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Abstract

We describe a robust A/D converter system which requires much less hard-
ware overhead than traditional modular redundancy approaches. A modest
amount of oversampling is used to generate information which can be exploited
to achieve fault tolerance. A generalized likelihood ratio test is used to detect
the most likely failure and also to estimate the optimum signal reconstruction.
The error detection and correction algorithm reduces to a simple form and re-
quires only a slight amount of hardware overhead. We present a derivation of
the algorithm followed by simulation results for both ideal and optimized FIR
processing.
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1 Introduction

In this paper we describe a round robin A/D converter system that provides a high
sampling rate and that can tolerate converter failures. Such a system could be used in
high stress environments where continuous operation is needed or in remote sensing
applications where servicing faulty units is impractical’or even impossible.

Traditional approaches to fault tolerance have focused upon using modular re-
dundancy [8]. Several identical copies of the hardware operate in parallel using the
same input. Their outputs are compared with one another and agree if no errors have
occurred. Using one extra copy (100% overhead), a single fault can be detected; with
two complete extra copies (200% overhead), the faulty system can be identified and
disabled. This amount of overhead required for fault tolerance is much greater than
that required for other applications such as data transmission, where error coding
techniques can be used.

In a communications system where NV bit symbols are transmitted through a noisy
channel, it would be very wasteful to retransmit each symbol several times in order
to achieve robustness. Instead, each N bit symbol is mapped into a slightly larger
N + C bit symbol, and this is transmitted. Uncorrupted data occupies a fraction of
the N + C dimensional space and the receiver tests each received symbol to see if it
lies within this subset. If a received symbol is not within the allowable subspace, an
error has occurred and the most likely transmitted symbol can be determined.

Musicus and Song [7, 6, 5] have applied this technique to multiprocessor archi-
tectures computing linear functions. Their approach combines weighted linear check-
sums similar to [1, 2, 3, 4], with an optimal statistical fault test. They begin with
N processors which compute the same linear function of different inputs. Next, C
extra processors are added which also compute this function. These extra processors

each use a different weighted sum of the inputs to the N processors as their input.




When all processors are operating correctly, the subspace spanned by the output of
the N + C processors will have dimension N. If the output does not lie within this
subspace, a processor has failed and the failure can be identified and corrected using
a generalized likelihood ratio test.

In this paper, we apply their basic idea to A/D conversion. We start with a
number of slower A/D converters operated in round robin fashion, and introduce
linear redundancy through oversampling. A generalized likelihood ratio test is used
to detect and correct errors. The algorithm reduces to a simple form with a complexity
comparable to an FIR filter. A high pass filter is used to detect converter failure,
and the output of working converters is used to interpolate samples from the faulty
converter, If NV converters are needed to achieve the Nyquist sampling rate, then
adding one extra converter will allow single faults to be detected. Using two extra
converters allows single fault correction with ideal filters; using three extra converters
permits single fault correction for practical systems based on finite order filters.

This paper also extends work done by Wolf [9]. He shows that under certain con-
ditions, discrete-time sequences carry redundant information which allows detection
and correction of errors. Specifically, sequences whose discrete Fourier transforms
contain zeros can be protected from impulse noise. Wolf’s error detection and cor-
rection scheme is based on coding theory, while ours utilizes a generalized likelihood
ratio test. Both methods use out-of-band energy to detect errors.

We begin by describing a model of a round robin A /D converter system. Then we
develop the fault correction/detection algorithm using a generalized likelihood ratio
test, and present computer simulation results of the ideal system. Next, we consider
the restrictions imposed by real systems, and discuss how a practical system can best

be implemented.
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Figure 1: Round robin A/D converter system.

2 Round Robin A/D Converter

Error-Free
Digital Circuitry

A round robin A/D converter system is shown in Figure 1. It contains N slow A/D

converters each with fast sample and hold circuitry. The first converter samples and

holds the analog input signal and then begins a conversion. After a fixed delay, the

second converter samples the signal and begins a conversion. This repeats for all N

converters and by the time the N2 converter starts, the first converter has finished

and is ready to accept another sample. Operation continues in this circular fashion.

If a conversion requires T seconds for a single converter then the overall sampling rate

for the round robin system would be N/T samples/sec., and the input can contain

frequencies up to fie: = N/2T Hz.




To decorrelate the quantization noise from the signal, we use a small amount of
dither. Dither circuitry adds a random analog voltage uniformly distributed between
+1/21sb (least significant bit) to the sample. After conversion, it subtracts this same
quantity from the digital signal. As a result of dither, each output sample contains
white quantization noise uniformly distributed between £1/2 Isb which is uncorrelated
with the signal.

We assume that the converters must operate in a stressed environment and that
they are the only components subject to failure. We model converter failures as being
independent and assume that only one converter fails at a time. (Multiple failures
could also be handled properly but with much more difficulty.) We assume that
the dither circuitry, digital processing, and output busses always function properly.
If necessary, these components could be protected against failure by triple modular
redundancy or the digital processing may be performed remotely in a less stressful
environment. Also, failures in the dither circuitry can be restricted to cause no more
than a :i:% Isb error in the samples.

This system is made robust by introducing redundant information. Keep the ana-
log input signal bandlimited to % f,,.. Hz, but add C extra converters to increase the
sampling rate to E‘TLQ samples/sec. The input signal is now somewhat oversampled.

When a fault occurs in the k% converter, the output signal will contain a noise
spike every N + C samples. In the frequency domain, this fault noise has a periodic
spectrum with N + C complete copies of the fault spectrum contained in an interval
of width 2m. C copies of the fault spectrum are contained in the high frequency region
where there is no energy from the low pass input signal. The phase shift between
these copies depends on which converter failed. This is illustrated in Figure 2.

Our optimal fault detection/correction algorithm essentially measures high fre-
quency energy to determine if a fault has occurred. It identifies the broken converter

from the phase difference between high frequency copies of the fault spectrum. Finally
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Figure 2: Output frequency spectrum of round robin A/D converter system.

the fault is reconstructed by averaging the C copies in the high frequency region, and

it is subtracted from the observations to estimate the fault-free signal.




3 Algorithm Development

This section describes a model of the A/D converter system and then develops the
fault detection/correction algorithm using a generalized likelihood ratio test. The

output of the round robin system shown in Figure 1 can be written as
z[n] = s[n] + €[n] + ox[n] (1)

where s[n] is the original low pass input signal, €[n] is white quantization noise which
is uncorrelated with s[n], and ¢;[n] is noise due to a failure of the k% converter. ¢y[n]
is zero except for samples which came from the k% converter. Let s be a vector of all

samples s[n], and define z, ¢,, and ¢ similarly.

