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Abstract

A time-domain approach to signal enhancement based on single and mlltiple sensor measulre-
ments is developed. The procedure is based on the iterative Estinlate-Maximlize (EM) algoritlim
for maximum likelihood estimation. On each iteration, in the M step of the algorithm, param-
eter values are estimated based on the signal estimates obtained in the E step of the prior

iteration. The E step is then applied using these parameter estimates to obtain a refined es-
timate of the signal. In our formulation, the E step is implemented in the time domain using

a Kalman smoother. This enables us to avoid many of the computational and conceptual

difficulties with prior frequency domain formulations. Furthermore, the time domain fornlu-

lation leads naturally to a time-adaptive algorithm by replacing the Kalman smoother with a

Kalman filter and in place of successive iterations on each data block, the algorithm proceeds

sequentially through the data with exponential weighting applied to permit the algorithm to
adapt to changes in the structure of the data. A particularly efficient implementation of the
time-adaptive algorithm is formulated for b)oth the single- and two-sensor cases by exploiting

the structure of the Kalnan filtering equations. In addition an approach to avoiding matrix
inversions in the modified M step is proposed based on gradient search techniques.
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I Introduction

Problems of signal enhancement and noise cancellation have been of considerable interest for
many years. In one class of such problems, there may or may not be a signal present. With no
signal present, the objective is to eliminate noise (or, more generally, an unwanted signal). This
may arise, for example, in noisy factory environments, in quieting of active acoustic signatures of
ships, etc. In other problems, there is assumed to be a desired signal present, and the objective
is to reduce or eliminate background noise or some other unwanted signal, i.e., to enhance the
desired signal. A well-studied example is the enhancement of speech in the presence of noise or
competing speakers. In either of these contexts, when the unwanted component is estimated in
some way and used to generate a cancelling signal, the process is typically referred to as noise

cancellation. The cancelling signal may be "inserted", i.e., added to the total signal acoustically
or electrically in real time or through postprocessing, but in this specific class of problems, it
is assumed that a cancelling signal is generated which is then added to the total signal. A
somewhat different but clearly overlapping class of problems is that of signal enhancement in
which it is explicitly assumed that a desired signal is present. Signal enhancement may then be
accomplished explicitly by noise cancellation or by estimating and generating the desired signal
in some other way.

In this report, we develop a class of time-adaptive algorithms for signal enhancement, in
which the desired signal is estimated from either single or multiple sensor measurements. The
estimation procedure is based on the Estimate-Maximize (EM) algorithm for maximum likeli-

hood parameter estimation [1]. Previously, the EM algorithm has been proposed for two-sensor
signal enhancement [2], and an algorithm closely related to the EM algorithm has been proposed
for single-sensor signal enhancement [3]. These algorithms are based on the use of a non-causal
Wiener filter, implemented iteratively in the frequency domain on consecutive data blocks.
However, the approach in [2] and [3] implies the use of a sliding window over which the signal
and noise are assumed to be stationary. In order to avoid a computationally complex imple-
mentation of the Wiener filter, it. is further assumed that the window is sufficiently long so that
the Fourier transform coefficients of the received data at different frequencies are approximately
uncorrelated. For most realistic situations, these are strongly competing requirements.

In this paper, we reformulate the EM algorithm for the single- and two-sensor problems
directly in the time domain. This approach will enable us to avoid the competing assump-
tions indicated above. The resulting algorithms are similar in structure to those in [2] and [3]
but, instead of the non-causal Wiener filter, we employ the Kalman smoother. These time do-
main algorithms are then converted to sequential/adaptive algorithms by replacing the Kalman
smoother with a Kalman filter, and in place of successive iterations on each block, the algo-

rithm moves sequentially through the data. In place of the windowing operation, exponential
weighting is incorporated into the algorithm. The specific structure of the Kalman filtering

equations is also exploited to simplify the computations involved.

In Section II, we review the EM algorithm for the convenience of the reader. In Section III,
we consider the single-sensor problem, and in Section IV, we consider the two-sensor problem.
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II The EM Algorithm

The Estimate-Maximize (EM) algorithm [1] is an iterative method for finding Maximllm Like-
lihood (ML) parameter estimates. It works with the notion of "complete" data, and iterates
between estimating the log-likelihood of the complete data using the observed (incomplete)
data and the current parameter estimate (E-step), and maximizing the estimated log-likelihood
function (M-step) to obtain the new parameter estimate.

More specifically, let z denote the observed data, with the probability density function
(p.d.f.) fz(z; 0), indexed by the vector of unknown parameters 0 E 0 C IRk . The ML estimate
OML of 6 is defined by:

OML = argmaxlog fz(z; 6) (1)
OEO

Let y denote the complete data, related to the observed (incomplete) data z by

H(y) = z (2)

where H(.) is a non-invertible (many-to-one) transformation. With fy(y;6) denoting the

p.d.f. of y, and flz(ylz; 6) denoting the conditional p.d.f. of y given z,

f (Y;) = f(z; O)fyrz(ylz; ) VH(y) = z (3)

Equivalently,

log fz(z; ) = log fy(y;O ) - log fyrl(ylz; ) (4)

Taking the conditional expectation given z at a parameter value ' (that is, multiplying

both sides of (4) by fylz(ylz; 6') and integrating over y,

f2(z; ) = E{log fy(y; )lz} - Es,{logfylz(yIz; )lz} (5)

where Ee,{.lz} denotes the conditional expectation given z computed using the parameter value
t'.

For convenience we define

Q(6,6') = E8,{logfy(y;6)lz} (6)

P(0,0') = E*,logfyjz(ylz;O)lz} (7)

So that Eq. (5) becomes

log fz(z; ) = Q(6, ') - P(6, ') (8)

By Jensen's inequalityl
P(O,6') < P(O',6') (9)

'Jensen's inequality asserts that for any pair of p.d.f.'s f(a) and g(a) defined over the

probability space 12 of points ,

f(a) logg(e) d < / f(a) log f(a) da

3



Therefore,

Q(0,60') > Q(O',6') implies logfz(z; ) > logfz(z; 0') (10)

The relation in (10) forms the basis for the EM algorithm. Denote by ( t ) the estimate of
0 after e iterations of the algorithm. Then, the next iteration cycle is specified in two steps as
follows:

E-step: Compute
Q(6, ()) = E(e) {log fy(y;6 )lIz (11)

M-step:
maxQ(0, ( t) ) - 0 (t+ l ) (12)

If Q(8, 8') is continuous in both and ', the algorithm converges to a stationary point

of the observed log-likelihood log fz(z; 6), where the maximization in (12) ensures that each

iteration cycle increases the likelihood of the estimatedl parameters. Specifically, as in all "hill
climbing" algorithmls, the stationary point may not be the global maximum, and thus several

starting points or an initial grid search may be needed.

We note that the transformation H(-) is not uniquely defined. Specifically, there are many

complete data specifications y that will generate an observed z. The final point of convergence

of the EM algorithm is essentially independent of the complete data specification. However, the

choice of y may strongly affect the rate of convergence of the algorithm, and the computations
involved.

As we shall see, for the set of problems of interest to us, there is a natural choice of complete

data, leading to a simple intuitive algorithm for estimating the unknown signal and noise

parameters. As a by-product of the algorithm, we also obtain an estimate of the desired
(speech) signal. For the purpose of signal enhancement, it is the signal estimate that we are
eventually interested in.

