OKI Advanced Array Processor (AAP)
Hardware Description

RLE Technical Report No. 562

Bruce R. Musicus and Srinivasa Prasanna

February 1991

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

OKI Advanced Array Processor (AAP)
Hardware Description

RLE Technical Report No. 562

Bruce R. Musicus and Srinivasa Prasanna

February 19917

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139 USA

Table of Contents

Section 1 = OVERVIEW OF OKI AAP ARRAY PROCESSOR......cccccccvvvnnnnncnnne. 1
1.1, PrOCESSOT AITAY.....cieerrereeeeesiesisstsstsstsstnsnnstessesssessasssssssssssssssssssnssssensens 1
1.2. Data Memory 2
1.3, Microcontrol Unit..........icnnesinnecisnsisisisssssssesemeses 3
1.4, HOSE IMEIACE.vovuenneresemmsnesnsssssssnssessssssssssssssssssnssssssssssssssassssssnssssssssns 3
1.5, SORWArE TOOIS ...ttt s ssseassesessssssesenses 4

Section 2 - SUMMARY OF AAP PROCESSOR ARCHITECTURE...................... 7
2.2. Chip Boundaries, Data Busses, Pipeline Registers, Data
MEBIMIONY..c.ccncecrictctctie ettt ne s ss s sss s e aes s sasassanssanssseansns 10
2.3. Microcode, ADSP 1401 Sequencer, Clock Generator...................... 11
2.4, HOSt INtErACE. ...ttt 13

Section 3 - USING THE HOST INTERFACE ... neeaenne e 15
3.1. Overview of Host Capabilitiescoucvuveeumrermsersseressennees 15
3.2. VME BUS AGAIESSES.....cccerirmirnsirisiciiesenteseessssssessasesssassessssssesesssasassans 15
3.3. Accessing Data Memory.......coceverncrnicneneniisncsessennsnenes feerrereennennns 18
3.4. Host Command/Status/Interrupt Flegister.....................................~ 19
3.5. The Serial Shift Register (SSR) Systemccveevveveeceeereccrecsree e 21
3.6. Reading and Writing Data to the Serial Shift Register....................... 22
3.7. Transferring Data Between Parallel and Serial Registers................ 22
3.8. Reading the Current Microcode AdAress.........coueeeeereeeremeeeesemensenne 23
3.9. Reading Microcode MemOTY.......cccvueeimnrnernreseecnsncerentessnnnessenaseseenenns 23

3.10. Writing into Microcode Memoryiinncinnveesennenneneesnnes 24

~ Section 4 — HOST INTERFACE — CIRCUIT DETAILS......oucuveeeeeeeerercrerereseresesesnanes 25

4.1. Host !nterfaée SHUCUIE ...ttt rrcecse ettt s 25
4.2. VME BUS CYCIBS.....oounrereerenecrenensinnesresasranasesssssessessasescssssssssssssnsassesesnas 25
4.3. VME Bus Electrical Drive Charactefistics.............o.mmrmsessrsese 28
4.4. VME Address Bus Decoding Hardwarecceceeeeescccrcsncnsnrensnenanenns 29
4.5. Synchronizing the VME BUS t0 0SCccevvurercnniserssnsenessasenensanee. 29
4.6. Developing the Basic Host Read/Write Strobes..........cccccceeruaunnn... 31
4.7. Interrupt Acknowledge Cycle Synchronization.........ccceeecueveeevenecncnee 32
4.8. Host Data Bus Buffering Hardwarecccvvnienennnenercnninsesenannns 34
4.9. Command/Status Register, uRAM Address Bus, Data Memory....... 35
4.10. Reading and Writing the SSR Register.........ennnccrnrnrnnnin, 37
4.11. Handling Non-Existent 1/O Addresses........ocvnnscnnsesncnnccsnsenns 39
4.12. Reading Microcode MEeMOTYcceveinnmresnisisnnisenncsisscssessesesneseenes 39
4.13. Copying Serial Register into Parallel Register..........ccccecvvecuenecne 39
4.14. Writing Microcode MBMOTYcciiimneiiicrenssecniessssessessssssnnns 40
4.15. Copying the Parallel Registers Into the Serial Registers................ 41
4.16. Potential Problems in the Host Interface..............eeenienrinennnes 42
Section 5 - uCONTROLLER — DETAILED DESCRIPTION.......cccoiiveereurercrucenns 43
5.1. Introduction to the MICroCONtrollervienvmnnenscrnsecsseescesnosennns 43
5.2. ADSP 1401 Microprogram Controller Chip.......ccecveerrecreeeersecrennes 44
5.3. Clock System forthe ADSP 1401........oeiiveenninccninincnencercsenscenes 46
54. Y-bus, Tristate Control of the ADSP 1401.......cceniieiienenrrerecerereeenene 46

5.5. Micro-ln'struction Control Lines for 14071 ... eceeeeeeeeeereeeeeeeeeeeeeessoeens 47

5.6. D-port 0f the 1401 ...t csersae seeeseses et seseeseaeans 48

5.7. Fiag Inp.ut for Conditional Execution..........eccnesnsenniecnnicincnceenne. 50
5.8. MiCro-INterrupt SYSIEM.....cccccerererenreieninrennesessessesessssssssessssesnnenssaanans 51
5.9. SOQUENCET FIAGScuceeeeeeernrnercrerrenceraesracnsessesessssesssssasssssnssessenssssessassnens 52
5.10. CIOCK GONEIALO.......cceceerserrnresnrisissaseassensnssnssssesssmssssessassasmesssssensssssns 53
5.11. Writeable Micro-Control Store RAM...........cciinninniinnenennniienicisnees 57
5.12. Microcode Bit Assignment (88 total)ccceverernnnnncrunccnencnnenssennnns 58
Section 6 - OVERVIEW OF PROCESSORS, DATA MEMORY, DATA
BUSSES ..t ssensesesssessssassassass st asssst st s aassssssassrsnsssesnssesnasans 63
B.1. PrOCESSON AITAY.....c.ccveererienrreeseesecessassesnssssossssnsssssssssansaseansssesssssassesssssssssans 63
6.2. Data Memory, MAR, MDR, PGreg.......ccccvmircnrnnernsescsessnssessssssensaes 63
6.3. MDBS, MABS, PFBS Data Busses.coeeiinivcicnniennecrseencnnns 64
6.4. Using the Data Busses and Pipeline Registers Effectively............... 65
6.5. Other Data Bus Data Sources.......iccniccneninernesssnresesessessesacnnnns 68
6.6. Connections with the 1401 SequenCer.......rcvcereeeeeeeee e 68
Section 7 - WIRING OF THE MSMB956AS AAP CHIPS...........oovvveeerceeccneneen 71
Section 8 — WIRING OF THE MABS, MDBS, AND PFBS BUSSES................... 73
8.1. MABS — Th@ MAR DUS «ceceeeeceecereecrrrreneesencennssnese s senssssesessssesessessnones 73
8.2. Detailed mabs Control EXample.....cccceeennreenenierrenneeseseseeecessnesasesesnns 76
8.3. Timing, Loading, Power Details for the mabs Bus..............cccovuueeune. 77
8.4. MDBS = The MDR BUS c.coeeereeeereereneeceercsnrererareeeensesessnsessessssssesssessnsssns 78

8.5. Timing, Loading, Power Details for MDBS
8.6. Datapath Control PALS (PAL's PP05 to PPO8).......ccoevveveeereveennnns 80

Section 8 — DATA MEMORY SYSTEM ... ere e sssessenne 81

0.1, OVBIVIEW.....oeerttcttce et eseecsrecstne et ese e s sees st s s sas e en e n e snns 81
9.2. MEMOTY AQAIESScuueceeereresereseercrisnneenesrssessseessensssessasessasssessssssssssnns 82
9.3. Memory Rotator, Alignment CirCUItry..........cceeveeervereeemncsneereervesesnneenens 85
9.4. Loading MAR, PG, and MDR ReGiSterscceceeerevererreerseerssressencnenns 86
9.5. Chip Selection, Loading, and Timingc.cccceerererereerssenrsrsesesenssecsens 88
9.6. Timing, Loading, POWer Details.........cccoeceerenceerecesescsrseceeresenssssssensaens 90

APPENDIX A - PAL EQUALIONScococuiceircnsecnsesscannssnessnsessssasssasesensasesssssssnssssssesens 94

OKIl AAP Array

Hardware Manual

Bruce R. Musicus, MIT

Section 1 — OVERVIEW OF OKI AAP ARRAY PROCESSOR

The AAP Array Processor is a 2 board, VME-bus array processor
containing a 16 by 16 array of bit-serial processors, 128-512 Kbytes of data
memory, and 88 Kbytes of microcontrol store memory. The intent of this project
was to provide a prototype massively parallel image processor system with
which we can experiment with massively parallel image processing algorithms.
The array is packaged with a 68000 single board host computer and a single
board frame grabber/video display, thus packing a complete image processing
system into a rather small package.

1.1. Processor Array

* 16 by 16 array of 256 bit-serial processors, using 4 OKI AAP chips.
» = 6 MHz clock rate; 1.5 Giga bit operations/sec.
+ Support both bit-serial and bit-paralle! computation.
- 256 bit-serial processors
- 16 rowwise or 16 columnwise 16-bit processors
- many other combinations
« Also use array in bit-parallel mode for address generation.

- 32K byte pages, with 4 bit page register.

- For image processing, typically calculate 16 addresses
simultaneously, then read/write one bit plane of a 16x16 subimage, or

two columns of 16 pixel bytes each.

« Conditional jump, call, return based on AND, OR, SIGN of Memory Data
Register, on flag in command register from host, or on internal sequencer
flags.

* Pipeline registers on memory address (MAR) and memory data (MDR) for
greater throughput.

* Extensive connectivity provided via two general busses and third additional
special bus.

- simultaneous read/write of data on data paths 1 and 2.
- pipelined transfer of addresses and data to/from memory.
- non-pipelined, direct connections of DC and SD pins to each other.

- use pconst field as argument to memory address, data, or DC, SD
pins.

» Some OKI features not supported completely:

- individually programmable direction select possible via SL register
bits, but data transfer not supported at array boundary.

- only 3 sixteen bit busses available, limiting transfer capabilities,
particularly on diagonal data shifts.

1.2. Data Memory

+ 128 to 512 KByte, nibble-addressable data RAM
+ 20 bit address
« Read/Write any 16 consecutive bits starting at any nibble address

- uses data alignment, rotation circuitry

- supports transter of overlapping subimages into array.

- = 12MByte/sec transfer rate

1.3. Microcontrol Unit

» Primarily Horizontal Microcode - 88 bits wide
» Uses ADSP 1401 microsequencer

- 4 loop counters, conditional jump or call or return, with 64 level
subroutine/counter stack and register bank.

- constant or computed relative or absolute jump, subroutine
addresses.

» Uses finite state machine for clock control

- 12 MHz crystal, 4 different clock periods, Run/Halt, Single Clock
Advance.