3.1 Generalized Likelihood Ratio Test

We will use a generalized likelihood ratio test to determine the most likely fault
hypothesis and to correct the fault if necessary. Let Hx represent the hypothesis
that no converter has failed, and let H; represent a failure in the k% converter where
0 <k <N+ C-—1. Define p(Hx) and p(Hy) as the a priori probabilities of these

events, which we assume are independent of the signal or fault,

p(Hy) =p(Hils.8,). (2)

We must compute the likelihood L of each hypothesis Hy given the observed data

(i

. For hypothesis Hx, the likelihood unfortunately depends on the unknown signal

. Therefore, we will maximize the likelihood over s to determine the likelihood L«

9]

of hypothesis Hx,
Lx = max log[p(z | Hx,s)p(Hx)]. (3)




For hypotheses Hy, k = 0,..., N+C -1, the likelihoods depend on both the unknown
signal s and the unknown fault Qk. We therefore maximize over both s and _@k to

determine the likelihood L of Hy,

Lk-max log[ ( IHk""—-]c) (Hk)]. (4)

"k

The most likely failure hypothesis is chosen by finding the largest likelihood. The
failure estimate ék (if any) and a clean signal estimate § are the values at which the
likelihood is maximized.

' The bulk of our derivation will be performed in the frequency domain where the
distribution of samples of the noise transform is approximately white Gaussian noise.
We will exploit this by approximating the noise as being zero mean Gaussian in both

time and frequency:
p(en]) = N (0, 03) . (5)

where the variance 02 = Isb?/12.
We begin by solving for Lx. Using the distribution of the quantization noise, (3)

can be written as

M1 M-

Ly = max |logp(Hx) - l Z log (21m )
=0 n=0

(z[n] = s[n])® (6)

where M is the number of samples available. The first two terms are constants and
will be denoted as 7x. Define Z(w,), S(w,), and ®x(w,) to be the M point DFTs of
z[n], s[n], and @x[n]. For long time intervals, Parseval’s theorem can be applied to
the third term in (6), giving

M-
7 2 12000 = )P U

Ly = max
s

10




where w, is a frequency index with value w, = 277 /M.
We will work with frequencies in the range of 0 to 27, and divide the frequency
samples into a low frequency region, Qy, which contains signal energy, and a high

frequency region, Q1y, which does not. The regions will be divided as follows:

Q = {w|r=0,...,M,—-1andr=My,...,.M -1}
QH = {wr!T‘=ML,...,MH—1}

where

My = (%)% and My=M-(F35) 5. (9)

Assume that M /2 is a multiple of N + C so that the frequency samples can be easily
divided into the two regions.

Since S{w,) is bandlimited, (7) can be rewritten as

Ly = max {n*—;g—;z{ Y 12w) - S+ ¥ IZ(wr)F}]. (10)

wrENY wrEQYy

Now maximize with respect to S(w,) to obtain,

S(wy) = (11)

. Z(w,) forw, €y
0 else.

This can also be written as,

S(wy) = Hep(wn) Z(w,) (12)

11




where Hyp(w,) is an ideal low pass filter with frequency response

HLP((U,-) = (13)

1 forw, € Q
0 else.

If there are no faults, so that hypothesis Hx is true, then this optimally “clean”
signal estimate $(w,) is found by low pass filtering Z(w,) to remove high frequency

quantization noise. Substituting (11) into (10), the likelihood of Hx becomes,

_ 1 1 2
Ly = nx 207 1 wreZQH|Z(w,)| . (14)

It is convenient to define Zy(w,) as a high pass version of Z(w,),
Zy(w,) = Hyp(w,)Z(w,) (15)

where Hpp(w,) is an ideal high pass filter with,

HHP(U),-) = (16)

0 else.

{ 1 forw, € Qy

Then since (14) only depends on the high frequency samples of Z(w,), we can write

Lo =h = 25 S | Zu(o)? (17)
* = Thx 20‘2M ot H\Wr .

Applying Parseval’s theorem and returning to the time domain results in,

1 M-1
Li=n%— 552 Z z5[n). A (18)

€ n=0

Now consider the case of a failure in the k! converter. As before, we apply

12




Parseval’s theorem to the time domain likelihood expression for Ly and obtain

lM-l ) 1 1 M-1 : ) .
Li = r;lgfc logp (Hy) — 3 nzzzo log (2%06) - 203—54_ Z% | Z(w,) = S(wy) — @r(w:)|7] -

(19)
The first two terms of this expression are constants and we will denote them as 7.
Divide the summation into low and high frequency regions and maximize with respect

to S(w,) to obtain
S(wr) = Hyp(wy) [Z(wr) — Bi(wr)] - (20)

Substituting this back into (19), the log likelihood function becomes

1 1 2
Ly = . - — Z(wy) — (w7} - 21
k H}fitk [Uk QUEMW,eZs:z,,l (wr) k(wr)| ] (21)

Since the summation is only over high frequencies, substitute Zg(w,) for Z(w;,).
Next, extend the summation over all frequencies and subtract any newly introduced

terms,

Tk Wr GQL

M-1
L, = max [Uk - 2(1762—]\-14— { Tgo | Zn(wn) — Sp(w )P = Y I‘I)k(wr)|2}] . (22)

In order to reduce this expression further, we must exploit the structure of ®(w,).
¢r[n] only contains samples from the faulty converter, and it is zero except for one
out of every N + C samples. Its transform ®(w,) consists of N + C copies of the

fault spectrum, each with a phase shift that depends on which converter failed,

27l
N+C

3, (w, + ) = & (w,)e"Frok, (23)

13




Therefore we may write

(o0t NQZ’C)l = 94(e) (24

for all w, and all integers [. We use this to extend the second summation in (22) to

include all frequencies,

M-1 M-1
L= = g {3 12nten) - Bl - g X o} 29

Zk r=0

Applying Parseval’s theorem and combining terms we obtain,

Ly = n}gz:x {nk - 2(1’52 g (z%[n] — 2¢y[n]zg[n] + -j\—/:g—_—c—cﬁi[n])] . (26)

We can now maximize this expression and solve for the fault estimate. For a failure in
the k2 converter, the only nonzero samples of ¢;[n] are those for which n = k (we will
use this notation as shorthand for n mod (N + C) = k.) Therefore maximizing (26)
yields,

@k[n] _ { ﬁgﬁzy[n] forn=k (27)

0 else

as the optimal fault estimate.

Now, to obtain the likelihood of Hj, substitute (27) back into (26). After some

algebra we are left with,

1 Mzl 1 N+C
Ly=m— 5 ) z%[nl+-2;,—2—-5—2z2[nl (28)
€ n=0 € n=k

Assume that all a priori failure probabilities p (Hy) are the same for k =0,...,N +

14




C — 1, so that the constants 7, are all equal,

m=nfork=0,... ,N+C—1. (29)

Then it is convenient to use scaled relative likelihoods defined by,

N+C

;=2af< )[Lk—L*—n+n*] fork=xand0,...,N+C—-1. (30)

The scaled relative likelihoods reduce to,

Ly = v (31)
L= (F57) b= X (32)

where
v = 202 (N; C) [log %((—II—{I%] (33)

is a constant. For hypothesis k = 0,..., N + C — 1, the best estimate of the original

signal is then,

~

S(w,) = Hrp(w,) [Z(w,) — Bu(w,)] - (34)

The complete generalized likelihood ratio test fault correction system is shown
in Figure 3. The dithered sampled signal z[n| is first scaled by -IY—gQ and filtered
by Hpp(w,). The output of this filter, ﬂ-‘gng[n], is sorted into N + C interleaved
streams, with the k stream receiving every (N + C)% sample starting with sample
k. Each of these streams is simply ¢;[n], the best least squares estimate of the fault
in the k& converter, assuming that converter k is faulty. We measure the energy in
each of these fault estimates, and if any energy is greater than the threshold ~, we
declare that a converter has failed. The largest energy indicates the best guess k of

which converter has failed. The signal is then reconstructed by fixing the incorrect

15
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samples (if any) and low pass filtering.