III Single-Sensor Signal Enhancement

3.1 Time-Domain EM Algorithm

We assume that the signal measured as the sensor output is of the form:

z(t) = s(t) + E(t) (13)

where (t) is the measurement noise modelled as a zero-mean white Gaussian process with

spectral level of E {E2 (t)} = g,, and s(t) is the desired signal modelled as an autoregressive
(AR.), or all-pole, process of order p:

p

s(t) = - aks(t - k) + v u(t) (14)
k=l
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where u(t) is a normalized (zero mean unit variance) white Gaussian process. We assume that
e(t) and u(t) are mutually uncorrelated.

The vector 0 of unknown parameters associated with this model is:

0=

01

(15)

Given the observed data z(t) t = 1,2,...N, we want to find the best possible estimate
of the desired signal s(t). Under tile critereon of minimizing the imean square error (n.s.e.),
the optimal signal estimate is obtained by performing the conditional expectation of s(t) given
the observed data. However, this conditional expectation requires prior knowledge of 0. Since
0 is unknown, one must deal with a more complicated problem of joint signal and parameter
estimation.

The basic approach is to apply the EM algorithm, where the complete data is defined as the
samples of the observed signal z(t) together with the samples of the desired signal s(t). This
complete data specification will lead us to a simple iterative algorithm for extracting the ML
parameter estimates. Furthermore, as a by-product of the algorithm, we will obtain the desired
signal estimate which we are ultimately interested in.

More specifically, let
z = z(t): t= 1,2,...N} (16)

denote the "observed" data, let

= {s(t) : t = -p + 1, -p + 2,... N}

be a collection of signal samples, and let

z

denote the complete data. Invoking Bayes's rule,

fy(Y; 0) = fs(s; 0). fzls(zls; 8)

(17)

(18)

(19)

and equivalently,

log fy(y; 0) = log fS(s; 6) + log fzIs(zls; 0)

Front (14),

N I N
log fs(; 0) = log f(sp()) - - log 2rg - - [s(t) + aTs 1)2

2 =

(20)

(21)
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where we define:

sp(t) =

ap

ap-1
Ct =

Ca1

and f(sp_(0)) denotes the p.d.f. of p-l(O).

From (13)

N
log fzls(zls; ) -2 log27rg,-

2

1 N

29 t=[

Substituting (21) and (24) into (20), and assunling that log f(sp_(0O)) is pre-specified, or
that N > p so that its contribution is negligible,

N 1 [s(t)N +Tpl(t l)]
logfy(y;0) = C- - logag, -

2 2g, t

N log
logg - Z[z(t)- s(t)]2

2 2g~ t=l
(25)

where C( is a constant independent of 0. Taking the conditional expectation given z at a
parameter value ( t)

Q(O,0(O)) = Ee(,){logfy(y;O)lz}

- -log gs - E 2 (t) + 2Ctsp(t-1)s(t) 
2 2g t1

g logg, - - E [Z - 2z(t)(')(t)+ ;2(')(t)]

where we define:

()(t) a E(.{Iz

a~s,_.~- f ~ ~-~, (t)
a T l(t - 1)spV_l(t- 1) rT]

(26)

(27)

Thus, the computation of Q(O, 6()) (E-step) only requires te computation of the indicated
conditional expectations. Furthermore, the maximization of Q(, 0(t)) with respect to (M-

step) can be solved analytically. Altogether, we obtain the following algorithm:

E-step: For t = 1, 2,..., N compute:

(t)(t) = [ ,( (-1 1 (28)

6

s(t - p)

s(t - p+ 1)

s(t)

(22)

(23)

(24)



[ ()
sp-1 (t-1)pT_ (t-1)

I ((t)·1 )
S(t)sT 1 (t-1)

N (t)

E Sp-l (t- )s(t)
t=!

(+) )t+1) 1 E 2(t) + (t+l)T Sp- (t-1)s(t) (31)

t=

= 1 E z (t) - 2z(t)/ )(t) + .s2() ] (32)

It is important to note that although the EM algorithm is directed at finding the ML
parameter estimates, as a by-product of the algorithm we also obtain the estimate st)(t) of
the signal s(t). For tile purpose of signal enhancement, it is the signal estimate that we are

eventually interested in.

Note the intuitive form of the parameter estimation update. Equation (30) is the Yule-

Walker solution for the AR parameters, where the first and second order statistics of the signal
are substituted by their current estimate, and the gain parameters in (31) and (32) are re-
estimated as the sample average of the corresponding power levels. The algorithm iterates
using the current parameter estimate to improve the estimate of the signal (and its sufficient

statistics) and then uses this signal estimate to improve the next parameter estimate.

The computation of the conditional expectations in (28) and (29) can be carried out using
the Kalman smoothing equations. To do that, we represent Eqs. (13) and (14) in state-space
form:

sp(t) = Sp(t-l) + gu(t) (33)

z(t) = hTsp(t) +(t) (34)

where the state vector sp(t) is
(p+ 1) x (p+ 1) matrix

the (p + 1) x 1 vector of signal samples defined in (22), is the

0 1 0 0

0

... ... ... ... 0 10

0 -cp ....... ..... -- Ca 1

(35)

7

Sp(t)sT (t)

M-step:

p-,l(t l)S(t) (29)

(30)

- -

_.. __ ..I.___·_ _�_��___ _I _^ I_*_���111_1·1_1� �O�_^�1_1 __�_^1·__1_1__111�1_IIIXI---_I�lll_��-�

I

SP-(t-1).Pl(t_ 1)
t=l i



g is the (p + 1) x 1 vector
gT = [ 0 ... 0 ] (36)

and h is the (p + 1) x 1 vector
hT = [ 0 ... 0 1 ] (37)

In this setting, sp(t) is the state vector. Now, define

tln = E s(){p(t)Iz(1), z(2),. .. , z(n)} (38)
p() E()[Sp M][p(t)- M l ( I Z(1), z(2),..., z(n)} (39)

Clearly, the conditional expectations in (28) and (29) are given by:

a(/)(t) = ( (40)

ap(t)s (t) lNtlNPt + (41)

We also denote by C(t), g(t), and h( t ) the matrices , g, and h coml)uted at the current
para.meter estimate 8 = 8 ( t). Then, the Kalnan smoothing equations compute (tr) and P(')
in three stages as follows:

Propagation Equations

For t = 1,2,...,N

(t) _ ()() (0) (42)
Ptlt-1 - t-it-1 ' '010

Ptlt_1 - Mt)llt_ l ( )9 T + g(t)g(t)T p(t) (43)

where the initial con~ditions p(l) and P(t) are the mean and the covariance matrix of the initial

state sp(O), computed using the current estimate 0 = 0( t ).

Updating Equations

For t = 1,2,...,N

ptit ( 1 ±) [Z(t) - h ltlt- 1] (44)

P(t) (I - k)h T ) t) (45)

where

ke() 1 P() h (46)
tlt-1 g1

Smoothing Equations

For t = N,N -1,...,1

Pt-1 IN |+tt-|1 ](4)

P(t) P(?- + SP(t) () (48)
t-11N t-lt- t-l tN tlt- t7-

8



where
SM_ pY) (49)

t = t - (t -1 (dr)

The values and P() t = 1,2,..., N resulting from the recursions in (47) and (48) are

then substituted into (40) and (41) to yield the conditional expectations needed in the E-step
of the algorithm.

