduced. This method requires that the layout be first

verified using the techniques of this chapter.

6.2 Overview

The set of layouts Lc consisting solely of cell instances from a set of library cell types

is considered. A technique for defining a subset Li of Lc consisting of well-formed layouts,

similar in essence to the techniques of chapter 3 is presented. The method makes use

of user defined templates consisting of small fragments of layouts to specify Li. During

verification, the system attempts to cover the layout with these templates in order to

prove its membership in Li. The layout and the templates are modeled as graphs [10]

and all verification operations are performed on the graphs.

The formalisms in the layout verification method are geared toward verifying the

design rule (DRC) correctness of the layout and are not concerned with the underlying

electrical meaning of the layout. Electrical errors are caught by examining the schematic

not the layout representation of a design instance.

In schematic design style verification errors are not necessarily localized in the sense

that any finite region of the schematic might be error free and the circuit as a whole

might still have a design methodology error. For example, in the two phase clocking

methodology, signal loops through static gates are not allowed. Since the length of the

loop is unbounded an arbitrarily large region of the circuit might have to be examined to

find the loop. During parsing, portions of the circuit that might initially be far apart are

progressively brought closer due to network reductions. At some point all the circuitry
necessary to detect the error will appear in a locally connected neighborhood of the

114

6.3. LAYOUT CORRECTNESS

reduced circuit at which time the error can be detected by some production.
Unlike schematic design style verification, layout verification can be accomplished

without hierarchical parsing. Verifying the DRC correctness of a region of layout can
be accomplished by examining its geometric neighborhood. Regions of layout that are
geometrically far apart do not interact with each other and therefore in order to verify
the correctness of the whole layout it suffices to verify the correctness of each of the

regions independently.

Section 6.3 describes the basis for our layout correctness criteria. Section 6.4 de-
scribes the graph representation for the layout. Section 6.5 describes how the graph

representation is used to verify the layout correctness.

6.3 Layout Correctness

6.3.1 Criteria for Layout Correctness

Let the absolute bounding box of an instance be defined as the smallest rectangle
enclosing all the mask polygons associated with the instance. Let the bounding box of

an instance then be defined as the rectangle obtained by expanding its absolute bounding
box by half the maximum design rule size. A design rule error can occur only between
two mask polygons (of which one may be itself) which are separated by less than the
maximum design rule size. Therefore a design rule error can occur at most one half the

distance from the nearest polygons. Hence any design rule error involving polygons of
instance Ci necessarily appears in the bounding box of Ci.

A layout in Lc is DRC correct if all the regions contained within the bounding box of
each of the instances Ci in Lc are DRC correct1. The layout within the bounding box of

instance Ci consists of layout from the instance Ci itself and layout from the neighboring

instances 2. Each instance Ci and its neighbors form a pattern of cells called template.

The bounding box of Ci forms a DRC error free zone for that template and is called the
interior of the template. If more than one instance in the template has a DRC error free

zone then there may be more than one interior instance per template.

Example

Consider the layout of the PLA shown in figure 6-1. This PLA is built from instances of
library cells as shown in figure 6-2. From the layout of this PLA several useful templates

1There are no DRC errors in the bounding box regions
2Those instances whose bounding box intersects with the bounding box of Ci.

__�1(_1___·__11_ 1__��___I _�� IL�_I_� �III___�__IIYICI(_I- --- C-l�-�-Il -----

115

CHAPTER 6. LAYOUT VERIFICATION

can be identified. Figures 6-3 (a) and (b) show two possible templates. The interior of

each template is shown by the shaded region. The interiors of these two templates also

appear as the shaded regions in figures 6-1 and 6-2.

6.3.2 Layout Verification using Templates

If a pattern of cells equivalent to a template appears in any layout and the instance

Di corresponding to the interior of the template interacts only with those instances

corresponding to the template, then the bounding box of Di, the template, is necessarily

a DRC error free zone. Instance Di is said to be the interior of this occurrence of the

template.

The templates that can be derived from figure 6-2 (plus a few others that do not

appear in this layout) can be used to verify layouts of PLAs similar to the one in figure 6-2

but of any size and encoding. The PLA example of figure 6-2 is chosen because it is easy

to visualize how the various cells in a PLA fit together. The usefulness of this scheme is

certainly limited for PLAs which are usually procedurally generated. However templates

can be used to describe how cells from more general cell libraries are put together and
can hence be used to verify the more general class of layouts assembled from cells in the
library. These templates allow the user to define a subclass of layouts Li of Lc deemed

acceptable.

In order to verify that a layout built from library cells is correct according to a user

defined set of templates T, each instance in the layout must be the interior of at least one

template occurrence. By definition of a template the bounding box regions for each of

the instances will then be a DRC error free zone and the layout as a whole will therefore
be DRC error free. The layout is said to be in the range space of the templates T.

6.4 Review of RSG Connectivity Graphs

Connectivity graphs first introduced in [8] provide a simple yet powerful represen-

tation for layouts. The connectivity graph is especially useful when dealing with the
placement of the cells in the layout. It is a better representation than the layout itself for

assembling cells into larger cells and verifying that they have been assembled correctly.

In the layout assembler RSG [8], all cell assembly operations are carried out on the graph

instead of the layout. When the graph is finally complete a fast and simple graph to

layout transformation is applied to produce the final layout. Section 6.4.1 reviews the

basics of RSG connectivity graphs.

�_ I __

116

6.4. REVIEW OF RSG CONNECTIVITY GRAPHS

FIGURE 6-1: PLA Layout

_t__ ____I�__ .·.1.-1·---- 1111 ·- I-- 1_--_I�11II1III --·-�l�--·--·-X

117

118 CHAPTER 6. LAYOUT VERIFICATION

r-

FIGURE 6-2: PLA Instances

a)
'D

E

o0

r-
C.

a

CC

A-

6.4. REVIEW OF RSG CONNECTIVITY GRAPHS

(a)

or_pu

right

orsq or_latch

(b)
FIGURE 6-3: Examples of Templates

__1_1_ C·__l II_��_ �� F I ___ �___1�___1_4�___11_1___LllsVIII__-�I�·�- i..

119

CHAPTER 6. LAYOUT VERIFICATION

A B |

FIGURE 6-4: Instance of Cell B in Cell A.

6.4.1 Cells, Interfaces and Connectivity Graphs

Cells

A cell A consists of a collection of objects whose locations are specified in terms
of the coordinate system of the cell CA with origin SA. The objects can be polygons,
points, wires or instances of other cells. Each instance Bi of a cell B in cell A is a pair
(TA, < cell definition of B >)3. T is an affine isometry called transform of B in
A and < cell definition of B > is a reference to the cell definition of B. Any affine
transformation TA can be decomposed into two parts TL = (LB, Or). L is called the
location of B in A and OB is called the orientation of B in A (vectorial isometry of
TA). The effect of calling B in A at transform TA = (LB, O[) is that of performing the

vectorial isometry OB on B, placing the origin of B at l oat location L within the coordinate
system of A, and finally adding to A the collection of objects in B (see figure 6-4).

Interfaces

If instances of cells B and C are called together in the same coordinate system (same
cell) then B and C have an interface between them. The interface is an affine trans-
formation that defines the relationship between the transforms of TA of the instance of
B and T of the instance of C. The interface defined by the transforms TA and T is

IBC = (TA)-`T& (since TA is an isometry its inverse is well defined).
Cells B and C may have more than one defined interface between them. In this case

the interfaces are labeled IBC, IBc, IBC etc. When the index number of the interface is
omitted as in IBC the first interface IBC is assumed. In order to keep the number of
defined interfaces between cells low, only interfaces between cells in which the bounding
boxes of the instances intersect are considered. With this scheme the number of defined
interfaces between any pair of cells is usually not more than two or three. Interfaces

3 The r superscript denotes that the transform is relative to the calling coordinate system.

120

6.4. REVIEW OF RSG CONNECTIVITY GRAPHS

FIGURE 6-5: Interface between A and B

between cells B and C can be defined by-example simply by creating instances of B and
C in some other cell A.

The relative positions of instances in a well-formed template are necessarily legal (and
useful) interfaces. It is therefore assumed that all the relative positions of instances in
templates of 7 are defined interfaces.

Example

Figure 6-5 shows instances of cells B and C called within cell A. The transform of
B is T = (L, East) and the transform of C is T = (L&, West). This defines an
interface IBC between cells B and C. The interface IBC is the transform C would have
if B and C had the same relative position but B was called with the identity transform

IBC = (T)-l_'T = (VBC, OBC) which turns out to be VBC = rotate-west(L~ - L&) and
OBC = South.

Connectivity Graphs

A connectivity graph G = (VG, EG, WG) (EG C VG x VG and WG is a mapping from
edges in EG to interfaces) is a directed graph in which the vertices VG represent instances
of cells and the edges EG represent predefined interfaces between them. Each edge e
is labeled with WG(e) which is a symbol representing a transform which must be the
transform of one of the predefined interfaces between the cells of the vertices 4 .

For each well formed connectivity graph there exists one corresponding layout. Fig-
ure 6-6 shows the graph and layout equivalents in the case of a three instance connectivity

4 The edges of the graph must be directed. The transform is directed from the source to destination
in the direction of the arrow of the edge.

A

/1it
S iSAi

S B J

East B

West C

IjS
C

_ I_��)�X__YWIIII__L____II-^---- --------

121

CHAPTER 6. LAYOUT VERIFICATION

BA -

Ice
[CB

(a) (b)

FIGURE 6-6: Graph and Layout Equivalents

graph. The celltype of the vertex is indicated inside each vertex circle. A unique identifier

for each vertex is usually omitted except when absolutely necessary.

A connectivity graph is transformed into its layout equivalent by choosing a root vertex

in the graph and placing the corresponding instance at some arbitrary transform (usually

the identity transform). The graph is then traversed and the instances corresponding to

each of the vertices are placed relative to one another. The transform TBi of an instance

Bi can be computed from the transform TAJ of a neighboring vertex instance Aj which

has already been traversed and the interface IAB which labels the edge between the two

vertices in the graph5 by the relation TB, = TAIAB. By traversing all the vertices in the

graph all the instances are properly placed relative to each other.

It is assumed that no vertex has two edges with the same label connected to it.

Suppose vertex vi of celltype A has two edges both labeled IAB to vertices vj and vk

respectively (necessarily of type B). The layout of vj and vk will necessarily coincide

by falling exactly on top of each other. Hence the layout of either vj or vk can be

eliminated. Making sure that no vertex has two edges with the same label can easily be

checked during graph generation.

The concise notation "two connectivity graph vertices intersect" will be used to denote

that the bounding boxes of the instances corresponding to those vertices intersect.

If IBC is an interface between B and C then ICB = IBj = (T6)-1TL is an interface
between C and B. One of these two interfaces is chosen and all graphs are expressed

solely in terms of that interface. For example, if IBC is chosen then a edge directed from

B to C labeled IBC is always used in lieu of an edge directed from C to B labeled ICB-

Two relations subgraph and graph isomorphism are defined for connectivity graphs.

5Assumes that the direction of the edge is from A to B otherwise IBA = (IAB) - 1 is used.

I

122

6.5. CONNECTIVITY GRAPH BASED LAYOUT VERIFICATION

Definition 14 Given two connectivity graphs G,,b = (Vsub, Esub, W8 ub) and G = (VG, EG, W1G),

Gsub is a subgraph of G if and only if Vub C VG.

Definition 15 Two graphs G1 = (V 1, E1 , W 1) and G2 = (V 2, E 2, W 2) are isomorphic if
and only if there is a one to one mapping fG: V - V2 such that eij = (vi, Vj) E El X

eki = (k, VI) = (fG(vi), fG(v3)) E E2 and WI(eij) = W 2(eki).

6.5 Connectivity Graph based Layout Verification

In this section, the verification of layouts by templates is formalized using connectivity
graphs. Given a connectivity graph, this method can be used to verify whether the layout
corresponding to the connectivity graph belongs to the range space of a set of templates
T. The templates themselves are also manipulated in terms of their connectivity graph
representation. The connectivity graph for the layout to be verified can be input directly
to the verification system from a cell assembler such as RSG or can be automatically
extracted from a layout.

6.5.1 Differences between Layouts and Connectivity Graphs

There is no one to one correspondence between the set of connectivity graphs and
the set of layouts. Several differences between connectivity graphs and layouts are to be
noted. There are layouts in L for which there are no corresponding connectivity graphs,
there are connectivity graphs for which there are no layouts and there are layouts for
which there are several connectivity graphs.

Layouts for which there are no Connectivity Graphs

All connectivity graphs have predefined interfaces on their edges. Therefore layouts in
Lc for which the relative position of some of the instances cannot be expressed in terms of
one of the predefined interfaces to other instances cannot be represented by connectivity
graphs. However, since all the relative positions of instances in a set of templates T
are defined, such a layout is necessarily not in the range space of T. If such a layout is
presented to the verification system, the system will fail to extract a connectivity graph
which indicates that the layout is not in the range space of T.

I -9W-

123

CHAPTER 6. LAYOUT VERIFICATION

FIGURE 6-7: Cycles in the Graph

Cycles in the Connectivity Graph

Cycles in the connectivity graph6 can contain conflicting instance placement con-
straints and cause the graph to have no layout equivalent. Consider the case of figure 6-7.
If TA is the transform of A then TB the transform of B can be computed from the top
path by TB = IBc(IAC) - 1 and from the bottom path by TB = IBD(IED)-1IDA. This

requires that IBC(IAC)- 1 = TB = IBD(IED)-IDA.

If IBC(IAc) ->1 y TB = IBD(IED)-IDA then there are two conflicting constraints for
the placement of B and therefore the graph has no layout equivalent. Such conflicts
in the graph can be easily detected by performing the graph to layout transformation
described in section 6.4.1.

Multiple Graph Representations for a Layout

Let CG be a connectivity graph for layout L with cycles which contain no placement
conflicts. From CG several other graphs representing the same layout can be derived.
Because cycles in the graph CG contain redundant placement information, any graph
derived from CG by removing an edge in a cycle is also a connectivity graph for L. In
fact any spanning tree derived by removing edges from CG will also be a connectivity
graph for L. For example, the graph of figure 6-8 (a) and the two spanning trees derived
from it shown in figures 6-8 (b) and (c) all represent the same layout.

6 Cycles in the underlying undirected graph.

124

6.5. CONNECTIVITY GRAPH BASED LAYOUT VERIFICATION

(a) (b) (C)

FIGURE 6-8: Equivalent Graphs

6.5.2 Normalizing the Graph Representation

In this section a normal form for connectivity graphs is described. For each correct

layout L, there is at most one connectivity graph in normal form that is equivalent

to it. The motivation for introducing a normal form is that during the verification

process the layout is tiled with templates from a set of templates T. This corresponds

to tiling the graph of Li with the graphs of the templates. This operation is greatly

facilitated if both the graph for the layout and the graphs for the templates are in normal

form. Furthermore, in chapter 8 a method for verifying the correspondence between a

layout represented by its connectivity graph and a schematic is described. The methods

employed by this latter technique also require that the connectivity graphs be in a normal

form.

Definition 16 A connectivity graph is in a normal form for a set of interfaces I if it

is maximally connected. Maximally connected means that for any two instances in the

graph, whose relative position corresponds to an interface Ii between the two corresponding

cells, there is an interface edge labeled Ii between the two instances.

In order to keep the number of edges in the graph as low as possible a minimal set

of interfaces I is retained. The techniques described in chapter 8 for verifying that a

schematic and a layout are compatible, require any two instances whose layouts interact

-~~~~~~~~~- - 11_ -~~~~~~~~~~~~~~~~~~~~~~1·11 ··- ·- 111111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 -

125

CHAPTER 6. LAYOUT VERIFICATION

IW

(a) (b)
FIGURE 6-9: Graph Representation for Templates

electrically to have an interface between them. The layouts of two instances interact

electrically if the underlying netlists of each of the instances share some electrical nets

or if transistors are formed in the overlapping region of the two instances. The set

of interfaces I must therefore include any interface that occurs in well-formed layouts

(according to a set of templates Li) for which the instances interact electrically. This
boils down to making sure that in any template in Ti, for any two instances that interact

electrically, the corresponding cells have a corresponding interface between them.

A graph with interface edges in Z can be turned into normal form by performing a

graph to layout transformation and for each instance Ii computing the set of instances

its bounding box intersects with. For each instance Ij that intersects with Ii and whose

relative position with Ii corresponds to an interface in Z7, an interface edge is added if it

does not already exist.

6.5.3 Template Occurrences in Connectivity Graphs

Normalized Graph Representation for Templates

Let Ti be a template and Ci = (V, Ei, Wi), be the normalized connectivity graph

representing the layout of Ti. T = (Vi, Vi°, Ei, We), where V ° is the set of vertices of Ci

corresponding to the instances in the interior of Ti, is a normalized graph representation

of template Ti.