+ Breakpoint bit in control RAM forces breakpoint subroutine call via ADSP
1401 interrupt.

* Reset on power on, or on host command.

« Finite State Machines allow host to read/write microntrol store RAM, or
read/write pipeline register via serial shift register, using 29818 SSR
registers.

» Host can monitor next microcode address bus.

1.4. Host Interface

+ VME interface: 24 or 32 address lines, 16 data lines, interrupt capability,
reset.

+ Only acts as VME bus listener: rely on DMA chip or 68000 on single board
controller to move blocks of data to or from the array.

» Memory mapped I/O within selectable VME address window.

» Control register: Run/Halt, Single Step, Reset, Breakpoint enable,
pinterrupt request.

« Status register: Host and Array status flags.

1.5. Software Tools

» Microcode compiler: aapcompile

- Compiles an expression-oriented language into 88-bit microcode,
using detailed knowledge of microcode field multiplexing and
hardware dependencies to construct correct, efficient microcode from
user instructions.

- Allows the programmer to use a simplified model of the array
processor hardware, using rules to map the instructions into actual
hardware capabilities, or generating detailed error messages
explaining why the code cannot be compiled as specified.

- Produces an object file with microcode, data, and labels.
» Object code linking: aaplink

- Links together multiple object files from the compiler, resolving global
label references.

- Resolves forward referencing inside object files.
- Checks consistency of microcode.
- Produces a link file suitable for simulation.

* Object code loader: aapload

- Links together multiple object files from the compiler, resolving global
label references.

- Resolves forward referencing inside object files.
- Checks consistency of microcode.

- Produces a load file suitable for downloading into the hardware via
the AOS operating system.

* Load file decoder: aapdecode

- Converts load files back into link files to allow examining the contents
of the file more conveniently.

» AAP Array Processor Simulator: aapsim

- Completely simulates behavior of the array processor, data memory,
data busses, microcode memory, sequencer, and a portion of the host
interface.

- Allows simulated running with breakpoints, single stepping of the
array.

- Display and change any AAP register, AAP boundary register,
MDR, MAR, PGreg, Data memory, Microcode, or Sequencer
register or stack value.

- Display and change selected intermediate temporary values
inside the array, or on the busses.

- Tracks both defined and undefined data values microcode fields,
allowing detailed checking for potential programming errors.

- Uses an iterative data propagation algorithm to properly simulate
programming modes involving asynchronous data propagation paths
through the array and the busses.

- Array Operating System: AOS

- Executes on the single board computer, communicating with the user
via the terminal.

- Coordinates overall array activity, frame grabber status, and DMA
transfers between the array and the frame grabber.

- Supplies many of the same features as found in the simulator.

- Load files from aapload into the microcode and data memories,
saving labels for use by user. ‘

- Run microcode with breakpoints, single step microcode.

- Display or change registers in the AAP array, MAR, MDR, PGreg,
or in the sequencer or stack.

- Display or change data memory values.
- Control the frame grabber, initiate DMA data transfers.

- Cooperate with AOS microcode kernel to handle message
passing between the array and the 68000.

« AOS microcode kernel: Kernel
- Initializes the sequencer and micro-interrupt system.

- Catches breakpoint, host micro-interrupt, and stack
overflow/underflow interrupts, sending message back to AOS.

- Maintains input and output circular message buffers to communicate
with host.

- Uses signalling procedure to get quick service by host for DMA
transfers and other services.

- Saves and restores state of array and sequencer from data memory
on any interruption of user program.. Allows AOS to examine and
modify the copy in data memory, thereby modifying the contents of the
internal registers next time the user program is executed.

?

Section 2 - SUMMARY OF AAP PROCESSOR ARCHITECTURE

In this section we review the overall structure of the architecture of the
AAP Array Processor. Several figures are included to illustrate the overall
board architecture, the wiring of the data busses and memory, the internal
processor architecture, and the internal sequencer architecture. These
diagrams are critical to understanding the behavior of this system and the
structure of its language. More details may be found in later sections of this
manual.

2.1. AAP Processor Array

The AAP array is a 2 board system built around a 2 by 2 array of OKI AAP
chips, providing a 16 by 16 square grid of 256 single-bit processors. The clock
rate is about 6 MHz. Within each clock period, all the processors will execute
the same micro-instruction, though internal registers can <lightly modify the
behavior of that instruction inside each processor. The architecture is thus in
the class of Single Instruction, Multiple Data (SIMD) machines. In each clock
period a processing element (PE) can read up to 2 bit values from 2 register
banks, compute an arbitrary function of 2 bits with carry, can save the result in
various registers, and can exchange 2 bits of data along 2 separate data path
systems linking adjacent processors. The first data path system provides an
interconnection with all 8 neighboring processors; the second only connects
processors vertically and is intended primarily for shifting data in and out of the
array. Fastest operation is achieved with bit-serial arithmetic on data available
either locally, or in a neighboring processor. However, bit-parallel arithmetic is
possible by ripple propagating carries from one processor to the left or down
neighbor. Also various broadcast modes are available to feed data to all
processors in parallel. The array is even capable of asynchronous ripple
computation modes, where values passed from an adjacent processor are
computed on by the ALU, then the result passed immediately to another next
processor. To accommodate these more complex operations, the clock period

is programmable. (Ordinarily, the appropriate clock period is chosen by the
compiler.) '

The basic PE architecture is straightforward. Two register banks may be
accessed simultaneously: the A[] bank contains 32 bits, while the B[] bank
contains 64 bits. One input to the single-bit ALU always comes from the B[]
bank. The other input can come from the A[] bank, from the output of a
neighboring processor via data path 1, from the shift register DIO on data path
2, or from the RS routing selector flag attached to data path 1. The output of the
ALU may be stored in either or both register banks, in the RS or DIO flags,
and/or in a status flag called LF. It can also be routed through the output
multiplexor to neighboring chips.

Input from any of 8 neighboring processors may be routed from data path
1 into the ALU, saved directly in RS, or it may be directly forwarded to the PE
output to propagate directly to the next processor. This latter mode allows a
single bit value to ripple through a series of PE's in the specified direction.
Special bypass paths installed in the boundaries of the AAP chips can speed
propagation of data broadcast through the array from the external data path 1
pins. The slowest propagation mode has each PE route data input from a
neighbor through the ALU, to the output multiplexor, and then to the next
processor in the chain. This mode can be used to have each processor add a
value into a surf, then pass the new sum to the next processor which in turn
adds another value into it, and so on, producing a sum bit of many values in a
single (long) clock cycle.

Data path 2 operation is more straightforward. Data in the DIO registers
may be shifted up or down along this path by a distance of 1 PE per clock.
These registers may be loaded from the ALU output, or can used as ALU input.
This data path system is intended for loading data into the array, 16 bits at a
time, from the external data memory.

The carry input to every ALU may be forced to 0 or to 1, it may come from
the C register bit, or it may come from the carry output from the PE to the right or
above. For processors on the top and right edges of the array, the carry input
may be specified instead by a one-bit field in the micro-code. Alternatively, 16
individual carry input bits along the top or the right side of the array can be

Host Interface

Data Memory

Address Mux./Arith.

Control Register Intertace PGreg
Control
Status Register (data mem, g::(axR:«SM gaa:(axR:\sM
che mem, MAR
pipelines)
Data Align, Rotate
MDR
Microcontrolier AAP Array T‘ A
ADSP 1401 (—~ ~
Micro- Ll Microcontrol
sequencer RAM
8K x 88
Processor
®—8— Array 48
16 x 16
Pipeline Register
Clock
Generator w MARDbus)
PAL's contro | MDRbus y
pconstant

OKI Array Processor - Block Diagram

pconstant) A
) D
16 b
> MAR : 1R 512Kx16
16 E RAM
16 S
S
- PGreg .
4 DATA
3
16
Sequencer MDR Sequencer
16
116
MARbus
' ™\
MDRbus jG
16 DCU) .
(CIU) Sbu CIN
[TTT 1] TTT 1T
2| o
- o] o)
AAP Chip AAP Chip [z|Z|e
8x8 PE's 8x8 PE's [SIS| s
DCL 1ocR
(COL) 1 (CIR)
[AAP Chip AAP Chip [
| 8x8 PE's 8x8 PE's [
[T TTTTIT T TTTITITI]
DCD SDD
(COD)
— Y,
W,

N

AAP Processor Array, Data Busses, Data Memory, MAR, MDR, PGreg

(Programming Model)

specified from either external bus, and the 16 carry outputs along the bottom or
the left side can be written to either bus.

The simplest ALU operations use a fixed carry input value of 0 or 1 in all
the PE's; this is suitable for logical operations on bits, or for simply moving data
through the ALU from one register to another. In order to perform operations on
integers composed of multiple bits, the array must either use several clock
cycles or several PE's. The simplest mode involves bit-serial computation.
Each PE holds all bits of each integer in successive storage locations in Af] or
B[]. The low order bits are combined in the ALU, together with a fixed carry
input or 0 or 1. The carry output is saved in C. Next, successive bits of the
integers are processed through the ALU, and combined with the value of C,
producing a new sum bit and a new carry-out bit which is saved in C. To add
256 pairs of n-bit integers, giving 256 n+1 bit sums, would require n+1 cycles.

A more complicated arithmetic mode, called bit-paraliel, distributes
successive bits of the integers in the same register address of adjacent PE's in
rows or columns of the array. To add sixteen pairs of 16-bit integers, stored for
example in bit B[20] and bit A[{31] of the 16 rows of the processors, each ALU
adds the corresponding bits together with a carry-in bit from the PE to the right.
it stores the sum bit locally, and ships the carry-out bit to the neighbor to the left.
The sum of these sixteen 16 integers is generated in a single (longer) clock
period.

The direction of data flow on data path 1 is usually determined for all
processors by a field in the micro-code word. However, 2 flags SLO and SL1
forming the SL register, can be loaded from the ALU to individually control
which of 4 neighbor output PE values will be read by this PE. Boundary flags
TRU, TRL, TRD, TRR in each chip must also be loaded to transfer data in the
appropriate direction across each data pin of the chip. This capability allows
the user to configure arbitrary data paths through the array. (This capability is
also quite dangerous, since it allows the user to construct oscillating
asynchronous loops, or propagation paths whose delay is substantially greater
than any clock period the hardware supports.)

Normally, every PE does the same operation on the same registers, and
the only difference is the data they process. However, operation of the PE can

10

be modified by the value of a selected status (S) bit, either flag LF or register
bits B[2] through B[7]. Whether or not this bit is a 0 or a 1 may be used to control
whether or not a B[] register bit or the RS flag is loaded. It can also cause the
PE to modify what register may be combined with a B[] bit in the ALU. It also
conditions which value will be output by the processor on data path 1, and
whether the carry input will be taken from a neighbor or from the C register.
Normally, the compiler outputs a two instruction preamble to all object files
which initializes register bits B[2] to 0, and register bits B[3] to 1. This allows the
compiler to choose one of these bits as the S bit, and thereby force certain
operations to execute unconditionally. Normally, the compiler prevents the user
from modifying bits B[2] or B[3].

