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Abstract

A general relationship between transform representation and subband representa-
tion of a signal is described in a unifying and tutorial manner. First, the transform
and subband representations of a signal are described. It is then shown how one
representation can be obtained from a simple rearrangement of the other representa-
tion. Specific examples illustrate how a block transform can be implemented as an
FIR subband filter bank, and vice-versa. The extension of the results is made for the
two-dimensional case. Finally, applications to signal coding and adaptive amplitude
modulation are discussed.
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Transform/Subband Analysis and Synthesis of

Signals

1 Introduction

In many signal processing applications, it is convenient to decompose a signal into

a more suitable form for processing. For instance, in transform image coding, an

image is commonly decomposed using a discrete cosine transform operation. This

representation of an image may be more convenient for data rate reduction. The

decomposition of a signal is referred to as the analysis operation. The reconstruction

of the signal is referred to as the synthesis operation.

Two methods of decomposing a signal are transform analysis [1,2] and subband

analysis [2,3,4,5]. Even though these two types of signal analysis are often considered

different, they result in the same time/frequency representation of a signal. For a

given transform analysis, an equivalent subband analysis can be found, and vice-versa.

One representation may be more useful than the other in a particular application,

but both offer a useful perspective.

This paper describes a general relationship between transform analysis/synthesis

and subband analysis/synthesis of a signal. Let x[n] denote a one-dimensional signal

and X, [k] denote a two-dimensional time-frequency representation of x[n]. The func-

tion X, [k] is a function of a frequency variable k and a time variable r and represents

some form of local spectral contents of x[n]. When X,[k] is viewed as a function of

4



k, it is a transform analysis of x[n]. When Xr[k] is viewed as a function of r, it is a

subband analysis of z[n]. An example of x[n] and IX,[k]l is shown in Figure 1. The

function Xr[k] used in Figure 1 is the short-time Fourier transform of x [n], which has

been used [6,7] extensively in speech processing applications.

The relationships between transform analysis/synthesis and subband analysis/synthesis

have been discussed in the recent literature [5,8,9,10,11]. In this paper, we present a

general relationship between the two in a unifying and tutorial manner. The outline

of this paper is as follows. The transform and subband representations for one-

dimensional signals are described in Sections 2 and 3, respectively. Section 4 then

describes the general relationship between the transform and subband representations.

Section 5 generalizes the results to the two-dimensional case. Section 6 discusses some

applications of these ideas. Section 7 concludes this paper.

2 Transform Representation

One method of representing a signal is using a transform operation. In this method, a

signal is decomposed by segmenting the signal and performing block transformations

(mappings) on each segment. Let the input signal x[n] be written as a column vector

x. Then the transform coefficient representation of x is given by X:

X = Tx (1)
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Figure 1: Example of short-time Fourier transform analysis.
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where T is the transform analysis matrix. The transformation, or decomposition,

from x to X is the analysis operation. In general, if the input x is segmented into N

blocks, T will be of the form

T = diag(To,T1,...TN_ 1) =

To

T1 0

0

TN-1

where each Tr, 0 < r < N - 1, is a matrix and T is block diagonal. If T = To, then

the transformation is over the entire signal. The dimensions of the matrices Tr will

determine whether the input segments are disjoint or overlapped.

The synthesis operation is the transformation from X to y, where:

y = UX (3)

and U is the transform synthesis matrix. In general, U will be of the form:

U = diag(Uo, Ul,...UN_ 1) (4)

where each Ur is a matrix and U is block diagonal. If U = Uo, then the transforma-

tion is over the entire signal. If U = T - 1, then perfect reconstruction of x is achieved;

that is, y = x, and y[n] = x[n].