Figures 6-9 (a) and (b) show the graph representation of the templates in figures 6-3 (a)

and (b). The vertices corresponding to the interior of the templates of figures 6-3 (a)

and (b) (the vertices in Vi°) are shaded.

__ �_�_ __ __

126

6.5. CONNECTIVITY GRAPH BASED LAYOUT VERIFICATION

FIGURE 6-10: Template Occurrence

Template Occurrence

A condition on a normalized connectivity graph C, which is equivalent to the oc-

currence of a template Tj in the layout Li of the graph, is now described. The graph

C, is assumed to have no placement conflicts due to cycles. Let TG = (Vj, VP, Ej, Wj)

be the normalized graph representation of Tj and Cj = (Vj,Ej, Wj) the graph for the

layout of Tj. Let Cb be a subgraph of C isomorphic to Cj such that the bounding

box of any vertex in Cab corresponding to a vertex in VP intersects only with bounding

boxes from vertices in Cub. Cub is said to be an occurrence of T in C. The vertices of

C,,b corresponding to vertices in Vj° are said to be the interior vertices of the template

occurrence.

Figure 6-10 shows an occurrence of the template of figure 6-9 (a) in a graph. The

vertices corresponding to the template occurrence have thicker circles and the vertices in

the interior of the occurrence are shaded.

Theorem 5 A vertex vj of a normalized connectivity graph Ci is in the interior of an

occurrence of T? if and only if its corresponding instance ij of the layout Li of Ci is in

the interior of an occurrence of Tj.

I ~ ~ ~ _ ~ ~ -,- --

127

CHAPTER 6. LAYOUT VERIFICATION

Proof 5 If vertex vj is in the interior of an occurrence of TG then ij is necessarily part of

the layout of Ti at the position of an interior instance. Furthermore, since by definition

of the interior of an occurrence of TfG, the bounding box of ij intersects only with the

bounding boxes from instances in Ti, ij is in the interior of an occurrence of Ti.

Conversely, if ij is in the interior of an occurrence of Ti then vi is in the normalized

graph of the instances corresponding to the occurrence of Ti. This subgraph Gsub of Ci is

necessarily isomorphic to the graph of TiG because both graphs are normalized. Since ij

intersects only with instances in the template occurrence, vj is necessarily in the interior

of an occurrence of TG.

6.5.4 Criteria for Connectivity Graph Correctness

A criteria on a connectivity graph Ci equivalent to its corresponding layout Li being

in the range space of a set of templates T is now described.

Theorem 6 Given a normalized connectivity graph Ci with no conflicting cycles, its

corresponding layout Li, a set of templates T and their corresponding normalized graph

representations TaG: Li is in the range space of T if and only if each of the vertices of Ci

is in the interior of an occurrence of a template in TG.

Proof 6 From theorem 5, a vertex vi is in the interior of a graph template TG if and

only if its layout is in the interior of the corresponding template T. Since each vertex in

Ci corresponds to an instance in Li, each vertex Ci is in the interior of a template in TG

if and only if each instance in Li is in the interior of a template in T.

6.5.5 Dealing with Encoded Cells

Often cells from a cell library can be grouped into classes of cells with similar layout

characteristics. For example, up to eight essentially similar yet different full adder cells

are used in the array multiplier of figure 5-137 as described in [10]. One technique often

used to deal more effectively with such families of cells is to have one basic cell for the

entire family and personalize it by superimposing the layout from one or several encoding

cells.

In the PLA of figure 6-2 each or-sq cell spans two outputs and two product terms.

Cell orsq can be personalized by superimposing 0, 1, 2, 3 or 4 o.t cells. The presence

7This figure does not differentiate between the different celltypes.

128

6.5. CONNECTIVITY GRAPH BASED LAYOUT VERIFICATION

of an ot cell creates a transistor at one of the 4 transistor sites of or-sq. The PLA is
encoded by adding o.t instances in accordance with the PLA's truth table.

Let Ti be a template in which a vertex vj of type orsq is an interior vertex. Since
vi is in the interior of T, all the encoding vertices of celltype ot must be part of the
template (because they intersect with vi). Since there are 24 = 16 possible encoding
configurations there must be at least sixteen templates with vertices of celltype or-sq in
their interior. In general the sixteen possible encodings of orsq will lead to a sixteen
fold increase in the number of such templates.

In order to reduce the number of templates, encoded cells are handled differently.
Conceptually the encoded vertex and its encoding vertices (for a legal encoding config-
uration) are first abstracted to a new vertex in a fashion similar to a GRASP network
reduction. The new vertex can again be abstracted to another vertex with some ad-
ditional encoding or can be used in a layout template once the abstraction process is
complete. In this fashion the verification of the encoded vertex is performed in two inde-
pendent parts, first the encoding configuration is verified then the setting of the encoded
cell system in the rest of the layout is verified.

A similar effect can be achieved within the existing framework. Encoding vertices are
treated as if their bounding box regions have zero dimensions and hence are incapable of
intersecting with other vertices. Templates which contain encoded cells in their interior
are then specified without the encoding.

If vi is the vertex of an encoded cell which appears in the interior of an occurrence of
Tj, then adding vertices that encode vi to the layout will not cause vi to cease being in
the interior of the occurrence because the encoding vertices will be treated as if they do
not intersect with vi. Additional templates with the encoding cells in their interiors are
needed to verify the encodings themselves.

Figure 6-11 (a) shows a template in which an instance of or_sq is in the interior.
Occurrences of this template are not influenced by the encoding of the interior instance.
figures 6-11 (b) (c) (d) and (e) show the templates used to verify the encoding instances.
For the orsq celltype the four encoding instances can be added independent of one an-
other. Templates can of course be designed to select a few legal encoding configurations.
Hypothetically if the top left encoding is legal only if the bottom two encodings are
present then one might use a template like the one of figure 6-11 (f).

i I_ _� II II I _ 1 ____1_1__^__111____1ls--·_^-�-_·� .--�1�-- I -Il.-(LI·---l-ll LIII_·LLI�--_ .I.l·l__()·L··)ll�-_---·

129

CHAPTER 6. LAYOUT VERIFICATION

or_sq

or_sq L I L Oi= o_t

(a) (c) (e)

FIGURE 6-11: Encoded Cell Templates

_ ___

130

I

7

Layout Verification
Algorithm & Implementation

7.1 Verification Algorithm

7.1.1 Overview

The verification techniques described in chapter 6 have been implemented in a com-
puter program called GLOVE (Graph-based Layout Verifier). The GLOVE verification
algorithm is composed of five parts as shown in figure 7-1. In the first step, the con-
nectivity graph of the layout is checked for illegal cycles. In the next step, for each
vertex vi in the graph the set of vertices whose bounding box intersects with that of vi is
computed. Next the graph is normalized by adding edges as described in section 6.5.2.
Then, a template mapping algorithm finds occurrences of graph templates of TG in Ci
and labels each vertex that appears in the interior of at least one template occurrence.
Finally, the list of vertices that do not appear in the interior of a template occurrence
are reported as errors in the layout.

The template mapping algorithm is similar in essence to GRASP's event driven parsing
algorithm. The main difference is that the connectivity graph does not get reduced i.e.
the vertices of the graph remain the same. Also the layout verification algorithm is a
degenerate event driven algorithm in the sense that during execution events get processed
but no new events are created.

131

· I I ��__I_� _19C· · __1__1__1__�_____1^1-�----1·1�-11�.----

CHAPTER 7. LAYOUT VERIFICATION ALGORITHM & IMPLEMENTATION

Find intersecting vertices

Normalize graph

I /

Find template occurences
and label interior vertices

Verify that all vertices are in
the interior of an occurence

FIGURE 7-1: Components of the Algorithm

Traverse graph and
check for illegal cycles

.

- -- ----

132

1337.1. VERIFICATION ALGORITHM

7.1.2 Preparing the Graph

Checking for Illegal Cycles

Cycles in the graph can easily be detected by performing a graph to layout trans-

formation. During this transformation the graph is traversed in depth first' order and

each newly visited vertex instance vi is placed relative to one of its neighboring vertices

which has already been visited. If the placement of each newly visited vertex vi does

not conflict with any of its other neighboring vertices that have already been placed, the

graph is necessarily free from illegal cycles.

Finding Intersecting Vertices

Once the graph has been traversed and each of the vertices have been given a trans-

form, the locations of their bounding boxes are defined. If n is the number of vertices

in the graph, efficient algorithms such as [11], [33], [45] can be used for reporting the set

of all intersecting bounding boxes in O(n log(n)) time and O(n) or less space. After this

operation each vertex is provided with the list of the vertices that it intersects and the

vertex can furnish this list upon request.

Normalizing the Graph

A traversed graph can be normalized by examining each pair of intersecting vertices.

If the relative placement of the two vertices corresponds to one of the interfaces Ij between

the two corresponding cells, then an interface edge labeled Ij is added between the two

vertices if it does not already exist.

7.1.3 Finding Template Occurrences

Overview

The template mapping algorithm enumerates all the vertices in the graph and for

each vertex vi searches for all possible template occurrences in which vi appears. Since

the reader has been introduced to the terminology for event driven parsing described

in section 5.1, the template mapping algorithm will be presented as a special case of

GRASP's event driven algorithm. In this degenerate case of the event driven algorithm

each event corresponds to a vertex in the graph. An event for each vertex in the graph

is generated when the graph is read into the program and no new events are generated

1Or most other reasonable graph traversal schemes.

------- ------- �- I �-�I --.,----'~~ __1~-~lLlr. A·1--. II. . ·__··s~------_~1·ll11 -
__ __II_·- ·I· ---- 111---�11�---�111��-�I

CHAPTER 7. LAYOUT VERIFICATION ALGORITHM & IMPLEMENTATION

during verification. The event queue model is also especially useful for describing how

the algorithm handles incremental modifications to the connectivity graph.

Servicing an Event

Events are serviced in a fashion similar to GRASP. Servicing an event with associated

vertex vi requires removing it from the event queue and finding all the subgraphs in Gi

(in which vi appears) which are isomorphic to the graph of a template Tj in T. Each

subgraph Gi is then examined to see if it can be the occurrence of template Tj. Finally
the vertices in the interior of template occurrences are marked to indicate that they have

appeared in the interior of some occurrence.

Finding a Match

In order to determine if the event vertex vi of celltype A belongs to a subgraph

isomorphic to the graph of a template the following operation is performed. For each

position in which a cell of type A appears in the graph G'T of a template Ti, the algorithm

checks to see if vi appears in a subgraph GT, isomorphic to GT at the same position (the

concept of position in a graph is introduced in section 5.1.2). The verification algorithm

maintains a list of positions in which cells of type A appear in template graphs (like in

the GRASP parsing algorithm) and sequentially tries each position in the list for a match.

Determining if vertex vi is in position P is performed using the search algorithm

described in section 5.1.3 which implements an efficient depth first search of the graph

surrounding the event vertex. The algorithm consists of two parts as described in sec-

tion 5.1.3.

In the first part a template graph and a position in the graph are

transformed into a set of instructions for determining if a vertex vi in the

graph appears in that position. The form of the instructions is I =

(I.interfacetype, I.vertex-source-slot, vertex.destinationslot). Figure 7-2 (a) shows

a template graph and figure 7-2 (b) the set of instructions for the position of vertex 0.

Given a vertex v and a sequence of instructions for position P (generated by part

1), the second part of the algorithm interprets the instructions to verify that vi appears

in position P in the graph. The procedure used to interpret the instructions is similar

to the procedure described in figure 5-5 and is shown in figure 7-3. This procedure

makes use of the fact that a vertex cannot have two edges with the same label and hence

never backtracks. Therefore if any instruction at any level of depth in the search results in

failure the whole process is terminated and the top level call to execute-vertexinstruction

134

7.1. VERIFICATION ALGORITHM

AA

(a)

Instructions for vertex 0

1 (Begin,O)
2 ('AB 0, 1)

3 (IBc, 1, 2)

4 ((IB)one), , 3)

5 (Done)

Put the event vertex in slot 0
Find the vertex connected to vertex in slot 0 via a forward
edge labeled IAB. Put the vertex in slot 1
Find the vertex connected to vertex in slot 1 via a forward
edge labeled IBC. Put the vertex in slot 2
Find the vertex connected to vertex in slot 1 via a backward
edge labeled IAB. Put the vertex in slot 3
All cells have been found and put in their proper slots. Check
that the graph formed by the vertices in the slots constitutes
an occurrence of the template and if so flag vertices in the
interior of the occurrence.

(b)

FIGURE 7-2: Graph and Corresponding Instructions

_ II � _ _�·--·-----_l�-L--LI^�-I_

135

I

CHAPTER 7. LAYOUT VERIFICATION ALGORITHM & IMPLEMENTATION

Procedure executevertexinstruction(instruction)

if isfirstinstruction(instruction)

insertvertexinslot(theeventvertex,

instruction.vertexdestinationslot)

executevertexinstructions(nextinstruction(instruction))

else if islastinstruction(instruction)

markinteriorverticesifapplicable()

return(success)

else For each edge e of (vertexslots[instruction.vertexsourceslot)

If ((labelof(e) == instruction.interfacetype) &&
(directionof(e) == directionof(instruction.interfacetype)
insertvertexinslot(othervertexofedge(e),

instruction.vertexdestinationslot)

return (executevertexinstructions

(nextinstruction(instruction)))

return (failure)

return(failure)

FIGURE 7-3: Procedure executevertexinstruction

results in failure.

Verifying that the Match is an Occurrence

When a subgraph GT, isomorphic to the graph of a template T has been found the

vertices corresponding to the interior of T are identified. For each such vertex vj the

set A of its intersecting vertices is examined. If this set contains vertices not in GT,

then GT cannot be an occurrence of Ti because any vertex in the interior of a template

occurrence can intersect only with other vertices in the occurrence. If for all vertices vj

in GT,, corresponding to the interior of Ti, Av, contains vertices only in GT, then GT is

an occurrence of T and all the vertices vj in the interior of the occurrence are marked

by a special flag to indicate that they have appeared in the interior of an occurrence.

Increasing Verification Speed

In order to increase verification speed each vertex maintains a list of positions (called

the occurring positions list) in which it appears in a template occurrence. Besides in-

creasing verification speed the list is also used during incremental updates to the graph.

The elements of the list are vertices of template graphs. For example, vertex b left in

figure 6-10 remembers that it has appeared in a template occurrence of the template of

_ ___�_� �

136

7.1. VERIFICATION ALGORITHM

figure 6-9 in the position of vertex b-left by having that vertex in its occurring positions

list. Every time a template occurrence is identified each vertex in the template graph is
added to the list of occurring positions of the corresponding vertex in the occurrence.

During the servicing of an event with associated vertex vi, before an element P in the
positions list is processed it is first verified that vi does not already appear in a template

occurrence in that position. This is achieved by examining the occurring positions list

of vi and verifying that the vertex in the template graph for position P has not already

appeared.

Because a vertex cannot have two edges labeled with the same interface vi, for a
given template graph Gub there is at most one graph Gub isomorphic to Go°b in which

vi appears in position P. Hence vi can appear at most once in position P . Therefore
if vi already appears in position P no other occurrences in which v appears in that

position can be found and processing that position in the position list can be omitted at

a considerable saving in computation time.

For example, suppose that vi, vj, k, vl, and vm form the occurrence of a template T,

with positions pi, pj, pk, pi, and Pm respectively. Without loss of generality it is assumed

that the event for vi was the first to be processed. When the events for vj, vk, vj, and m

respectively are processed positions pj, pk, pi, and pm respectively will not be processed

at a considerable saving in computation time.

7.1.4 Algorithm Complexity

The complexity of the verification algorithm is the sum of the complexities associated
with its various components. The component which reports the set of intersecting bound-
ing box pairs has the highest time complexity (O(n log(n))). The number of bounding

boxes that need to be examined however is much smaller than the number of polygons

that need to be examined in a regular DRC program. The execution speed of the algorithm

is therefore much faster than that of a regular DRC program.

Traversing the Graph and Finding Intersecting Boxes

Since the number of interface types any celltype can have is fixed and a vertex cannot

have more than one edge labeled with a given interface type, the number of edges any
vertex can have is bounded. Therefore if n,,rt,, is the number of vertices in the graph, the

time required to traverse a vertex and check for loops is 0(1) and thus the time required

to traverse the graph and check for loops is O(n) Efficient algorithms such as [11], [33],

[45] can be used for reporting the set of all intersecting bounding boxes in O(n log(n))

I _1 1II __·_l___�_ll·__l__pl_- -·I---- 1- --- II-·-�-·I�·-YIIYI(111111�··1�

137

CHAPTER 7. LAYOUT VERIFICATION ALGORITHM & IMPLEMENTATION

time.

Finding Template Occurrences

Let Ta be the maximum number of vertices in a template graph. Since a ver-

tex cannot have more than one edge labeled with a given interface type there is no

backtracking in procedure execute-vertexinstruction and therefore the top level call to

executevertexinstruction returns in time O(Tmax). The time required to find a potential

occurrence is therefore O(Tmaz).