2.2. Chip Boundari»es, Data Busses, Pipeline Registers, Data
Memory

Surrounding each 8 by 8 processor subarray on each OKI chip are four
boundary logic systems which interface the PE data paths and carries to the
chip's pin drivers. The DCU, DCL, DCD, and DCR pins on the Up, Left, Down,
and Right sides usually carry PE output values, or provide inputs to data path 1
input multiplexors in the PE's. The SDU and SDD pins on the Up and Down
sides connect to the DIO registers in adjacent processors on data path 2. Carry
input, CIR and CIU, and carry output, COL and COD, pins support the ripple
carry modes. This boundary logic can be programmed to support particular
data transfer modes, and can also be used to optionally multiplex the ripple
carry values on unused data pins. An important feature of these boundary
systems is that they can quickly forward the output of the top or bottom row, or
left or right column to the DC data output pins on the opposite side of the chip.
This greatly speeds broadcast of data through the array of chips. Flags SPU,
SPL, SPD, SPR in the boundary can conditionally modify this broadcast bypass
operation on a pin by pin basis.

The four OKI AAP chips are wired together to form a 16 by 16 grid of
processors. Surrounding this array are two major 16-bit bus systems, called
MARbus and MDRbus. These busses are used to connect together all sides of
the two data paths in the array, as well as pipeline regisfters in data memory,

‘and 16-bit constants supplied by the sequencer. These busses can be used for
a variety of purposes: carrying addresses and data between the processors and
data memory, wrapping data shifted out of one side of the array into the other
side, moving constants from microcode memory into the processor array, and so
forth.

Each PE in the array has 32 bits of storage in an A[] register bank, and 64
bits of storage in a B[] register bank. External data storage is also available in a
separate data memory system. To support bit-serial arithmetic on overlapping
portions of an image or data array, the data memory is nibble addressable - it
can read or write 16 bits starting at any even 4 bit boundary. The top 4 bits of
the 20 bit address are taken from a page register called PGreg, while the bottom
16 bits can be specified either by the Memory Address Register (MARY), or by the
constant in micro-code memory. A Memory Data Register (MDR) is used to hold
data to be written into memory, or that has been read from memory. The MAR
and PGCreg registers may be loaded from the MARbus and MAR can drive that
bus. The MDR register may be loaded from or may drive the MDRbus. PGreg
can drive MDRbus.

Three clock cycles are needed to read a single data memory value: first
load MAR with the address, then read the value into MDR, then move the result
into the processor array. Best performance is achieved by treating the MAR,
MDR, and PGreg registers as pipeline registers. Typically, the processor array
will use bit-parallel arithmetic to generate sixteen different 16-bit addresses in
the sixteen rows or columns of the array. On each clock tick, an address will be
shifted out of the array over the MARbus to MAR, the memory value at the
previous address will be read into MDR, and the data element fetched
previously will be transferred over MDRbus back into the array. In this way 16
values can be read from memory in only 18 clo¢ck periods. Similarly, 16 vailues
can be written in 17 clock periods.

2.3. Microcode, ADSP 1401 Sequencer, Clock Generator

Horizontal micro-code is used to program this machine. The micro-code
memory is 88 bits wide. In the simulator and in the object files, each code word

11

12

is broken down into a smaller number of fields, each of which is represented by
a mnemonic code. Different fields control different aspects of the system
behavior on each clock period - some control the sequencer, some control the
processor array, some control the data busses, some control the data memory,
and the last 16 bits are a micro-constant field which can be used to drive either
data bus, to provide the low 16 bits of the memory address, or to drive the
sequencer data input bus. User instructions in the source files are translated by
the compiler into appropriate field definitions in the microcode words. Fields
controlling capabilities that are not used in a given instruction are deliberately
left undefined by the compiler, but are filled in with default values by the loader
aapload.

An ADSP 1401 micro-sequencer is used to control the sequence of
micro-code instructions to be executed. This sequencer supports 4 internal
counters for loop control, and has a 64 element stack. Part of this stack is used
for subroutine nesting, and the rest is used as a "register stack™ holding jump
addresses and count values. Two register stack pointers are available: gsp
(global register stack pointer), and /sp (local register stack pointer). This chip is
also capable of extensive interrupt suppon, with 8 possible external interrupts, a
stack overflow interrupt (level 8), and a counter overflow interrupt (level 0). Of
these, the hardware supports a breakpoint interrupt triggered by a bit in the
micro-code word (level 3), and a host micro-interrupt (level 8) triggered by the
HulntR flag in the host interface. The compiler supports the entire instruction set
of this chip, although features associated with the interrupt system can only be
accessed through the sequencer() call. Microinstructions wes, ihc, and idle are
not supported by the hardware, and should never be used. (Note that the
compiler's “if () idle” command can be used because it is compiled into a
conditional goto() instruction.)

Call, jump, return, and several other sequencer instructions can be
conditioned on several different status bits in the architecture. Execution can be
conditioned on the AND, OR, or SIGN of the 16-bit data in the MDR register.
This allows testing values read from data memory (just read it into MDR), or
testing values computed in the array (output 16 bits through any side of the
processor array over MDRbus into MDR). Special pipeline bypass registers
allow conditionally executing a sequencer instruction based on the value

From CO

- of PE[k-1,0]
From
l DCR[k-1]
ciu TN
ID[UR]
ID[R] | !
ID[DR) |—
SPR[k
PE[k,0] > K| | TRRK] |e—
oD >
SLO/SL1 | mux » DCRIK]
co /
From

ToClU DCRk+1] r
of PE[k+1,0]

and CIR From OD
of PE[k,0] of PE[K,7]
(BYPASS)

Right Side (Row k, Column 0) of Peripheral Circuitry
(Programming Model)

(Control lines omitted to simplify the diagram)
(Corner processors, k=0 or k=15, connect to diagonal input pins DCUR or DCDR)

From CO
From of PE[k-1,15]

DCL[k-1] l

ID[UL]
> ID[L]

—] ID[DL]
PE[k,15]

oD

> TRLK] | |SPLIK]

!

SLO/SL1

~ DCLIK] mux

\

FromOD ¥
of PEk8] 1o cIU
(BYPASS) PE[k+1,15]

v co

From

COLK] < DCL[k+1]

4 4 4
1

Left Side (Row k, Column 15) of Peripheral Circuitry
(Programming Model)

(Control lines omitted to simplify the diagram)
(Corner processors,. k=0 or k=15, connect to diagonal input pins DCUL or DCDL)

Sbulk] CIN DCUIK]
4 4

4 1
:; TRUK] | :;

mux SPU[K] F_/ mux \
from OD
l f t L of PE[7 K]
(BYPASS)

from from
DCUK+1] § v Y Yy DCU[K-1]
DIO[U) DIO ID[UL] ID[UR] OD SLO/SL1
To CIR < Clu D[] chle— from CO
of PE[0,k+1], rom
and ClU of PE[O,k] of PE[0,k-1]

PE[1,K]

Upper Side (Row 0, Column k) of Peripheral Circuit
(Programming Model)

(Control lines omitted to simplify the diagram)
(Corner processors, k=0 or k=15, connect to diagonal input pins DCUR or DCUL)

PE[15,k] fromCO

CIR [€— of PE[15k-1]

ID(D) SLO/SL1
DIO[D] DIO ID[DL] ID[DR] oD co
from t T + f from
DCD[k+1] DCD[k-1]
| from oD
v v v of PE[8 K]

(BYPASS)
SPD[K] Nu:/
toCIR =
of PE[15 k1]
:‘!/- TRD[_RVJ

v v A4
SDDIK] DCD[k] CODIK]

Down Side (Row 15, Column k) of Peripheral Circuit
(Programming Model)

(Control lines omitted to simplify the diagram)
(Corner processors, k=0 or k=15, connect to diagonal pins DCDL or DCDR)

loaded into MDR in the previous instruction. Execution can also be conditioned
on bit HF/ag0 in the host command register. This is used by the AOS operating
system to help synchronize transfer of data between the single board host and
the array. Finally, execution can be conditioned on the internal sign bit in the
sequencer, thus allowing use of counters to control iteration loops.

Four different clock period lengths are supported by the hardware. The
second fastest clock period should be selected for operations using bypass
paths to broadcast data through the array and for bit-parallel arithmetic. The
third fastest period is intended for asynchronous ripple arithmetic. The fourth
fastest clock period is intended for operations using asynchronous propagation
of values through multiple PE's ALU's, possibly combined with bit-parallel
arithmetic.

2.4. Host Interface

The host interface allows substantial control over the array by the 68000
host. By accessing I/O registers in the top 16 bytes of the data memory address
space, the host can read the next microcode address, examine and change the
microcode pipeline, MAR, MDR, and PGreg registers, and it can read and write
microcode memory. Bytes or 16-bit words can be read or written to data
memory directly from the VME bus. A command/status register allows control
over array functioning. The low byte of this register contains an interrupt vector
for use when the array interrupts the 68000. Bits in the upper byte allow the
host to start or stop the array clock, to reset the sequencer forcing execution to
start from location 0, and to single step the clock when it is halted. The host can
enable host interrupts from the array with the H/ntEn bit (currently the AOS
system leaves host interrupts disabled, and relies on software polling). Bit
HintR in the status register is used by the array to request the host interrupt. The
host can request a micro-interrupt of the array by setting HuintR. Flag HFlag0
can also be set or cleared by the host to help synchronize communication with
the array, which can condition instructions on this flag value. (AOS uses HIntR
and HFlag0 in tandem to implement a full handshake between host and array.)

13

15

Section 3 - USING THE HOST INTERFACE

3.1. Overview of Host Capabiiities

The array processor is intended to be plugged into a VME bus system,
with a conventional single board processor to control it. The array acts like a
slave and an interrupter for the controlling processor. Any §12K byte address
segment can be mapped into the array. The top 16 bytes of this segment are
mapped into special registers in the array and into special functions. The
remainder is mapped into the data memory. An 8 bit command/status register
allows the host to start and stop the array, single step it, and reset it. The host
can enable interrupts from the array, and can in turn interrupt the array. An
arbitrary 8-bit host interrupt vector can be programmed. Most registers inside
the array are backed by a circular serial shift register (SSR). The host can read
and write into this shift register, and can transfer the contents of the serial
register into the normal registers or vice versa. The contents of the serial shift
register can be written into any location in microcode memory, or any location in
microcode can be loaded into the serial shift register.