The transform operations can be classified into two basic types: those in which the

input segments are disjoint, and those in which the input segments overlap. We first
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consider the case of disjoint input segments. Disjoint input segments can be obtained

by partitioning the one-dimensional signal x[n] of length NM into N smaller, disjoint

signals xr[n.], 0 < r < N - 1, of length M, as follows:

r [n]7 = x[n+ Mr] , O < < M-1 (5)

If each of the N signals :,r[n] is written as an M-dimensional column vector kr, then

the composite NM-dimensional column vector x is formed by x = [o R1 ... N_l]T.

When the input segments are disjoint, the corresponding transform analysis/synthesis

matrices Tr and Ur in Equations (2) and (4) are square AMxM matrices, where the

transform block size is lM.

The transform coefficient representation of x is given by X in Equation (1), where

X = [Xo X1 ... XN-1]T. Viewed as a function of k, the signal Xr[k] associated with

the vector Xr contains the transform coefficients for the rt h subblock ir[n]. The

collection of the signals X,[k] provides a transform representation of x[n]. This is

illustrated in Figure 2. Note that a short segment of the input Rr is transformed into

a short segment of the output Xr using the transformation matrix Tr. The fact that

a small portion of the output is obtained from transformation of a small portion of

the input is the idea behind "short-time transforms."

Typical examples of non-overlapping block transformations include the discrete

Fourier transform (DFT) and the discrete cosine transform (DCT). For the DFT, the

analysis and synthesis operations in Equations (1)-(4) are defined by the Tr and Ur
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Figure 2: Transform representation using disjoint input segments.

matrices with elements (row = a, column = b):

j 2ab
(Tr)ab = e- (6)

1 +2ba(7)
(Ur)ab = e+ (7)

where 0 < a,b < M -1 and O < r < N- 1. With the DFT transform analy-

sis/synthesis, perfect reconstruction is achieved. This transform is also referred to as

the short-time Fourier transform (STFT).

The analysis/synthesis operations for the DCT are defined by the following Tr

and Ur matrices:

ira
(Tr)ab = 2cos(-(2b + 1)) (8)

1(U)a = ([b + u[b- ( (2 + )) (9)(Ur)ab = ( [b] + u[b - 1])cos( (2a + 1)) (9)

where 6[ is the unit-sample function, u[] is the unit-step function, 0 < a, b < M -1,

M is an even integer (even length, even symmetric DCT/IDCT), and 0 < r < N - 1.
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Figure 3: Transform representation using lapped input segments.

The DCT transform analysis/synthesis also achieves perfect reconstruction, and has

been used extensively in image coding applications [1,2].

If the input segments overlap, then the transform analysis/synthesis matrices Tr

and Ur are rectangular. These types of transforms are referred to [12,13] as "lapped

orthogonal transforms" (LOT). In one particular LOT, the dimension of the transfor-

mation analysis matrix Tr, 1 < r < N - 2 (away from the signal edge boundaries), is

MxL, where L = 2M. In this case, the overlap into adjacent segments is by M sam-

ples. This is illustrated in Figure 3. Note that overlapping L-sample input segments

are represented by M-sample output segments. When the signal edge boundaries are

also taken into account, the number of output values is the same as the number of in-

put values. Perfect reconstruction of the entire signal (vector) x requires invertibility

of the matrix T.
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analysis synthesis

y[n]

Figure 4: Subband filter analysis/synthesis bank.

3 Subband Representation

Another method of representing a signal is to use subband analysis. The basic idea

behind subband analysis of a signal is to decompose the signal into a set of different

frequency components, or subbands. Figure 4 illustrates this with a typical M-band

subband filter bank, also referred to as a "critically sampled filter bank."

In the subband analysis operation, the input signal [n] is passed through a bank

of M filters hi[n], 0 < i < M - 1, typically bandpass and disjoint in nature, and

downsampled by M. The decimated output signal xi[n], viewed as a function of n, is

referred to as the i th subband. Because these outputs are effectively bandpass versions

of the input, they typically have features similar to the input. The collection of the

signals zi[n] provides a subband representation of x [n].