Once a subgraph Csub isomorphic to the template graph of Ti is found it remains to

verify that the conditions for the internal vertices of the potential occurrence are met.

For each such vertex vi it must be verified that vi intersects only with the vertices in

Csub. During this process at most Tma, other vertices need to be examined because if
more than Tmax vertices intersect with vi, then vi necessarily intersects with a vertex not

in Cs,b and therefore Csub is not an occurrence. Since there are at most Tma, vertices

in the interior of an occurrence this procedure is repeated for at most Tma, vertices vi.

Therefore the time taken to verify that Csub is an occurrence of T is O(Ta,,).

If there are at most Lmax positions in the positions list the time required to process

an event is O(Lmax (Tmax + T a)) = O(Lmax, T,2ax). Therefore if nvertex is the number

of vertices in the graph, the time required to process all the events in the event queue is

O(nvertez, Lmax Ta,,) which is linear in the size of the graph.

7.1.5 Incremental Update

The verification algorithm in GLOVE can be augmented to effectively deal with in-

cremental additions and deletions to the connectivity graph. The graph in turn can be

incrementally updated to reflect modifications in the layout it represents.

Adding a Vertex

If a vertex vi is added to the connectivity graph of a layout, the transform of the new
vertex can be computed in terms of the transform of its neighboring vertices. The newly

augmented graph can be checked for illegal cycles by verifying that vi has no placement

conflicts with its neighbors. The set of intersecting vertices for vi can then be easily

computed and the graph normalized by adding edges between vi and its intersecting

vertices. Then by placing vi on the event queue and enabling the processing of events,

any occurrences in which vi appears can be found.

"� I

138

7.2. IMPLEMENTATION

Deleting a Vertex

If a vertex vi is deleted from the connectivity graph all occurrences in which vi appears

must be removed. The vertex vi maintains a list of occurrence positions in which it

appears. For each position pi in this list the vertices vj, vk, ... vz, with positions pj, pk,

· pz respectively in the same occurrence can easily be found. For each of these vertices
v, the corresponding occurrence position p, must be removed from its occurrence position

list. Any vertices no longer in the interior of an occurrence are then flagged as errors.

7.1.6 Error Reporting

When the event queue becomes empty, all possible template occurrences have been

found. Therefore any vertices that do not have their interior flag set cannot appear in the

interior of a template. The regions corresponding to the bounding boxes of these vertices

cannot be defined as well-formed in terms of the set of templates used to perform the

verification. The regions of layout corresponding to these vertices are then reported back

to the user as errors.

For each vertex v reported back to the user as an error and for each possible occurrence

position pi in which v would be in the interior of the occurrence, it is possible to generate

an explanation of why v cannot be in a template occurrence in position pi. Typically for

each vertex v the set of such positions is small (usually less than three positions) and an

explanation of why v cannot appear in each of these positions can be used effectively to

understand why the error has occurred.

7.2 Implementation

Source Code

GLOVE is written in c and runs on an HP 9000 series model 350 workstation running

UNIX and Xwindows. The source code is heavily borrowed from GRASP and consists of

approximately 12000 lines of code out of which the core verification algorithm takes 2500

lines of code. As with GRASP, the code makes extensive use of data abstractions. GLOVE

first reads in the templates, then the connectivity graph to be verified, proceeds with

the verification and finally produces a list of vertices not in the interior of an occurrence.

This version of the code uses a simple O(n2) algorithm to compute the set of intersecting

bounding boxes and hence a speed penalty is incurred for large layouts.

�I�� *___--r·1_-_)·---��I_--·P li--C--lllll - I
_ �IIII ---X- -L_�L--�III�-II l__Ll_-·--�^111111I�l-L- -

139

CHAPTER 7. LAYOUT VERIFICATION ALGORITHM & IMPLEMENTATION

Numberofcells: 4
0 A /b 3 1 /f 1 2
1 B /b 0 1 /b 3 1 /f 2 1
2 C /b 1 1;
3 A /f I 1 /f 0 1

FIGURE 7-4: Textual Representation of a Connectivity Graph

Input Files

The templates are input graphically by-example [10]. Figure 6-3 resembles the input

specification of a template. The layout for each template is provided to GLOVE as a

".DEF" format2 file generated by the layout artwork editor HPEDIT [5]. From this layout

GLOVE first extracts the interfaces present using RSG interface labeling conventions and

then proceeds to generate the template graph.

The layout is input as a connectivity graph which is assumed to be already in normal

form. Figure 7-4 shows a textual representation of the graph of figure 7-2 (a). A line

such as "O A /b 3 1 /f 1 2 ;" signifies that vertex 0 is of type A and is connected to

vertex 3 via a backward edge labeled 1AA and to vertex 1 via a forward edge labeled I'B

Graphics Display

An Xwindow graphics interface built into the program can display either a template

graph or a region of the graph to be verified centered around the event vertex. For every

event vertex a display can be generated for each occurrence in which the event vertex

appears. The vertices in the occurrence, the interior of the occurrence and those not in

the occurrence are given different colors. The event vertex always appears at the top

left corner of the screen. The graph is displayed in a two column format as shown in

figure 7-5 which is a display of the template of figure 6-9 (a). The interior vertices,

shown in a different color on the screen, are the shaded region. The edge directions are

shown only between vertices of the same celltypes and the direction of the other edges is

implied. Next to each edge the index of the interface between the two vertices is shown.

For example, the edge between the two top cells is labeled "1" which signifies that this

edge represents the first interface Ilb between cell types A and B.

2Very similar to the CIF format.

- I ---

140

7.2. IMPLEMENTATION

FIGURE 7-5: Xwindows Graph Display

141

CHAPTER 7. LAYOUT VERIFICATION ALGORITHM & IMPLEMENTATION

PLA size Number of instances Verification time
10 x 20 x 20 537 3s
20 x 40 x 40 1993 12.5s
40 x 80 x 80 7668 51s
60 x 120 x 120 17142 117s

Table 7-1: Verification Times

7.3 Experiments

Templates for the PLA style of figure 6-1 have been designed and tested for various
PLA sizes and encodings. The PLA templates make use of the special handling of encoded

cells (described in section 6.5.5) provided by GLOVE. The template set consists of 25

templates (out of which 8 are for encoding the andsq and or-sq cells) ranging in size
from 2 to 10 vertices. The library cells for the PLA are taken from RSGs PLA library. The

templates are derived by using RSG to build the layout for a small PLA and the layout

editor HPEDIT [5] to carve out templates from that layout.

Tests have been run to evaluate the verification speed of GLOVE. For this purpose a

PLA connectivity graph generator program has been written to test GLOVE for various

sized and encoded PLAs. Since the regularity of the PLA does not enhance verification
speed, the derived results are good indicators of how fast the algorithm will perform on

less regular structures.

Table 7-1 summarizes the verification times. The indicated values are the time re-

quired to find template occurrences and do not include the time required to compute the

set of intersecting vertices. As the PLA gets larger a greater fraction of the computation

time is spent computing the bounding boxes. For the 60 x 120 x 120 case, the time

spent computing intersections is larger than that spent finding template occurrences.

The amount of time spent computing intersecting vertices can be greatly reduced by
using an O(n log(n)) instead of an O(n2) algorithm.

142

8

Schematic vs. Layout Comparison

8.1 Introduction

To face the challenge of carrying VLSI circuits of ever growing complexity from concept

to silicon, design procedures that break the process into many distinct steps have been

introduced. By factoring the design process into these steps the complete design is broken

up into domains, each of which is a manageable task.

During the design process more and more of the design parameters are settled upon

as the design proceeds from concept to mask. Intermediate representations between

concept and mask for the design are introduced as an effective means to break up the

task of deciding upon these parameters by providing a level of insulation between these

tasks. As a result, some of the design steps involve taking a more abstract intermediate

representation and producing a corresponding less abstract one.

In some cases the new representation can be mechanically generated from the more

abstract one by a set of transformations which guarantee that by construction the new

representation does indeed correspond to the more abstract one. Often however such a

guarantee is not possible and it becomes necessary to provide a verification mechanism

that can validate the new representation by comparing it to the more abstract one.

Schematics described in chapter 3 and layouts described in chapter 6 are two such

representations referred to hereafter as domains. The schematic domain is usually consid-

ered the more abstract of the two domains. In one of the final steps of a design, a layout

for a schematic of the design is generated. When the layout is not generated by a correct

by construction procedure, it becomes necessary to determine whether the layout does

indeed implement the logic circuitry or better still the functionality of the schematic. A

solution to this problem is of great importance and as such several techniques have been

143

q

CHAPTER 8. SCHEMATIC VS. LAYOUT COMPARISON

developed to cope with it. In this chapter a novel solution with significant advantages

over previous methods is proposed.

Ideally a schematic vs. layout comparison system should be capable of reporting
whether or not the functionality implemented by the schematic and the layout (given

the context in which the circuits will be used) are one and the same. To this end the
verification system should tolerate (within reason) differences in the implicit circuitries
provided that they both implement the same function.

Simulation is often used as a tool to this end. Through the use of simulation the
user can compare the result of computations by the two circuits for various inputs. Here,
as in the case of schematic design style verification, simulation can be used to report

discrepancies but not find them.

Simulators such as [14] are capable of generating symbolic descriptions for the out-
puts of a circuit in terms of its inputs and state. In theory such a representation can

be generated for the circuit of the schematic and the circuit of the layout and the two
representations checked for equivalence. Deciding whether two such representations are

equivalent is an extremely difficult NP complete [24] problem making this technique im-
practical.

The most commonly used technique to solve the schematic vs. layout correspondence
problem is to compare the circuit of the schematic with the circuit of the layout. For this
purpose, the schematic is usually expanded into a transistor netlist and a node extractor
[32] is applied to the layout to produce a netlist. The problem of comparing the two
netlists is equivalent to the graph isomorphism problem. Although no known polyno-

mial time algorithm exists for the graph isomorphism problem [16] [35] (it is not known
whether this problem is NP complete) good heuristics exist for solving it in reasonable
time for most practical circuits.

Among the more commonly used heuristics for solving the correspondence problem
are signature-calculation [17], [41] (the most widely used method), path tracing, and rule
based pattern recognition systems [39] which are described in the following sections.

8.1.1 Signature Calculation

Signature calculation algorithms attempt to partition a graph (or in this case a netlist)
based on computed values for each vertex (respectively circuit element) called vertex
invariants. A vertex invariant is a property of a circuit element that is preserved under

netlist isomorphism. If two circuit elements in two isomorphic netlists correspond to each
other then they necessarily have the same vertex invariant value. The value of the vertex

144

8.1. INTRODUCTION

invariant of an element is also referred to as its signature.
Examples of simple vertex invariants include functions based on the element type

(module type), its degree (the number of edges connected to the vertex), the length of
the shortest (or longest) cycle it appears in etc. Vertex invariants partition the circuit
elements into equivalence classes of equal signature. Two corresponding elements in two
isomorphic netlists must necessarily be in the same equivalence class. The difficulty of
checking the correspondence of two netlists is directly related to the number of elements
in each class. Ideally each equivalence class is a singleton and a good vertex invariant is
one which produces the fewest number of elements in each class. For this purpose each
equivalence class can be further refined by recomputing a new signature for each element
based on its current signature and the signature of its neighbors. The process may be
repeated until no further subdivision is possible. If the two circuits end up with exactly
the same equivalence classes and each equivalence class has the same number of elements
then the graphs may be isomorphic otherwise they are not isomorphic.

The smallest possible number of elements in each equivalence class is the number
achieved by the automorphism (isomorphism onto the graph itself) partition of the graph.
By definition of the automorphism partition any element in an automorphism equiva-
lence class A; of graph G1 can be matched with any element of the corresponding class
A? of G 2. In practice however, the equivalence classes do not result in an automorphism
partitioning 1 and hence each element from an equivalence class El of G 1 must be succes-
sively paired with an element of its corresponding class E2 of G 2 till a match is found. In
theory, the number of such matches that must be tried and undone is Ei Card(Ei)!. In
practice however, the time complexity of good signature based systems is roughly linear
in the size of the circuit. Signature based systems have recently been adapted to make
use of hierarchy in the netlists [55] [50] (provided that the hierarchy is the same in the
two netlists) resulting in greater verification speeds.

8.1.2 Path Tracing

Path tracing is a method used in special circumstances. In this technique a path
from a known input or output is traced simultaneously in both circuits. For example,
in a circuit with no feedback consisting of logic gates each with a single output that
feeds only one other gate, a path can be traced simultaneously in both circuits from an
input to an output. This method rapidly breaks down for more general circuits because
for a given path in one circuit many potentially equivalent paths in the other might

'Even if by chance this did occur it cannot be easily detected.

145

CHAPTER 8. SCHEMATIC VS. LAYOUT COMPARISON

have to be examined resulting in an exponential time complexity. The advantages of

this technique over signature calculation are faster speed and potentially better error

reporting in the special cases it is capable of handling. Occasionally path tracing is used

in conjunction with signature calculation to discriminate between elements within large

equivalence classes. In this scheme the algorithm alternates between path tracing and

signature calculation yielding successive refinements of the equivalence sets.

8.1.3 Rule based Pattern Matching

The technique used for schematic vs. layout correspondence verification in the rule

based expert system cv [39] resembles the parsing technique described in GRASP. The

schematic is input using a hierarchical description. In such a description composite

modules are defined in terms of interconnections of simpler ones. The entire schematic,

using the same rationale, can be thought of as the definition of one very large module.

From this hierarchy the system extracts a set of rules similar to GRASP's productions.

For each composite module definition a corresponding rule is generated. The rule for the

entire schematic corresponds to a production for the start symbol of a grammar.

Once all the rules have been derived from the schematic, an algorithm similar to

grammatical parsing is used to check that the netlist of the layout corresponds to that

of the schematic. During this process the netlist of the layout is reduced using the rules

(productions) extracted from the schematic. If at the end of the process the module

corresponding to the entire circuit (start symbol of the grammar) remains then the layout

corresponds to the schematic. Since the rules (productions) extracted from the schematic

do not necessarily constitute a deterministic grammar, rules known as conflict resolution

rules are used to decide which reductions to perform.

8.2 Shortcomings of Existing Techniques

8.2.1 Error Reporting

In the three techniques described in sections 8.1.1, 8.1.2 and 8.1.3, the comparison

is performed on netlists of the schematic and layout instead of on the schematic and
layout representations themselves. When a mismatch is detected it is reported back to

the user as a discrepancy between components or connections in the two netlists. The

user must then identify the schematic and layout entities the netlist mismatch pertains

to and decide how the mismatches relate to the internal structure of these entities or the

connections between them.

146

8.2. SHORTCOMINGS OF EXISTING TECHNIQUES

In the signature based system it is usually difficult to identify the nature of the

mismatch and localize it. One of the typical failure modes of a signature based system

occurs when in netlist A" there is an element e with signature a, and in netlist 2A/ no

element with that signature exists. The mismatch is usually located around . However

due to the mismatch, the elements in All in a neighborhood of e may not have the same

signatures as their corresponding elements in 2. It is therefore difficult to locate the

elements corresponding to the neighborhood of E in V.2 making the mismatch hard to

identify.

8.2.2 Incremental Comparison

A precondition for being able to perform the schematic vs. layout comparison incre-

mentally is to have an incremental node extractor for the layout and netlist generator

for the schematic. However, even when such extractors are available there are reasons

intrinsic to the signature and rule based pattern matching comparison techniques that

make incremental comparison difficult.

In effective signature based comparison techniques the signature of an element de-

pends not only on its connected neighborhood but also on far away elements. The succes-

sive refinement signature calculation technique described in section 8.1.1 is a commonly

used means of accomplishing this. This is one of the strengths of signature based tech-

niques because elements in the two networks which do not correspond to each other but

have similar types and neighborhoods will have different signatures and hence can be

differentiated. However because of the non local nature of the signature calculation, if

a region of a netlist is incomplete the signatures of many circuit elements even far away

from that region can be affected making this scheme impractical to use on incomplete

circuits.

In the rule based pattern matching technique described in section 8.1.3 all the rules

are needed before reduction (verification) of the layout netlist can begin. This is because

the system might have to resolve conflicts between several potentially applicable rules

before choosing one to be fired as described in section 8.1.3 . To avoid firing the wrong

rule, the system must be able to recognize when conflicts occur and therefore must be

aware of all the rules and hence can start verification only when the complete schematic

is provided.

147

CHAPTER 8. SCHEMATIC VS. LAYOUT COMPARISON

8.2.3 Equivalence Flexibility

Unrestricted functional equivalence verification between the schematic and layout
representations is impractical as mentioned in section 8.1. However requiring that the
two netlists match exactly is too restrictive especially in the presence of circuit elements
with interchangeable pins. A certain amount of tolerance is required in the matching
process whereby small variations between the netlists, due to geometric optimizations in
the layout which are best bound during layout generation, do not cause the matching
process to fail. Existing systems try to provide whatever amount of flexibility can be
achieved at reasonable cost within the framework of the basic isomorphism algorithms.
They are however usually limited to permutations of pins or elements within a logic gate.