3.2. VME Bus Addresses

The VME bus interface supports a variety of address and data modes.
The AMO-AMS lines on the backplane determine which of these modes is being
used at any time. At present, the array processor will respond to either 24 or 32
bit addressing in user or supervisor data or program modes (AM0-AM5=09, 0A,
0D, OE, 39, 3A, 3D, 3E). The array processor will respond only to addresses
within a selected 512 Kbyte (19 bit) range. Eight switches select the top 8
address line values A24-A31 to which the board will respond (these are ignored
during 24 bit addressing cycles). Another 5 switches select the address bits
A19-A23 to which the board will respond. If less data memory is installed, and
this much address range cannot be dedicated to this board, then jumpers can
be connected to force response only in the upper 256 Kbyte of this range
(A18=1) or in the upper 128 Kbyte of this range (A17=A18=1).

The upper 16 bytes of this range are dedicated to special internal
registers and special actions. The remainder of this address range is mapped
into the data memory. (An unfortunate side effect is that the upper 16 bytes of
memory cannot be accessed directly by the host.)

(The current version of the board has 128 Kbytes of data memory, and
the switches are set so that the memory appears at addresses 0xee0000
through Oxef££££, with the I/O registers at addresses 0xef £££0 through
Oxefffff.)

The following table lists the address ranges that can be selected for the
data memory and /O registers. In this table, base is the first address
recognized by the board, base= N*218 with0 < N < 23,

If 128 Kbytes memory installed:
base through base+0Ox1ffef Read/Write data memory

IOreg = base+0x1fff0

It 256 Kbytes memory installed:
base through base+0x3ffef Read/Write data memory

I0reg = base+0x3fff0

If 512 Kbytes memory installed:
base through base+0x7ffef Read/Write data memory

IOreg = base+0x7f£f£0

The following table summarizes the behavior of the board in response to
read and write accesses from the host. In this table, base is the first address
recognized by the board, base= N*218 with0 < N < 25, and I0reg is the
address given by the table above.

Address Range Read/Write Action

base through 10reg-1 Read/Write data memory
Byte or word access allowed

I0reg Read/Write upper byte:
Command/Status Register
Read/Write lower byte:
Host Interrupt Vector

I0reg+2

IOreg+4

IOreg+6

I0reg+8

IOreg+0xA:
IOreg+0xC:
IOreg+0xE:

17

Read word:
Shift out the upper 16 bits of the SSR
and return their value.

Write word:
Capture the 16 bits, and shift them
into the SSR.

Read word:
Transfer parallel registers into SSR
Write word:)
Transfer SSR into parallel registers

Read word:
Return current address on the Y-bus.
Write word:
Use HDO-HD15 data as the pcode
address on the Y-bus. Read the 88
bit pcode word into the parallel pipeline
register.

Read word:
No operation performed.

Write word:
Copy 88 bits from the SSR into the
microcode word at the address
specified by the data.

Read/Write byte or word:
No operation performed.

The host may access any of these /O or data memory locations even while the
array is running; cycle-steal code in the PAL's satisfies the host access
immediately after the present array instruction completes. (Beware that certain
array operations can be quite long, up to 32 periods of the oscillator clock). If

18

faster data memory access is required, the array could be halted first. It is also
advisable to halt the array before attempting any of the more complicated
actions initiated by addresses 10reg+2 and above. In particular, always halt
the array before writing to I10reg+6 and reading some microcode word into the
pipeline register. Otherwise, this microcode instruction will be executed on the
next clock tick, causing random behavior in the array.

Note that many of these /O registers should only be accessed by words,
not by bytes.

The following sections explain in detail how to use the behaviors invoked
through the array's /O registers.

3.3. Accessing Data Memory

Internally, from the array point of view, the data memory appears to be a
nibble addressable, 16-bit wide memory with a 20 bit address bus. From the
heost point of view, however, data memory is only byte addressable, and can
handle either 8 or 16 bits of data on each access. (16-bit fetches must start on
even byte boundaries only). Given host address base+offset, the base is
stripped oft and an extra least significant zero bit is padded onto offset, giving
the data memory address: 2*offset. Either or both the even and odd bytes
may be read or written in any cycle. Finally, note that only host addresses base
through 10reg-1 refer to data memory; the top 16 bytes of data memory are _
inaccessible from the host.

An important issue is that numbering of the bytes within a word is not
consistent between a 68000 host and the array. This can cause problems with
transferring byte data between the VME bus and the array. Because the array
must be able to access any 16 consecutive bits in data memory starting at any 4
bit boundary, it assumes that the nibbles in each word are numbered as follows.
If addr is the 20 bit address of the word, then addr is the address of the least
significant 4 bits, addr+1 is the address of the next 4 bits, addr+2 is the address
of the next 4 bits, and addr+3 is the address of the most significant 4 bits. From
a byte point of view, addr is the address of the least significant 8 bits, while

addr+2 is the address of the most significant 8 bits. Unfortunately, the 68000
numbers the bytes in a word in the opposite order. Let addr2=base+addr/2
be the VME bus address of the same word. Then the upper 8 bits are treated as
byte addr2, and the lower 8 bits as byte addr2+1. If 16-bit data is transferred
between the 68000 and the array, then this numbering difference can be
ignored. However, if 8-bit data is transferred, the order of the bytes may have to
be interchanged either in the array or in the 68000. (The AOS operating system
software automatically performs the necessary byte swaps, but the DMA
channel does not.)

3.4. Host Command/Status/interrupt Register

The word at 10reg contains the command/status register in the upper
byte, and the interrupt register in the lower byte. The meaning of some of these
bits differs depending on whether the host reads or writes the word:

Bit Read Write Description

15 Run Run Let Array Run

14 HIntEn HIntEn Enable host interrupts

13 Hflag0 Hflag0 | Host Flag O

12 - - -

11 HUIntR HUINntR Request micro-interrupt

10 - HReset Force Reset cycle

9 -- singlestep Force Single Step if halted

8 HIntR -- Host interrupt request

19

20

7-0 HIntReg HIntReg Host Interrupt Register

Setting the Run flag will allow the clock generator to run; clearing it will
force the clock to complete its present cycle and then stop. Setting HIntEn will
enable the board to interrupt the host; clearing it will disable any interrupts and
will also clear the pending Host interrupt Request flag HintR. When HIntEn=0,
if the psequencer attempts to interrupt the host, the HIntR flag will go high but
no host interrupt will be generated. By reading the status register, the host can
determine that a host interrupt had been requested. Host flag Hf1ag0 can be
directly tested by the micro-sequencer, and thus is convenient to use for
synchronizing activity between the host and the array. (The AOS software uses
HIntR and HF1ag0 as read/acknowledge signals for synchronizing data
transfers between the array and the host.)

Setting the HpIntR flag requests a micro-interrupt. (This interrupt will
only occur if this feature has been enabled by the 1401 sequencer.) Setting the
HReset bit will force a Reset cycle in the array when the array runs. (This bit
cannot be read, and it will be immediately cleared once the Reset operation is
complete.) Setting the SingleStep bit will force a single clock cycle in the
array if the array is halted. (This bit can not be read, and it will be immediately
cleared once the clock cycle is under way.)

When reading the command register, bits 10, 9 are always high, while bit
8 is HIntR, which indicates whether the array has a pending host interrupt
request.

The contents of the host interrupt register will be returned when the VME
bus acknowledges a host interrupt request from the -array. This will cause a
vectored interrupt {o the specified location in host memory.

Bits 12-15 of the command register will be cleared only during a VME
bus system reset. HReset will clear during any array reset cycle.when the clock
generator begins a Reset cycle. The host or the array will have to explicitly
clear the HuIntR flag. singlestep will clear when the clock pc1k drops low
during the next clock cycle.)

21
3.5. The Serial Shift Register (SSR) System

The MDR, MAR, PGreg, and pcode pipeline registers are all built from
AM29818 Serial Shift Register (SSR) Diagnostic Pipeline registers. These
chips normally behave like fast parallel load, parallel read octal registers.
However, they also contain an independent octal left-shift register which can be
loaded into or from the parallel register. All these shift registers are connected
into a single SSR shift register chain. The most significant word in this chain is
the 16-bit MDR register, followed by the 16-bit MAR register, the 8-bit PGreg
(only the bottom 4 bits are used), and then the 88 bit microcode pipeline
register. Various PAL's implement various finite state machines allowing the
host to load, unload, and shift the SSR, exchange the contents of the shift
register and the paralle! registers, and load or read pcode memory into the shift
register.

| .
16 16 8

| .
MDR |4— MAR |(@—PGre Host
D -

]] !]
16 16 16 16 16

(1 - l i
. 88-bit Microcode Registers

8
Serial Shift Register (SSR) Chain

A technical difficulty with the present implementation is that three
separate copies of the MDR register are maintained, only one of which is in a
29818 chip. The other two copies are associated with the micro-sequencer,
and cannot be loaded or read by the host. Therefore, although the host is
allowed to change the contents of the MDR register, beware that the sequencer
will not see the change, and it may therefore act in an unpredictable fashion.

22

3.6. Reading and Writing Data to the Serial Shift Register

16 bits of data may be shifted in and out of the SSR registers by reading
or writing into address I0reg+2. Writing a word of data to this address causes
the shift registers to shift 16 bits left, with the new data being shifted into the
least significant word of the serial register in the microcode pipeline registers.
The parallel registers will be unaffected, and the array will not see this activity.

Reading a word from address I0reg+2 will first cause the SSR to shift
left 16 bits, then the value shifted out of the most significant word (the MDR shift
registers) will be returned. The value shifted into the least significant word of
the SSR will be unpredictable.

Note that reading and writing the SSR register is a relatively slow
operation (about 20 oscillator periods).

3.7. Transferring Data Between Parallel and Serial Registers

Reading a word from address 10reg+4 will cause all the parallel
registers to be loaded into the SSR registers. The data returned from this read
operation should be ignored. Writing a word to address 10reg+4 will cause all
the SSR register contents to be loaded into the parallel registers.

This feature allows the host to setup all the array registers, force a

- specified number of clock ticks, then read back all the register contents to

analyze what the array did. To do this, first stop the array clock by writing a 0
into the Run bit in the Command/Status register, 10reg. Now fill the SSR chain
with 8 words of data by writing into T0reg+2. First, write the desired contents of
MDR and then MAR into 10reg+2. Then form a word with the PGreg page
register in the top byte, and the most significant microcode byte in the low byte,
and write that into 10reg+2. Finish by writing 5 more words of microcode bits
into 10reg+2, with the least significant word coming last. The SSR registers are
now full; copy them into the parallel registers by writing anything into 10reg+4.
The microcode pipeline register now supplies the specified micro-instruction to

23

the array, while MDR, MAR, and PGreg supply appropriate data. Force one or
more clock ticks by writing a 1-bit into the SinglesStep bit of the
Command/Status register for each desired cycle. (Be sure to continue to set
Run=0 and HReset=0).

To read back the register contents, read from address I0reg+4 to copy
the parallel registers into the SSR. Now read 8 successive words from
Ioreg+2. The first word is the contents of MDR, the next is MAR, the next has
PGreg in the top byte and the most siginificant byte of the next microcode
instruction in the low byte. The next § words will contain the remaining
microcode bits.