3.2 Sequential/Adaptive Algorithms

The algorithm thus far was developed under the assumption that the signal and the noise are
stationary during the observation period. In practice, this is an unrealistic assumption. A typ-
ical speech signal is a non-stationary process with time-varying parameters, and the statistical
properties (spectral level) of the additive noise may also be changing in time. Basically, we have
a situation in which the observed signal depends on a time-varying parameter vector 6(t), and
we want to convert the iterative batch EM algorithm into an adaptive algorithm that tracks
the varying parameters.

The conservative approach is to assume that the observed signals are stationary over a fixed
time window, and apply the proposed EM algorithm on consecutive data blocks. An alternative
approach is suggested by the structure of the EM algorithm. As it stands, in the E-step of the
algorithm we use the Kalman smoother to generate the state (signal) estimate. The idea is
to replace the Kalman smoother with the Kahnan filter that only involves the propogation
equations (42) (43) followed by the updating equations (44) (45). In this way, the signal at
a particular time instant t is estimated using only the past and present data samples, and we
have removed the smoothing equations (47) (48) that are computationally the most expensive.

To obtain a recursive/sequential algorithm, we further replace the iteration index by the
time index - which is a standard procedure in stochastic approximation. With this additional
modification, the estimate of the state and its error covariance are generated using a single
Kalman filter whose matrices are continuously updated using the current parameter estimates
(instead of applying the Kalman filter iteratively).

More specifically, denote by ip(tlt) and sp(tlt)sp(tit) the estimate of sp(t) and sp(t)s (t)

based on the observed data to time t and the current parameter estimate. Also, define

tlt a (tt) (50)

and

Ptlt a sp(tlt)s (tlt) (51)

and (t) as the current parameter estimate, i.e.

(t) = S r(t) (52)
[f(0

9



Also, denote by t and Pt the matrices , and g computed at 0 = (t):

p
r

[0, (53)
o -aT(t)

gt - O P (54)

Then, Ptlt and Ptlt are computed recursively as follows:

Propagation Equations

Ptlt-1 = - tft-lt-l Po010o (55)

Pt~t-1 = tt-lt-lt + tt ,Polo (56)

Updating Equations

ptlt = PtIt-1 + kt[z(t) - h tli_l] (57)

Ptlt = (I - kthT) P 1t-1 (58)

where

hTPtlt_lh + f (t)Ptlt- h (59)

These recursions can be simplified by exploiting the structure of at and .t. To this end, we
observe that 3p-l(t- lit- 1) is the lower p x 1 sub-vector or Pt-llt-l:

/~lt - pl(t-llg- 1) ]I P (60)

Denote by At 1_ the covariance of p_-l(t- lit - 1), that is the lower p x p sub-nlatrix of

Pt-,lt-l:

Pt-lit-1 = (61)
At-,

Substituting (53) and (60) into (55) and performing the indicated matrix multiplication, we
obtain:

sHv-l-1 [ -aT~t)8 (t-llt-1) ] (62)
tlt-1 = )_T(t)gpl(t_ljt_j)

Using (53), (54), and (60) in (56), we obtain:

At-[ -Atla(t)
Ptit- = 1 - (63)

- aT(t)At_, aT(t)At_la(t) + #,(t)

10



Substituting (37) and (63) into (59) and performing the indicated matrix manipulations,

1 -At_l&(t)

7(t) a T (t)At_ja(t) + g,(t)

where
77(t ) aT(t)Atla(t) + s,(t) + §,(t)

Using (37) and (62)-(64) in (57) and (58), we finally obtain:

3p-l(t--)

-&aT(t)p_(t- 1It-1) 

Z(t) + T(t)gp_1l(t-lit --1 )

7(t)

At - tAt-l(T(t)aT(t)At-l

_ (9 i &T (t)At-_
17(t 

-A.t-_(t)
a T (t)At a(t) + g,(t)

tT( la(t)

(t) [xT(t)Atla(t) + s,(t)]

To update the parameter estimates, we modify Eqs. (30)-(32) in a similar
replacing the iteration index () by the time index (t), using the data only up to
time t:

&(t + 1)

M(t + 1)

?(t + 1)

fashion, by
the current

-1 t

r=1

_ E [-2(r) + & T (t + 1)sp (r -1Ir)s(TIT)]

= _ E[Z2(r) - 2z(r)(rr) + 2(rIr)]
r-=1

(68)

(69)

(70)

We note that ip(T) and sp(r)sT (r) are generated using the data observed to time r. There-
fore, under stationary conditions, the quality of these estimates improves as r gets closer to the
current time instant t. Furthermore, in a non-stationary environment, when the parameters
may vary in time, current data and the current signal estimates provide even more information
concerning the current parameter values than past data samples. This suggests introducing an
exponential weighting into (68)-(70):

a(t+ 1)

§,(t + 1)

9(t + 1)

S-' p - 1(-r) s(-l)
r=l

1 [
= t 7 t-r Z. - .. [2(Tlr) &(t + 1)spi(T--llT)S(Trr)

- 1 =1

t tYr E f-T Z (r)- 2z()1rlT) + s2(1T))-r=l 1E r=l

(71)

(72)

(73)

11

(64)

(65)

Ptlt

Ptlt -

(66)

(67)-

t~l

- Sp- (T- -1)8T_1T-l

t -1~~

- - E -y t-,r.,_ 1 r _ 17-) 'q



where y, and yf are exponential "forgetting" factors, which are real numbers between 0 and 1. If
we choose these factors to be close to 1, then (71)-(73) closely approach (68)-(70). If we choose
the forgetting factors to be smaller than 1, then the new vector parameter estimates O(t + 1) will
depend more heavily on the current data and the current signal estimate. Consequently, the
next signal estimate at time (t + 1) will depend more heavily on the current parameter value,
and we have an adaptive algorithun. For that reason, we shall utilize (71)-(73). An attractive
feature of these equations is that they can be computed recursively in time.

In order to develop the recursive form of these equations, we define:

t

r=l

= Rll(t-1) + s_l(t-1t)sT_1(t-lt ) (74)

t

R 1 2(t) = E Astpi(- 1r)s(TIT)

= -,R 12 (t-1) + spl(t-1)s(t) (75)
t

R2 2 (t) = 7s- 2(rr) = 7,R 22(t-1) + s2(tlt) (76)
r=l

Q2 2 (t) = E e[:Z2(.r) - 2z()s(tr|) + 2(rJI )

= YcQ 22 (t- 1) + [2(t) - 2z(t)stt) + s2(tlt)] (77)

Then,

&(t + 1) = -R 1
1 (t)R 12 (t) = -R 1(t) [ 7 R 1 2 (t-1)+ spl(t-1t)s(tt)

-R-ll(t) -7,Rll(t-l)a(t) + 8p_(t-llt)s(tlt)

R-1 (t) [Rll(t) - Sp,-(t-llt)sT _l(t- -lt) a(t)- sp-(t--lt)s(t )

.-l(t) R ( sp_l(t-llt)s(t t) + p_l(t- lt)SpT (t-lt)&(t) (78)

12



Using (74)-(78), in (72) and (73), and observing that

we obtain:

?5 (t + 1) = [R22 (t) + &T(t + 1)R 12 (t)] (79)

Mt(t + 1) - 1 - Q22(t) (80)1 - yQ 22(t )

Equations (74)-(80) can be used for recursive updating of the vector parameter estimates.
We note, in passing, that similar recursions can be developed for (68)-(70).

Equations (60), (61), (66) and (67), together with equations (74)-(80), specify the proposed
sequential/adaptive algorithm for the joint signal and parameter estimation.