In commonly used circuit elements such as NAND and NOR gates or MOS transistors,
some of the terminal pins are permutable (input pins for the NAND and NOR gates, drain
and source pins for the MOS transistors). The functionality of the circuit is unchanged
if the connections to these pins are permuted. Most comparison systems allow for such
permutable pins. The user however must indicate which elements have permutable pins
and the netlists of both the schematic and layout must be provided to the system in
terms of these components with permutable pins.

For example, since NAND and NOR gates have permutable input pins both netlists
must be expressed in terms of these gates and not their transistor equivalents. Since the
netlist obtained by node extraction from the layout is necessarily expressed in terms of
transistors and not logic gates, this netlist must first be parsed to reduce the gate netlists
into gate modules before the comparison is performed.

Some systems [38] allow for additional freedom in the sequence in which series tran-
sistor blocks may be assembled within a gate and allow transistors in parallel (used for
greater drive capability) to be treated as one element. Finally, rule-based expert systems
[46] have been used to verify the functional equivalence between portions of the netlists
that do not match using the signature based method.

8.3 Benefits of Template based

Correspondence Verification

In chapter 9 a layout vs. schematic verification method with significant advantages
over conventional techniques is described. The method operates directly on the schematic
and layout entities and hence requires no node extraction. The schematic and layout
representations input to the system for correspondence verification are those defined in

��_�_ __

148

8.3. BENEFITS OF TEMPLATE BASED CORRESPONDENCE VERIFICATION

chapters 3 and 6. User defined correspondence templates which are a combination of the

grammatical productions of chapter 3 and the layout templates of chapter 6 are used to

define an equivalence relationship between schematic and layouts.

8.3.1 Benefits of Operating Directly on

the Schematic and Layout Domains

Several benefits accrue from having the method operate directly on the schematic and

layout entities. Node and netlist extraction are not needed. This saves computation time

and eliminates the need for the intermediate netlist data format. Incremental verification

which otherwise requires the use of an incremental node extractor is also facilitated.

During comparison using template-based techniques the number of objects accessed

in both the schematic and layout domains is considerably less than in their corresponding

netlists thus resulting in shorter verification times.

Errors are reported back to the user in terms of mismatches in the connectivity of the

schematic modules or layout cells. Such reports are more meaningful and succinct than

error reports of mismatches between the netlists.

Schematic vs. layout verification programs have trouble dealing with multiple cor-

respondence possibilities. For example, attempting to match the netlists of two three-

inverter ring oscillator circuits of figure 2-6 is difficult because an inverter in the first

circuit can map to any of the three inverters in the second circuit. The same problem

occurs when there are parallel computation paths in both circuits (in ALUs or bus like

structures) because a computation path in one circuit can correspond to one of several

such paths in the second circuit.

The user is frequently in a position to guide the correspondence verification system

by specifying which inverters (in the ring inverter circuit) or parallel paths (in the ALU)

correspond to each other. Describing the correspondence in terms of parings between

elements in the two netlists is difficult especially when the two netlists are (functionally)

equivalent but not isomorphic. Because feedback from the user is difficult methods which

operate on the netlist representation must be robust enough to cope with ambiguous

information without any user input. Operating directly on the schematic and layout

representations facilitates user input and hence provides the user with a tighter control

over the system.

__ I�PI _I_ I_ �I

149

CHAPTER 8. SCHEMATIC VS. LAYOUT COMPARISON

8.3.2 Benefits of User Defined Equivalences

Since full functional equivalence verification is not practical, correspondence verifica-

tion systems implement a few useful equivalences (such as pin permutations) which are

by comparison computationally efficient to implement. These equivalences are usually

insufficient to effectively deal with many of the equivalences (for optimization purposes)

used by the layout designer. Knowledge about the equivalences are embedded into the

system and as such adding new equivalences is difficult. Also many of the equivalences

are easy to define on a case by case basis but are hard to generalize.

This thesis is primarily concerned with layouts built from library cells and as such

only those specific equivalences used in the library cells are of particular interest. This

not only restricts the types of equivalences considered but also restricts the locations in

the netlist at which they can occur. The equivalences are allowed to occur only at the

locations in which they occur in the library cells. The same sort of equivalence will be

rejected if it appears elsewhere. This reduces the number of possible configurations that

need to be examined.

Equivalences are usually local in nature since global optimizations to the circuit are

best done at the schematic or more abstract levels of representation and not during

schematic to layout conversion. They can therefore be effectively captured by the corre-

spondence templates introduced in this section.

150

9

Template based Correspondence
Verification

9.1 Overview

In this chapter correspondence templates are introduced. These templates consist

of pairs of networks and connectivity graphs in correspondence with one another. The

templates define an equivalence relation between schematics and layouts. First the for-

malisms of the templates are introduced and the underlying meaning of the formalisms is

described in section 9.2. Conditions in terms of the templates which can guarantee that

the netlists of the schematic and layout are isomorphic are then derived in section 9.3.

Formal proofs of these conditions are also provided in section 9.3. Finally, techniques

for matching schematics and layouts with non-isomorphic netlists are introduced in sec-

tion 9.4.1.

Throughout this chapter it is assumed that all connectivity graphs are normalized

as described in section 6.5.2 and that they satisfy the layout correctness criteria of sec-

tion 6.5.4. This ensures that the layout is design rule correct and that any two vertices

whose layouts interact electrically have an interface edge between them.

9.2 Correspondence Templates

Correspondence templates are used to define equivalence relations between schematics

and layouts. The most useful of these equivalences are those in which the schematics and

layouts have isomorphic or very similar netlists. The discussion is therefore biased toward

showing how templates are used to define an equivalence relation between schematics

151

q 4 - _'_ 'VFI

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

and layouts with isomorphic netlists. Later in section 9.4.1 useful equivalences between

schematics and layouts with non-isomorphic netlists are described.

In chapters 3 and 6 modules and cell instances were introduced. Each module or

cell instance has an associated netlist which can be thought of as a circuit' in which all

modules are of a primitive module type (such as n-channel and p-channel MOS transistors)

i.e. they cannot be expressed in terms of other circuits. For ease of explanation these

primitive modules will be referred to as transistor modules.

9.2.1 Mappings

For a module type Tmod, there is often a corresponding celltype Tcel which implements

the same circuitry. This means that the netlists of any module Amod of type Tmod and

cell A1 ,,, of type Tl,, are isomorphic.

There may be several different isomorphisms possible between the netlists of Amod

and AC,,i and it will be necessary to specify which one of them is being referred to. Let

the transistor modules of the netlists of Amod and Ac,,, be labeled mon, ml ... m and

co, cl ... c,n respectively. For a given pairing P = ((mi, cj), (mk, c) * (mn, c,)) between

the modules of Amod and AC,,, there is at most one network isomorphism (with corre-

sponding module isomorphism fM) such that for any module min in the netlist of Amod,

(m,,oo fM(min)) E P. This pairing of modules, referred to as a mapping between the mod-

ule and the instance, completely defines the isomorphism (if it exists) and can be used in

lieu of a specification of the isomorphism. McV is used to denote that module M and

vertex V are in relation via mapping a.

Definition 17 A mapping between a module and an instance is a pairing of transistors

in the two corresponding netlists.

Figures 9-1 (a) and (b) show the netlist-wise equivalent module and connectivity

graph vertex instance of Amod and Ac,I. The pairing of transistors representing the

isomorphism between the two netlists is shown by the arc labeled P.

Alternately, a schematic such as that of figure 9-2 (a) may have a netlist isomor-

phic to that of the layout (represented by its connectivity graph) of figure 9-2 (b). In

order to characterize the isomorphism between the two netlists, mappings are used to

describe the pairings of transistors in the two netlists. A mapping is provided for each

module and instance vertex whose netlists have transistors in correspondence via the

'As defined in section 3.1.1.

152

9.2. CORRESPONDENCE TEMPLATES

D

y

X

(a) (b)

FIGURE 9-1: Mapped Module and Vertex

(a) (b)
FIGURE 9-2: Mapped Schematic and Layout Regions

___I II _

153

I

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

isomorphism. For example, if transistors 3, x 5 and X7 of module X correspond to

transistors a24 , a 9 and a 3 of vertex A then the mapping Mxa with associated pairing

Pa = ((x3, a24), (5, ag), (X7, a 3)) is defined between module X and vertex A. The map-
pings between the modules and vertices are shown by labeled arcs in figures 9-2 (a) and

(b).

9.2.2 Regions of Equivalence

Given a schematic S and a layout connectivity graph L which are netlist-wise equiva-
lent and I the isomorphism between their netlists, it is often possible to identify networks

and subgraphs Si and Li such that the netlists of each pair (Sj, Lj) are isomorphic via
the isomorphism induced by the restriction of I to Sj and Lj. ESL, the set of such pairs

(Si, Li), is called the set of equivalence regions.

Definition 18 Let (Sj, Lj) E E. If VSk C S,Lk C Li (with (Si, L) Z (Sk,Lk)), and

(Sk, Lk) ¢ ESL then (Sj, Lj) is called a minimal region of equivalence.

For any (Si, Li) E ESL, all the mappings involving modules S are necessarily to
vertices in Li and vice versa. Therefore the minimal regions of equivalence are the

smallest regions (S,, L,) such that all the mappings of modules of S, are in LA and vice

versa.

9.2.3 Correspondence Templates Definition

Correspondence templates are used to specify how two or more minimal regions of

equivalence can be combined to yield a new region of equivalence. Through the use of

correspondence templates the isomorphisms between each of the regions of correspon-

dence are extended to define isomorphisms between large portions of the schematic and

connectivity graph and finally to the entire schematic and connectivity graph. A cor-

respondence template consists of a schematic and layout (each containing one2 or more

minimal regions of equivalence) whose netlists are isomorphic and a set of mappings

between modules and vertices which identifies the particular isomorphism involved.

Definition 19 A correspondence template is a triplet T = (S,L,M) where S is

a schematic, L is a layout whose netlist is isomorphic to that of S via isomorphism

I (with associated module bijection f) and M is a set of mappings between modules

2In order to be useful, templates should contain more than 1 minimal region of equivalence.

154

9.2. CORRESPONDENCE TEMPLATES

FIGURE 9-3: Simple Correspondence Template

of S and vertices of L such that: for transistors a and d in the netlists of S and L:
/ = fM(a) X* 3mi E M with pairing of transistors pi such that (a,fl) E pi.

Figure 9-3 shows an example of a simple template consisting of two modules and two
vertices. Vertex A (respectively B) is the layout for module A (respectively B) and the
isomorphism between their netlists is identified by mapping a (respectively /3) shown by
the thin arc. This template asserts that if instance vertices A and B are relatively placed
via interface 6 then the electrical connections formed by the interactions of their layouts
is equivalent to modules A and B connected as shown in figure 9-3.

Figure 9-4 shows a more complex template. The template consists of two minimal
regions of equivalence formed by mappings , , 6 (modules X, Y and vertices A, B) and
e, , v (modules U, W and vertices C, D). The template asserts that if the vertices are
placed as prescribed by the interfaces then the electrical connections between the layouts
are equivalent to those shown in figure 9-4 between the modules A, B, C and D.

9.2.4 Correspondence Template Occurrence

Correspondence templates are used to match small regions of the schematic and layout
to be compared. Verification of the correspondence between a schematic and a layout is
achieved by tilings the schematic and layout with occurrences of correspondence templates
as prescribed in the next few sections. For ease of explanation it is assumed that mappings
already exist between modules and vertices of the schematic and layout to be verified.
The goal of the verification system is to verify whether, given this set of mappings,
the schematic and layout netlists correspond to each other. Sections 10.1.3 and 10.1.4
describe how the verification algorithm computes these mappings while simultaneously
finding template occurrences.

3 The term tiling used here has nothing to do with tiling by abutment.

155

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

FIGURE 9-4: Correspondence Template

A new relation between networks in the schematic called semi-isomorphism is given in
definition 20. This relation is used in definition 21 which defines template occurrences.

The semi-isomorphism relation is quasi identical to the isomorphism relation between
networks except that the function fN which maps the nets of the two networks is surjective

instead of a one to one mapping. Intuitively if N 1 is isomorphic to N 2 and if N 3 is obtained

by merging some of the nets in N 2 together, N1 is semi-isomorphic to N 3.

Definition 20 Two networks N 1 = (MI1 ,M,C 1) and N 2 = (M 2,A2,C 2) are semi-
isomorphic if and only if there exist two one to one mappings fM : M1 -- M M2,

and fc : C1 - C2 and a surjection fN : 1 - 2 such that: VM E M 1,

typeof(M) = typeof(fM(M)), and V(pl,v7l) E C1 if (2,r72) = fc(P,71q) then 2 =

fN('71), module(p2) = fM(module(pl)) and pinnumber(pl) = pinnumber(p2).

Definition 21 Given a schematic S, a connectivity graph L and a set of mappings M

between modules in S and vertices in L. Let SSub be a network of S and Lsub a subgraph of

L. (Ssub, Lsub) is said to be an occurrence of correspondence template T = (ST, LT, AIT)

if and only if: ST is semi-isomorphic to Ssub (with module bijection fM), LT is isomorphic

to Lsub (with vertex bijection fv) and for any module M in ST, vertex V in LT and

mapping cr in MT, MceV : f(M)cafv(V).

156

9.2. CORRESPONDENCE TEMPLATES

P~~~~~

aP

(a) (b)
FIGURE 9-5: Net Connection Graph

9.2.5 Net Connection Graph

A useful data structure for keeping track of correspondence template occurrences is

the net connection graph. For each net r7 in the schematic there is an associated net

connection graph. The vertices of this graph are the pins connected to Fl. The edges in

the graph represent connections between pins which are known to connect to the same

net. These pins are identified through the use of template occurrences as described in

definition 22. If the connection graph of r] is (minimally) connected then all these pins

must connect to the same net, namely 7r. It will be shown in section 9.3 that a necessary

condition for a schematic and a layout to be in correspondence is that the connection

graph for each net be connected.

Definition 22 The net connection graph for net rl is a graph G, = (P,, 0,). The set

of vertices P, is the set of pins connected to nT. The set of edges O, C P, x P, is such

that (pi,pj) E O, there is an occurrence of a template T in which pi and pj appear

simultaneously and in which their corresponding pins in T pT and p are connected to

the same net.

Figure 9-5 (b) shows the net connection graph for net 7 in figure 9-5 (a). Pins a and

6 appear simultaneously in a template occurrence of a template T in which the pins aTr

and ,T in T corresponding to a and are connected to the same net. This is symbolized

by an arc between the connections of those pins to net r in figure 9-5 (a). Because of this

occurrence, the net connection graph of r7 in figure 9-5 (b) has an edge between vertices a

and . Similarly, because of an occurrence in which pins 6 and 7 appear simultaneously,

there is an edge between vertices 6 and a in figure 9-5 (b).

__�__1�·___�____1111__111_11_._1_ --

157

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

9.3 Template based Criteria

for Netlist Isomorphism

In this section a criterion based on net connection graphs of schematic S and interfaces
of layout L which guarantees that the netlists of S and L are isomorphic is introduced.
This criterion described in theorem 8 can be established by identifying the correspondence

template occurrences in S and L.

Subsection 9.3.1 gives a definition for netlist and netlist isomorphism and provides the
various proofs needed to prove theorem 8 which is finally done in section 9.3.2 proof 8.
As before, in order to simplify the proofs it is assumed that the set of mappings between
all schematics and layouts are provided. If the reader can believe theorem 8, section 9.3.1
and proof 8 can be safely skipped. In section 9.4.1 the criterion is extended to allow a
match between schematics and layouts whose netlists are not necessarily isomorphic.

9.3.1 Preliminaries

Netlist Definition

In order to facilitate the proofs in this section, a definition for netlists different but
equivalent to that of circuits in definition 5 is introduced. In this new definition nets
do not appear explicitly but are replaced by sets of pins that are electrically connected
together. This definition was not suitable for representing schematics introduced in
chapter 3.1. In this section however, if the definition for schematics is used for netlists,
nets in the netlists may have to be merged together due to short circuit connections
between them. To avoid this the concept of a net is replaced by that of a connected pin
set. The set of all connected pin sets is denoted by £.

The reader is reminded that M is the set of all modules and given a set of modules
Al C M, PM is the set of all pins in M.

Definition 23 A netlist A/ is a pair (M., Cgr) where M.g C M and C C E such that

VP E C ,P C P, and P,, P E C, P n P = 0 and UPECc Pi = PM.{
Mr is called the set of modules of K and Cg is called the set of connections of /.