Note that the micro-sequencer circuitry maintains independent copies of
MDR which cannot be loaded via the SSR registers. Therefore, unpredictable
results will occur if the host loads and runs a micro-instruction for which the
sequencer needs to use the value of MDR. Note also that strange things may
happen if the SSR is copied into the parallel registers while the array is running.

3.8. Reading the Current Microcode Address

Reading address 10reg+6 will freeze the array clock after the current
micro-instruction completes, and then return the micro-address which the
sequencer is presently asserting on the Y-bus. This address will be the micro-
instruction that will be executed on the next cycle.

3.9. Reading Microcode Memory

To read the contents of a specified microcode address, write the desired
address to 10reg+6. The host interface will force the address onto the .
microcode address bus, and read this location into the parallel microcode
pipeline registers. Be sure that the array is halted before you attempt this host
action.

24

Next, the parallel registers should be copied into the SSR by reading
IOoreg+4 (discard the data). Finally, read successive words from I0reg+2. The
first and second words are the contents of MDR and MAR, and may be
discarded. The third word contains the most significant byte of microcode in the
lower byte. The next five words contain the remaining microcode words from
the given location.

3.10. Writing into Microcode Memory

The microcode memory in the array is formed entirely of RAM. Therefore,
after system reset, the array is automatically halted, and the host must load
micro-programs into the microcode RAM. To do this, the 88 bits of data for a
single microcode location are shifted into the SSR chain by writing them into
I0reg+2. The most significant byte is in the low byte of the first word (the upper
byte is ignored). The next 5 words written into 10reg+2 should contain the rest
of the microcode data, with the least significant word coming last. Now, write
the microcode address to 10reg+8. The host interface will force this address
onto the microcode address bus, then copy the SSR contents into this
microcode location.

Beware that writing microcode to RAM is a rather slow operation,
requiring approximately 36 oscillator periods. Also beware that the SSR
contents will be destroyed after they have been written into microcode memory.

25

Section 4 — HOST INTERFACE - CIRCUIT DETAILS

4.1. Host Interface Structure

The host interface consists of two interacting subsystems. The first
system is responsible for coordinating the array response to VME bus cycles,
and for coordinating host access to the internal state of the array. It consists of 8
FAL's, some comparators, latches, demultiplexors, and miscellaneous circuitry.
The second system extends the VME data bus into an internal host data bus,
which in turn connects to the command and status register, to the SSR (serial
shift register) system, to the interrupt vector register, and to the microcode
address bus. This section is composed of various transceivers, registers,
bufters, and resistor pullups. In the following we will present how each
component in the host interface contributes to the functionality of the interface.

A comment on notation: a signal such as LBerr is positive true, while a
signal with a ‘=’ in front, such as ~Berr, is negative true.

4.2. VME Bus Cycles

The VME bus is a modern 16-32 bit micro-computer backplane bus
system. Data transfer is asynchronous, with a full handshake required on every
cycle. Arbitration for control over the bus, asserting the address, and
exchanging data can all occur in pipelined fashion. In the following, we will
describe how the array participates in VME bus cycles. In later sections, we will
describe the circuitry in more detail.

The array acts solely as a slave for data transfers, and as an interrupt
requestor. The array supports both 24 and 32 bit addressing modes (but not 16
bit addressing mode). It responds to both user and supervisor transfers in either
data or program mode, and it responds to either 8 bit or 16 bit data transfers' (but
not 24 or 32 bit data transfers). The array is configured to respond to addresses
within a selectable 512Kbyte range, although jumpers may be set to restrict
response to the upper 256 or 128 Kbytes of this range.

28

When a board wishes to access the array, it must first gain control of the
VME bus via the arbitration procedure. The cycle starts when the bus master
asserts a slave address A01-A31, the address modifier code AMO-AMS, a long
word indicator -LWord, and flags that this is not an interrupt acknowledge cycle
via -IACK. After a short delay, it asserts -As to indicate that the address
information is stable. The slave is guaranteed that -As will arrive at least 10
nsec after the other lines have stabilized.

The master waits for the data bus lines to be completely clear from the
previous transaction, with both data strobes -ps0 and -ps1 deasserted, and
both slave acknowledge lines -DTACK and -Berr deasserted. It then drives
-Write to indicate whether the cycle is read or write. If it is a write, then it also
puts data on D0-D15 (note that the array only reads the lower 16 data lines).
After waiting for the signals to stabilize, the master then asserts -pso if the low
byte is involved in the transaction and/or -ps1 if the high byte is involved.
These data strobes are guaranteed to arrive at the slave at least 10 nsec after
the address lines and -wWrite have stabilized, and they are guaranteed to
arrive within 20 nsec of each other. '

When the slave recognizes its address, with valid address and data
strobes and no -DTACK or -Berr signals, then it must take action. If thisis a
write operation, it must capture the data and use it appropriately. If this is a
read, it must retrieve the requested data and drive it onto the data lines bo-D15.
When finished, the slave should assert ~-DTACK. If this is a 24 or 32 bit data
operation, the array will assert -Berr instead.

When the master receives the acknowledge from the slave, either
-DTACK or -Berr, it may remove all its signals from the bus. Note that the order
of removal is unspecified. Thus, the bus master may change the address lines
or data lines (in a write operation) before removing the -as, -Ds0, or -Ds1
strobes. (The -write signal, however, will remain asserted until after both data
strobes are removed). On a read operation, the slave is required to continue
driving the data bus until the data strobes are removed. Careful hardware
design is necessary, since the master is free to assert a new address and a new
-as strobe even before it removes the data strobes, or before the slave has
removed its acknowledge.

Typical Interrupt Acknowledge Cycle On VME Bus

— |

A01-A03 interrupt priority level X (n+1)-th address

LWord

> -

IACK

...L~—]..
| .

AS

B IR PR ---,L.--ﬂ----44L<fl
==]._.}}-

Write ; : v\
555 Lo\ WA
DSt o \ .' : /
TACKin S \ /.
TACKout (if not responding) E : : \ . [\ .:
D00-D15 (if respontding) : N : E x Int. Yector E x E ‘
DTACK X VY : \ Lo /
Address Write Data Valid : Slave . 'Release
Stable | Stable Data : Acknowledge . Acknowledge
Valid SIrobes yaiig Release |
Address Interrupt Data
Strobe Acknowledge Strobes !
Valid
Address
Strobe

(Next cycle)

Typical Read/Write Data Cycle On VME Bus

A01-A31 X | n-th address x (n+1)-th address
LWord x N K .
TATK Foo b\ :
LY LN AR
Write X X X: ‘ : EX E
D00-D15 (write) * : x: n-th data ; X ;
e o\ i
o5 B S
D00-D15 (read) oo X n-th data ; XL
BTACK S ! \ S /
Address EWrite Data Valid Slave Release Release
Stable . Stable Data Acknowledge Data Acknowledge
: Strobes Strobes
Valid "
Address Valid
Strobe Address
Strobe

(Next cycle)

27

‘When the slave detects both data strobes deasserted, then it must stop
driving the data bus (on a read operation), and then remove ~-DTACK Or -Berr.
At this point, the master may begin the data transfer portion of the next bus
cycle. Note that the slave is guaranteed that the -as, -pDs0, and ~-Ds1 strobes
are each guaranteed to be deasserted for at least 30 nsec between cycles.

The VME bus definition also supports block transfers for read and write.
The array processor, however, does not properly respond to such transfers.

Interrupt cycles are handled in a similar fashion. The array can be
enabled to interrupt the host under sequencer control. Jumpers select one of 7
interrupt priority request levels, -1RQ1-7, which the array may use. The VME
bus interrupt handler is responsible for arbitrating among all pending interrupts,
and if interrupts are enabled at the selected level, then the interrupt handler
arbitrates for access to the bus for an interrupt acknowledge cycle. When
granted access, it asserts the selected interrupt priority level on address lines
A01-A03, asserts ~IACK, asserts a read operation via -Write, asserts a long
word operation if necessary via -LWord, waits for the signals to stabilize, and
then asserts -as. The slave is quaranteed that -as arrives at least 10 nsec after
these signals are stable. The interrupt handler will also assert -Ds0 and/or
-DS1 to request an 8, 16, 24, or 32 bit interrupt vector. The data strobes are
guaranteed to arrive at least 10 nsec after the address information is stable.

Arbitration for which interrupter responds to an interrupt acknowledge is
handled through two mechanisms. First of all, an interrupter will respond to the
interrupt handler only if it is requesting an interrupt, and its priority level matches
that specified on A01-203. To arbitrate between interrupt requestors at the
same priority level, a daisy chain grant system is used. When the board
plugged into slot 1 detects - IACK combined with -DS0 or -DS1, it waits at least
40 nsec, then drives its -IACKout line low. -IACKout on each board is
connected to -IACKin on the next board plugged into the backplane. When a
board receives -IACKin, but it is not requesting an interrupt, or the interrupt
priority level does not match, then it must forward the interrupt acknowledge by
driving -1ACKout. |f the board is requesting an interrupt, and the priority level
matches, however, then this indicates that the board should respond to the
interrupt acknowledge cycle. It must leave -~IACKout deasserted. It then drives

28

the data lines with an interrupt vector code - the array will return a
programmable 8 bit code. When the lines are stable, it then asserts -DTACK.

In response, the interrupt handler reads the interrupt vector code, then
removes all the addressing and data information and strobes. The array must
deassert -IACKout within 30 nsec of -As being deasserted. When -DsS0 is
deasserted, the array must stop driving the data lines, then deassert ~DTACK.
Note that the array must continue to drive the interrupt vector code as long as
-DS0 is asserted, even though the master may modify the addressing
information as soon as -DTACK is asserted.

4.3. VME Bus Electrical Drive Characteristics

In general, loading and capacitance restrictions on the VME backplane
require that each line be connected to only 1 or 2 LS or ALS TTL inputs, and be
driven by only one high current S, F, or ALS TTL driver. The toughest
specification is that the total capactive loading on any pin must be below 20pF.
(It is doubtful that the current array processor design meets this spec.)

Different lines require different drive capabilities. The D00-D31 drivers
must supply up to 48 mA; we use 74ALS245A-1 transceivers for this. Receivers
on all the standard three-state lines, A0O1-A31, D00-D31, AMO-AMS5, -IACK,
-LWord, -Write , may source no more than 700 pA at logic 0, and sink no more
than 150 pA at logic 1. (Note that ALS draws 100uA at logic 0, 20pA at logic 1,
and our PAL's draw 200uA at logic 0, 20uA to logic 1.) The -IACKout driver
must supply 8mA at logic 0 (any TTL driver will do), and -1ACKin and
-IACKout must draw under 600pA at logic 0, SOuA at logic 1. Open collector
lines ~IRQ1-7, -DTACK, and -Berr must have drivers capable of sinking 48mA
at logic 0; we use a 74S38. Recevers on these lines and on -IACK must source
no more than 600uA at logic 0 (400pA for -DTACK or -Berr), and sink no more
than S0pA at logic 1.