3.2 Required Number of Extra Converters

Insight into choosing an appropriate number of extra converters C can be gained by

writing (27) in the frequency domain,

N 1 N+C-1 ol 2uk

dPp(w,) == Z eN+C’, 35
The magnitude of this function is periodic in w, with period N%:'C. Since Zg(w,)
is high pass, for a given w, only C terms in this sum are nonzero. Each 1—\,1‘—1—6,- point

“period” of &)k(w,) is thus formed by averaging C sections of Zg(w,) with appropriate
phase shifts.

If C =1, no averaging takes place. The fault estimates, @k(wr) fork=0,...,N+
C — 1 will differ only by a phase shift, and the energy in each will be the same.
The system will only be able to decide if a fault has occurred, but will not be able
to determine the specific faulty converter. If C > 2, then the energy in & (wr) is
maximized when the proper phase shift is applied so that all C non-zero terms add

coherently. Thus, with C > 2 we can achieve single fault correction.

3.3 Probability of False Alarm

The hypothesis testing procedure can make several errors. A “false alarm” occurs
when Hyx is true but the algorithm selects H}, as most likely, for some k # *. “Detec-
tion” occurs if converter ¢ has failed and the method chooses any hypothesis except
Hy. “Misdiagnosis” occurs when converter ¢ has failed, hypothesis Hy is diagnosed,
and k # q. Let Pp, Pp, and Py, represent the probabilities of these events.

We can develop a Neyman—Pearson test which adjusts the threshold v to achieve

17




a given probability of false alarm, Pr. Suppose Hx is true and that the quantization

noise €[n] is white zero mean Gaussian with variance o2. Now

M-~1

2y[n] = g hap[n — lefl]. (36)

Since the samples €[n] are Gaussian, so are the samples zy[n] with mean and covari-

ance given by,

E[ZH['I‘L”H*] = 0 (37)
M-1
Cov|zg[n], zy[m]| H«] = 12—%) hup[n — l|hgp[m — l)o?
= hyp[n — m]o? (38)

where the last line follows because hyp([n] x hgp[n] = hgp[n], where ‘«’ represents cir-
cular convolution with period N +C. Since hgp[n —m] has zeroes spaced (N +C)/C
apart, samples of zy[n] spaced by multiples of (N + C)/C are statistically indepen-
dent. Equation (27) thus implies that the non-zero samples of & [n] are independent
Gaussian random variables with zero mean and variance (’—‘%?—) o2. Equation (32)
implies that under hypothesis Hx, each L) is the sum of the squares of M /(N +C) in-

dependent Gaussian random variables, ¢[n]. Each L} is thus Chi-square distributed

with D = NA—JKC degrees of freedom, and

P(L, >v|Hs) = tD/2-1e~t gt (39)

1
r'(D/2) E;',Tf"zg»,—m

where I'(z) = (z — 1)! is the normalization factor.

A false alarm occurs when Hx is true, but one or more likelihoods are greater

18




than ~. Thus
Pp=1-P(Ly< 7Ly <v,...,Livyooy < 7| Hx) . (40)

Since zy[n] is a bandpass signal with bandwidth £7C/(N + C), the L are highly
correlated with each other. Samples of zg [n] spaced by (N+C)/C will be independent
of each other, and the others are determined by linear interpolation. This implies that
likelihoods spaced by (N + C)/C are independent of each other. Since there are C of

these,

)

P 1= P (Lo S 7 Lisge 0 Lyage) S0 Lig_p(nge) 7
= 1= P(Ly<+|He)
= 1~[1~P(Ly> 7| He)

Q

CP(Ly 2 | Hx) (41)

where the approximation in the last line is valid for small Pr. We can thus use the
chi-squared formula in (39) to set v to achieve any desired level for Pp.

If the integration interval M is much larger than the number of converters N + C,
then the number of degrees of freedom D will be large, and the distribution of L}, can

be approximated as Gaussian. In this case, a good approximation for P is in terms

Pr =~ gerfc (7 — B [Lo| ] ) (42)

2 /2Var [L}| Hy]

of an error function:

where:

erfe(z) = %Lw e~ dt (43)

19




and where the mean and variance of the likelihoods are given in Appendix B:

M (N+C
' 2 4
2
Var[Lj| Hy] = 2NAfC(NZ;C) ot (45)

In other words, v should be set to:

~v = E[L}| Ha] + 8y/Var [ Lj| Hs] (46)

where:

B = V2erfc™? (?%;) (47)

. . . —z? .
A reasonable approximation to erfe(z) is me . Therefore P falls rapidly as

~ increases. It is usually better to set v somewhat too high, rather than too low.

3.4 Probability of Detection

The probability of detection Pp is defined as the probability that a fault is declared
on some converter given that a fault has occurred on converter g. In practice, this is

approximately equal to the probability that likelihood L; > v:

Pp = 1—-P(L'0S%--wL,N+C—1S”’IH‘I’%)
~ P(L;ZFY‘H‘I’.Q_SQ) (45)

20




If the number of terms summed in the likelihoods is large, M/(N + C) > 1, then we

can approximate L, as Gaussian. Appendix B shows that:

E|L)|Hy ¢ | —
Pp=1- -l-erfc [ | : ] (49)
\/2Var (2| Hov 0 )
where:
, M (N+C
elrlrne) = yhe(Ceo) e (ie)] e
) _ M N +C\* 4 C
Var [L)| H, 0 = 2N+C( - ) o’ [1+2FNR (N c)] (51)
and where FNR, is the fault-to-noise ratio on converter g¢:
N+ M@
FNR, = g 2
! M g o2 (52)

Since erfc(x) decays faster than rate e~*" we expect Pp to approach 1 exponentially

as FNR, increases or as the integration length M/(N + C) increases.

3.5 Probability of Misdiagnosis

A misdiagnosis occurs when a fault occurs on converter ¢, a fault is declared, but
the wrong converter is identified. This will cause the algorithm to “correct” the
wrong converter. The probability of converter misdiagnosis is difficult to compute
analytically, but it is possible to gain some insight by examining a simpler measure.
We can compute instead the probability that some likelihood L} is greater than L
given that H, is true and that the fault is Qq . Assuming that the number of terms
summed in the likelihoods is large, M /(N + C) > 1, then the likelihoods L} and L;

21




can be approximated as jointly Gaussian. Then Appendix B shows that:

P (L 2 L|H,,9,) ~ effc el b LT (53)
\/zvar[L' | Ho]
where
I ' M 2 2
E[Lq—Lleq,Qq] = ¥1o% (1- S*(k - q)) FNR, (54)
Var [L, - Li| H, 0| =
M (N+C C
el ) H(1-80-0) (1+ PR, (575)) @)
where

_ sin ( szc l)
S(O) = —7—
C'sin ( AT l)
is a circular sinc function with S(0) = 1, and FNR, is defined in (52).