The analysis filters hi[n] and the synthesis filters gi [n] in Figure 4 can be chosen
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such that the output y[n] is a perfect reconstruction of the input x[n], i.e. y[n] = x[n].

One class of these filters is referred to as the quadrature mirror filter (QMF) bank

[3,14,15,16,17].

Consider the case when the analysis filters hi[n] are L-tap FIR filters. When

L = M (the decimation factor), the set of downsampled values in the ith subband

{..., i[n- 1], xz[n], x[n+ l],...} is obtained from separate (disjoint) M-length portions

of the input x[n]. However, when L > M, the set of downsampled values is obtained

from overlapping L-length portions of the input x[n].

One example of a subband decomposition of a signal when L = M (no overlap)

is the STFT (or DFT). When implemented as a subband filter bank, the appropriate

analysis/synthesis filters (perfect reconstruction) for an M-band decomposition as in

Figure 4 are given by:

M-1
2wirn

hi[n] = E e 3 6[n + m] (10)
m=O

M-1 1 ,im

g [n] = Z e+ 6[-n-m] (11)

where 0 < i < M -1. The M subbands xi[n] provide a subband signal representation

of [in].

Another example of a subband representation of a signal is using a modulated

filter bank [10,18]. A general modulated filter bank is obtained by modulation of a

base-band filter. Modulated filter banks can be designed in which L > M.
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4 Relationship between Transform and Subband

Representations

In this section, we discuss a simple relationship between transform representation

and subband representation. Let Xl[k] represent the kth transform coefficient in the

rth transform block, and let xi[n] represent the nth subband signal value in the ith

subband. Then the transform representation X,[k] of a signal x[n] can be related to

the subband representation of xi[n] of the signal by

xi[n] = Xr[k]lr=n, k=i (12)

and

X.[k] = i[n]ln=r, i=k (13)

This means that the subband representation is a simple rearrangement of the trans-

form representation, and vice-versa.

To discuss the relations given by Equations (12) and (13), we first discuss the short-

time Fourier transform (STFT). We then illustrate the relation given by Equation (12)

using the STFT, DCT, and LOT as examples. The relation given by (13) is illustrated

using the STFT and the modulated filter bank as examples.

4.1 Short-Time Fourier Transform

The STFT [6,19] discussed in Sections 2 and 3 is a specific example of a time-frequency

representation of a signal. It can be viewed as a transform operation or a filtering
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(subband) operation. Specifically, as discussed in Section 2, a STFT representation

can be obtained by using the transform matrix of Equation (6) in Equations (1)

and (2). The resulting signals Xr[k], viewed as a function of k (r fixed), provide a

transform representation of x[n]. For a fixed r, Xr[k] gives a frequency decomposition

for the rth temporal segment.

If viewed as a function of r (with k fixed), the signals Xr[k] provide a subband

representation of z[n]. For a fixed k, Xr[k] gives a temporal decomposition of x[n]

into the kth frequency band. This suggests that X,[k], for a fixed k, can be obtained

as the output of some bandpass filter. This is, in fact, what is performed by the

subband filter bank, as shown in Figure 4. As will be shown later, the analysis filters

for the STFT given by Equation (10) will yield an equivalent representation for z[n]

as does the transform analysis matrix given by Equation (6).

4.2 Subband Representation from Transform Representa-

tion

By viewing X,[k] as a function of k, a transform representation of x[n] is obtained.

By viewing X,[k] as a function of r, a subband representation of x[n] is obtained. De-

noting the nt h subband signal value in the ith subband as zx[n], xi[n] can be obtained

from Xr[k] by Equation (12). The subband representation, therefore, is a simple

rearrangement of the transform representation. An example is illustrated in Figure

5.
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Figure 5: Subband representation from transform representation.

For a given transform analysis matrix, an equivalent subband analysis filter bank

can be found. The analysis filters hi[n] in Figure 4 will be referred to as the "transform

analysis filters."