Conservative design caused us to limit bus loading on each wire to 2
receiver inputs and 1 driver per board.

29
4.4. VME Address Bus Decoding Hardware

The address decoding circuitry starts by buffering the strobes -as, -pso,
-DS1, -IACK, and -SysReset through a 74ALS244A. The upper address
strobes A19-A23 go directly to a 74ALS520 eight-bit identity comparator, which
compares these 5 upper address lines against 5 switches. In addition, jumpers
allow checking that A18 or both 218 and A17 equal 1. (Inserting these jumpers
restricts the address range to 256K or 128K respectively). The comparator also
checks that - IACK is not asserted. This comparator is gated by the ~As strobe.
A match, -valid, indicates that the host is attempting a valid read or write to an
address mapped to the array address space. (Note that loose timing restrictions
on the release of -As relative to the release of the address may allow glitches to
occur on -valid at the end of any bus cycle while ~-DTACK or ~Berr are
asserted.)

To handle 32 bit addressing modes, another 74ALS520 octal
comparator, gated by -as, compares the highest host address lines A24-a31
against a set of octal switches. If they match, it generates a signal -Extvalid.
(This signal may also glitch at the end of any bus cycle.)

PAL #HP1 partially checks for an address hit in the upper 16 bytes of the
range. This generates a signal -DoIOMatch if AO4-A18 are all equalto 1. This
signal is not gated; it is therefore particularly glitchy, and can only be interpreted
in conjunction with other strobes.

4.5. Synchronizing the VME Bus to osc

PAL #HP2 is responsible for detecting a VME bus cycle accessing the
array address range, and for synchronizing the cycle to the array clock. First, a
signal -Ds is generated when either -DS0 or -DsS1 are asserted. (This is only
necessary to reduce the number of product terms per output in the PAL below
8). Action begins when -valid is asserted, and the VME AM0-2MS lines
indicate that this is a 24 bit user or supervisor data or program access, or when
both -valid and -ExtVvalid drop and AMO-AMS indicate that this is a 32 bit
user or supervisor data or program access. If this is combined with -ps, and

30

-LWord is deasserted, and both -DTACK and -Berr are deasserted, then this
implies that a new bus cycle is beginning which is accessing the array. On the
next rising edge of osc, PAL #HP2 will assert -vMEHit. If all the above is valid,
except that ~Lword indicates that a 3 or 4 byte data operation is requested, then
on the next osc edge, PAL #HP2 will assert LBerr to indicate that a bus error
should be generated. An open-collector 74S38 inverts this signal to drive the
-Berr line on the VME bus. |

Both -vMEHit and LBerr will be asserted by PAL #HP2 until the next
osc edge after both data strobes -ps0 and -Ds1 are removed. Once asserted,
therefore, both of these signals will remain even if the master changes the
addressing information when it receives -DTACK.

When any slave on the VME bus asserts ~-DTACK or -Berr, the master is
allowed to change the address lines and even assert a new -As strobe on the
VME bus. The slave, however, must maintain the proper data on the data bus
until both data strobes -DS0 and -DS1 are deasserted. This bus pipelining
feature implies that the host interface cannot rely on any address strobes being
valid following -DTACK. To assist in proper operation of the interface, therefore,
a 74ALS573 octal transparent latch is used to latch the values of certain lines
that might change after ~DTACK. Address lines A01-A03 are latched, together
with the -Write and -LWord strobes, and the -DoIOMatch strobe (which is
called -10Match following the latch). The register is latched by the signal
-VMEHit which is asserted by PAL #HP2 throughout a bus cycle involving the
array. Note that there is sufficient time for these signals to stabilize before
-VMEHit appears.

Note that -vMEHit is the basic synchronizing strobe for the host
interface. Any metastable state difficulties will show up only in this signal. All
other FSM's controlling the host interface rely strictly on -VvMEHit to begin
operation, and all will quit operation when this signal is deasserted. Also note
that except where explicitly noted, all chips in the host interface which rely on
-VMEHit require that their inputs be synchronized to the osc clock.

-VMEHit also goes to the clock generator PAL #uCP3, causing it to halt
the array clock PAL #uCP4 after the current cycle is complete. When the clock
stops, line Ha1t will be asserted. This feature allows the host interface to steal

Host Interface - Block Diagram

VME Bus
f Switches ‘ I
S2 v ® Interrupt
Buffers Recognition
2435, '245 Switches] Address PAL HP4
witches Recognition
$1,52.1 '520,'520, _ _
PAL HP1 2 51 |3
g = 1318
X 0 :UI = g:
3 g R
| — S5tz v
= Command Reg aoll&l 2
pry 1757474 > a § Interrupt
g. & Requester
AL HP4
Status Reg o PAL H
'244
3
I
Interrupt Vector -
'574 Yy vy \ 4
Synchronization, Latching Berr
PAL HP2, '573
16 bit SSR
access Reg <
'299,'299 S 1 |s
m =
o BR
- o
=2
% g DTAC
ACK
D :SU Strobe Generation
& PAL HP3, '138
®)
|_» HostlO
Bufters . .
to pcode Finite State Machines Fostior
Y-bus Command/Status Reg (PAL HP5) ———— Rostiviem
1945 ucode address bus (PAL HPS) S
5,245 Data Memory timing (PAL HP5) > HDmenlka (goes to
,b SSR shifting (PAL HPS, '161) array clock)
SSR, pucode read (PAL HP7)
YO0-Y12 SSR, pcode write (PAL HP8, '161)

time from the array without conflicting with array activity. The clock will remain
halted until -vMEHit is deasserted.

PAL #HP2 is also responsible for coordinating the board's responss to
an interrupt acknowledge cycle. If -IntHit is asserted by PAL #HP4, then an
interrupt acknowledge cycle is in progress which invoives this board. When
-DSO0 is asserted, and both -pTACK and -Berr are deasserted, PAL #HP2 will
assert -HIntA at the next osc edge, indicating that the board should respond
with the interrupt vector. This strobe will be held until -Ds0 is deasserted. (This
protects against the fact that the -IntHit line may be deasserted after the
board returns -DTACK.)

4.6. Developing the Basic Host Read/Write Strobes

PAL #HP3 is responsible for decoding certain strobes controlling the
overall behavior of the various FSM's forming the host interface. When this PAL
detects -VMEHit, and the Halt line is asserted (indicating that the array clock is
stopped), and -10Match is asserted, then it outputs the strobe ~Host I0
indicating that the bus cycle is accessing one of the upper 16 bytes, and
therefore involves special handling. The -~Host IO strobe enables a 74ALS138
octal decoder, which asserts one of the strobes ~-HitCmd, -HitPipe, ~HitSSR,
-Hitpumemg, Of -Hitumemw depending on whether the low three address bits
al-a3are0, 1, 2, 3or 4 respectively. A hit on the top 6 bytes, address hits A1-
A3=5, 6,7, will cause -Hitnone5, -Hitnone#6, -Hitnone?7 to be asseited,
indicating a hit on a non-existent I/O register in the address range. Because
Al-A3, and -I0Match are latched, these strobes will remain valid without
glitching until -vMEHit is deasserted. The -Host I0 strobe also enables a
tristate transceiver connecting the upper byte of the host data bus to an internal
host data bus HD8~HD15.

If PAL #HP3 detects -VMEHit and Halt, but -IOMatch is deasserted,
then a data bus cycle is in progress accessing a data memory byte or word
location. The PAL will assert -HostMem, which signals the data memory control
PAL's that a host cycle is under way. Ifthe -wWrite line is also asseried, then
PAL #HP3 will assert ~HDmemwW, which signals the clock generator PAL #uCP4

31

32

that a host write cycle is in progress. PAL #uCP4 (with #u1CP3) is responsible
for generating the data memory write strobe -Dmemw when -HDmemW is detected
together with -VMEHit. '

PAL #HP3 is also responsible for generating the strobe -EnLowDbus,
which enables a tristate transceiver connecting the low byte of the host data bus
to an internal host data bus ED0-HD7. This strobe is generated during any host
access to the upper 16 bytes of the address range (-vMEHit and Halt and
-IOMatch asserted). ltis also generated in response to ~HIntA, allowing the
output of the interrupt vector register to be forwarded to the VME data bus
during a host interrupt acknowledge cycle.

PAL #HP3 also generates a -C1rHIntR signal to clear the host interrupt
request flip flop. This clear signal is generated whenever -HIntA is asserted,
indicating that the requested host interrupt cycle is in progress. It is also
asserted when the host writes a 0 into the HIntEn flip flop in the command
register (this happens when LdCmd and ED14=0). Thus a pending host interrupt
request is cleared when EIntEn is cleared; this feature may be useful when
host interrupts are not desired, but the host would still like to use the HIntR
signal as a flag to synchronize its activities with the array.

Finally, PAL #HP3 is responsible for generating the acknowledge for
every correct data or interrupt cycle. The various FSM's in the interface
generate local acknowledges -CmdDTACK, -PipeDTACK, -~SSRDTACK, and
-umemDTACK. When any of these signals is present, PAL #HP3 will assert
LDTACK, which is inverted by an open collector buffer to drive the VME -DTACK
line.

Note that if metastable states do not occur on -VMEHit, then the outputs
of PAL #HP3 and of the octal decoder will be stable well before the next osc

~ edge.

4.7. Interrupt Acknowledge Cycle Synchronization

PAL #HP4 is responsible for coordinating the response to VME bus
interrupt acknowledge cycles. The low three address lines A01-203 are

33

compared with three switches setting the interrupt priority level for the board. (A
resistor pack provides pullups for the switches). The PAL also checks that -as
is asserted together with -1ack. If all these are true, then an interrupt
acknowledge cycle is in progress at the board's priority level, and the PAL
assents -IntMatch. (This signal is only used internally by this PAL). Note that
-IntMatch may glitch at the end of any bus cycle when ~-DTACK Or -Berr are
asserted, since the timing of the release of the strobes on the VME bus is not
specified.

PAL #HP4 also implements a three state asynchronous finite state
machine which is responsible for tracking all interrupt acknowledge cycles.
First of all, if the sequencer is requesting a host interrupt (flag HIntR asserted),
and host interrupts have been enabled (command register bit HIntEn
asserted), then an interupt request IRQ is generated. This is inverted by an
open collector buffer, then goes through a set of jumpers onto the appropriate
interrupt request priority line. The interrupt request may be connected to any of
the VME interrupt priority lines -IRQ1 through -1RQ7, but the line chosen must
match the 3 bit code in the switches attached to the interrupt priority level
comparator.