(56)

For fixed N,C, and M, and for k # ¢, S(k — q) is maximized for k = ¢4 1. Thus,
the most common misdiagnosis declares an adjacent neighbor of the faulty converter
to be faulty. Also note that increasing the number of samples contributing to the
likelihood, M/(N + C), increasing the fraction of extra converters C/(N + C), or

increasing the size of the fault, FNR,, all decrease the misdiagnosis probability.

3.6 Variance of Low Pass Signal Estimate

In this section we consider the accuracy of our system in estimating the original low
pass signal. The equations presented are derived in Appendix A. First, consider the

case when all converters are functioning properly and hypothesis Hx is chosen. We

22




can show that the expected value and variance of our estimator equals:

Bs[nl Hs] = sl (57)
Var [§[n]| Hx] = N]-ZCUE' (58)

Now suppose that the g converter is broken with actual fault ¢,(n], and that hy-

pothesis ¢ is correctly chosen as the most likely. Under these conditions, we can show

that:
E[sn)| Hy 8] = sln] (59)
N 2 =
Var [é[n]] anéq] _ c(’:e forn=gq (60)
5 [N+ CS%k - q)] else

Thus we see that our estimator §[n] is unbiased. Signal estimate samples for the faulty
converter have variance N/C times larger than the quantization noise of a working
converter, 02, All the other signal estimate samples, however, have variance below

02. In fact, for C > 2, the average signal estimate variance,

M-~1
Vi) - ()0 @

is less than o2.

23




4 Simulation of Ideal SYstem

In this section we present computer simulation results for the ideal generalized like-
lihood ratio test. The system studied had N = 5, C = 3, and M = 1024. The A/D
converters were modeled as having a dynamic range of :}:% volt and B = 12 bit resolu-
tion. Quantization noise was modeled as uniformly distributed between :{:%lsb, with
variance 02 = [sb?/12. Despite this non-Gaussian noise, the likelihoods are formed
from so many independent terms, M/(N + C) = 128, that they can be accurately
modeled as having a Gaussian distribution.

Substituting into our formula for Pp in (42) gives:

(62)

— 34107
Pr =~ 1.5erfc (1—-—2&)

60.302
For example, a value of § = 3.85 in (46) yields 7 = 50502 and Pr = 10~%. To test this
formula, we performed 10,000 simulations without faults and recorded the likelihoods.
A graph of Pr vs. 7 as predicted by (41) is compared with these computer simulation
results in Figure 4. As expected, the simulation and analytic results are very close,
and thus either our chi-squared formula (41) or Gaussian approximation formula (42)
can be used to set 7.

Next, in order to measure Pp, we simulated the system with a faulty converter.
A fault of F bits corresponds to adding random noise uniformly distributed over a
range +2F=5-1 to the input before quantizing. When F = B the A/D converter has
completely failed; when F' = 1 only the Isb is broken. Approximating the likelihoods

as Gaussian, formula (49), and recognizing that a 1 bit fault corresponds to FNR, = 4,

85302 — v
Pp = 1-0.5erfc (W) (63)

We performed 10,000 simulations with 1 bit faults and a graph of the ideal versus
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Figure 4: Comparison of analytic and measured likelihoods for the ideal system.

the experimental Pp vs. v is shown in Figure 4. Fault detection is highly reliable.
For example, the same value of v which gives Pr = 107 in our example yields
Pp =1—1075. In fact, with this v, every fault was detected in our 10,000 tests.
The probability of misdiagnosis is also low. During 10,000 simulations with 1
bit faults, we found that converter misdiagnosis occurred only 5 times, giving Py =
5x107%. When a mistake did occur, one of the faulty converters’ immediate neighbors
was always identified as being broken. These results are consistent with formula (53),

which gives for our example:
P(Lyyy 2 Ly Hyg) ~ 4x107 (64)

The simulation results also matched the predictions of signal variance made in

section 3.6. When Hx is true, the average variance of §[n] was found to be 0.6202,
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and this agrees well with (58). When any size fault occurred, the variance of §[n] was

found to be 0.83202, which agrees with (61).
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5 Realistic Systems

In practice, the data stream to be processed is infinite in length, M = oo, and so
our batch oriented ideal system is unrealizable. In this section we consider several
modifications to the ideal scheme in order to make it practical. First, we remove the
low pass filter on the signal estimate, since it reduces the error by less than 1 bit.
Second, we remove the dither system. Third, we replace the unrealizable ideal high
pass filter with an FIR filter designed to minimize the variance of the signal estimate
in case of failure. Fourth, we replace the infinite length integration to compute the
likelihoods with finite length boxcar or IIR filters. Finally, we attempt to develop a
robust real-time, causal strategy for declaring and correcting faults which works well

for both continuous and transient faults.

5.1 Eliminate the Low Pass Filter

We can substantially reduce the computational complexity of estimating the signal
in (12) or (34) by omitting the low pass filter on the final signal estimate, and instead

using the approximate signal estimate §4[n] defined by:

R z[n] if Hx appears to be true
Saln] = . (65)

z[n] — ¢x[n] if Hy appears to be true.
Appendix A shows that the low pass filtering operation leaves the sample estimates
from the faulty converter unchanged, §[n] = §4[n] for n = ¢, and only affects samples

from working converters. It also derives the mean and variance of this unfiltered

estimator, assuming the fault is correctly diagnosed:

E [4[n]|Ho 8, ] = sln] (66)
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Var [34[n] |Ho, 8, ] = (67)

The estimator is unbiased, and for typical values of N and C, the average variance is
only slightly greater than that of the low pass filtered estimator. Thus, eliminating
the low pass filter cuts the computational load by almost half, with little loss in
accuracy.

We repeated our previous simulation and estimated the variance of the unfiltered
signal estimate. We found that regardless of the size of the fault, the average variance
was 1.086¢2 without the low pass filter, compared to 0.83202 with the low pass. This
matches our theoretical predictions, and is a strong argument for eliminating the low

pass.

5.2 Eliminate the Dither System

The dither system at the front end of the A/D system was used to ensure that the
quantization noise was white and uncorrelated with the signal. In practice, if the
signal is sufficiently random, without long slow ramps or constant portions, then the
noise will be nearly white even without dither. In our simulations with quantized
Gaussian signals, we could detect little difference between systems using dither and
those without. We can thus eliminate the dither system, simplifying the hardware

and eliminating a potential failure without severely degrading performance.

5.3 Finite Length Filter

In a practical system with an infinite data stream it is convenient to replace the ideal
high pass filter Hy p(w,) in (16) with a finite order FIR filter. This has an important
impact on the choice of C. Unlike the ideal high pass, an FIR filter will have a finite

width transition region. To avoid signal leakage, the filter’s stopband will have to
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fill the low frequency region ;. The transition band will have to be inside the high
frequency region Q0 g, which leaves only a portion of the high frequency region for
the passband. At least two complete copies of the fault spectrum are needed in the
filter’s passband in order to be able to correct any faulty converter. To achieve this
with an FIR filter will require at least C = 3 extra converters.

There are many possible ways to design the FIR high pass filter; we could window
the ideal high pass, we could use Parks-McClellan, and so forth. In the following, we
consider an alternative design strategy based on minimizing the variance of the fault
estimate.