The set of pins Pv in a netlist Af = (Mv,C.g) can be thought of as vertices in a
graph Gg such that: for any two pins p and p in Gg there is a path between p and
p3 along edges in G if and only if 3P E Cg such that p,, pp E P. C is then the set
of connected components of Gg. G is called a connection graph associated with the
connections C and the netlist /.

158

9.3. TEMPLATE BASED CRITERIA FOR NETLIST ISOMORPHISM

For explanatory clarity the modules in a netlist will be referred to as transistors
whenever it becomes necessary to distinguish them from modules in the schematic.

Netlist Isomorphism

A definition for isomorphic netlists equivalent to that of isomorphic networks in
definition 6 is given in definition 24. If fM is a mapping between two sets of mod-
ules then fp is used to denote the mapping between their pins and is defined by:
moduleof(fp(P)) = fM(moduleof(P)) and pinnumber(P) = pinnumber(fp(P)).

Definition 24 Two netlists AJl = (M 1,C 1) and A'2 = (M 2,C 2) are isomorphic A;1
Ar2 if and only if there exists a one to one mapping fM : M1 -- + M 2 such that if fp is
the pin mapping associated with fM then Vp1, P2 E P,M, 3P1 E Cl, pa, E P1 X: 3P2 E

C2, fp(pr), fp(p) E P2.

Union of Connections

An operation W similar to the set union operation is defined between elements of E.
It can be shown that the WJ operator is associative and commutative. Let C1, C2 E C and

G1 = (, El), G2 = (V2, E2) be connection graphs associated with C1 ,C2 .

Definition 25 C = Cl 4 C2 is the set of connected components of graph G = G1 U G2 =

(1 U V2, E 1 U E2).

Inclusion of Connections

A relation C similar to the set inclusion is defined between elements of E. It can be

shown that the E: relation is transitive. Let C1, C2 E C and G1 = (V1, El), G2 = (V2, E2)

be connection graphs associated with C1, C2 .

Definition 26 C1 C2 if and only if VI C V2 and E1 C E2.

This relation is used to define the subset relation for netlists in the obvious manner.

If = (M 1,CI) and YA2 = (M 2 ,C2) then Vf C /V2 * M1 C M 2 and C1EC2.

Union of two Isomorphic Netlists

Let A 1 = (Ml,C1) be isomorphic to N = (Ml,Cl) with module mapping fM1

and N 2 = (M 2 , C2) be isomorphic to N2 = (M2,C2) with module mapping fM2 such

that VAI E M1 n M2, fMl(M) = fM2(M). Let fM(M) = fMl(M) for M E M1 and

I -o
__I 1_I--.-L�--·LC�-I·- .^XI - ^- --

159

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

fM(M) = fM2(M) otherwise. Let G1,G, G2 and G' be connection graphs associated
with N 1 , NI,N 2 and N2.

Theorem 7 N = (M 1 U M 2, C 1 C2) is isomorphic to N' = (Ml U M2, C W C') via

module isomorphism fM.

Proof 7 Clearly fM is a one to one mapping from M1 U M2 to M, U M2. Let fp be the
associated pin mappings and G, G' be connection graphs associated with N and N'. If

3Pi E C1 1t C2 with p,p E Pi then p, and pO are in the same connected component of
G and therefore there is a path in G from p, to pO. This path can be decomposed into
a path (p,, po '"pn, p) of vertices in GM such that each subpath (pi, pi+l), (p=,po) and

(pn,pO) is entirely in G1 or G2 .

For each such subpath (p:, , (fp(p),), fp(p)) is a path either entirely in G' or in G'.

Hence (fp(po), fP(po) ... fP(pn), fp(p,3)) is a path in G' and therefore fp(p",) and fp(p)

are in the same connected component of G' and 3P' E CI ' C2, fp(p,), fp(pp) e Pi'. This

proves 3Pi E CI W' C2, p, P3 E Pi = 3P' E C' W C', fp(p), fp(p,) E P'.

Similarly, since fp is a one to one mapping it can be shown that 3P E C W
C, fp(p,), fp(pp) E P = 3Pj E C 2, ± p,p E Pj. Hence N and N' are isomor-

phic.

Netlist of a Schematic or Layout

Let S = (Is, Ns, Cs) be a schematic where each module Mi E Ms (UiE Mi = Ms)

has associated netlist Ni = (Mi,Ci). The netlist s of S consists of the netlists of

each of the modules Mi plus the connections (between the pins of transistors in the

netlist) generated by the connections of modules in Ms to the nets in Ns. Each net

7 in Ns electrically connects the pins of some of the transistors (in netlists) of the

modules in the schematic. The set of connections in .Ks created at net qr is denoted

by C,. The netlist A/s then consists of the transistors in each of the modules in the

schematic and the connections of transistors within each of the module netlists plus

the connections generated by the connection of modules in Ms to nets in Ns: 's =

(UiE, Mi (EI C W HENs CO)).
Similarly, let C = (VL, E, WL) be a connectivity graph where each vertex Vj E VL

(UjEJ Vj = V) has associated netlist Nj = (Mj,Cj). The netlist Kfe of L consists of
the netlists of each of the vertices Vj plus the connections generated by the interfaces

in EL. The set of connections in the netlist created by interface is denoted by CT.

The netlist K/' then consists of the transistors in each of the vertices in the layout and

I

160

9.3. TEMPLATE BASED CRITERIA FOR NETLIST ISOMORPHISM

the connections of transistors within each of these vertex netlists plus the connection

generated by the interfaces in EL: C = (UjEJ Mj, (jEJ Cj) (EEc Cr)).

Netlists of an Occurrence

Let T be an occurrence of T. Let Si and Li be the schematic and layout portions of

T respectively. The netlists Ns, = (Ms,, Cs,) and .ML, = (ML,, CL,) associated with Si

and Li respectively consist of the netlists of each of the components in the occurrence

plus the connections established in the occurrence which are the connections between the

components necessary for T to be recognized as an occurrence of T. Since the layout and

schematic netlists of T are isomorphic it can be shown that KAs, and K/L, are necessarily

isomorphic.

9.3.2 Netlist Isomorphism Criteria

Intuitively, if the net connection graph of each net 77 in the schematic is connected,

all the pins connected to 7 are accounted for. Similarly, if each interface t appears in a

template occurrence, the electrical connections caused by t are accounted for. Since the

mappings between the schematic and the layout are given and each component is assumed

to have a complete set of mappings, there is already a one to one relation between the

transistors in both netlists. Since all the connections in both netlists are accounted for

the two netlists must be isomorphic. A formal definition of this criterion and a formal

proof are given in theorem and proof 8 respectively.

Theorem 8 Let S = (Ms, Ns, Cs) be a schematic where each module Mi E Ms

(UIEiAi = Ms) has associated netlist Ni = (Mi,Ci). Let £ = (V,E,,W;) be a

connectivity graph where each vertex Vj V (jeJVj = Vt) has associated netlist

N j= (Mj,Cj).

If all the net connection graphs in S are connected and all the interfaces in 1£ appear

in a template occurrence. The netlists A/s and L: of S and 12 are then isomorphic to

each other.

Proof 8 Let Ns, = (Ms,,Cs,) and NL. = (MLK,CL,) be the netlists associated with

the schematic and layout components of occurrence 0, and let AC be the set of indices

such that 0O is an occurrence. The schematic and layout netlists associated with all the

occurrences are then Ns = (Ms, Cs) = (UErc MS,. J E:Cs.) and NL = (ML, CL) =

(U,Er AML,U,EK CL,). Since VK E AC, NsK - NL, from theorem 7 it is necessarily true

that Ns -Ž NL.

_· __ �I _ � � _� _I _11___1 ·-·l�--·L-�-�l.-_l_ _ -·CLIL--·�.II--L-I�L-pLaPs--^·�II·�

161

I---

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

Clearly the netlists Ns, and NL, of each template occurrence 0, are subsets of the

netlists IAs and A/ of the schematic and layout. Hence Ns C Xs and NL C Xc.

If each interface appears in a template occurrence then for any interface r in the

layout the connections associated with r is CE erE CL, = CL. Hence (tEEc C)ECL.

If all interfaces appear in an occurrence then all vertices in the layout must also appear

in an occurrence and hence the transistors and connections in the netlist of those vertices

must appear in the layout netlist of an occurrence. Hence the transistors in the layout

netlist UjeJ Mj and the connections of those transistors in each of the netlists UjeJCj

must satisfy (UjEJ Mj) C ML and (je Cj)ECL. Hence (jeJ Cj) W (UEE, C)ECL.

Therefore ArC C NL and since NL C A. it must be that JL' = NL.

If the net connection graph for a net 71 is connected it can be shown by induction on

the number of pins connected to that C,E_ UEKr Cs, = Cs. This is because in the graph

of Cs there is a path between all the pins associated with net q and hence all such pins

appear in one connected component. The sole element of C, (the connection graph of

C, has one connected component) is necessarily a subset of this connected component.

Therefore if NA is the set of nets in the schematic, U,,ENv CECs. With this result by the

same reasoning as in the previous paragraph applied to the modules and connections in

A's, it can be shown that Ars C Ns and since Ns C A's it must be that Ars = Ns.

Therefore AC = NAL Ns = Ars and so Ars and NL are isomorphic.

Example

Figures 9-6 (a) and (b) show two correspondence templates T1 and T2. In this example,

theorem 8 and templates T 1 and T2 are used to prove the equivalence of the layout and

schematic of figure 9-7 (a). The pins connected to net r in figure 9-7 (a) are given

unique identifiers a, d3 and y which are indicated on the connection from the pin to the

net. The schematic and layout are in equivalence because all the interfaces in the layout

appear in a template occurrence and all the net connection graphs are connected. The

net connection graph of net r is shown in figure 9-7 (b). The graph is connected and

the origin of its edge is indicated. The other nets (g, h and i) connect to only one pin

and appear in at least one template occurrence each and hence are considered as trivially

connected.

162

9.4. EXTENSIONS

JA.

(a) Template T

V

i. -

(b) Template T 2

FIGURE 9-6: Equivalence Templates

9.4 Extensions

9.4.1 Equivalence Flexibility

The techniques described in section 9.3 can be extended to allow the matching of

schematics and layouts whose netlists are equivalent but not necessarily isomorphic. In

section 9.3 each layout cell and schematic module type is assumed to have an associ-

ated netlist. Each correspondence template asserts that the netlists of the schematic and

layout sections of the template are isomorphic, and the associated netlists of these com-

ponents are implicitly assumed. The verification process attempts to match the netlists

of the schematic and the layout given these assumed netlists.

Since the verification system does not actually manipulate the netlists of the schematic

or layout, the assumed netlists of the various components and the actual netlists imple-

mented by the components may differ. The results provided by the verification system

are those obtained using the assumed netlists. A schematic and layout with non isomor-

phic netlists will be reported as a match by the verification system if the netlists obtained

using the assumed component netlists are isomorphic. By exploiting the potential dif-

ferences between the actual and assumed netlists, matching of schematics and layouts

.X·__ll I�__I�__I�_ _I·__YI �Ii_ 1 ~~-11~1111 1 I--(IP--^--~~ . --1---~1-------

163

TEMPLATE BASED CORRESPONDENCE VERIFICATION

In occurrence of T1

(a)

Due to occurrence of T1

Net Connection Graph

of
/-) Due to

.J occurence of T2

(b)

FIGURE 9-7: Equivalence Criterion

I __

164 CHAPTER 9.

A

9.4. EXTENSIONS

whose netlists are not necessarily isomorphic can be achieved.

Each template assumes a given association between a component and its netlist.
These associations are indirectly captured by the mappings between the components

in each domain. Different templates may assume different associations. For explanatory

purposes it will be presumed that the assumed netlist of the schematic component is fixed

and is always equal to the actual netlist. If a layout celltype L, has a single mapping
to moduletype Ma in template Ta and to moduletype Mb in template Tb then if Ma and

Alb have different netlists the assumed netlist of Lc is effectively different in each of the
templates. The verification algorithm finds the mappings between components as well
as the template occurrences and will hence implicitly choose the appropriate assumed

netlists for each (layout) component that make a match possible.

Through the use of mappings and template occurrences, equivalences are implicitly
defined between the actual and assumed component netlists. For the templates to be
meaningful in each minimal region of equivalence, the assumed and implemented netlists

of that region of layout should be functionally equivalent (given the context in which

they are used).

For example, in figures 9-8 (a) and (b) if FA is a full adder celltype, CO is a mod-
uletype which computes Carry = ab V ac V bc, S1 is a moduletype which computes

Sum = abc V ab V &ab V aibc from the values a, b and c and S2 is a moduletype which

computes Sum = (a V b V c) · Carry V abc from the values a, b, c and Carry. The two

templates of figures 9-8 (a) and (b) then both represent reasonable4 templates (power,

ground and the mappings between modules and vertices are not shown). The assumed

netlist of the layout cell FA is different in the two templates.

Requirements on Correspondence Templates

The assumed netlist C1 of the layout component of a minimal region of equivalence

Rmi, is typically designed to be connected to the rest of the circuit via certain specific
boundary nets. An actual netlist C2 can be used in lieu of C1 if it has a set of boundary nets

equivalent to that of C1. The functionality of the circuit is unchanged if C2, connected

via its boundary nets, is substituted for C1. However, the functions computed on nets

of C1 not on the boundary may be different from those of C2. In fact C1 and C2 may
have a different number of such nets. For example, the netlists of the schematics of

figures 9-8 (a) and (b) although equivalent probably have a different number of nets and

4These templates are for explanatory purposes only. They have only one region of equivalence and
hence are not of any practice value.

�___· _ I·I^-C^III Y�- �-1111-- 111-·1_- ----C1 ---I I--- �.-�--II --�·11- 1�--�11�--�--1� -�-.- ^.-I

165

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

a

(a)

(b)

FIGURE 9-8: Full-adder Cell Implementations

� · I

166

!

9.4. EXTENSIONS

hence at least one of them has a different number of nets than that of the implemented

netlists of FA.

Care must be taken to ensure that the assumed nets in C2 as well as the actual nets
in C, that are not in the boundaries are not connected to the rest of the circuit. Hence
nets that appear in the schematic but are not in the boundary of C1 cannot connect to

modules which are not in this region of equivalence. Similarly, the layout vertices of this
region of equivalence should not have any interfaces to vertices outside R,min that result

in connections to nets which are not in the boundary of C 2.

By carefully designing the correspondence templates these requirements can be easily

verified. For the set of mappings between the schematic and layout in Rmin, templates
that allow connections of modules not in Rmin to non-boundary nets in C1 and templates

that allow interfaces to vertices not in Rmin, to access nets which are not in the boundary
of C2 are not permitted. If this requirement is met, illegal connections to non-boundary

nets in C, will cause the net connection graph of those nets to be unconnected because
the illegal connections to those nets will not be accounted for in any template occurrence.
Similarly, illegal connections to non-boundary nets in C2 will result in the interfaces caus-
ing those connections not to appear in any template occurrences. Both these situations

will cause the schematic vs. layout comparison to fail.

Using GRASP

The network reduction capabilities in GRASP can be used to further enhance the
effectiveness of matching schematics and layouts with non-isomorphic netlists. Using
a special grammar, the GRASP parser can reduce networks consisting of small modules

such as transistors and inverters into larger functional blocks such as a full adder cell
or XOR gate. The reduced schematic consisting of these larger functional blocks is then
compared with the layout using SCHEMILAR. For example, the networks of figures 9-8 (a)
and (b) can both be reduced into the same full adder celltype. The schematic with these
networks replaced by full adder cells is then compared with the layout.

There are several advantages of reducing the schematic before comparison with the
layout.

1. Design alternatives for a same functionality are better captured by the circuit gram-
mars used in GRASP rather than by having one correspondence template for each
possible schematic and layout alternative.

2. After reduction, since the schematic contains fewer modules with more distinc-
tive module types, it is easier for the user to identify and rectify the cause of a

___� I· �--·IIIIIIU I-L-----�----------- 1- - 1_--~-1_ 1~··-· I^~*^~_ _~_ _I~I~~·-X -··~-l^·(CI-~~l·.pl -I -BYI _. I---

167

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

correspondence failure.

3. The design of the correspondence templates requires knowledge of the layout cell

library whereas the circuit grammar which is capable of reducing the schematic into

larger functional blocks does not. By first reducing the schematic using GRASP, for a

given cell library the number of correspondence templates that need to be designed

is reduced.

4. Correspondence verification time (in the worst case) is exponential in the number

of modules 5 in a correspondence template. By first reducing the number of modules

in the schematic, the number of modules in the schematic portion of the correspon-

dence templates is reduced and correspondence verification speed is increased.

9.4.2 Dealing with Bus Instances

In this section the formalisms of section 9.3 are extended to deal with layout bus cells

which contain no active circuitry and are used to electrically connect different portions

of the layout. Because such cells contain no active circuitry, they can have no mappings

to schematic modules and hence useful templates in which they may occur cannot be

defined. First an explanation of why this problem occurs is provided. Then through the

use of blank modules the techniques of section 9.3 are extended to deal with layout bus

cells.