3.3 Comments

By definition (see (22) and (50)), the last component of tlt is the signal estimate at time t
based on data to that time, and on the current parameter estimate (t).

The first component of ptlt is the signal estimate at time (t - p) based on data to time t.
Thus, if we are willing to accomodate a delay in the signal estimate, we may prefer to use the
smoothed signal estimate in order to improve statistical stability.

The last component of ptlt- is the predicted value of s(t) given the data to time (t-1). From
(62) it is given by -- (t)9p_l(t-lt-1). This may be useful, for example, in noise cancellation
scenarios, where we want to predict the next value of the signal/noise for the purpose of active
cancellation.

IV Two-sensor Signal Enhancement

4.1 Time Domain EM Algorithm

The basic system of interest consists of a desired (speech) signal source and a noise source both
existing in the same acoustic environment, say a living room or an office. Ideally, we want to
install two microphones in such a way that one measures mainly the speech signal while the
other measures mainly the noise. Unfortunately, the signal and the noise are typically both
coupled into each microphone by the acoustic field in this environment. The mathematical
model for the received signals is given by:

Zl(t) = {s(t)} + A{w(t)} + el(t) (81)

Z2 (t) = B{s(t)} + D{w(t)} + 2(t) (82)

where s(t) denotes the desired (speech) signal, w(t) denotes the noise source signal, and A, B,
C, and D represent the acoustic transfer functions between the sources and the microphones.
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The additional noises el(t) and e 2(t) are included to represent modelling errors, microphone
and measurement noise, etc. We shall make the following assumptions:

(a) The desired signal s(t) is modelled as an Auto-Regressive (AR) process of order p,
satisfying the following difference equation:

p

s(t) = - aks(t - k) + v/-. u,(t) (83)
k=l

where u,(t) is a normalized (zero-mean unit variance) white Gaussian process.

(b) The noise signal w(t) is modelled by:

w(t)= -_ w- uw(t) (84)

where tu,,(t) is a normalized white Gaussian process.

(c) el(t) and e 2 (t) are statistically independent zero-mean white Gaussian processes
with spectral levels of gl and g2, respectively. We assume that u,(t), uw(t), el(t),
and c2 (t) are mutually independent.

(d) The acoustic transfer functions A, B, C, and D are constrained to be causal linear
time-invariant finite impulse response (FIR) filters. Since the signal source is as-
sumed to be located near the primary microphone, and the noise source is assumed
to be located near the reference microphone, we assume that C and D are identity
(all pass) filters.

Under these assumptions, equations (81) and (82) can be written in the form:

q

z (t)= + E ak w(t - k) + el(t) (85)
k=o

z 2 (t) = bks(t - k) + w(t) + e2 (t) (86)
k=o

where the ak's are the filter coefficients of A(z), the bk's are the filter coefficients of B(z), and
q and r are the respective filter orders.

We shall find it convenient to define:

s(t - r)

Sr(t) (87)

s(t)

w(t - q)

w(t - q + 1)
wq(t) t - q + 1) (88)

u,(t)
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Cp

op-1

a1

aq

aq-1
a =

ao

and

br

bo

Note that (87) and (89) are consistent with (22) and
(86) can be written in the form:

(89)

(90)

(91)

(23). With these definitions, (85) and

z(t) = s(t) + aTwq(t) + ei(t)

z 2 (t) = bTsr(t) + U(t) + C2 (t)

(92)

(93)

and (83) becomes:

s(t) = -aT spl(t-1) + V u,(t) (94)

Denote by 0 the vector of unknown parameters

6=

a

a

b

(95)

Given observed signals z(t) and z 2 (t), t =
signal s(t) jointly with the unknown parameters
with the following complete data specification:

y= 

1,2,..., N, we want to estimate the desired
6. Again, the idea is to use the EM algorithm

z

U1 J
15
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where z is the observed data vector:

z = {zl(t), z2(t) : t = 1,2,..-, N} (97)

s is defined by
8= (s(t): t =-r + 1, -r + 2,.. , N} (98)

and w is defined by:
w = w(t): t = -q + 1, -q + 2, .. , N} (99)

Typically, the order r of the transfer function B is much greater than the order p of the
speech process. Therefore, the vectors s and w contain all of the signal and noise samples that
affect the observed data z.

Invoking Bayes' rule

fv(Y;O) = f.,,(s, to;8). f(zlIs, w;O)

= f(s; ;) f,(w; ). f(zls, tw;) (100)

where in the transition from the first line of (100) to its second line we invoked the statistical
independence of s(t) and w(t).

Taking the logarithm on both sides of the equation,

log f(y; ) = log f(s; ) + log f,(w; ) + log f(z s, w; ) (101)

By (94),

N 1 N
log f(s; 6) = log f(s_(O))- -2 log 2g- [s(t) + a _l(t_ 1)]2 (102)

2 2g, t=l

By the assumption that w(t) is a white Gaussian noise process,

N 1 N
log fu(w; 0) = log f(wq(O)) - - log 2rg - 2N E 2(t) (103)

2 t=l

and by (92), (93)

N 
log f(zls, w; 0) = - log 2rgl- [z(t) - s(t) - aTt(t)]2

2 2g t=q

N 1 N
- 2log 27r-g2-- [z(t)-bTsr(t) _ (t)]2 (104)

2 292 t=l

Substituting (102), (103), and (104) into (101), and assuming that N > p,q so that the
contributions of log f(sp_l(O)) and log f(wq(O)) are negligible,

N 1 N
logfy(y;6) = C- logg, - 2 ( t ) + aspl(t-1)]I

2 gg , =1
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N logu1 
-- logg- -- Zw 2 (t)2 2gw t=1

N 1 N
- -logg9- [zlzi(t)

N2 122 N
2 lo g2 2g9-2 t=1

- s(t) - aTwq(t)]2

- bTSr(t) - W(t)] 2

where C is a constant independent of . Taking the conditional expectation given z at a
parameter value ( t )

Q(, o(t)) =: E(t) {log fy(y;0 )lz}

N 1 N
C - - logg - g [s(t)()

2 2gI g---1
+ 2aTspl(t-1) (t)

~ (t)
J+ c-Ts_l(t1) ST1 (t-1)

N log gw 
-2gw, t=1

Ca]

N 1 N
-- log g 91- -- 7

2 2g, t=1

- 2aT(t)(t) Zl(t) + 2aTw,(t)s(t)

+ a'ui,(t~u~, (t)
+ aT wq(t)wT(t) a]

_N 1 N
- log g2 - -

2 292 f=,
(106)

- 2bTr )(t)z 2(t) + 2bT ,(t) w (t)

weeasb r(t),
+bTSr(t)ST(t) b]

where, as before,
( )(') 1- E(')I l} (107)

17
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[Z(t) - 2)(t)zjlt) + ;2(t(t)

2 -() 2iFP()(t)Z2(t) + it'2()(t)



Thus, the computation of Q(O, O(M)) (E-step) only requires the computation of z(t)(t) and

M(t)eT(t) , where e(t) is defined by:

=(t)= = () ]
-wq(t) 

s(t- r)

s(t - r + 1)

s(t)

u(t - q)

w(t - q + 1)

w(t)

We fiurther observe that the first line of (106) depends only on the desired signal parameters
(a,g,), the second line depends only on the spectral level g of the noise signal, the third
line depends only on (a, gl), and the fourth line depends only on (b, g2). Therefore, the maxi-
mization of Q(6, 0 (')) (M-step) decouples into the separate maximizations of each line of (106)
with respect to the associated parameters. These maximizations can be solved analytically.
Altogether, we obtain the following algorithm:

E-step: For t = 1, 2,..., N compute:

(109)

(110)

M-step: Compute

((t)= E(,) z(t)lr}

(T)

2(t)xT(t) = E){(t) , (t)lz }

IN (t -1

- 8 s2(p1(t-1 )8 T

= {E ((t) I+ a(t+l) T .
Nt=l

N (t)
E pt l (t-1 )(t)
t=l

· E sp, (t-1)s(t)
t=1

N1

= - E V2((t)
t=l

. N (f) -1

t=1

1 N
N [(t) - 2)(t)l(t) + (t)]

t=l-1

-a(+)T N I7 [Ie(t)(t) t - q(t)(t)

18

(108)

&(t+1)

-(t+1)
gU

}
(1.11)

(112)

(113)

(114)

(115)

rV('(t)Z1(t) - Wq(t)S(t)



Lt= t=l 

t=l

_gbtfl)T ) = [ !)(Z2(t) ]r ( t)w(t) ] (117)N{ [-(t) - 2i( )(t)z 2 (t) + w2(t)(t)]-b ±) Z []t= (117)

The algorithm has a nice intuitive form. In the E-step, we use the current parameter

estimate 6 (t) to estimate the sufficient statistics of the desired signal and the undesired (noise)

signal. The M-step of the algorithm decouples as follows: Equation (111) is the Yule-Walker

solution for the AR parameters where the sufficient statistics of the signal are substituted by

their current estimates. Equations (114) and (116) are the least squares solutions for the a and

b parameters, respectively, based on the estimated sufficient statistics. The gain parameters

in (112), (113), (115), and (117) are re-estimated as the sample average of the corresponding

power levels. We note that if some of the gain parameters are known a priori and need not be

estimated, we simply eliminate the corresponding equations.

Since the algorithm is based on the EM method, it will converge monotonically to the ML

estimate of 0 (or, at least, to a stationary point of the log-likelihood function), and it also

provides the desired signal estimate (t)(t), which is the (r + 1)st component of z(t)(t). We

note again that for the purpose of signal enhancement, it is the signal estimate that we are

essentially interested in.

As in the single sensor case, the computation of the conditional expectations in (109) and

(110) can be carried out using the Kalnman smoothing equations. To do that, we represent Eqs.

(92)-(94) in state-space form:

x(t) = z4(t-1)+Gu(t) (118)

z(t) H(t e(t) (119)

where state vector z(t) is defined in (108),

z (t) ]t) (120)

u(t) = [ [L( t) ] (121)

e(t) = e l ( t ) (122)e2(t)
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(r + 1)

1.

GT = ? v 0 0]
= ...... ... ... ... o °5~

(r + q+ 2)

[= 0 .. ... 0 1 aq aql ... ... ao

b, brl ...... bo 0 ...... 0 1

I=[¶S ° ]
L ° -Iiu> .

0 1 0 -... ..... O

. · '. 0

0 1

·'' 0 -a p -Op_ ... 0r1

0 1

· o

u ...

. . ..'' ~

... .. 0O

.0

0
. .O 1

.... .. O

(126)

(127)

We also define by R the 2 x 2 covariance matrix of e(t):

R =[91 : 
0 92

(128)

(129)

Now, let us define:

(t) = E(t){2z(t)lz(1),z(2),.. .,z(n)}

PYl) = Eo(,){[(t)- pl-)] [ T( t) _( 1) 1| (1 ) z (2 ) ,..,(n)}

= E 9(t){(t)2aT (t)lz(),z(2), ... , z(n)} ) ()

20

(130)

and

(12.3)

where

(124)

(125)

and
rN

u, =



Clearly, the conditional expectations in (109) and (110) are given by:

z~~~~~C~t~~~)(t) M(131)

tIp

(t) T(t) (= ()tlNlti + ptN (132)

Denote by (t), G(t) H(t), and R(t) the matrices 9, G, H, and R computed at the current
parameter estimate 0 = O(t) Then, the Kalmhnan smoothing equations compute land P(')
in three stages as follows:

Propagation Equations
For t = 1,2,...,N

Mp(t) = +(t) t-le, (t '(133)

tit-1 - t-tlt-1 ' 010

Updating Equations
For t = 1, 2,...,N

(t=) ) + K'(t) ) - H(')p ] (135)

P(l)- [I - K(t)H()] P (t (136)

where I is the identity matrix, and K"t ) is the Kalman gain:

-It tHt-ie)T tit-i (137)()=PtH't)r[H(t)Pltt)H(t)T+ R(t)]- (137

Smoothing Equations
For t = N, N - 1,...,1

t() (t) + S(t)[ (t) - (138)
lit-11N P ~ t t -1 t N t-1 (138

( f) p(t) l¢(f)
T

~p~lt -N S( ) P( ) -- P ]S- (139)t-1 N - tl-+t-1 t-l tlN- tit-1J-l

where
S(t) P(() ft)TD()i (140)

t-1 - t-1 t-1 ~ tit-1

The outcomes p.(t) and P(I) t = 1,2,..., N of the recursions in (138) and (139) are then

substituted in (131) and (132) to yield the conditional expectations that are required in the
E-step of the algorithm.

4.2 Sequential/Adaptive Algorithms

In complete analogy with the single sensor case, the EM algorithm for the two-sensor case can be
converted into a sequential/adaptive algorithm by substituting the time index for the iteration
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index, replacing the Kalman smoother with the Kalman filter, and incorporating exponential
weighting into the parameter estimation update.

More specifically, denote by (tlt) and (tlt)zT(tlt) the estimate of 2!(t) and z(t)T(t)
based on the observed data to time t and the current parameter estimate 8(t). Also, define

tt (tlt) (141)

and

PtIt A X(tlt)2T(tlt) -lalt (142)

Then, att and Ptlt are computed recursively as follows:

Propagation Equation:

Atlt-1 = tClt-llt- ,l1°1 (143)

Ptt-1, = tPt-llt-lt v + ttt ,Polo (144)

Updating equations

atltt = 1tlt-1 + Kt[z(t)- Htltlt-tl (145)

Pt = [I- KtHt]Ptlt (146)

where

Kt = P t-t [Httlt-lHt + R.t] (147)

where t, Gt, Ht, and Rt are the matrices 4~, G, H, and R computed at = (t). In this
way, the state (signal) estimate is generated using a single Kalman filter whose parameters are
continuously updated.

For the application we have in mind, the dimensions r and q of the FIR filters characterizing
the acoustic transfer function tend to be very large (on the order of several hundred coefficients).
Consequently, the computation of the Kalnan filtering equations involve the multiplication
of matrices that are very large in dimension. This computation can be greatly simplified by
exploiting the structure of the matrices At, Gt, Ht, and Rt. The derivation is given in Appendix
A. To present the results, let at-llt-l be partitioned as follows:

l tAll= -t(148)
4_+ Iq

Let p be the lower p x 1 subvector of a2:

2= (149)
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Let Pt-lltl be partitioned as follows:

IP.S PW I +1P,,P P w I q +

r+l q+l

PT
P

1
2

P'1 3

P1 2

P2 2

P2 3

PT
24

P13

P2 3

P33

P14

P2 4

P34 II 1
(150)

P4 4 I q

1 r 1 q

Let rp be the following sub-matrix of P2 2:

P22= [ I ] r (151)
p

and let rpp be the following sub-matrix of rp:

rp [ (152)

(so that rpp is the lower right p x p sub-matrix oP 2 2).