Let h[n] be the impulse response of a high pass filter. Let us assume it has odd
length 2K + 1, and that it is centered about the origin, h[n] = 0 for |n| > K. Let
us assume that a fault occurred on the g2 converter, H,, with unknown value ¢¢[n],
and that the faulty converter has been properly identified. As before, let us assume
the quantization noise €[n] is zero mean and white, with sample variance 2. Unlike
the previous sections, let us also assume that the signal is described as a wide sense
stationary stochastic process with zero mean and covariance R[n] = E [s[j]s[n + j]].
We assume that the signal and noise are uncorrelated, and that the signal power
spectrum P(w) (the Fourier transform of R[n]) is low pass, P(w) = 0 for w € Q.

Now suppose we generate a fault estimate <1A>q[n] by high pass filtering the observations,

) hillz[n = 1] forn=
Gl = I;_L [lz[n —1) q

0 else

_ Ii;'xh[l] (sln =1l + ggln =] +€e[n—-1]) forn=gq (68)

0 else

\

(Note that we have absorbed the scaling factor ££€ shown in (27) into h[n].) Now
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for samples n = ¢,

E [$o[n]| Hon0,] = S Hllégln— 1. (69)

l=—K

To eliminate any bias, design h[n] so that

1 forp=20
R[p(N +C)] = P (70)
0 forp=4£1,£2,...

Note that this implies that a filter of length (N + C) — 1 will do just as well as
a filter of length I(N + C)+ 1. A “natural” length for the FIR filter, therefore, is
2K+ 1=lN+C)—1 for some .

h[n] in order to minimize the variance of the fault estimate. For n = ¢:

z hll}sn — 1] + z hille[n — 1

Subject to the above constraint, let us now choose the remaining coefficients of
I=—K
Z S WA -1+ Y Kllo?

s
Kp“—I\ l=—K

= QT (R+0%)h (71)

il

Var [q%[n]' Hq,iﬁq]

where h = (h[-K]---h[K])T and R is a (2K + 1) x (2K + 1) Toeplitz correlation
matrix with entries R, ,, = R[m—n]. For convenience, number the rows and columns
of h and R from — K through + K. We now optimize this variance over all possible sets
of filter coefficients h subject to the constraints in (70). Since the samples of h[n] for
n = 0 are already specified, we will remove them from A and include them explicitly
in the equation. Form the reduced vector A from k by removing rows 0,+(N +
C),£2(N + C),.... Similarly, form the reduced matrix R from R by removing rows
0,£(N+C),£2(N +C),... and columns 0, £(N + C), £2(N + C), .. .. The variance
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then becomes,

= R0]+02+2h i +h (R+0%T)k (72)

where 7 = (R[~ K] - -+ R[K])" is column 0 of matrix R with rows 0, £(N+C), £2(N+
C),... removed. Set the derivative with respect to fz_ to zero to find the minimum

variance filter:

h=-(R+021) % (73)

To obtain the optimal FIR high pass filter h, reinsert the samples specified by (70).
This method is guaranteed to have a unique minimum solution since R + 021 is
positive definite. Also, the optimal filter iz[n] will have even symmetry because of the
symmetry of R 4 ¢2I and 7.

A different ~ threshold is needed for the FIR high pass than for the ideal high
pass. Including contributions from both signal leakage and quantization error, equa-
tion (71) gives the variance of ¢,[n], with the optimal filter h substituted for h. If we
approximate samples ¢,[n] and ¢,[n + (N + C)] as being uncorrelated for any I # 0
(this is strictly true only for an ideal high pass), then formula (42) for Pr continues

to apply, but with:

M I .
BILIH] = g [ (R+0%) 4]
R 12
Var[Li| He] = 2 Nﬂj C[QT (R +021) h_] (74)

We reconstruct the signal as in (65), without using a low pass filter. We can then

show that:

E [$ln] - s[n] |Ho,8,] =

1]
)

Var [§A[n] ~ s(n] ‘Hq,éq] = (75)

else.

{ f_T(f{+afl)— i forn




A particularly useful case is where the signal power spectrum is low pass and flat
in the pass band, P(w) = o2 for w € Qp and P(w) = 0 for w € Q. (This is the

signal model used in all our simulations.) The covariance of s[n] is then

: N
Sin (N+C n)

— 2
R[n] = o pums

(76)
where 02 = 22842 is the variance of a signal filling the available dynamic range of
B bits. Using the same system arrangement described earlier with N = 5, C = 3,
and B = 12, we computed the optimal filter solution (73) for lengths 23, 31, and 63
samples respectively. Graphs of the frequency responses for the filters are shown in
Figure 5.

Once again, we collected M = 1024 samples so that each likelihood was formed
from M/(N + C) = 128 terms. 10° independent trials were performed, and we
used (42) with (46) and (74) to set the threshold 7. We found that a value of
B = 3.85 in (46) gave a false alarm probability of Pr ~ 107%. Results for the three

filters tested are shown in Table 1.

All filters tested were able to accurately detect and diagnosis a faulty converter.
The longer the filter, the more accurate its estimate q?)k[n], and thus the better its
performance. Although none of the FIR filters were as sensitive as the ideal filter
in detecting errors in the least significant bit, larger faults could be detected and
diagnosed accurately. The variances of the signal estimates are also shown in Table 1.
The variances are quite low, and their values match match those predicted earlier.
The false alarms which occur do not significantly raise the average signal estimate

variance for these filter lengths.
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Figure 5: Graphs of the frequency responses of filters tested. A:23 pt., B:31 pt., C:63
pt., optimal filters. D:ideal filter.

33




Filter

A B C Ideal
23 points 31 points 63 points | oo points

Var [5 4[n]] 1.3902 1.2202 1.1502 1.0802
Calculated v 968072 71602 61202 50502
Measured Pp | 25x107%| 22x1074| 96x10°%| 1x 10~
1bit [1—Pp|58Ix1072{2.80x 1073 | 3.8x10°* 10~°
faults | Py | 1.58x 1071 |542x107216.39x10°3| 5x10~*
2bit [1-Pp < 107° < 107° < 107° < 107°
faults | Py 43 x 104 <10°° < 107° <10°%
3bit |1—Pp <107° < 107° <107 <10
faults | Py < 1075 <1073 <107%| < 107°

Table 1: Results for the three optimal filters tested.

5.4 Finite Order Integrators

The exact likelihood algorithm computes the likelihoods by integrating the energy
in the fault estimates over all time, and then makes a single fault diagnosis for the
entire batch of data. It would be useful to develop a real-time scheme which makes
fault diagnoses and corrections based only on the most recently received data. One
change needed is to compute the likelihoods using finite order integrators: we consider
rectangular windows and single pole IIR filters. At time n, we use the high pass filter
output ¢ [n] to update the k™ converter's likelihood L'[n] where n = k:
Kini—1
Rectangular: L'[n] = Y ¢Z[n —UN + C)]
1=0 (77)

IR update: L'[n] = aL'[n — (N + C)] + ¢i[n] = lﬁo:al&k[n —I(N +C)]
=0

where Kj,; is the length of the rectangular window integrator, and 0 < a < 1 is the
decay rate of the IIR integrator. The IIR approach has the advantage of requiring
only O(1) storage, while the rectangular filter requires O(K;,,) storage. Appendix C
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shows that for long integration windows (i.e. large Kj,; or a = 1), our formulas for
Pr, Pp, and Py are still valid, but the likelihood means and variances are different.
The expected values of the likelihoods have the same forms as in (45), (51), (54),
and (74), except that the factor M/(N + C) is replaced by K, for the rectangular
window likelihood, and by 1/(1 — @) for the IIR likelihood. Similarly, the variances of
the likelihoods have the same forms as in (45), (51), (55), and (74), except that the
factor M/(N + C) is replaced by Ky, for the rectangular window likelihood, and by
1/(1 — o?) for the IR likelihood. Careful study of the formulas suggests that similar
performance for these two integrators should result if we choose Ky = (14+a)/(1—0a),
and pick thresholds Yreer = Y11r(1 + @).