If -1ACKin is asserted, then some interrupt cycle is in progress and the
board must make an immediate decision as to whether this interrupt cycle
should be handled by the board. In its default state, PAL #HP4 deasserts both
-IACKout and -IntHit. lf =IACKin is asserted while -IRQ and -IntMatch
are not both asserted, then an interrupt acknowiedge cycle is in progress which
has either not been requested by this board, or is not at this board's priority
level. In either case, PAL #HP4 immediately changes state and asserts
-IACKout. The PAL directly drives this VME bus line, since the line simply
connects to the next board in the interrupt acknowledge daisy chain, and thus
the drive capability is sufficient. ~IACKout will remain asserted until either -As
or -IACKin are deasserted. Including -As in this release process accelerates
the board's release of -1ACKout at the end of an interrupt acknowledge cycle in
order to meet the 30 nsec required release time.

If -1ACKin arrives when -IntMatch is valid, and an interrupt request is
pending and enabled, -IRQ assert_ed, then PAL #HP4 changes to its third state
and asserts -IntHit. This signal goes to PAL #HP2, which waits until -Ds0 is

34

valid (it should be valid before -1acKin) and -DTACK and -Berr are released,
and which then asserts -HintA on the next osc edge to gate the interrupt
response vector onto the host data bus. -IntHit will remain valid until
-IntMatch is deasserted.

To help eliminate difficulties caused by glitches on -1ntMatch and by
race problems when IRQ is asserted simultaneously with -IACKin, PAL #HP4
gives preference to handing the interrupt to the next board. Thus if both
-IACKout and -IntHit are asserted, the FSM will remove -IntHit and leave
-IACKout asserted. |

4.8. Host Data Bus Buffering Hardware

The 16 VME bus data lines are buffered by a pair of 74LS245A-1 high
current transceivers. Ordinarily, these transceivers are disabled and a pair of
4.7K resistor packs pulls the internal data bus lines HDO-HD15 high. The
direction of these transceivers is determined by the -write strobe. The upper
byte is enabled auring host reads or writes to the upper 16 bytes of the address
space by -Host10. The lower byte is enabled during host reads or writes to the
upper 16 bytes or during interrupt acknowledge cycles by -EnLowDbus.

A 74ALS175 and a pair of 74ALS74 dual flip flops form the command
register, and are loaded by a LdCmd signal from PAL #HPS. These are gated
back onto the host data bus by a -EnCmd signal from PAL #HPS through a
74ALS244A octal driver. The upper 4 bits of the command register are cleared
by a VME System Reset, -SysReset. HpIntRis cleared by -C1rHuIntR which
is generated by PAL #uCP2 in the pcontrol section (this bit is reset whenever
~-Reset is asserted, or when a “HuIntR=0" compiler command is executed by
the sequencer). HReset is cleared by the internal -Reset signal, which is
generated during a Reset clock cycle in the array. singleStep is cleared by a
low value on the c1k line.

The interrupt register is formed from a 74ALS574 octal register with
tristate outputs. It is loaded by a LdHIntReg signal, and its output is gated back

35

onto the HDO-HD7 bus by an -EnHIntReg signal. Both strobes are generated
by PAL #HPS. '

The connection between the SSR registers and the host is made through
a pair of 74ALS299 octal shift registers. The /O ports of these registers sit on
the HDO-HD15 bus. The register is clocked by a Hc1k signal, the tristate outputs
are enabled by -HOE, and the -Hshift signal allows the register to broadside
load if high, or shift left if low. Data shifted out of the register, SSRin, shifts into
PAL #HP8 and #uCP3, which in turn usually shifts it into the least significant
microcode pipeline register via DopspI and usp1. Data is shifted into these
74ALS299 shift registers from the MDR register shift output MDR-SDO.

The host data bus also connects to the microcode address bus YO-Y12
through a pair of 74ALS245 transceivers. These transceivers are enabled by
the control signal -Enpadr generated by PAL #HPS, and their direction is
controlled by -write. Note that if the host is writing to the microcode address
bus, then PAL #HPS5 always tristates the 1401 sequencer bus with pHold.

4.9. Command/Status Register, nRAM Address Bus, Data Memory

PAL #HPS is responsible for coordinating host access to the
command/status register, the pcode RAM address bus, and the data memory.
All the actions this PAL controls last for 2 ticks of osc. On the first tick a strobe is
asserted. For almost all the actions, on the second tick ~CmdDTACK is asserted
to signal the end of the cycle. This acknowledge will be held until the bus cycle
is over.

Input -HitCmd is asserted by the octal decoder when the host reads or
writes either a byte or a word to the command/status register address. In
response to -HitCmd, PAL #HPS will assert one or two of four different strobes
on the next osc rising edge, depending on whether a read or write is in
progress (indicated by -write), and on which byte is being accessed (-pDs0
and/or -Ds1). Writing the upper byte (-HitCmd and -Write and -Ds1) clocks
LdCmd, which will load EHDB-HD15 into the command register. If bit HIntEn is set
to 0, then PAL #HP3 will also assert -C1rHIntR to clear the host interrupt flag

36

HIntR. Writing the lower byte (-HitCmd and -Write and -Ds0) clocks
LdIntReg, which will load HD0O-HD7 into the interrupt vector register. For both of
these strobes, note that delaying the load pulse until one osc period following
-Host I0 and -EnLowDbus allows sufficient time for the host data bus to
stabilize after the data bus transceivers are enabled.

Reading the upper byte (-HitCmd and not -write and -DS1) enables
-EnCmd which will gate the command register onto the host data bus HD8-HD15.
Reading the lower byte (-EitCmd and not -write and -DS0) enables
-EnHIntReg, which will gate the interrupt vector register onto HD0O-HED7. This
strobe is also asserted during a host interrupt acknowledge cycle in response to
-HIntA. Note that the delay of one osc period following ~Host 10 and
-EnLowDbus allows time for the host data bus to settle into output mode.

In all of the above cases, ~-CmdDTACK will be asserted on the next osc
edge following the strobe. Again, the delay of one osc period ensures sufficient
setup time before the acknowledge. PAL #HP3 will use -CmdDTACK to cause
LDTACK, which in turn is driven through an open collector inverter onto the VME
~-DTACK bus line.

The -HitumenR line is asserted when the host accesses the “read
pmemory” address. The -Hitumemw line is asserted when the host access the
“write pmemory” address. Reading from either of these addresses ((-HitpmemR
or -HitpumemW) and not -Write) will assert -DoEnHuAdr on the next osc edge.
This causes PAL #uCP2 to enable —-EnHuAdr to drive the address on the pcode
address lines YO-Y12 to be gated onto the internal host data bus HD0O-HD15,
and thence onto the VME data bus. (The direction of the tristate butfers on Yo-
Y12 is governed by -write). On the next osc pulse, ~-CmdDTACK is asserted.
The net effect is to allow the host to read the pcode.address being generated by
the 1401 sequencer. (Note that the sequencer is halted throughout the host
access).

Writing into the “read pmemory” address (-HitpumemR and -Write) or
writing into the “write umemory” address (-Hitpumemw and -Write) will assert
both -DoEnHuAdr and pHold strobes. The latter tristates the sequencer, while
the former prompts PAL #uCP2 to assernt ~-EnHuAdr to connect the HDO-HD15
bus to the pcode memory address bus (the direction is given by -write),

37

allowing the host to drive the pcode address lines. This is just the beginning of
the pmemory read/write cycle - the remainder of the action is handled by PALs
#HP7 and #HP8. A -cmdDTACK signal is not generated by PAL #HPS5 for this
type of cycle (PALs #HP7 and #HP8 worry about the acknowledge).

Finally, PAL #HP5 is responsible for timing out a data memory access.
When the host accesses any address in the board's address space except for
the upper 16 bytes, PAL #HP3 will assert -HostMem. This signal is used by the
data memory to immediately switch control of the data memory address and
data lines to the host interface. If -wWrite is asserted, PAL #HP3 also asserts
-HDmemw to force the #1CP4 clock generator PAL to pulse the data memory
write line -Dmemw. This line will pulse low on the osc period after -HostMem,
then will pulse high again on the osc period following that. The one cycle delay
before -Dmemw allows time for the memory address lines to settle. On a read
data cycle - HDmemW and -Dmemw will remain high. For either a read or a write
cycle, PAL #HP5 will assert -CmdDTACK two osc periods following -HostMem.
This should allow enough time for the cycle to complete.

PAL #HP5 will remain in its final state until the strobe which caused it to
react disappears. (For read/write cycles, this will occur when the bus master
removes -DS0 and -DS1, and PAL #HP2 deasserts -VMEHit. For interrupt
cycles, this will occur when the bus master removes -As and -Ds0, and PAL
#HP2 deasserts -HIntA.) On the next osc tick, PAL #HPS will deassert all
strobe outputs, and also release -CmdDTACK. This will allow the VME bus to
become free, so that the next bus cycle may begin. Note that if the array clock
had been halted by -VMEHit, it will be restarted on the same osc clock tick that
removes -CmdDTACK. Thus if the array is running, at least one array clock cycle
will be interposed between successive host cycles. For maximum host-array
transfer rates, the array clock should be stopped by setting the Run bit in the
command register to 0.

4.10. Reading and Writing the SSR Register

PAL #HPS6 is responsible for coordinating reading and writing the Serial
Shift Register system. Two 74ALS299 parallel/load octal shift registers sit on

38

the host data bus, HDO-HD15. The shift-out bit SSRin is connected to PAL
#HP8, which usually forwards it to bousp1, which PAL #uCP3 forwards to the
shift-in bit of the microcode register, psp1. The serial shift register chain
continues through all 11 microcode registers, then through PGreg, MAR, and

MDR. The shift-out bit of MDR, MDR-5DO, finally returns as the shift-in bit of the

74ALS299's, thus forming a circular shift register. To allow the host to write
another 16 bits into this register, PAL #HP6 will load the 74ALS299's with the
new data, and then shift the registers by 16 bits. To read the next 16 bits from
the register, PAL #HP6 will first shift the registers by 16 bits, and then enable the
tristate drivers of the 74ALS299's onto the host data bus. A 4 bit binary counter
is used to count to 16. The FSM relies on PALs #HP8 and #uCP3 to forward the
serial-out bit from the 74ALS299's to the pcode registers, and on PAL's #HP7
and #HP8 to keep the mode control lines on the SSR registers low.

When PAL #HP6 detects -HitPipe, then the host is attempting a
read/write to address I0reg+2. For a write operation (-Write asserted), Hclk
is first brought low, then high. This writes the host data bus contents into the
74ALS299's. The count line is also pulled low to reset the 74LS161A binary
counter. Next -Hshift is asserted to prepare for shifting. A 2 cycle loop then
pulses both Hclk and Dodclk low then high, with count held high. Each rising
edge shifts both the 74ALS299's as well as the 29818 registers. Dodclk also
clocks the binary counter. After 15 rising clock edges, the ripple carry output,
Cout, of the counter will go high. PAL #HP6 completes one last Hc1k and
Dodclk cycle, then returns -PipeDTACK to signal that the operation is complete.
PAL #HP3 will assert -DTACK. PAL #HP6 will remain in this state until -vMERit
disappears, causing ~Host I0 and -HitPipe to disappear. On the next osc
edge, -PipeDTACK will be deasserted, and PAL #HP6 will reset.