The validity of Equation (12) is now illustrated for the STFT, or the nonoverlap-

ping DFT. The transform analysis matrix for an M-point DFT is defined in Equation

(6). The matrix analysis operation defined by Equations (i), (2), (5), and (6) can be

written as:
M-1

X,[k] = E x[u + Mr]e-j (14)
u=O

When viewed as a function of k, this results in a transform representation of x[n]. The

following shows that by using the FIR transform analysis filters of Equation (10), the

resulting subband filtered signals xz[n] (refer to Figure 4) are simply rearrangements

15
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of the transform coefficients X,[k]:

xI[n] = [n] * hi[n] (15)

00

E x[m]hi[n-m] (16)
m=-oo

oo M-1

- x[m]e i 6[n - m + u] (17)
m=-oo u=O

M-1 oo

- x[m]6[n- m + u]e- j' (18)
u=O m=-oo

M-1

= E x[n+u]e-J'i (19)
u=O

M-1

x[n] = x[nM] = x [nM +] = X[k]l,= =i (20)
u=O

Q.E.D.

Note that the ensemble of zi[n] for a fixed n is the short-time Al-point DFT of x[72]

(i
t
h frequency component) starting at time n.

In Figure 6, the magnitude frequency responses Hi(w)l for the DFT transform

analysis filters are shown when the number of subbands (or transform block size) is

Al = 8. Note that these magnitude responses are not symmetric about w = 0. This

is because the DFT analysis filters hi[n] in Equation (10) are not purely real.

It can be shown that the DFT FIR synthesis filters gi[n] of Equation (11) perform

the IDFT operation (perfect reconstruction) defined by the IDFT matrix of Equation

(7). The filters gi[n] in Figure 4 will be referred to as the "transform synthesis filters."
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An equivalent transform analysis filter can be found for the nonoverlapping DCT

transform analysis matrix of Equation (8). The matrix analysis operation defined by

Equations (1), (2), (5), and (8) can be written as:

M-1 irk

X,[k] = E 2x [u + Mr]cos(-M(2u + 1)) (21)
u=O M

where M is an even integer (even length, even symmetric DCT). When viewed as

a function of k, this results in a transform representation of x[n]. An equivalent

subband representation of x[n] can be obtained by using the following FIR. DCT

transform analysis filters:

M-1 r

hi[n] = Z 2 cos(2 1M(2 m + 1))6[n + m] (22)
m=O

The following shows that this bank of analysis filters satisfies Equation (12) (refer to

Figure 4):

'[n] = x[n] *hi[n] (23)

00

= x[m]hi[n- m] (24)
=-00oo

oo M-1

= X[m] a 2cos( -2(2u + 1))6[n - m + u] (25)
m=-oo u=O

M-1 oo00

= 1 E 2x[m]cos(- (2u + 1))6[n- m + u] (26)
u=O m=-oo

M-1

= 2x[n + u]cos( 2M(2u. + 1)) (27)
u=O 2M

M-1

xi[n] = i[nM] = a 2x[nM + u]cos(2M -(2u + 1)) = X.[k]lI=n, k=i (28)
u--O

Q.E.D.
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Note that the ensemble of xz[n] for a fixed n is the short-time M-point DCT of x[n]

(ith frequency component) starting at time n.

The magnitude frequency responses Hi(w)l for the DCT transform analysis filters

hi[n] are shown in Figure 7 when the number of subbands (or transform block size)

is M = 8. Notice how the higher frequency band filters (for example i = 6, 7) are

good at stopping the frequencies outside their "passbands"; that is, they do not have

much interband leakage. Therefore, since typical images tend to be low frequency in

content, these higher frequency subbands, or transform coefficients, will tend not to

contain as much energy relative to the lower frequency ones. This is one explanation

for the good energy compaction property of the DCT that makes it attractive in

image coding applications.