We ran the same simulation as in the previous section to compare the performance
of several rectangular integrators and IIR integrators, using the 31 point FIR high
pass filter B described earlier. The thresholds y were chosen using (42), (46), and (74)
to achieve Pp =~ 1074, The decays a and thresholds ;g of the IIR integrators were
chosen to match the performance of the rectangular integrators. The results for
rectangular windows are shown in Table 2, and those for IIR integrators are shown in
Table 3. As expected, the rectangular and IIR integrators have similar performance,
and the results shown in the tables behave in the expected way. Although the observed
Pr is much larger than predicted, especially for short integration lengths and IIR
integrators, raising v by 10-20% would drop the observed Pp down to about 1074,
Performance is much worse than expected for integration lengths shorter than those

shown in the tables; the reason for this is discussed in the next section.

5.5 Real-Time Fault Detection Algorithm

The system sketched earlier is batch oriented; it collects all the outputs of the high

pass filter, sums up the likelihoods for the entire batch, then makes one fault decision
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Integration Length K;,; (samples)

128 ] 64 [ 32

Calculated v 7160 40602 23707
Measured Pr | 2.2x 1074|121 x1073]1.89 x 10~3
1bit |1—Pp|280x1073{1.00x 1071 ]3.96 x 10!
faults | Py |5.40x1072|1.82x 10! | 3.48 x 107!
2bit |1-Pp < 107° <107 2x107°
faults | Py <107%{1.58 x 1073 | 2.25 x 1072
3bit [1-Pp < 107° < 107° < 10™°
faults Py <107° <107 2% 107
4bit {1- Pp < 107° < 107° < 107°
faults Py < 10°° <1075 <1078

Table 2: Results for filter B using rectangular windows.

Effective Integration Length (samples)

128 | 64 [ 32
o 0.9845 0.9692 0.9394
Calculated ~ 3610° 2060° 12202
Measured Pp | 2.13 x 1073 | 2.13 x 1073 | 4.07 x 1073
1bit |1—Pp|1.95%x1073]9.88x 1072 3.97 x 1071
faults | Py |6.63x1072]2.06x 107! | 3.66 x 10!
2bit |1—- Pp < 107° <10°° <107°
faults | Py <10751218x 1078 | 2.75 x 102
3bit |1- Pp <10 < 10~° < 107%
faults | Py < 107° <1075 3 x10°°
4bit |1-Pp <10°° < 107° < 107°
faults | Py <105 <105 < 107°

Table 3: Simulation results for filter B using IIR integrators.
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for all the data. Several modifications are necessary to achieve a causal, real-time fault
tolerant A /D system capable of responding correctly to both transient and continuous
faults. The simplest approach would update one likelihood with each new high pass
filter output, then if this likelihood is greater than « and also greater than all the other
likelihoods, a fault would be declared in the corresponding converter. Unfortunately,
this strategy doesn’t work properly for transient failures. Figure 6 illustrates the
problem, showing various failures ¢q[n] on converter 0, together with the sequence of
likelihoods L'[n] generated by the IIR update formula (77). The dotted lines on the
graph identify the samples corresponding to converter 0.

For a continuous failure, the correct likelihood L'[n] for n = 0 is always larger than
any of the other likelihoods. For a single sample failure on converter 0 at time nyg,
however, the output of the high pass filter starts rising at time ng — K and continues
oscillating until time ng + K. In fact, because h{n] = 0 for n equal to multiples
of N + C, the likelihoods corresponding to converter 0 are unaffected by the failure
until time ng. Thus for K samples before the failure, all the likelihoods except the
correct one start building in energy and may cross the threshold 7. This implies that
a fault decision algorithm may have to wait up to K samples from the time the first
likelihood rises above threshold before it decides which converter is at fault.

Another problem shows up with faults whose amplitude increases rapidly over
time. The figure illustrates a fault whose amplitude rises at an exponential rate.
Notice that the correct likelihood is consistently smaller than some of the other like-
lihoods. Eventually, when the fault amplitude stops growing, the correct likelihood
will become largest, but this may take much more than K samples from the time the
first likelihood crosses threshold.

It seems difficult to design a single decision algorithm which produces the correct
fault diagnoses in all these cases. One possible procedure might use a three state

approach. At time n, the incoming sample z[n] is processed through the high pass
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(a) Continuous Fault
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(b) Impulse Fault
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(c) Exponential Ramp Fault
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Figure 6: IIR Likelihoods L'[n] versus fault ¢g[n}: (a) Continuous fault (b) impulse
fault (c) exponential ramp fault.
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filter, and the output of the filter ¢[n — K] is used to update likelihood L'[n — K).
Initially the detector starts in state “OK”, and it remains there as long as all likelihood
values are below the threshold 7. If one goes above threshold, go to state “detected”
and wait for at least K more samples. Then pick the largest likelihood from the last
N + C, and if it is greater than threshold go to state “corrected” and declare that
the corresponding converter has failed. Also start correcting the samples from that
converter. Note that because we do not identify a failure until at least 2K samples
after it has occurred, we will need to save at least the most recent 2K converter
samples in a buffer so that these can be corrected in case we enter the “correction”
state. This imposes a minimum latency of 2K in our fault correction system.
Further work is needed to refine this algorithm to incorporate realistic fault sce-
narios. If a small continuous fault starts, it may take awhile for the likelihood energies
to build up enough to cross threshold, thus delaying the correction. If exponential
ramp failures can occur, then it may be necessary to change which converter is iden-
tified as faulty while in the “correction” state. Rules on when to exit the “correction”
state must be developed. It will also be necessary to compute the probabilities of
false alarm, detection, and misdiagnosis for whatever algorithm is eventually chosen.
Choice of the threshold ~ is complicated by the fact that Pp depends on the total
energy in the fault, as reflected by the fault-to-noise ratio FNR. A continuous fault
of low amplitude can give rise to a large FNR, since the likelihood integrates the
fault energy over a large number of samples. A transient fault which affects only one
sample, however, must be quite large to result in a comparable FNR. Setting a low
threshold v and using short integration lengths allows smaller transient errors to be
detected and corrected. However, low - leads to high probability of false alarm, and
short integration lengths causes the likelihoods to have high variance, which causes
high probability of misdiagnosis. Choosing the best parameters in the algorithm,

therefore, involves some delicate performance tradeoffs.
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6 Conclusion