Cause of the Problem

Mappings are the mechanism used in this thesis for defining the correspondence be-

tween the schematic and layout components and hence implicitly defining the correspon-

dence between the elements of their netlists. The mappings describe correspondences be-

tween transistors in each netlist, correspondences between the nets and the connections

between pins and nets are implied. Through the use of mappings, the entire isomorphism

between the layout and schematic netlists is defined.

This scheme requires that in both netlists each net is connected to at least one pin.

The correspondences between nets not connected to any modules cannot be inferred by

the defined correspondences between the modules. For this reason isomorphisms between

networks with unconnected nets cannot be defined. The netlists corresponding to layout

5 Typically there are many modules for each layout vertex, hence the number of modules in a corre-
spondence template can become quite large.

I

168

9.4. EXTENSIONS

bus vertices consist solely of nets. Hence mappings cannot be used to identify such nets
in the netlist.

Although bus cells have no active circuitry and hence have no corresponding com-
ponents in the schematic, they do participate in the electrical properties of the layout.

Removing them from the layout changes the electrical characteristics of the layout. Con-

sider the case of figures 9-9 (a), (b) and (c). Figure 9-9 (a) is the schematic representation

consisting of two inverters. Figure 9-9 (b) is the layout of figure 9-9 (a) in which the
two inverter instances are connected together via m instances of the bus cell. Finally

figure 9-9 (c) is the connectivity graph representation of the layout of figure 9-9 (b).

In order for the system to recognize that the two layout inverter cells are electrically
connected as specified in the schematic, the system must know the nets corresponding

to layout bus instances B 1 and Bn. Since the verification system must be able to handle

this situation for any value of n, a template whose layout component consists of two bus
cells connected together must exist. The problem of defining a schematic corresponding

to such a layout and thus enabling templates to be defined is the the topic of the next

subsection.

A Solution based on Blank Modules

In order to be able to associate a layout bus cell instance with its corresponding nets
in the schematic a moduletype blank with special properties is introduced. Blank modules
have one pin and their purpose is to identify the net connected to them. There is at most
one blank module at each net. Blank modules do not contribute to the functionality of

the circuit and therefore if a layout matches a schematic with blank modules it matches
the same schematic with the blank modules deleted. Hence blank modules can be inserted

into the schematic at will to facilitate the verification process. The verification process

can then be defined by the sequence of steps described below. Steps 1 and 3 have been

introduced to deal with bus instances.

1. Add a blank module to each net.

2. Find the template occurrences.

3. Remove all blank modules that are not mapped.

4. Verify that all net graphs are connected and all interfaces appear in a template

occurrence.

_ _II _I �1�1 �Y_ 1 ____1_1_1___1_^1____�._-I�L�(_�.I�-I- .--Lll ._.._-__._ (.___1_lr-.1_^*11---�- _I_---_LI-l-(----- I

169

TEMPLATE BASED CORRESPONDENCE VERIFICATION

(a)

Bus1Ix

(b)

(c)

FIGURE 9-9: Bus Cells

L J L J

Bus2 Iy

__ �___

170 CHAPTER 9.

.

IIIII
III
III

9.4. EXTENSIONS

Example

Figures 9-10 (a), (b) and (c) show the templates needed for dealing with the case

described in figure 9-9. The nets corresponding to the bus cells can now be identified

by the blank module they connect to. For instance, the bus vertex i in figure 9-10 (b)

has three corresponding nets t, u and v (corresponding to the bus wires of the bus cells

shown in figure 9-9 (b)) which can be identified by their associated blank modules d,e

and f.

Special Properties of Blank Modules

Unlike regular modules whose mappings are limited to the vertices in a template

occurrence, the number of mappings a blank module can have is unbounded. For example,

in figure 9-9 the blank modules corresponding to the nets in the bus are mapped to all

m of the bus cells.

Unlike regular templates, the schematic portion of templates which deal with blank

modules may not be connected as is demonstrated in figure 9-10 (b). Because of this

it is sometimes impractical to design templates which capture all of the blank modules

mapped to a bus vertex. This is especially true for bus cells which have busses running

in both the horizontal and vertical directions (such as PLA crosspoint cells). In this case

it is advantageous to deal with horizontal and vertical connections of bus vertices sepa-

rately and hence deal with only some of the nets (those nets corresponding to either the

horizontal or vertical busses) of the bus cell at a time. Because of the special functionless

properties of blank modules, it is meaningful to define templates which capture only some

of the blank modules associated with a bus instance.

Some layout instances are combinations of busses and active circuitry and these two

aspects of the cell can then be dealt with separately.

9.4.3 Dealing with Encoded Layout Cells

Encoded cells described in section 6.5.5 is a technique used to deal more efficiently

with families of layout cells having similar layout characteristics. In this method the

functionality of one basic cell, called the encoded cell, is altered by superimposing the

layout of encoding cells. Encoded cells are frequently used (in fact the experiments

described in section 10.3 make heavy use of them) and as such it is important that

a correspondence verification system of the type described in this thesis be capable of

dealing with them.

I I^_U_� 1_1� __ � ·�_� ___�II�
I _ _I _ ___1_1 _I CI___IIUY�II�I_�^I*_-

171

CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

(a)

(b)

(C)

FIGURE 9-10: Correspondence Templates for Bus Cells

_ I � _�

172

9.4. EXTENSIONS

For the purposes of correspondence verification, encoded cells are no different from
any other cells. Due to the interaction between the layout of the base cell and its encoding
cells, the netlists of the base cell and the encoding cells are connected together just as

between two ordinary cells.
However, certain minimal conditions on the base cell and its encodings are required.

Transistors that are not present in either the base cell or its encoding cells cannot be
created when the two instances are put together. The encoding cells at and ot used
to encode the AND and OR planes of the PLA in figure 6-2 consist of a single rectangle
of diffusion. When this rectangle of diffusion is added to the base cell and-sq or or-sq
a pulldown transistor not present in either the base cell or the encoding cell is formed.
By adding to the encoding cells at and o.t the layout necessary to form this transistor,
the final layout of the PLA is unchanged and it is now possible to verify the netlist of the

schematic using the template based approach.

In practice the layout cells at and ot need not be modified. By designing every
correspondence template in which these cells appear, assuming that the transistor is
already formed, the correspondence verification system will perform correctly.

9.4.4 Schematic vs. Schematic Correspondence Verification

The techniques described in this chapter can be adapted to perform schematic vs.
schematic correspondence verification. The formalisms developed in this chapter carry
through for correspondence templates which have two schematic components instead of
a schematic and a layout component. In this case each mapping relates a module in

one schematic to a module in the other schematic. The concept of net connection graph
applies to both schematics and the criteria for a correspondence match is that the net

connection graphs in both schematics are connected.

The same benefits accrue as those associated with the template based schematic vs.
layout correspondence method described in sections 8.3.1 and 8.3.2 . First by operating

directly on the schematic objects, netlist extraction is not needed. Secondly, user input
and incremental verification is facilitated. Finally, user defined equivalences permit much
greater flexibility in the correspondence definition process allowing matching between
schematics with non-isomorphic netlists as described in section 9.4.1.

I _�l__l_�l^sl _·_·I__I___I_·�·_·I1_.·�--1^·1_·-_1�1_·-

173

174 CHAPTER 9. TEMPLATE BASED CORRESPONDENCE VERIFICATION

A.

p

10

Correspondence Verification
Algorithm & Implementation

10.1 Verification Algorithm

10.1.1 Overview

The template based correspondence verification technique described in section 8.3
has been implemented in a computer program called SCHEMILAR (Schematic vs. layout
comparator). SCHEMILAR's algorithm is a combination of parts of GRASP's and GLOVE's

algorithms. GRASP's network finding algorithm is coupled with GLOVE's sub-graph find-
ing algorithm to yield an event driven algorithm capable of identifying correspondence
template occurrences.

Each event corresponds to a vertex or a module which has recently been given a
mapping. If the event corresponds to a vertex (respectively module), the algorithm
first identifies the layout (respectively schematic) component of the occurrence. The
existing mappings of the vertices (respectively modules) are then used to identify one or
more modules (respectively vertices) in the occurrence. Then the schematic (respectively
layout) component of the occurrence is found using that module (respectively vertex)
as a starting point. Modules and vertices which were previously unmapped are given a
mapping and a new event is created for each of these components. After all the events
have been processed, if all the net connection subgraphs are connected and all interfaces
appear in an occurrence then the schematic and layout are reported to match.

175

I - r l

176 CHAPTER 10. CORRESPONDENCE VERI.FICATION ALGORITHM & IMPLEMENTATION

10.1.2 Preliminaries

Events

SCHEMILAR uses an event queue to manage events. Each event is associated with

either a module in the schematic or a vertex in the layout. The modules or vertices for

which there is an event on the queue are components whose mappings have been defined

and for which all the template occurrences in which they appear may not yet have been

found. When the event for a component is processed all the occurrences in which that

component appears are identified. During this process mappings for other components

may be generated. An event for each of these components is then created and placed on

the event queue.

It is possible to simplify the algorithm and retain only one kind of event. In this

scheme all events are associated with a module in the schematic or all events are associ-

ated with a vertex in the layout. In order to facilitate the discussion it will be assumed

that all events correspond to vertices in the layout. The penalty associated with this sim-

plification is a reduced flexibility during incremental updates to the schematic. However,

with very minor modifications the scheme can be made to accommodate module events

as well as vertex events.

Module and Vertex Position

The concept of a module position in a production RHS defined in section 5.1.2 (respec-

tively vertex position in a layout template defined in section 7.1.3) is used to define the

concept of module (respectively vertex) position in a correspondence template in the ob-

vious manner. For every template, instructions, akin to those introduced in sections 5.1.3

and 7.1.3, are generated for each module and vertex position. Given a module in the

schematic (respectively vertex in the layout), the procedure of section 5.1.3 (respectively

section 7.1.3) is used to determine if the module (respectively vertex) appears at a certain

position in an occurrence of a given correspondence template.

Because the schematic portion of a correspondence template T and any occurrence T

of T need only be semi-isomorphic, the procedure of section 5.1.3 is modified to identify

networks that are semi-isomorphic instead of strictly isomorphic to the network of the

correspondence template. This is achieved by allowing nets to appear in one or several

net slots (described in section 5.1.3 and shown in figure 5-3) instead of requiring that the

nets in the slots be distinct.

10.1. VERIFICATION ALGORITHM

10.1.3 Servicing an Event

Finding Potential Occurrences

When an event is serviced it is removed from the event queue. For each correspondence
template T and position P in which a vertex of the type T of the event vertex V appears,
it is checked whether VI, appears in a subgraph isomorphic to the layout portion of
the correspondence template at position P. This is accomplished using the occurrence
positions list (described in section 7.1.3) for vertices of type T and the procedure of
figure 7-3. If such a subgraph Gl exists, the schematic position of the occurrence must

then be found.

At least one of the modules in the schematic portion of the occurrence can be identified
using the mappings of the vertices because at least one of the modules in Gl, the event
module Ve, has mappings. Let Vc be a vertex in GI with mappings and Vt be the vertex
in the template T to which it corresponds. Let Mt be the module in T mapped to Vt via
mapping at. P, is the position in which Mt appears in T. Vertex V, must be mapped
to a module MC in the schematic via mapping at otherwise since it is already mapped
it cannot have mapping at. In this case the mapping of some of the vertices in GI are
inconsistent with those of T and therefore Ve cannot be in an occurrence of T at position
P.

For there to be an occurrence of correspondence template T, module MC in the
schematic must now correspond to module Mt in T. It is therefore necessary that Mc
appear in a network isomorphic to the schematic portion of T at the position of module

Mlt. This is accomplished using the procedure of figure 5-5. If such a network N, exists
it remains to be verified that the mappings of the modules in N, and the vertices in GI
are consistent with those of the corresponding modules and vertices in T.

Mapping Validation

Let N, and Gl be a network and sub-graph isomorphic to the schematic and layout
portions of T respectively found using the procedure described above. Some of the
modules and vertices in N, and GI may have mappings and for some of them the mappings
may not yet have been defined. In order for N, and Gl to form an occurrence of T the
mappings of the modules in N, and vertices in Gl (which have mappings) must satisfy
certain conditions.

For each module Mm in N, which has mappings, if M, corresponds to module Mt in
T and Aft is mapped to vertex Vt via mapping at then M, must be mapped via at to a
vertex Vm in GI which corresponds to Vt in T. The same must be true for every vertex

177

178 CHAPTER 10. CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

FIGURE 10-1: Mapping Validation

in Gl.

For instance, a necessary condition for the network and sub-graph of figure 10-1 to

be an instance of correspondence template T 1 shown in figure 9-6 (a) is that, if mapped,
vertex 3 on the RHS of figure 10-1 be mapped to module on the LHS of figure 10-1 via

mapping . Since vertex is already mapped to a module different from module 3, the

condition mentioned in the previous paragraph cannot be satisfied.

If N, and GI form an occurrence of T then the modules and vertices in N, and Gt have

must mappings corresponding to the mappings of the associated modules and vertices in

T. For each unmapped module Mu in N, which corresponds to Mt in T and for each

mapping ai from Mt to a vertex Vi, a mapping ai is added between Mu and the vertex

V1 in Gl which corresponds to Vi.

Rescheduling Newly Mapped Vertices

For each vertex that is given a new mapping an event is created and placed on the

event queue. Hence soon after the mapping of a component becomes known all potential

template occurrences in which it might appear are examined. If the layout portion GI

of a potential occurrence is found at least one of the vertices in Gl (the event vertex) is

guaranteed to be mapped and hence a starting point for finding the schematic portion

of the occurrence can always by found. Hence by guaranteeing that each event vertex is

mapped, computation effort is expended locating occurrences only when it is guaranteed

that a starting point for the schematic portion of the occurrence can be found.

Mapping Conflicts

Before creating new mappings for the unmapped modules and vertices in N, and G1

it must first be verified that no other occurrences which would cause these modules and

vertices to be mapped differently can be found. If a mapping conflict occurs then at this

point in the correspondence verification process it is not known if N, and GI constitute

__

10.1. VERIFICATION ALGORITHM

an occurrence of T.

In this case the system assumes that Ns and GI are not an occurrence of T. Often
during the processing of some other event the mapping ambiguity is resolved and some of
the unmapped vertices in Gl (and modules in NJ) are given mappings. Events for these
newly mapped vertices are created and put on the event queue.

When an event corresponding to one of these vertices gets serviced the network Ns
and sub-graph GI necessarily get examined again to see if they form an occurrence of T.
This time since more modules in Ns and vertices in GI have mappings there is a better
chance of resolving mapping conflicts.

Templates needed to resolve Mapping Conflicts

Without loss of generality it can be assumed that each template contains two minimal
regions of equivalence. Let I be an interface between two vertices in Gl where the vertices
are in two different regions of equivalence. If I is to appear in a template occurrence
then the layout portion of the occurrence must entirely contain GI. The mappings of
the vertices in Gl must therefore necessarily be those corresponding to a template whose
layout portion is isomorphic to G 1.

This means that in order to verify that there are no other template occurrences
that would cause the unmapped modules and vertices in N, and GI to have mappings
different from those imposed by the occurrence of T, it suffices to consider only those
other occurrences whose layout portion is isomorphic to Gl. These occurrences must
contain the event vertex Ve and hence it is possible to locate them during the servicing
of the event for V,.

Connecting Net Connection Graphs and marking Interfaces

For each net in the schematic, a net connection graph is maintained. For every net 77
which appears in the occurrence of T, if v,7 and /, are two vertices in the net connection
graph of r7 which correspond to pins of modules in the occurrence of T then an edge is
added between v, and ,. Similarly, each interface which appears in the occurrence is
marked with a special label indicating that it has appeared in a template occurrence.

'If no such template exists then the interface Z cannot appear in a template occurrence and hence
the schematic cannot match the layout.

179

180 CHAPTER 10. CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

10.1.4 Complete Algorithm

The correspondence verification algorithm can be summarized by the three steps
described below.

1. A few user provided mappings between modules and vertices are required to start
the algorithm. Events for the mapped vertices are created and put on the event

queue. The greater the number of mappings provided by the user, the fewer the
chances of running into mapping ambiguities that cannot be resolved by the system
and hence the better the chances of a successful match.

2. Each event is serviced as described in section 10.1.3. New events get generated

when unmapped vertices are given mappings. When occurrences are found, some

of the vertices in net connection graphs are connected together via edges and some
of the interfaces are marked.

3. Verify that each net connection graph is connected and every interface is marked.

Report any unconnected net connection graphs and unmarked interfaces as errors.