Let Ap be the following sub-matrix of P2 4:

P24 p ][ (153)

Let a and b be partitioned as follows:

For convenience, we shall use 0 instead of 1(t). With this notation, the Kalman filtering
equations are given by:

Propagation Equations

P2 i r
-i ]. 1

lPtIt-I = (156)

0 tI
l l

23

[ pi,

[ ,P14 
PT
'34



Ptt-1

r 1

where we note that Ptlt-l is a symmetric matrix.

Updating Equations

zl (t) + a T p p - abT4

Pt t = Ilt-l +± Kt* z(t) - boTp - b±l z

Ptlt = Ptlt- -Kt D T

where Kt (the Kahnlman gain) is given by:

where

-rpa + P2 4 al

aTr a + g - aTApai
Dt --

-A T ot + P4 4a1

aO ·gw
# _ s~~~~~~

P2 2 bl - rpa · bo

-aTrTbl + bo(aTrppa + g)

P2Tbl - Apa bo

1

and Ft is the 2 x 2 symmetric matrix:

f 

where

fil = a P 4 4 a, - 2aTAT +

f22 = bTP2 2 b, - 2bo bTr p

f2 = 2 - o1 Ap a

a Trppc + g ag, + g + 91

+ b(aT rPa PC g,) + gw, + 92

- bTFrpa + bo(aT ppac + gs) + aOgw

To update the parameter estimates, we modify Eqs. (111)-(117) by replacing the iteration
index () by the time index (t), use the data only up to the current time t, and incorporate
exponential weighting. With that, we obtain:

&(t + 1) = - [ t-(sp_- (r -- lT)s] 7-p 1(T - 1jr).(r) (166)

24

aTrFppc + g, 0

0

-aTA

P44

q

I r

1q
It 1

(157)

9w

1

(158)

(159)

(160)

I r

I 1
Iq
I: 1

(161)

1

fi2]
f2 2

(162)

(163)

(164)

(165)

·- ------ ----- ·---- ·-- -- ·-- ·-- -

0P22 P24

i . . I



t t

e 7e-I 7 2:-"~rlr) +&r+1 ]?spr lr)s(rlr) (167)9s(t + 1) t t[ S rr) + at
Er = sr=l =1

t

wt + 1) = t t- T E 7t W (·I7) (168)

a(t + 1) = [ W(T7)W(T)] q(TIT) ](169)

gl(t+1) t t t [z2(r) - 29(rIT)zi(T) + S2(TIT)]- E a
Er= a r=l

- a(t + 1) -t [iq(T (I)Z1() - q(7 (1 )(TT) } (170)

9(t+1) = E-=y(T t-rIT7bT -)z2(Ir) w2(r-r)]
r=1 r=1

- bT (t + 1) 7b r(,(rT)Z2(r) - (rlr)w( } (172)

t

R 11(t) = 7- 1 1(r - r)T_(r- l(-)11)
'-1

, uRil(t- lit) + ap_(t-llt)8_T(t-llt) (173)

t

R1 2 (t)= SST Z t-(.- lIr)s(rlr)
T=1

= R 2(t-llt)+ +s(t-1t)s(t (174)
t

R22 (t) = E y-ys(rl) = - R 2 2(t-1) + ;2(tlt) (175)
Tr=1

QIl(t) = S 7TW2(t1t) = 7 wQ 1 (t-1) + w 2 (tlt) (176)

t

T=1
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= yAll(t-1) + Wq(tlt)wT(tlt) (177)
t r 1

A1 2 (t) = -7 -
i[(T|T)Zi()- ()

7= aA 2 (t-1) + q(tlt)z(t) - wq(tlt)s(tlt) (178)
t

A 2 2 (t) = S t -a [Zl (T)- 'r) + 2(717)]
T=1

= aA 22 (t-1) + z2(t) - 2(tlt)zl(t) + s2(tlt) (179)

t

B,,(t) I = -Tsr(Trl)8(TrlT) = YbB,(t-1) + 8s(tlt)8 T(tlt) (180)
rr--1'=1

B1 2 (t) =ir(TT)Z 2 (T) - ar(7)U(1rT)]

= bB12(t-1) + r(tIt)z2(t) - s,(tlt)w(tlt) (181)

B2 2 (t) = -2T[2(T) - 2(r)Z2(7) + w2(7TI)]

T=1

= 7bB 2 2 (t- 1)+ z2(t) - 2(tlt)z2(t) + w 2(tlt) (182)

Then:

a(t + 1) = -R-l(t)Rl 2(t)

(t) - ( sP (t jjt)8(t lt + p_(t t)S (t- llt)a(t ) (183)

#g8(t + 1) = 1 - [R2 2 (t) + &T(t + 1)R 2 (t) (184)
1-I

,(t +1) = 1 t7 (t) (185)

a(t + 1) = All(t)A12(t)

= a(t) + A- 1
1 (t) ,Iq(tlt)z,(t)- +q(tt)-(tjt)- w(t (it) j (186)

M1 (t + 1) = 1 t[A22(t) - aT(t + 1)A 12(t)] (187)

b(t + 1) = Bl 1(t)Bl2(t)

= b(t) + B 1 (t) ,(tIt)z 2(t)- r(tflt),(ttt) - s(tIt)8T(tJt)!(t) (188)

g2(t) = 1 [B 22(t) - bT(t + 1)B 12 (t)] (189)
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We note that the recursions in (186) and in (188) involve the inversion of the matrices
A 1l(t) and B 11 (t) at each step of the algorithm. Since these matrices may be very large in
dimension, it may be computationally expensive. However, as it turns out, these matrices
(also Rll(t)) have weak dependence in t since they quickly converge to their expected value.
After these matrices approach their steady state, we may fix them and obtain computationally
much simpler recursions.

We also note that if the various parameters are slowly varying, we do not have to update their
estimates each time sample. Thus, to update the slowly varying parameters of the speech signal,
we may compute R11(t) and R 12(t) recursively in time using (173) and (174), respectively; but,
re-estimate the AR parameters by multiplying R1l(t) with R 12(t) only occasionally. The same
procedure can be applied when estimating the coefficients a and b of the transfer functions
(under quasi-stationary assumption), with a considerable savings in computation.

V Gradient-Based Algorithms

As an alternative to the EM algorithun, consider the following gradient-search algorithm for
solving the maximization in (1):

(t+1) ) + 1 a log f(z; ) (190)
0i = 4- ~5i. N ' c9i ( 190)

where O(t) is the estimate of Oi (the ith component of 6) after t iteration cycles, 5i is the step-size
(it may vary in dimension and size depending on the index i), and N corresponds to the number
of data samples. For sufficiently small step-size, this algorithm converges to the ML solution,
or at least to a stationary point of the log-likelihood function.