In this paper we described a robust oversampling round robin A/D converter system
which uses the redundancy inherent to low pass signals to provide fault tolerance.
The system was able to identify converter failures reliably and to correct the output
accurately. The hardware needed to add robustness is minimal: a few extra converters
and an amount of computation comparable to an FIR filter. A disadvantage of
our approach' is that we rely on a statistical test to detect and correct faults, and
therefore have certain probabilities of missing or misdiagnosing a fault, or of declaring
a ‘fault where none exists. More fundamental concerns relate to our use of round-
robin scheduling of multiple slow A /D converters, a technique which requires careful
attention to calibration, sample/holds, and timing issues. Despite these potential
problems, our approach is considerably cheaper than traditional approaches to fault
tolerance such as modular redundancy, yet can achieve comparable protection against

single faults.
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A Signal Estimates: Mean and Variance

Assume that fault H, has occurred with value ¢,[n]. From (27) we know that ¢;[n]
is formed from a high pass version of z[r]. We can expand this filtering operation as

a convolution sum,

. M-1

where we define

1 forn=k
ui[n] = (79)
0 else

and where

(=1)"sin (wac n)

M sin ({7")

th[n] = (80)

is the impulse response of Hyp(w,). Substitute (1) into (78), and since s[n] is a low

pass signal, we are left with

Siln] = (,[n] + &n]) uiln] (81)

where ¢, [n] and €[n] are high pass versions of ¢,[n] and €[n]:

Al = ST hurlldn -1
] = N : S hapllleln -1 (82)
=0

It is important to recognize that hyp[n] contains zeros at all nonzero multiples of

N + C samples. Therefore, ¢,[n] = ¢[n] for n = q. Also, €[n] is white Gaussian noise
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with mean and variance

Elel] = 0 (83)
Ele[llelr]] = o26[1 -] (84)
Thus:
Efe[r]] = 0
Cov [€[n],€(m]] = (N;C) ’2_(:) hup[n — Qhyp[m — l)o?
= (F25) hurbn — mio? (85)

where the last line follows because hyp[n] = hyp[—n] and hgp[n]|* hyp[n] = hgp(n],

where ‘+" denotes circular convolution with period M. These equations imply that

E [ulnl| Hy 8] = 8, lnusln] (86)

and

Cov [(ﬁkl [n], éx, [m]l Hq,gﬁq] = Cov [E[7z],€[m]| Hq,gq] Uk, [RJug, [m]
(N +C
C

2
) hupln = mlous, [lus,m] - (87)

Now for the mean and variance of the approximate, unfiltered signal estimate,
which is formed by subtracting the fault estimate from the observations, (65). Assume

that the fault H, has been diagnosed properly. Then

Saln) = 2[n] = gqfn]

= sfn] + ggln] + €fn] — (,[n] + €[n}) ugln]
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= s[n] + €[n] — g[n]u,y[n]

Thus:
E [$aln]| Hy, 8] = sln]

and

Cov [8afnl,salm] Hy, @] = E [(en) = elnugfn]) (elm] — elmluglm)] Hyy 2,

=0’ {6[71 —m] — (N; C) hgp[n — mlug[n] — (NZ C) hyp[m — njuy(m]

N+ C\?
+(FE2) harpln = il (90
In particular, since hyp[0] = C/(N + C),
Xo? forn=gq
Var [34[n)| H,, ¢ | ={ ¢ (91)
o2  else

From this we see that all samples of §4[n] have the proper average value and that the
X times as much variance as the samples from the working

corrected samples have &

converters. Also, the average variance in §4[n] is,

L i Var [gA[nqu,g_sk] = [1 + 5%%] o2 (92)

M n=0

The ideal estimate under hypothesis H, is formed by low pass filtering §4[n],

§[n] = ME—:I hrpln — r}§alr] (93)

r=0
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Substituting (88) into this equation and recalling that s[n] is low pass, yields,

§[n] = s[n] + g: hrpln — 7] (e[r] = €r]uy|r]) . (94)
Thus,
E [3[n] | Ho, 8| = sln] (95)

and we can compute the variance as follows,

M-1M-1
Var [3[n] | Hy, 0] = }:0 Zo hipln = rlhep[n — JCov [34lr), 3alt]| Hoy 0] (96)
Z—: R pln — 7)o =2 (N;- C) > Z hpp[n — rlhpp[n — tJhyp[r — t)o?
r=0 r=q t=0
T 2
+ (A ZC> ;ghmw[n — rlhyp[n — tlhyp[r — t]of.

This can be simplified in a few steps. Note that hyp[n] * hgp[n] = 0, and also:

S forn=0
hHP[n(]V + C)] — N+C or n (97)
0 else.

Thus,

)T hon -l (99)

r=q

Var [3ln) | Hy, 8] = 3= Wpln —rlo? + (S

r=0
After a little more algebra, we find that

Lo? fi =
Var [8[n] | Hp, ) =4 ©°° orn=4a (99)
oo + N+CS2(n —q)o? else
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where S(1) is the circular sinc function with period N+C in (56). The variance is thus
highest for those signal samples, n = ¢, from the faulty converter which have been
interpolated from the other converter samples, 1—"-02. All other signal samples have
variance below o2, with lowest variance occurring for signal samples from converters
far from the faulty one, about ~% N +C In fact, we can show that signal estimate samples
for the faulty converter are unaffected by the low pass filtering operation. To see this,

note that Hyp(w,) = 1 — Hyp(w,), and thus hpp[n] = §[n] — hyp[n]. Substituting

gives:
M-1
§[n] = san] - g hapn — Usall]
= saln) - Z hapln =1} (=10 - &,l1) (100)
For n = g¢:

Sln] = saln] - (2H["] =2 hupln - l]<f3q[l])

I=q

saln] (zH[n] ~ hupl0] (N;C C) 2aln])
sa[n] (101)

The average variance of the ideal estimator is,

M-1 M-
37 & Ve[l 1 Hg) = ger+ (CE) By X ol e?
N +1)

The statistics for § 4[n] and §[n] can also be derived for the case when all converters

are working properly and hypothesis Hx is chosen. The mean and variance of the
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unfiltered signal estimator are:

E{saln)l H¥] = s[n]
Var[$4]n]| H¥] = o2

The mean and variance of the filtered signal estimator are:

E[sfnll Ha] = sln]

N _ o

M=1
Var[3[n]| Hx] = . hipln—1o? =
= N+C

B 1Ideal Likelihoods - Mean and Covariance

(103)
(104)

(105)

(106)

In this section we derive the formulas of section 3.5. First, define 7i[n] as a shifted

version of hy p[n] with all but every (N + C)® sample set to zero:

’r[n]*{ hgp[n +1] forn=0

0 else.
Then
= harln + s 3
min] = hgpin + e N+c"
N+C r=0

and Fourier transforming we obtain:

M~1 '
M(om) = 3 lile
n=0
1 N+C-1 27T .(w +.2_"_".){
- N+C ; Hl["”(“’"‘JrN+C)“BJ e
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(107)

(108)

(109)

(110)




Now 7j(wy,) is periodic with period 27 /(N +C). For frequencies in the range 7 N/(N +
C) L wy < (N +2)/(N + C) we can calculate:

1 c-1 : 2xr
n(em) = §g o 1 elentEe)
r=0
_ _Nics(z)ef(wm+ﬂ;%’)l (111)

where S(1) is the circular sinc function defined in (56). A formula valid for all w,, can

then be derived by exploiting the periodicity of 7(wy,):

C

nwn) = g St =) (112)
where p,, is the integer:
Pm = [m (N;;C) - N/QJ (113)

and where |z ] represents the largest integer no greater than x. Note that the phase