Example

Figure 10-2 shows a correspondence template for two inverters. This template is

used to verify the correspondence of the schematic and layout in figure 10-3 (a). In
figure 10-3 (a) the schematic and layout have just been read into SCHEMILAR and a user

specified mapping between module M1 and vertex V1 is created. An event for vertex

V1 is placed on the event queue and the processing of events is enabled.

Figure 10-3 (b) shows the state of the verification after the event for V1 is serviced.
An occurrence of T consisting of vertices V1 and V2 and modules M1 and M2 is found.

Module M12 and vertex V2, previously unmapped, are mapped2 to each other in accor-

dence with T and an event for vertex V2 is created and placed on the event queue. The

two pins in the net connection graph of net 77 now become connected. This is indicated by

the U shaped arrow between the connections to rI. The interface between V1 and V2 is

marked by a ,/ to indicate that it has appeared in a correspondence template occurrence.
Figure 10-3 (c) shows the state of the verification after the event for V2 is serviced.

Vertices V1 and V2 and modules M1 and M2 are found to appear in an occurrence of

T. For this reason a mapping is created between module M3 and vertex V3 and an
event for vertex V3 is created and placed on the event queue. The two pins in the net

2After verifying that the mapping is not ambiguous.

10.1. VERIFICATION ALGORITHM

rv

FIGURE 10-2: Inverter Template

connection graph of net p become connected as shown and the interface between vertices
V2 and V3 are marked with a /.

No additional template occurrences of T are found during the servicing of the event
of I/3. Since all net connection graphs are connected and all interfaces are marked the
schematic and layout match.

Increasing Verification Speed

The technique for increasing layout verification speed introduced in section 7.1.3 is
used in SCHEMILAR to reduce correspondence verification time. Each vertex V/' in the
layout maintains a list of positions (called the occurring positions list) in which it appears
in the layout portion of a template occurrence. The elements of the list are the vertices
in the templates which correspond to Vi in each occurrence. The list is also used during
incremental updates to the layout.

From section 7.1.3 it is known that a given vertex Ve in the layout can appear in only
one sub-graph G isomorphic to the layout portion of a template T in position P. Given
a set of mappings for the elements of G, there can be at most one schematic network
N, in correspondence with Gr. Hence there can be only once occurrence of T in which
V, appears in position '. Therefore during the processing of the event for vertex V the
system checks if V, appears in an occurrence of T at position P only if that position does
not already occur in the occurring positions list of V.

Additional verification speed can be achieved by carefully designing the schematic
instructions as described in section 5.1.4 so that nets with the least number of pins
connected to them are searched.

10.1.5 Algorithm Complexity

Definitions

3maz is the maximum number of mappings any vertex in any template can have.

181

CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

Event for V1 Schec

(a)

Event for V1 Servic

Event for V2 Schec

(b)

Event for V2 Servic

Event for V3 Schec

(C)

FIGURE 10-3: Verification Example

182 CHAPTER 10.

10.1. VERIFICATION ALGORITHM

* nvertex is the number of vertices in the layout.

* nmod is the number of modules in the schematic.

* Tma, is the maximum number of vertices in a correspondence template.

* Rmax is the maximum number of modules in a correspondence template.

* Lm,,, is the maximum length of the list of positions (introduced in section 7.1.3)
for any cell.

* p, is the number of pins connected to net 77.

*· pin is the total number of pins in the schematic.

*· ax is the maximum number of pins any module can have.

* emax is the maximum number of interfaces (interface types) a vertextype can have.

Number of Events

Vertices which do not contain bus structures are mapped (at most) once. Vertices
that contain bus structures may be mapped several times as described in section 9.4.2.
The maximum number of times a bus vertex can be mapped is certainly less than mix,.

Typically 3
max is less than three. Since each event corresponds to a vertex being mapped,

the number of events is less than nverte' P max.

Finding Potential Occurrences

From section 7.1.4 it is known that the time required for identifying the layout portion
of an occurrence is less than O(T,,x). From section 5.1.4 it is known that the time
required for identifying the schematic portion of the occurrence is typically less than
0(2 Rma-), (actually O(nRod) in the worst case). The time required to compute all
the possible occurrences that the event module V, can appear in is typically less than
O(Lmax, Tmax, 2Rma). To simplify the equations, since T,,x and Rmaz, are independent

of circuit size O(Tma,,) = 0(2Rna=) = 0(1) will be assumed.

Mapping Validation

Having computed the potential occurrences, it remains to identify the ones which
have incompatible mappings for the unmapped modules and vertices. This can be ac-
complished with O(L 2 ax,) comparisons by examining each pair of occurrences.

_IIII Il____lyl --�-L1(III�--·1I011)1111�-_--· ·-I---..-� _��I�_-.-^· ..11_· �1·111 ·- I_·--- -

183

184 CHAPTER 10. CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

Connecting Net Connection Graphs and marking Vertices

When an occurrence of a template T is found, edges are added to the connection

graphs of nets in the occurrence and interfaces in the occurrence are marked. The number

of vertices in the net connection graph that need to be connected as well as the number

of interfaces that need to be marked depends on the template and is independent of

schematic and layout size. The values will be assumed to be 0(1).

Verifying that the Net Connection Graphs are connected and that the Vertices

are marked

Because the connection graph of 7 has p, vertices, the time taken to verify that the

net connection graph of r7 is connected is O(p,7). Since the total number of pins in the

schematic is ,pins = , p, the time required to verify that all the connection graphs in

the schematic are connected is O(cpi, 5,) O(,a,,x nmod) = O(n,,od). The time required

to verify that all the interfaces are marked is less than O(n,,,tvete max) = O(n.verte,).

Total Time

The total verification time required is equal to the total number of events multiplied by

the time required to process an event plus the time required to verify that all connection

graphs are connected and all interfaces are marked. Taking O(,3 ma,) = O(Lmax) = 0(1),

this time is O(n,,ertex' m a) (O(Lmax) + O(L2,a=)) + O(nmod) + 0(n,,rtex) = O(nmod) +

O(nvertex) which is linear in the number of modules and vertices.

10.1.6 Incremental Update to the Layout or Schematic

The correspondence verification algorithm in SCHEMILAR can be modified to deal

with incremental additions and deletions to the layout and incremental deletions to the

schematic. Adding an element to either the schematic or the layout requires that an

event for that element be created and placed on the event queue. Incremental additions

to the schematic can be dealt with by allowing events for both schematic modules and

layout vertices.

Adding a Vertex

When a vertex is added to the layout, an event for it is created whether it is mapped

or not. When the event is processed, all occurrences which contain that vertex will be

found and the ultimate result of the comparison will be the same as if the vertex had been

10.1. VERIFICATION ALGORITHM

added to the layout before the verification process was started. If a module (mapped or
unmapped) is added to the schematic an event for that module is created and placed on
the event queue provided the algorithm knows how to service schematic events.

Deleting a Module or Vertex

When a schematic module or layout vertex is deleted, all the mappings between
modules and vertices in the corresponding minimal region of equivalence must be deleted.
Let O be the set of occurrences in which the deleted element appears. The effect of all
occurrences in O must then be undone. Hence any edges in any net connection graph

which correspond to an occurrence in 0 must be deleted. Each interface must maintain
a list of occurrences in which it appears. The interface is considered to be marked if
this list is not empty. For any interface Zi which appears in an occurrence in 0, all
occurrences in O must be removed from the occurrence list of 1.

The validity of the mappings of modules and vertices which were originally mapped
during an occurrence in 0 may be compromised. These components may have to be
unmapped. Unmapping a vertex V causes every component in the minimal region of
equivalence of Vi to become unmapped. For each vertex Vi, let Oi be the set of occur-
rences it appears in. Because the original mappings of Vi may no longer be valid these
occurrences must be deleted. This in turn may cause the mappings of modules and
vertices which were originally mapped during an occurrence in Oi to be compromised
which requires more components to be unmapped etc. The process continues until no
more vertices need to be unmapped. Enabling the processing of events will then cause
the match to be in the same state as if the deleted element was not in the circuit at the
time the verification was started. It is computationally advantageous to manually check
to see if the mappings that have been compromised by the deletion cannot be retained.

10.1.7 Error Reporting

When the event queue becomes empty all the possible correspondence template oc-
currences that can be inferred from the initial mappings have been found. If the match
fails valuable information can be provided to the user to help him locate the source of
the mismatch.

The existing mappings can be used to identify the layout and schematic components
that are known to be in correspondence with each other. Errors are usually located on
the boundaries of mapped and unmapped regions of the schematic and layout.

The unconnected net connection graphs contain valuable information on electrical

1_1^1 1- I_·___·_I .-l-^LIIII---· --· PIII^.III�--�ll^---LIII1-.

185

186 CHAPTER 10. CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

connections between modules that cannot be accounted for by the correspondence veri-
fication system. The connected components of the graph represent pins that are known
to connect together. Electrical connections between pins in different connected compo-
nents of a net connection graph cannot be verified by the system and are hence suspect.
Similarly, unmarked interfaces correspond to electrical connections in the layout netlist

that the system cannot account for and are therefore suspect.

When the system fails to match the schematic and the layout, the user must decide
(with the help of the information provided to him by the system) whether the failure is
caused because the schematic and layout are incompatible or because the system was not

able to resolve mapping ambiguities.

If the schematic and layout are incompatible, the user can make incremental changes
to the schematic or layout to correct them using the procedure described in section 10.1.6.

If the failure was caused by a mapping ambiguity, the user (armed with the knowledge
of the existing mappings) is usually in a position to resolve the ambiguity. By creating
mappings for some of the unmapped vertices (and placing these vertices on the event
queue) the user can help the system resolve mapping ambiguities.

10.2 Implementation

Source Code

SCHEMILAR is written in C and runs on an HP 9000 series model 350 workstation
running UNIX and Xwindows. Much of the source code is borrowed from GRASP and
GLOVE. The source code consists of approximately 17000 lines out of which the core
algorithm takes 4000 lines. SCHEMILAR first reads in a specification of the correspondence

templates then reads in a schematic netlist and a layout connectivity graph and finally

proceeds by comparing the netlist with the graph.

If SCHEMILAR is unable to match the schematic and the layout then the set of un-
connected net connection graphs and the set of interfaces not accounted for is reported.

For each unconnected connection graph the state of the graph and the modules and pins

in each of the connected components of the graph is reported. The user can at any time

during execution examine the mappings between the modules and the vertices as well as

the state of a net connection graph or interface.

�� I __

10.2. IMPLEMENTATION

(sltemplate 2-inverters (2 3 2)

% Template has: 2 modules, 3 nets and 2 vertices
(moduletypes inverterm inverterm)

% Moduletypes of the schematic modules.
% The first module is module 0, the second module 1 etc..
(vertextypes inverterv inverterv)
% Celltypes of the layout vertices
% The first vertex is vertex 0, the second vertex 1 etc..

(moduleconn (O (O 1)) Z Connections of module 0
(1 (1 2))) % Connections of module 1

(vertexconn (O 1 1)) % Vertex 1 and 4 have are connected
% via interface 1

(mappings (O 0 inverterm2inverterv) (1 1 inverterm2inverterv))
% module 0 is mapped to vertex 0 via mapping
% 'inverterm2inverterv'.
% module 1 is mapped to vertex 1 via mapping
% 'inverterm2inverterv.'

)

FIGURE 10-4: Textual Representation of a Correspondence Template

Input Files

Since the actual geometrical values of the interfaces are not needed during correspon-

dence verification, the templates are specified in Lisp-like format resembling that of the

GRASP production file. The syntax of the correspondence template file is shown in fig-

ure 10-4. The correspondence template used in figure 10-4 is the one shown in figure 10-2

which is described in the example of section 10.1.4.

The format of the schematic file is almost identical to the one used by GRASP shown

in figure 5-11. The only difference is that the user can specify mappings to some of

the layout vertices. These mappings are needed to start the event driven algorithm.

The format of the layout file is identical to that used by GLOVE shown in figure 7-4.

Figure 10-5 shows the file required to describe the schematic of figure 10-3 (a) and

figure 10-6 shows the file for the corresponding layout also shown in figure 10-3 (a). The

term '(0 inverterm2inverterv) ' on the third line of the schematic file of figure 10-5

indicates that the module on that line is mapped via mapping 'inverterm2inverterv'
to vertex 0 which appears on the third line of the layout file of figure 10-6.

...... - -- Il - ---I� Il�--�-�L. �--LI_-_IP·

187

188 CHAPTER 10. CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

Numberofnets: 6
%Schematic array of 5 inverters
inverterm 0 1 (O inverterm2inverterv)
inverterm 1 2
inverterm 2 3

FIGURE 10-5: Schematic Input Netlist

Numberofnets: 6
%Layout array of 5 inverters
0 inverterv /f 1 1 ;
1 inverterv /b 0 1 /f 2 1 ;
2 inverterv /b 1 1 ;

FIGURE 10-6: Layout Input Graph

Algorithm

Events in SCHEMILAR correspond only to vertices (and not to modules) as described

in section 10.1.2. Incremental update is not supported. When an event for vertex V,

is being serviced and a potential occurrence Oi is found, all the potential occurrences

in which 1i appears are recomputed and checked to see if their mapping requirements

conflict with that of Oi. A substantial increase in speed is possible by modifying the code

to store the list of potential occurrences and compute each one only once.

Each net has an associated blank module which is automatically created when the

schematic file is read in. The criteria for correctness is adapted to reflect the presence of

these blank modules. The net connection graph for each net q must be connected except

perhaps for the vertex associated with the blank module connected to y7.

Net Connection Graph Implementation

To conserve memory and keep the data structures simple, the connection graph for

each net is implemented using an array of numbers. Each entry in the array corresponds

to a vertex in the connection graph. The connected components of the graph are given

consecutive numbers starting with 0. The value of an element in the array corresponding

to vertex v is the index number of the connected component in which v appears. Since

initially the graph has no edges, each element in the array initially has a different number.

When vertices v and are connected together, the two connected components in

I

10.3. EXPERIMENTS

which each of them appear are merged together. If the array slot of v contains number

a and the slot of tp contains #, with a < then all the array slots which have value

have a copied into them. This corresponds to adding all the vertices in component to

component a and then deleting component Pl. If all the elements in the array contain a

0 then the net connection graph is connected. This method corresponds to a linear time

implementation of the union-find algorithm [2] 3. This technique is efficient enough for

most nets but is slow for the vdd, gnd and clock nets which have very large numbers of

pins connected to them.

Graphics Display

An Xwindows graphics interface built into SCHEMILAR is capable of simultaneously

displaying the schematic and the layout. For each template occurrence in which the

event vertex appears, a connected neighborhood of the minimal region of equivalence of

the vertex in both the schematic and layout is displayed. The layout is displayed in the

two column format used in GLOVE shown in figure 7-5. The event vertex appears on the

top left corner of the screen. The schematic is displayed in the format used in GRASP

shown in figure 5-12. Modules are displayed on the left side of the window and nets on

the right side. The module used as a starting point for finding the schematic portion of

the occurrence appears at the top left corner of the screen. The mappings of any module

or vertex on the screen can be examined. The state of any net connection graph or any

interface can be printed out as well.

10.3 Experiments

Correspondence templates for the multiplier of figure 5-13 and the PLA of figure 6-1

have been designed and tested for various multiplier and PLA sizes. Both the multiplier

and PLA make heavy use of cell encoding which is handled effectively within the existing

framework. Regular structures such as the multiplier and PLAs were chosen to facili-

tate the generation of the test cases. Programs that can simultaneously generate the

schematic and layout for any sized multiplier and any sized and encoded PLA have been

designed to generate these test cases. Debugging of the code was also facilitated by the

regularity of these structures. SCHEMILAR does not exploit this regularity and as such

the correspondence verification speed results of tables 10-1 and 10-2 are similar to those

that would be obtained for less regular structures.

3A logarithmic time implementation of this algorithm exists.

-· --------- -· ·-- ----- I -- L-----i------- -�III ·I^··---·II�·YIIU ·^l�--1L�II�-�_·---

189

190 CHAPTER 10. CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

Multiplier size Number of instances Number of Modules Verification time
5 x 5 102 107 3s
10 x 10 402 412 13s
20 x 20 1602 1622 62s
30 x 30 3602 3632 174s

Table 10-1: Multiplier Correspondence Verification Times

10.3.1 Bit Systolic Multiplier

The schematic and layout of the bit systolic multiplier described briefly in section 5.3

and in more detail in [8] has been compared using SCHEMILAR for various multiplier

sizes. The multiplier layout makes heavy use of encoded cells. Each full adder cell in

the multiplier layout consists of a basic cell which is personalized by three encoding cells

according to its location in the array as prescribed in [8]. Twenty-two correspondence

templates were used to describe the relation between the multiplier layout cells and their

encodings and multiplier schematic modules. A single mapping between a schematic

module and an encoding vertex in one of the full adder cells in the multiplier was provided

by the user. All other mappings were computed by SCHEMILAR. Table 10-1 summarizes

the correspondence verification times4 for various multiplier sizes. The schematic of the

multiplier contains composite modules and hence the number of transistors in a netlist

of the multiplier is considerably larger than the number of modules in the schematic.