To compute the partial derivatives in (190), we observe from (9) that

a;iP(OO')],=8 = 0 i = 1, 2,... (191)

(since P(O, 6') obtains its maximum at ' = ). Therefore, differentiating (8) with respect to
Oi at ' = 0,

_ 0
aa logfz(z; ) = a (ee')

by-(6) Ee { ilogfY(y;6) z} (192)

where in the transition from the first line of (192) to the second line we have assumed that
the operations of differentiation and expectation (integration) are interchangable. This identity
was first presented in [4], and more recently in [1], [5], and [6]. It asserts that the derivatives
_9 log fz(z; 0), where z denotes the observed (incomplete) data, can be calculated by taking

the conditional expectation of the derivatives log fy(y; 0), where y denotes the complete
data. This identity appears to be very useful for a set of problems of interest to us, since the
differentiation of log fy(y; 0) is much easier than the differentiation of log fz(z; 0), as indicated
in [7], [8].
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5.1 Single-Sensor Case: Iterative Gradient Algorithm

Differentiating (25),

a log f (y; ) [s(t)lspf_(t 1) + a s_(t 1)sp_(t 1)]

a log fy(y; )

a log fY(y; 6)

[s(t) + aTsp- (t-1)] 2

[z(t)- _(t)]2

Invoking (192),

a
a log fz(z; 6)

a log
a log f(Z; )

6 99

log fz(z; 6)
Og~

N
2g2

N

2g,

1 N.
1g2E ;2(t) + 2Tsp(t- 1)(t) +

'- ~ t=1

+ t sp_ (t- 1 )p_, (t- 1 )]

N

2g2 E [ (t) - 2z(t)i(t) + ;2(t)]
I =

where we define:

(.) E{Iz}) (199)

Equations (196)-(199) specify the components of the gradient needed for the algorithm in
(190).

As before, we denote by:

and by

-(I)

o(t) = )
g6()

() (t ) = Eo(,){I-z}

Then, the algorithm in (190) can be put in a form very similar to the EM algorithm:

Signal Estimation: for t = 1, 2,..., N compute:

-(I)8p
- (t) ]

28

N
2g,

N
2g,

I N

2g t=
N

292 =1

(194)

(195)

(196)

(197)

(198)

] (200)

(201)

(202)

1 

93 t=1
(193)

4- aTsp-, l(tT 1)ST
1 

- __E S(t)$T (t-1)
98 t=1 P



_ sp 1 (t-1)sT_ (t-1

(t),(t)
s(t)sp1 (t- 1)

Sp-,(t- 1)3(t)
8p_l (t-- l1)8(t) (203)

Parameter Estimation:

(204)

= :!c+ , + 2g1()

+ 6* {- 

1
+ ---

21V2
* _ [2(t)(t) + 2a ( t ) ,p_,(t- 1)s(t)

Nt=1

,_((t- 1) 8 T (t-1) a (t)
j

1 i N
F- + 1- . - · j Z[Z2(t)- 2z(t)i4)(t)+ ;±( t )(t)]

E2g t=J

(205)

(206)

Equations (202) and (203) are identical to Eqs. (28) and (29). Thus, the signal estimation
is identical to the E-step of the EM algorithnl. The difference between the EM algorithm and
the gradient algorithm is in the parameter updating.

We note that 6 ,a is dimension-free since a is dimension-free, 6, has the dimension of gs, and
6f has the dimension of g2. It therefore suggests normalizing E, and 6, as follows:

6, = g() * 6 (207)

(208)6, = (t) 2 

where , and Sf are dimension-free. In this setting, Eqs. (205) and (206) become:

. (t+1)
( T_ .I (f)

[2(t)(t) + 2( spl(t- 1)s(t)

() (T (t)

+ (t)'sp_l(t1)sT(t-_1), (209)

e 1N

t=l
(210)

We note that b6 ,, ,, and S. need not be the same.

5.2 Single-Sensor Case: Sequential Adaptive Algorithm

We can convert the iterative algorithm into a sequential/adaptive algorithm. Thus, instead
of estimating the signal by applying the Kalman smoother iteratively, it is estimated using a
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forward Kalman filter whose parameters are continuously updated. The recursive formulas for
the signal (state) estimation are the same as before, and are given by (62)-(63).

To update the parameter estimates, we replace the iteration index by the time index, and
substitute the sample averages (-) in (204), (209), and (210) by their most current term:

a(t + 1) = a(t) - s p _(t-llt)(tjt ) + p(t-llt)sP I(t- lt) &(t)] (211)

,(t + = 1) (1 2 ) Mg(t) + 2 [s (tlt) + 2T(t)s l (t- jt)s(tt)

+ aT(t)sp_(t-lt)p 1_(t- lt)a(t)] (212)

9E(t + 1) ( 1 - ) z(t) + 2 [z(t)- 2z(t)?(tjt) + s2(tt)] (213)

We may choose 6,, 6,, and 6, to be functions of time, i.e. 6 a = 6a(t). We note that the effect
of these coefficients is similar to the effect of the forgetting factors in the previous development.

Invoking the special structure of (62) and (63), and following straightforward algebra ma-
nipulations (see Appendix B for details), Eqs. (211)-(213) can be represented in the form:

6b&(t + 1) = a(t) - (t [.p 1_l(t-lIt)c(t)+ At_1 &(t)] (214)

(t + l) = 9s(t)+ 2 2(t) (-(t)] (215)

(t + 1) = g(t)+ 2It) [e2(t)-(t)] (216)

where

e(t) a z(t) + aT(t)-l_(t-lit) (217)

We note that --&T(t)p_1(t-lIt) can be interpreted as the predicted value of the signal at
time t based on observations to time (t- 1), that is:

g(tt-1) = -aT(t)p_l(t-lit)

Therefore,

e(t) = z(t)- (tlt-1)

can be interpreted as the new information, or the innovation, carried by the new measurement.
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5.3 Two-Sensor Case: Iterative Gradient Algorithm

Substituting (101) into (192) and performing the indicated differentiation and expectation op-
erations, the components of the log-likelihood gradient are:

a log fz(z; 0)

a
log fz(z;)

Og,

a
Ogw

log fz(z; 0)

a
a log fz(z; 0)

a
a log fz(z; 0)

a
ab log fz(z; 0)

a log fz(z; )
O92

N 1

st= (t)1(t-) +aT sp_(t-1 )pT_l(t - 1)

N -- + 2E [2(t) + 2aTsp_l(t-1)s(t)

2g, 2g t=

N 1 N

+ 2aTw,(t)s(t) + aTW(t)W,(t)a]

A ~ [z 2(t)ft) T- T bT' r t)BF)]=-- 2 _ (t) s(t) - W (t ) s T (t)(t)

_ - + 2 2 {:~(t)-2z,(t)s-(t) + w2(t)- 2bTe (t):l(t)

+ 2bT , (t)w(t) + bTr(t)8T(t) b]

where (.) Ee{:lz} as in (199). Thus, the computation of the log-likelihood gradient requires

the computation of F(t) and z(t)zT(t), where z(t) is the state vector defined by (104).

Substituting (217)-(222) into (190), and performing the iteration cycles by first calculating
0 = O(), followed by a parameter update step, the resulting gradient algorithm can be put in
a form very similar to the EM algorithm:

Signal Estimation:
for t = 1, 2,..., N compute:

F(W)(t) = E(,),({(t)lz} (225)

(226);e(t)eT (t)
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(218)

(219)

(220)

(221)

(222)

(223)

(224)

= E* (f~tW(t)2!t) I -



Parameter Estimation:

&(+±) = a(t)- (t) '* N.[Spl(t-1)s(t) + sp(t-1)sT,(t--l) ()] (227)

+ Sp-, ,( Tl( -1)ST)] (228)

(+1 = (1 _ 6 ) 9t +j E *1Et ) (229) 

( )2 tN1 -2l(t)')(t)+s2()(t)2(T )(t)(t) + 2a (t) (W+ Q (t Sp (t- 1)s(t))]

a(C+') = .+ Z*N[P'(t) z2(t) -1 )sT- 1)a (t) b] (2328)

( 2 ) 2 N [-2(t)-(tt)(t)(t)+ {(t)(t).+1)- . (t t) (2 2 )

a(t+l) = ) - wETt)(t)zi(t) ± 2a' s(t)S(t) q(t) tT(t )()] (230)

- I - 2zi(t)kt()(t) + )(t)=_ 2am'~, (t) (t)z,(t) + 2a (t) () + ,(+)T (T)(t)a() (231)

The signal estimation step is identical to the E-step in the EM algorithm, and it is performed
hy applying the Kalman smoothing equations. The difference between the two algorithnls is

in the parameter updating. We note that 6,, 6,x,, 6, and 62 are dimension-free normalized
coefficients.