NﬂC about 7! in steps of %’%, while the magnitude

of 71 (wm) is a sawtooth ranging +
is constant.
Now to compute the statistics of the L. Assume that fault H, has occurred with

value ¢,4[n]. Combining (32) with (81), and using (85):

B[niH,g] = T E[m|H, ]

= };k ln) + 3 E [[n] |Hy 0, ]

n=k

- g () (5 o

The first term above can be evaluated by using (82), recognizing that hypn] =
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hyp|—n], and substituting 7x_[n] for hgp[n +k ~ 1] and 7,_,[—n] for hyp{l —p —n]:

San = (Y57) TEL hurln— Uhneln - ool
+

= (NC C)2 IX;”;]%[Z]%[P] LZ:O hgplk +n —lhyplk +n — p]]
= (N+ C) IZPE_: qll]q[P] [7;) Te-1[n Tp—k["‘n]] (115)

Apply Parseval’s theorem and work in the frequency domain:

Sa = () S oliol [ X nlomeston)|  W16)
n=k

l=q P=¢q m=0

M-1 x(C—1—2
o3 dgllleglp)S(k = 1)S(p — k) [% Z_O & “""+“—Nﬁm)(z’-1)]

l=q P=¢q

Recall that the phase of the exponential in (116) is a sawtooth with range £7(p —

/(N + C). Therefore:

M-1 . if p=
1 =3 Gilomt Rty _ ) 1 P =1 (117)
e 0 ifp—l=%(N+C),+2(N+C),...

Also recognizing that S(I) is symmetric and periodic with period N + C, equa-
tion (116) reduces to,

‘;ﬁf[nl = 5%(q - k)Y 62l (118)

I=q
Combining (118) and (114) and using some algebra gives (51). For the no fault case,
Hx, set FNR, = 0 to get (45).

We now turn our attention to the covariance of two likelihoods, L}, and L}, under
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hypothesis H, and fault ¢,[n]. Substituting (32) gives:

Cov [ ’ Hq,gq} = Zk E;k Cov [432, [nl],qiiz[ng]lHq,gSq]
Z;k Z_kCov [( [r1] -{—e[nl]) (gq[ng] +E[n2])2 Hq,Qq] (119)

Now suppose a, b, ¢, and d are zero mean Gaussian random variables. Then it is well

known that E [abc] = 0 and

E [abed) = E [ab] E [cd] + E [ac] E [bd] + E [ad] E [bc] (120)

Using this in (119), plus the fact that Cov [a,b] = E [ab] — E[a] E[b], expanding terms
and applying a lot of algebra gives:

Cor Lot Hg) = 2 5 {222 Wil = et

ni=k na=k

+46,[n1]9, [ng](N + C) hyp[ny — na)o. } (121)

Substituting (82) gives:

_<N+C> DS {hHP [ny — no) 207

ny=k; na=ks

(122)
+3° 5 hypln = L) hap [n2 — L) hap [m — ol 4026, [11] ¢, [12]}

11~Eq IQEq
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Now substitute (107) for hyp[n] and adjust the summations,

(N+C> 33 L, [ —na) 208

n1=0n2=0

(A +C) 22 [Z D gk 1 = 1] Thy <y [P1 — 2] Tay—g (M2 — 1)

11=012=0 | n1=0n2=0

bq [l + ) & 12 + ] 407.
(123)

Because 7[n] is periodic with period M, we can further reduce the first term of the

above equation,

N (N+C) (N+C’) kl—kg[npaf

( ) ZOE;O [Z Y Tty [0 = 1] Thy iy [P1 — 12] Ty g [0 — lz]]

nl_O 712-0

bq [l + q) &g [la + q] 407
(124)

- (N+C) <N+C) M %;m' ko ()| 207
M-1
( ) Z Z []\1[ Z Tq—k; (Wim) Thy —ky (W) Ty — ¢ (Wm) erm("l—lz)]

‘@g [l +q] ¢g [l2 + g] 4Ue

(125)
Cov [ Lt Ly, | Hor 0, ) (126)
_ %ae {2 (]—V—g—-c-) S (k1 — ko) + 45 (g — k1) S (k1 — k2) S (k2 — q) FNR,,}

where S(1) is the circular sinc function defined in (56), and FNR, is the fault-to-

quantization noise ratio defined in (52). Formula (51) results by substituting k; =
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ks = g and noting that S(0) = 1. For the no fault case, Hx, formula (45) results by

setting FNRy = 0.

The probabilities Pr, Pp, and Py follow from Gaussian statistics. For any Gaus-

sian variable p(z) = N(m, 0?),

i

P(z > )

(127)

Now if the number of terms M /(N + C) summed to form each L} is large, then L}

is approximately Gaussian. Formulas (42) and (49) follow directly from (127). For-

mula (53) follows from the observation that L — L is Gaussian, while the mean (54)

and variance (55) come from:

Bl - Li|Hng,] = B[Li|Hog,] -B[L|H, ¢ ]

(128)

Var L - Ly |Hy,¢,] = Var[L|H,, 8 | - 2Cov [Li, L |Hy, 6, ] + Var [Li |H,, 0,

C Finite Order Likelihoods

Suppose we replace the “correct” likelihood formulas with the windowed formula:

L't} = 3 wllldi[n ~ (N +C)]

{

o1

(129)




where n = k. If we assume that the fault is continuous, the window is long, and the

average energy in the fault is independent of time, then:
E[L'[]|Hpo,] = ; wll]E [¢i[n — U(N + O)] |H,, 8, ]
N+CM .
(Sut) 52 % Elatr g

r=0

N+C_ ¢,
(Zl:w[l]) 7B Lk |Ha g, | (130)

Q

This implies that the expected value of the windowed likelihood is the same as that
for the ideal likelihood, except that the factor M/(N + C) is replaced by 37, w[l]. For
our rectangular window, w[l] = 1 for Il = 0,..., Ky — 1 and = 0 otherwise. For
the IIR update, w[l] = o' for I > 0 and = 0 otherwise. Therefore the integration
factor M/(N + C) in (45), (51), (54), and (74) is replaced by K;,, for the rectangular
window and by 1/(1 — «) for the IIR window.

Similarly, under the same assumptions

Var [L'[n] |H, 0, ] = S X ulljulp]Cor [Bin — UN + C)], éiln — p(N + C)] |H,, 6, ]
= Zl:w2[l]\/ar {&%[n ~ (N + C)) IHq,Qq]

o~ w? N+CNS ar |¢2[r
~ (S wn) L var i e,

r=0

= (Z w2[l]) N A“;CVar [Zi|Ho 9, (131)

{

where the second line follows because equation (87) implies that samples ¢y[n] sepa-
rated by multiples of N + C are statistically independent. Formula (131) implies that
the integration factor M/(N + C) in (45), (51), (55), and (74) is replaced by K, for
the rectangular window and by 1/(1 — a?) for the IIR window.
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For short windows, the fault energy can no longer be modeled as independent of
time. Furthermore, the oscillations in the tails of the high pass filter cause energy
from one converter to contribute to all the likelihoods. The combination of these
effects causes Pp, Pp, and especially Py, to degrade rapidly as the integration length

decreases.
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