It can be shown that the DCT FIR synthesis filters that perform the IDCT oper-

ation (perfect reconstruction) defined by the IDCT matrix of Equation (9) are given

by:

M- 1 (29
gi[n] = -w[i]cos( 2M(2m + 1))6[n - m] (29)

where w[i] = 6[i] + u[i- 1], and 0 i < i - 1.
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For the case of a lapped transform such as the LOT, the number of taps in the FIR

transform analysis filter, L, will be greater than M, the decimation factor (refer to

Figure 4). Consider a particular LOT with transformation analysis matrix elements

(row = a, column = b) (Tr)ab, away from signal edge boundaries. Also let the

dimensions of Tr be MxL, where L = 2M, and M is an even integer. If the overlap for

a given input segment is by M samples on each adjacent segment, then the appropriate

transform analysis filter is:

L-1 At

h-[n]= Z(Tr)im[n + m- (30)

where 0 < i < It - 1 and 0 < m < L - 1. Figure 8 shows an example [18] of the

magnitude frequency responses Hi(w)l for a lapped transform analysis with M = 8

and L = 2I = 16.
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xin] I @ @ @ @ x x x x ] o o o o I + + + + ] subbandxiln] j@@ @ XXXX 10000 . . I subband
n: 0 1 23 1 23 0 1 2 3 0 1 2 3 0 1 representation

r: 0 1 2 3

k] x o + x o + x o + @ x o + transform

k: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 representation

Figure 9: Transform representation from subband representation.

4.3 Transform Representation from Subband Representa-

tion

Let xi[n] represent the nth subband signal value in the i th subband, and let Xr[k]

represent the kth transform coefficient in the rth transform block. By viewing xi[n] as

a function of i, a transform coefficient representation of x[n] is obtained. The trans-

form representation Xr[k] of x[n] can be obtained from the subband representation

by Equation (13). The transform representation is simply a rearrangement of the

subband representation. An example is illustrated in Figure 9.

For a given subband analysis filter bank, an equivalent transform analysis matrix

can be found. An example of a subband analysis filter bank (no overlap) is given

by the STFT (DFT) transform analysis filters in Equation (10). Equations (15)-

(20) show that these filters result in the subband filtered signals of Equation (20).

23

��_� ��



Equation (14) shows the transform coefficients that result from the transform analysis

matrix of Equation (6). Comparison of Equations (20) and (14) shows that in fact,

X,[k] = xi[n]li=k, ,=,. Therefore, the STFT transform analysis matrix is given by

Equation (6).

The validity of the relationship in Equation (13) can also be illustrated for the

case of a modulated filter bank. Consider the case for a modulated filter bank where

L > A, Ml is an even integer, and an overlap between adjacent input segments

of M samples. This can then be considered as a type of "lapped" transformation.

Equation (30) shows how the transform analysis filter can be written in terms of a

given transform analysis matrix. Alternatively, for a given modulated filter bank, the

corresponding transform analysis matrix can be found using Equation (30).

4.4 Discussions

We have discussed that subband and transform representations are rearrangements

of each other. We have also discussed how a subband representation can be obtained

from a transform representation. Equivalent transform analysis filters for the DFT,

DCT, and an LOT were determined. We have also discussed how a transform rep-

resentation can be obtained from a subband representation. Equivalent transform

analysis matrices for the STFT and a modulated filter bank were determined.

Intuitively, it makes sense to think of a linear FIR filtering operation as a block

transform operation, and vice-versa. Since a linear FIR filter performs linear convo-

24
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lution on the input, this operation can be formulated as a block transformation- or

equivalently, a matrix transformation- of the input. Conversely, a block transforma-

tion performed on segments of the input (short-time analysis) can be formulated as

a linear FIR filtering operation on the input.

For practical considerations, such as computational efficiency, an implementation

based on block transformations may be preferred over an implementation based on

subband filtering, and vice-versa. In comparing computational efficiency, two inter-

esting observations are worth noting about the subband filtering approach. First,

the analysis/synthesis filtering operations may be implemented efficiently using fast

Fourier transform (FFT) algorithms. However, this does not give any substantial

computational savings unless L (the number of taps in the FIR filter) is large. Sec-

ond and more significantly, since the filtered input signals (analysis) are effectively

sampled, not all the values are actually needed, and therefore these "extraneous" val-

ues need not even be computed. This can result in substantial computational savings.