5.4 Two-Sensor Case: Sequential/Adaptive Algorithm

To convert the algorithm into a sequential/adaptive scheme, we replace the iteration index ly

the time index, and replace the Kahman smoother by the Kalman filter whose parameters are
continuously updated. The formulas for the signal (state) estimation are identical to those
presented in conjunction with the EM algorithm.

To update the parameter estimates, once again we replace the iteration index by the time
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index, and substitute the cumulative averages _(.) by their most current term, to obtain:

a(t + 1)

9S(t + 1)

,w(t + 1)

a(t+ 1)

?1(t + 1) =

b(t + 1) =

2 (t + 1) =

9t6, 1
-(t) . Sp-,)_l(t-l t)s(tt) + Sp-(t-ll t) _ (t-l It)&(t)= a~t)- M(t) (234)

(1 - 8 (t) + 6
2 2

(t)8p_ (t- It)spTl(t- 1t) 

= - t(t) + -w [(tlt)
= at)+ (t) I q·(tt)zj(t) - wq(tIt)5(tlt)

(235)

(236)

(237)

(1 2 ) glt) 2 (t) - 2j(t)s(lt) + s2(tlt)

- 2aT(t)( q(tIt)z(t) + 2aT(t)wq(tlt)s(t) + aT(t)wq(tltf)w(tIt)a(t)](238)

b(t) 2 (t) [r(tIt) 2 (t)- sr(tlt)W(tlt) - s,(tlt)r r(tIt) (t) (239)

- M2) (t) + '2 [2(t) 2z2(t)U3(tlt) + w2 (tt)

- 2bT(t)r(tlt)Z2 (t) + 2bT (t)S,(tt)W(t) + bT(t)sr(tlt)S T(tit) b(t) (240)

Note the nice intuitive form of Eq. (236). Specifically, the new estimate ,(t + 1) is obtained

by weighting the previous estimate gw~(t) with the current estimate of the average power of uw(t).

All other gain update equations have the same meaning.

We finally note that similarly to the single sensor case, the structure of the equations for the

signal (state) estimate can be exploited to further simplify the form of the parameter update

equations.
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Appendix A: Development of the Efficient Form of the Kalman
Filtering Equations for the Two-Sensor Case

Substituting (125) and (148) into (143)

[,--- I >t] 1w [ ](A.1)

where

[ OT T[p]2[: P ] (A.2)

and

0 oT P3 1
Substituting (A.2) and (A.3) into (A.1), we obtain (156).

Substituting (125), (150), and (123) into (144)

0 PL P,,, 0 

S W 1 +GGT (A.4)

, P,,T P4 W W

where

r AT n

;J plT =

L 0 0

P22 1 -rpO

J PSW ;T

4 UtP,,W w

'I - ' I P J22 -[ 1 

1
-TT 1 CTrppa J
0 o I P13 P14 OT °

- oT -- xT P23 P24 I O

P2 4 0o
-aTA 0 

ro I P3 3 P3 4 oT 0
T P3T4 P4 4 I O

P44 0
oT o
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and GGT is the matrix having only two non-zero components:

GGT= 1 9 r +1 (A.8)
g, 9w --r+q+2

1` 1
r+l r+q+2

Substituting (A.5)-(A.8) into (A.4), we obtain (157).

Now, let the matrix H in (124) be written in the form:

[oT 1b T 1 ] (A.9)

bT bo OT 1

Define the matrices:

Dt = Ptlt_lHT (A.10)
Ft = HDt + R (A.11)

Substituting (157) and (A.9) into (A.10) and carrying out the matrix multiplication, we
find that Dt is given by (161). Substituting (161), (A.9), and (128) into (A.11) and performing
the indicated matrix multiplications, we find that Ft is the matrix in (162), whose elements are
given by (163)--(165).

Finally, substituting (A.10) and (A.11) into (146) and (147), we obtain Eqs. (159) and (160),
respectively.
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Appendix B: Development of Eqs. (214)-(216)

We start from Eq. (211). Decomposing sp(tlt)sT(tlt) into a product of means plus a covariance
term (see (51)), and invoking (65)-(67), we obtain:

a(t + I) + a (t)Sp_1(t llt)]- a(t) - .- {Pl(t- lt) [~(tlt)

- (tAt &(t) + [At- -

t(t) ) -

+ At_l(t) -(t) + 1 - '

(t)At-]

&T(t)sp_1 (t--ll t- - 1) (

a&T(t)Atl(t)l

7(t) J

= &(t) - (t.-) {_l(t-llt)[z(t) + aT(t)p_l(t-llt-1)] + Atla(t)}
77(t)

Substituting (217) into (B.1) immediately yields (214).

Next, we manipulate Eq. (212):

= (t) + ±' -g(t) +

+ (t) [
+ 7~ T(t)At-l(t) + ?,(t)] - 2. tt)) (t)At&_ (t)

77( t 

+ aT(t) [At-

(t) 2t __(_____( )
[ztt) -T(t)3p-l(t -t--1) s(t)

+ aT(t)Atla(t)- (t))aT (t)At-la(t) + (t)()

- 7 [aT(t)At-a(t)]2}
.l(t )

' -Ms(t) +

=9(t) + -s(t) + ?2(t)

+ &aT(t)At_la(t)

[z(t) + T(t)S _l(t- lt-1)] 2

g (t)
71(t)

+1
_T (t)At- la (t)

7] 7(t) J

¥s 2(t)
2 72(t)
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(B.1)

= s(t) +

- Z

· _ J

- -------- ^^111�-�---· ·1 -^-r�ll-----·--- -- II ·------

1 Ata( T 

77Mf

s(t + 1)

77( t )eTt~,,

[[,(t) + aT(t)S~it 2)]

[..!(t) + &Tc t).9Plct_ 1 It_1)]



+ r 
(t)- (t) +&T(t )At&(t)+(t)

-9-(0~~~~

= Mt) +2 * -2(t) { [Z( t) + aT(t)p_(t-l t-1)]2 - (t)}

Substituting (207) and (217) into (B.2) immediately yields (215).

Finally, we manipulated Eq. (213) as follows:

+ [ltlt) - Z(t)] 2 + ?t(t)[aT
77(t)

(t)Atla&(t) + §.(t)]

+ -a

z(t) + (t)p 1_l(t- lit-)[ T(t)At_l&(t) + 9,(t)],(t)

+ [&(t)[(t)At-al(t)
+7( -

= e(t) + - (t){ _ (t)T

+ --- [7 7(t) -
77+ (t)

= ~,(t) + 6 ( ___
2 72(t)

)]2

f (t)] }
{[z(t) + a T (t)ip_1(t - lt_1)]2 _ (t)}

Substituting (208) and (217) into (B.3) immediately yields (216).

37

9f(t + 1)

(B.2)

= (t) + -9(t)

= e(t)+ 2 - (t)
2

- z(t)] + M0(t)]}

(B.3)
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