10.3.2 PLA

The PLA of figure 6-2 represents one of the more difficult verification cases for SCHEMI-

LAR. First since most PLAs are sparse, the number of transistors is small compared to

the number of layout vertices. Also, the PLA has many similar electric paths in parallel.

SCHEMILAR cannot by itself identify which input buffer in the schematic corresponds to

a given in-a vertex in the layout. The same is true for the out.o and the andpu cells.

For each of these cells a mapping between the vertex and at least one of its corresponding

modules in the schematic is needed for the match to be successful.

Figure 10-7 shows the circuit for one path in the PLA. The modules shown in fig-

ure 10-7 are those used in the schematic of the PLA. The layout cells to which these

modules correspond is outlined by the dotted line. In reality each cell is more complex

than shown in figure 10-7. Each ina cell feeds the input and its complement to the AND

plane and each outo cell shares two outputs. Finally the andsq and orsq cells each

4 The time required to read in the templates as well as the schematic and layout is not included.

10.3. EXPERIMENTS

connect ao 2:............

..........

tch

PLA size Number of instances Number of Modules Verification time
5 x 10 x 20 236 295 4.5s
10 x 10 x 20 326 370 8s
20 x 20 x 40 1164 958 46s
40 x 40 x 80 4267 2601 303s

Table 10-2: PLA Correspondence Verification Times

share two bit-lines and word-lines.

Table 10-2 summarizes the correspondence verification times for various sized and
encoded PLAs. The PLA size is given as inputsxoutputsxterms. Because the orsq and
and.sq cells are shared between several bit-lines and word-lines, the number of vertices
is comparable to the number of modules even though the PLAs are sparse.

. 1.

out

In

FIGURE 10-7: PLA Path

-��--�II- �·. -I C-
1111 1_ I~-I1I~ L--·-LYI~-L--··III~C1·1..~

191

' ... ~ '' ' '' '

-A I All
: I............

192 CHAPTER 10. CORRESPONDENCE VERIFICATION ALGORITHM & IMPLEMENTATION

r

11

Conclusions

11.1 Summary

A novel set of representations and formalisms for both schematics and layouts which

cleanly captures structural design constraints has been presented. These representa-
tions and formalisms allow the structural correctness of a schematic or layout as well as

schematic vs. layout correspondence to be verified. Fast non-heuristic verification tech-

niques with one basic structural recognition method for all three verification areas are

introduced. The proposed techniques are applicable over a continuum of module and cell

sizes allowing the verification to proceed at a fine grained or coarse grained level. The
proposed techniques have been implemented in three computer programs GRASP, GLOVE

and SCHEMILAR (corresponding to ERC, DRC and cv respectively) which share the same

basic event driven structure finding algorithm. Experiments with these programs show

that they are both fast and that practical designs can be effectively verified with them.

For schematic design style verification, context free circuit grammars are used to define

design style correctness and grammatical parsing is used to verify that a given schematic

obeys the design style. The use of circuit grammars is made possible through the intro-
duction of a technique called net-bundling in which individual nets are encapsulated into

packets which are dealt with as one physical object.

Layouts are modeled as connectivity graphs and structural constraints are captured
by user defined graph templates comparable to grammatical productions used to ver-

ify schematics. DRC verification is performed by covering the layout graph with these

templates.

Finally, schematic vs. layout correspondence verification is accomplished by simul-

taneously covering the schematic and layout to be compared with correspondence tem-

193

r�_ll ____ II���·_I_�_ I_ �I _ lIIlIIll IICI·--LII·-·�-lbf-----LIIII_--lll--*__l -.·-

CHAPTER 11. CONCLUSIONS

plates. These are similar to layout templates but span both schematics and layouts. This
verification method requires no netlist extraction for either the schematic or the layout
and allows matching between schematics and layouts whose netlists are not necessarily

isomorphic.

Figure 11-1 shows the different possible inputs and outputs of GRASP, GLOVE and
SCHEMILAR. By using a design style grammar, the schematic parser GRASP can be used
to build a parse tree which can prove that the input schematic obeys the design style as

shown in figure 11-1 (a).
Using a special grammar, GRASP can also be used to reduce a schematic into large

functional blocks (as shown in figure 11-1 (b)) to facilitate matching of schematics and
layouts with non-isomorphic netlists. The schematic vs. layout correspondence verifica-
tion program SCHEMILAR takes a schematic, a layout connectivity graph (which can be
extracted from a mask layout) and a set of correspondence templates and reports whether
the schematic and the layout match. The schematic input to SCHEMILAR can be either
the schematic itself or the reduced schematic as mentioned above. The layout input to
SCHEMILAR requires that first it be verified by the layout verifier GLOVE as shown in
figure 11-1 (b).

Finally, GLOVE can be used solely to verify the DRC correctness of a layout as shown
in figure 11-1 (c).

11.2 Future Work

11.2.1 Extensions

Attribute Circuit Grammars

Since modules are not allowed to have attributes (such as delay, transistor or capacitor
size etc.), circuit constraints such as logic gate maximum fanout, W/L ratioing, maximum
delay, charge sharing etc. cannot easily be captured by the grammatical formalisms of
chapter 3. These constraints require that module parameters not specified by the module
type be known.

It is possible to extend the set of design constraints that can be verified by associating
a set of attribute types caT with each module type T and requiring that any module M
of type T have associated attributes of types cT. In this augmented verification strategy,
the grammatical productions specify constraints on the attributes of the modules in the
network to be reduced and attributes for the new composite modules are computed in
terms of the attributes of the above mentioned modules.

_ ______

194

11.2. FUTURE WORK

a,
an

cc
a-

QQ
E =
E >

CD C .0

' E

(()

E w EE D S

ocX , aE Ec- 0

. S 8

LL

FIGURE 11-1: Program Inputs and Outputs

195

E m

M wj
'DO

cE

o

CO
..Ja;

W

0

L
Q

a

Q.
0 X

E
o 2
_ _a ,

C Cu

0

0

cJ-J

en

E
a,-

1 _III__ _�_^__I____·_�__ � �__�__ __1_·_1_1 1_111-.-. �-�I�L��---·lll�--·-�-··11�··11111�

I

CHAPTER 11. CONCLUSIONS

Automatic Condition Module Generation

In order for GRASP to be able to perform its parsing functions deterministically,
condition modules for each production in the circuit grammar must be specified. The
design of a circuit grammar can be greatly facilitated if the condition modules (or some

other equivalent conditions) are automatically extracted from the set of circuit grammar

productions.

Grammar Range Space Characterization

The ability to relate an independent (non-grammatical) characterization of the design
methodology with the range space of its assumed grammar can be of considerable help
during grammar design. This can be used to prove that any circuit in the assumed

grammar's range space satisfies all the structural constraints of the design methodology

and that the grammar is complete (its range space covers all such circuits). The technique
could also be used to grammatically characterize and evaluate circuit methodologies for

new technologies.

11.2.2 New Directions

The grammatical and template based techniques presented in this thesis are geared
toward structural verification. The possibility of using similar techniques in synthesis

needs to be researched. During synthesis, circuit grammars and correspondence templates

are used to explore structurally different implementation possibilities.

In one possible method, decompositional grammars are defined for each large. func-

tional block. The range space of these grammars is the set of all schematics that imple-

ment the functionality of the associated block. For schematics composed of these large

functional blocks, schematic alternatives are explored by examining the different pos-

sible grammatical expansions of the blocks using the productions in the decomposition

grammar.

Correspondence templates are then used to generate possible layout alternatives for
that schematic. These alternatives are such, that using the correspondence templates,
the schematic and layout can be shown to be in correspondence with one another. Each
possible alternative may have to be verified for structural correctness. The schematic

block expansion, schematic to layout translation and structural verification can all be

performed incrementally and in parallel.

These above mentioned techniques provide a structured approach for examining lay-

out alternatives for a given functionality. Exhaustive enumeration and evaluation of all

196

11.2. FUTURE WORK 197

possible layout alternatives is not practical. For these techniques to be successful, a nec-

essary pre-requisite is an effective strategy for steering the exploration process toward a

desirable solution.

__ I__· II IIIIISIPI -� I·-.-_ 1�--- �--l----PLYIIIY-·.·-·--·---I ·-- I·lplllY�

198 CHAPTER 11. CONCLUSIONS

�I __ _____

Bibliography

[1] F. Van Aelten. Efficient Verification of VLSI Circuits Based in Syntax and Denota-
tional Semantics. Master's thesis, MIT, 1989.

[2] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-
rithms, chapter 4, pages 124-145. Addison Wesley, 1974.

[3] A. Aho and J. Ullman. Principles of Compiler Design. Addison Wesley, Reading
Massachusetts, 1979.

[4] A. Aho and J. Ullman. Principles of Compiler Design, chapter 6, pages 229-233,
241. Addison Wesley, 1979.

[5] R. Armstrong. HPEDIT Reference Manual. MIT Research Laboratory of Electron-
ics, 1982.

[6] R. Armstrong. User's Guide to XDRC. MIT Research Laboratory of Electronics,
1982.

[7] M. Arnold and J. Ousterhout. Lyra: a new approach to geometric layout rule
checking. In ACM IEEE 19th Design Automation Conference, pages 530-536, 1982.

[8] C. Bamji. A Design-by-Example Regular Structure Generator. Master's thesis, MIT,
1985.

[9] C. Bamji and J. Allen. GRASP: a Grammar-based Schematic Parser. In ACM
IEEE 2 6th Design Automation Conference, pages 448-453, 1989.

[10] C. Bamji, C. Hauck, and J. Allen. A design-by-example regular structure generator.
In ACM IEEE 22nd Design Automation Conference, 1985.

[11] J. Bentley and T. Ottmann. Algorithms for reporting andf counting geometric
intersections. IEEE Transactions on Computers, C-2(9), September 1979.

[12] I. Bolsens, W. De Rammelaere, C. Van Overloop, L. Claesen, and H. De Man.
A formal approach towards electrical verification of synchronous Mos circuits. In
Proceedings of the ISCAS conference, 1988.

[13] R. Bryant. A switch-level model and simulator for MOS digital systems. IEEE
Transactions on Computers, C33:160-177, 1984.

199

�__I�_ ____��^L_��·-�·-VIIP*·111 1�i- ly��-·.�··�lll li·-_._ -�·.�I-· - 1lllllllslllll�···111111�-·1111111�··---
_ C- ---- I-�-····C--LFIC-(�-· -·-�II----

BIBLIOGRAPHY

[14] R. Bryant. Symbolic verification of MOS circuits. In Chappel Hill Conference on
Very Large Scale Integration, 1985.

[15] E. Carlson and R. Rutenbar. Mask verification on the connection machine. In A CM
IEEE 25th Design Automation Conference, pages 134-140, 1988.

[16] D. Corneil and D. Kirkpatrick. A theoretical alalysis of various heuristics for the
graph isomorphism problem. SIAM Journal of Computing, 9(2):281-297, 1980.

[17] C. Ebeling and 0. Zajicek. Validating VLSI circuit layout by wirelist comparison.
In IEEE International Conference on Computer-aided Design, 1983.

[18] N. Gonclaves and H. De Man. NORA: A racefree dynamic CMOS technique for
piplined logic structures. IEEE Journal of Solid-State Circuits, S-18(3), June 1983.

[19] G. Goos and J. Hartmanis. Graph-Grammars and their Application to Computer
Science. Springer-Verlag, New-York, 2nd international workshop edition, 1983.

[20] G. Goos and J. Hartmanis. Graph-Grammars and their Application to Computer
Science and Biology. Springer-Verlag, New-York, international workshop edition,
1979.

[21] C. Hauck, C. Bamji, and J. Allen. The systematic exploration of pipelined array
multiplier performance. In Proceedings Internation Conference on Accoustic, Speech
and Signal Processing, 1985.

[22] J. Hopcroft and J. Ullman. Automata Theory Languages and Computation, chap-
ter 6, page 125. Addison Wesley, Reading Massachusetts, 1979.

[23] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation, chapter 14, pages 389-391,393. Addison Wesley, Reading Massachusetts,
1979.

[24] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley, Reading Massachusetts, 1979.

[25] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation, chapter 9, pages 223-228. Addison Wesley, Reading Massachusetts, 1979.

[26] K. Karplus. Exclusion constraints: a new application of graph algorithms to VLSI
design. In Proceedings of the Fourth MIT Conference on Advanced Research in
VLSI, 1986.

[27] A. Kolodny, R. Friedman, and T. Ben-Tzur. Rule-based static debugger and simula-
tion compiler for VLSI schematics. In IEEE International Conference on Computer-
aided Design, 1985.

[28] C. Leiserson, F. Rose, and J. Saxe. Optimizing synchronous circuitry by retiming.
In Proceedings of the Third Caltec conference on VLSI, 1983.

200

p

BIBLIOGRAPHY

[29] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation. Prentice
Hall, Englewood Cliffs, NJ, 1981.

[30] C. Lob, R. Spickelmier, and A. Newton. Circuit verification using rule-based expert
systems. In IEEE Symposium on Circuits and Systems, 1985.

[31] H. De Man, I. Bolsens, E. vanden Meersch, and J. van Cleynebreugel. Dialog:
an expert debugging system for MOS VLSI design. IEEE Transactions on CAD of
Integrated Circuits and Systems, CAD-14(3):303, July 1985.

[32] S. McCormick. EXCL: a circuit extractor for IC designs. In A CM IEEE 21 t Design
Automation Conference, pages 616-623, 1984.

[33] J. Nievergelt and F. Preparata. Plane-sweep algorithms for intersecting geometric
figures. Communications of the ACM, 25(10), October 1982.

[34] R. Owens and R. Chen. Applications of graph theory. In IEEE International Sym-
posium on Circuits and Systems, 1986.

[35] R. Read and C. Corneil. The graph isomorphism disease. Journal of Graph Theory,
1:339-363, 1978.

[36] D. Schmidt. Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon Inc., Boston, Massachusetts, 1986.

[37] L. Seiler. A Hardware Assisted Methodology for VLSI Design Rule Checking. PhD
thesis, MIT, 1985.

[38] Y. Shiran. YNCC: a new algorithm for device-level comparison between two func-
tionally isomorphic VLSI circuits. In IEEE International Conference on Computer-
aided Design, pages 298-301, 1986.

[39] R. Spickelmier and A. Newton. Connectivity verification using a rule-based ap-
proach. In IEEE International Conference on Computer-aided Design, 1985.

[401 R. Spickelmier and A. Newton. Critic: a knowledge-based program for critiquing
circuit designs. In International Conference on Computer Design, 1988.

[41] R. Spickelmier and A. Newton. WOMBAT: a new netlist comparison program. In
IEEE International Conference on Computer-aided Design, 1983.

[42] G. Steele. Common LISP. Digital Press, Bedford, MA, 1984.

[43] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programmming
Language Theory. MIT Press, Cambridge, Massachusetts, 1977.

[441 B. Stroustrup. The C ++ Programming Language. Addison Wesley, Reading Mas-
sachusetts, 1986.

I I_ I--._-..__--� .1II--··-·IX� _ L. _ �-----.l.*YI ---- ·LII-..-�.IILI�--_-___1-------I_--

201

BIBLIOGRAPHY

[45] T. Szymanski and C Van Wyk. Space efficient algorithms for VLSI artwork analyis.
In ACM IEEE 2 0 th Design Automation Conference, 1983.

[46] M. Takashima, A. Ikeuchi S. Kojjima, T. Tanaka, T. Saitou, and J. Sakata. A circuit
comparison system with rule-based functional isomorphism checking. In A CM IEEE
2 5th Design Automation Conference, pages 512-516, 1988.

[47] G. Taylor and J. Ousterhout. Magic's incremental design-rule checker. In ACM
IEEE 21 st Design Automation Conference, pages 160-165, 1983.

[48] C. Terman. User's Guide to NET, PRESIM, and RNL. MIT, 1982.

[49] C. Thompson. A Complexity Theory for VLSI. PhD thesis, Carnegie-Mellon Univer-
sity, 1980.

[50] J. Tygar and R. Ellickson. Efficient netlist comparison using hierarchy and ran-
domization. In ACM IEEE 22nd Design Automation Conference, pages 702-708,
1985.

[51] A. \Vladimirescu and S. Liu. The Simulation of MOS Integrated circuits using
SPICE2. ERL Memo M80-7, Berkeley, February 1980.

[52] D. Weise. Formal Multilevel Hierarchical Verification of Synchronous MOS VLSI
circuits. PhD thesis, MIT, 1986.

[53] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison Wesley,
1985.

[54] T. W'itney. A Hierarchical Design-Rule Checker. Master's thesis, California Institute
of Technology, 1981.

[55] Y. Wong. Hierarchical circuit verification. In A CM IEEE 2 2 nd Design Automation
Conference, pages 695-701, 1985.

202