By comparison, the block transformation implementation does not compute any "ex-

traneous" values (coefficients). Further reduction in computations using the subband

approach can also be achieved by exploiting the fact that many input values to the

synthesis filter are zero.

Because each analysis filter in the subband filtering implementation processes the

entire input signal prior to sampling, the subband analysis/synthesis system can log-

ically be thought of as a generalization of a block transformation. This is because in
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block transformations, the input is typically segmented into spatially localized dis-

joint portions, and the block transformation is applied to each separately. That is,

the transformation is commonly a disjoint "short-time" process, and no "extrane-

ous" values are computed. On the other hand, the subband filter implementation

performs processing on the entire input, and these values are subsequently sampled.

Consequently, if the number of taps, L, in the FIR analysis filters is larger than the

decimation factor M, then the downsampled values will be obtained from overlapping

L portions of the input.

5 Extension to the Two-Dimensional Case

For separable two-dimensional transforms or separable two-dimensional subband fil-

ters, which is common in many applications, the extension of the results of the previ-

ous section is straightforward. The results are simply applied to each dimension. Let

Xzij[n7, 2] represent the (ni, n2 )th subband signal value in the (i, j)th subband, and let

X,[kl, k2] represent the (kl, k 2)th transform coefficient in the (r, s)th transform block.

The transform/subband relationship is given by:

Xij [n,,n 2] = Xr.[k, k2]lr=nl, ,=l2, k=i, k2 =j (31)

Xr [kl, k 2] = xij[nl, n2]i=kl , j=k2 , l=r, n=3 (32)

Again, the subband representation is simply a rearrangement of the coefficients in

the transform representation, and vice-versa; this is illustrated in Figure 10. To

26
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Figure 10: Relationship between transform/subband coefficient representations, two-
dimensional case.

illustrate this relationship with an image, consider an original 512x512 image shown

in Figure 11. Figure 12(a) illustrates a transform representation of the image using a

separable two-dimensional DCT, where the block size is M = 8 (no overlap). Figure

12(b) shows the equivalent subband representation of the image by rearranging the

transform coefficients, according to Equation (31). As expected, each subband tends

to have features similar to the original image. In Figure 12, coefficient magnitude is

displayed, all scaled by the same factor to illustrate detail in the higher frequency

subbands. As a consequence, the DC band (upper left) has been "clipped" to the

maximum display value.
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Figure 11: Original 512x512 GIRL.
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(a)

(b)

Figure 12: Transform/subband representations of GIRL. (a) transform representation
(b) subband representation
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6 Applications

The notion that transform coefficient representation and subband signal representa-

tion can be viewed as rearrangements of each other can be very useful in applications.

Operations in one representation can be translated into operations in the other rep-

resentation, and this may offer useful insights.

One application of a transform or subband analysis of a signal is in signal coding.

For example, typical images tend to contain spatial redundancy; that is, adjacent

pixels tend to be.highly correlated. Because typical transform or subband decom-

positions of an image tend to decorrelate the signal values and compact most of the

energy in a small fraction of coefficients, a transform or subband representation of

the image is typically more appropriate for performing data rate reduction. Only the

coefficients that contain significant energy need to be coded, while the correspond-

ing reconstructed image can still be perceptually indistinguishable from the original

image. Image coding systems are discussed in [1,2,5,20].

Figure 13 shows a typical transform/subband coding system. The input signal

x is analyzed using an MxM decomposition, and the resulting transform/subband

coefficients are selected, quantized and then resynthesized. In a transform coding

system, two methods of selecting the transform coefficients are threshold coding and

zonal coding. In threshold coding, only the transform coefficients that exceed some

threshold are selected. This then requires the selected coefficient locations be known

at reconstruction. In zonal coding, only the coefficients within a specified region
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Figure 13: Transform/subband coding system.

are coded. Even though some transform coefficients with small magnitudes may

be selected while those with large magnitudes may be discarded, zonal coding does

not require location information of the selected coefficients. Some combination of

threshold coding and zonal coding have also been considered. Both threshold coding

and zonal coding originated from transform coding literature. Because of the simple

relationship between transform and subband representations, they can be applied

very simply to subband coding.

When disjoint input segments are used in a transform signal coding system, "block-

ing effects" tend to occur due to independent processing of adjacent segments, or

blocks. Because a subband analysis can be easily extended to account for the pro-

cessing of overlapping input segments, a subband signal coding system offers a useful

approach to reducing the blocking effects. In this case, the FIR analysis filters can be

designed to have a length larger than the decimation factor. The idea of overlapping

input segments in a subband analysis is in fact equivalent to the idea of "lapped
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transforms."

Both transform and subband representations are obtained by decomposing a sig-

nal into smaller "sub-signals". These sub-signals are called "transform blocks" in the

previous case and "subbands" in the latter. Each fixed transform block represents a

fixed spatial location, but contains all the different frequency components. On the

other hand, each fixed subband represents a fixed frequency, over the entire spatial

region. For these reasons, transform coders are commonly classified as frequency-

domain coders, whereas subband coders are commonly classified as waveform coders.

However, as far as signal representation is concerned, both coding schemes are identi-

cal. Both representations offer useful perspectives in designing a transform/subband

coding system.

As another application of the simple relationship between transform and subband

representations, we consider the design of an adaptive amplitude modulation/demodulation

(AM/DM) system for noise reduction. Adaptive amplitude modulation is an adap-

tive gain control technique that increases the signal-to-noise ratio. This is achieved

by multiplying the signal at the transmitter by a factor a > 1. The factor a generally

varies with the local properties of the signal, and is known as the adaptive modulation

factor. By determining the AM factors so that the modulated signal does not exceed

some maximum level, the SNR can be increased without increasing the peak-to-peak

signal range. The received signal is divided by ca. As a result, any additive noise in-

troduced in the channel is effectively reduced by the factor a, while the signal portion
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is unaffected.

Adaptive modulation has been effectively applied to image processing systems

[21,22], including the design of a high definition television (HDTV) system for terres-

trial broadcasting. When a typical image is decomposed using a transform or subband

analysis, many of the values are small and are suitable for adaptive modulation. In

blank regions, the high frequency transform coefficients or subband values are small,

and AM can be succesfully applied to reduce noise. This is important because in

blank regions, noise is more visible.

Adaptive modulation requires the AM factors to be transmitted. It is important

to reduce this side information in systems that are bandwidth limited. By exploiting

the properties of the transform or subband representations of an image, the AM side

information can be reduced. In an earlier approach [21], the AM side information is

reduced by estimating the AM factors for high frequency subbands from low frequency

subbands. This exploits the property that higher frequency subbands for typical

images tend to decrease in amplitude. In a later approach [22], properties of the

transform representation are exploited in reducing the AM side information. In this

approach, the transform coefficients are modeled with a few parameters. Since the

AM factors can be determined from the model, only the model parameters need to

be transmitted. This enables the amount of AM side information to be significantly

reduced. Even though the AM method has been originally applied to subband-filtered

signals, performance improvement of the method was possible through the transform
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representation viewpoint.

7 Conclusion

A transform and subband decomposition of a signal offer a time-frequency represen-

tation of the signal. Because both representations are rearrangements of each other,

they are equivalent in terms of their information content or representation of the

signal. For a given transform analysis matrix, an equivalent transform analysis filter

can be found, and vice-versa. One representation may be more useful than the other

in a particular signal processing application, but both offer a perspective in which

useful insights can be gained.
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