A read operation is similar, except the registers are shifted 16 places first.
When the ripple carry output Cout goes high, the last clock period is completed,
and -HOE is asserted, enabling the tristate drivers on the 74ALS299's onto the
HDO-HD15 data bus. On the next osc edge, -PipeDTACK is asserted, and both
-HOE and -PipeDTACK will be held as long as ~HitPipe is asserted. When the
bus master releases the data strobes and -vMEHit is deasserted, together with
-HostIO and -HitPipe, PAL #HP6 will remove -HOE and -PipeDTACK, and
PAL #HP3 will remove ~-DTACK.

39

4.11. Handling Non-Existent I/0O Addresses

The top 6 bytes of memory do not correspond to any particular actions by
the array. It is necessary, however, to return an acknowledge if the host shouid
access these locations, in order to avoid hanging the bus. Therefore, PAL
#HP6 will generate -PipeDTACK in response to any of the strobes ~Hitnones,
-Hitnone6, -Hitnone?7, and will hold it until the strobes are removed at the
end of the VME cycle.

4.12. Reading Microcode Memory

PAL #HP7 coordinates reading microcode memory and transferring the
serial shift register contents into the parallel registers. |f the host is accessing
address I0reg+6, then -HitpumemR will be asserted. PAL #HPS will use the
combination of -HitpumemR and -Write to assert pHold and ~DoEnHUAdr On
the next osc edge, tristating the psequencer and putting the microcode address
to be read onto the microcode address bus. At the same time, PAL #HP7 will
assert -HumemR to enable the pcode RAM's to read. On the next osc edge, PAL
#HP7 brings Doppclk low, which causes PAL #uCPS5 to bring upclk1 and
Hpclk2 low. On the next osc edge, it brings Dopupclk high again, which causes
PAL #uCP5 to raise upclkl and ppclk2, thus clocking the microcode word into
the microcode pipeline register. This procedure leaves two full osc periods for
the pcode RAM outputs to settle. PAL #HP7 also asserts ~pmemDTACK, which
causes PAL #HP3 to assert -DTACK. PAL #HP7 will remain in this state until the
next osc tick after -HitpumenmR is removed.

4.13. Copying Serial Register into Parallel Register

PAL #HP7 also handles copying the serial shift register into the parallel
register. When -HitSSR occurs with -Write, then the host is trying to write into
address I10reg+4, which indicates that the serial register is to be copied into the

40

parallel register. On the next osc edge, PAL #HP7 will drop both Dopcik and
-modeA. Dopclk goes to PAL's #1CP5 and #PP03 (on board 2), which force all
the parallel register clock lines ppclk1, gpclk2, MARpclk, MDRpclk, and
PGpclk low. -modea goes to PAL #uCP3 which forces the mode lines mode1,
mode2, and Mmode high. On the next osc edge, PAL #HP7 brings Dopc1k high,
which causes PALs #1CP5 and #PP03 to clock the serial register contents into
the parallel registers. On the next osc edge, PAL #HP7 releases -modeA and
asserts ~umemDTACK. PAL #HP7 then remains in this state until ~-HitpmemR is
removed; at the next osc edge, it then removes -pumemDTACK.

4.14. Writing Microcode Memory

Normally, PAL #HP8 keeps its output -modeB high and lets its output
DousSDI track the serial output SSRin of the 74ALS299 shift registers. This
value for -modeB allows the parallel registers to work normally, and causes the
shift registers to shift left when clocked. This value for Dousp1I is forwarded by
PAL #.1CP3 to usp1, and links the shift registers into a circular buffer.

PAL #HP8 is in charge of coordinating writing to microcode memory.
When -HitumemwW occurs with -Write, then the host is writing to address
I0reg+8, which indicates that it wishes to write the serial shift register into the
microcode memory. On the first osc edge, PAL #HPS will assert pHo1d and
-DoEnHUAdr to tristate the psequencer and drive the host data bus onto the
microcode address lines. At the same time, PAL #HP8 will assert -modeB and
set DopuspIi=1. This high serial value will start rippling through PAL #.CP3 and
down the chain of 29818 SSR registers. Because of the slow propagation time
and the large number of registers in the chain (16 in all), PAL #HP8 will use a
72ALS161B 4 bit binary counter to pause awhile for the signals to settle. It pulls
Count2 low to clear the counter, and also pulls Dopdc1k low in preparation.
Dopdclk goes to PAL #1CPS which in turn brings the microcode serial register
clocks pdclk1 and pdclk2 low. On the next osc tick, PAL #H8 goes into
waiting mode with Count2 high again. After 8 more osc ticks, bit QD on the
counter will rise. (The wait therefore lasts about 640 nsec minimum, which is
well in excess of the propagation delay of the SSR chain). On the next osc tick,

PAL #HP8 brings Dopdc1k high. This causes PAL #uCPS to clock the pdc1k1

41

and pdclk2 lines, thereby causing all the microcode registers to place the
contents of the serial shift register onto the input lines. At the same time, PAL
#HP8 asserts -HumemW to enable the pcode memory for writing (the address
lines will have been stable for quite a while). We will have to wait while the
29818 input pin drivers power up (90 nsec) and while the RAM's write the data
(80 nsec). Thus PAL #HP8 brings Count2 low again to clear the counter. On
the next osc edge, PAL #HP8 releases Count2 and the counter starts again. It
also brings Dopdclk low again to prepare for the end of the write cycle. It also
releases -modeB and lets DopsDI follow SSRin again. After 8 osc ticks Qb goes
high, and on the next osc tick we enter the final state. (This wait time is
extremely conservative). PAL #HP8 removes -Humemw to end the write cycle, it
clocks Dopdclk to turn off the 29818 input drivers (and also serially shift the
SSR), and it asserts ~SSRDTACK to signal the end of the activity. It waits in this
state until -Hitpmemw is released, and then on the next osc tick returns to its
initial state.

Note that the operation of PAL #HP8 must not be arbitrarily interrupted in
the middle of a microcode write operation. Unfortunately, once the 29818's
have been instructed to drive their input lines with the contents of the serial
registers, the drivers will not shut off until another dc1k pulse arrives.
Therefore, the PAL will continue working even if ~-Hitpumemw disappears. In
theory, premature disappearance of this strobe should only occur if a VME bus
reset occurs while writing to pcode. In this case, the address on the pcode may
be incorrect during the write operation. Hopefully, this circumstance should not
arise too often.

4.15. Copying the Parallel Registers Into the Serial Registers

PAL #HP8 is also responsible for copying the parallel registers into the
serial registers. To achieve this, the PAL waits for -HitSSR and -Write. On
the next osc edge, it drops Dopdclk and DoMdclk. PAL #uCP5 and #PP04 (on
the second board) will cause all the serial clocks pdc1k1, pdcix2, and Mdclk
on the registers to drop. PAL #HP8 also drops Count2 to clear the counter. It
also asserts -Enpipe. This signal goes to all PAL's controlling the enables of
the 29818's, instructing them to disable any competing tristate drivers, and to

42

enable the output of every 29818. This is necessary because the serial
registers will load whatever value is on the output pins of these chips, not
necessarily the contents of the parallel register. (In the final design of board 2,
this signal is not used because all 29818 chips are permanently enabled.) The
-modeB line will be pulled low, forcing PALs #1CP3 and #PP04 to raise the
pmodel, pmode2, and Mmode lines. The usbI line will be forced to 0. In this
mode, the 29818's will propagate the zero value through the entire chain.

To allow sufficient time for this to settle, on the next osc edge, PAL #HP8
raises Count 2 and waits until the counter counts 8 osc periods. (This is a very
conservative delay.) Finally, when bit oD goes high, PAL #HP8 raises Dopdc1k
and DoMdc1k to clock the parallel register contents into the serial register.
Finally, on the next osc edge, PAL #HP8 releases -Enpipe, it allows -modeB to
return high and DopsD1I to follow SSRin, and it asserts -SSRDTACK. PAL #HP3
will assert LDTACK in response. PAL #HP8 will remain in this terminal state until
the osc edge after -Eit SSR is released.

4.16. Potential Problems in the Host Inierface

Timing is very tricky. This interface has been designed to maximize the
speed with which the host can read or write data memory. Timing on most other
actions, particularly those involving the diagnostic shift register system and
accessing microcode memory, is extremely conservative. This is because the
29818's are actually relatively slow on actions different from the usual shifting or
broadside parallel loading.

Timing of data memory is particularly tricky. Read operations generally
have about 1.5 osc ticks for the output to be available. Write operations allow 1
osc tick for the address and chip selects to stabilize. The write pulse occurs on
the next osc tick, and lasts for only 1 tick. The same pulse will enable the
tristate drivers to put the data onto the RAM data lines. Thus the data will be
available for somewhat less than 1 osc period. During normal array operation,
the write pulse is designed to release about 1 PAL propagation delay before the
clock edge arrives and the chip select and address changes. This should allow
enough hold time to ensure a proper data memory write.

Section 5 — nCONTROLLER - DETAILED DESCRIPTION

5.1. Introduction to the Microcontroller

The microcontroller on board #1 is based around an Analog Devices
ADSP 1401 sequencer chip. This sequencer is moderately fast, has a deep 64
word stack and register bank, four independent loop control counters, various
addressing modes, extensive micro-interrupt support, and conditional testing.
Data inputs are supplied from the pconst field in pcode RAM, or from the MDR
register. Call, jump, return, and other microinstructions can be conditionally
executed based on an internal sign bit or counter value, or based on a test bit
which is generated by PAL #uCP1 from the NAND or OR of the bits in MDR,
from the most significant (sign) bit of MDR, or from the host controlled flag
HflagO.

The sequencer supplies microaddresses over the Ybus to the
microcontrol RAM, which is 8K words, each 88 bits wide. Bits from this pcode
RAM are latched in a pipeline register. The register chips are backed by a
Serial Shift Register (SSR) system which allows the host to load or read the
contents of the pipeline register, or to read or write pcode RAM. Finite state
machines built from PAL's in the host interface coordinate the control of this
SSR system. Bits from the pipeline register are tied to control lines for the data
processors, the data busses, the data memory, and the pconst bus.

A set of PAL's create the necessary control lines for the 1401, and also
implement a clock generator. PAL #uCP2 decodes various microcode bits to
generate some of the control lines for the 1401. PAL's #uCP3, #uCP4, and
#uCP5 form the clock generator. This clock system supports 4 different clock
periods, allows the host to smoothly start or stop the clock after a
microinstruction completes, coordinates reset activity, and also times out the
writing of the data memory. It even disables the memories to save power when
the clock is halted or during long clock periods.

The host is capable of monitoring the microcode address bus Ybus, as
well as forcing the sequencer to tristate this bus so that the host can directly
controf the address lines in order to read or write pcode into the pcode RAM.

43

One of the complicating features of the design is that the 1401 has buiit-
in pipeline registers on all data, test, and control line inputs. To avoid double
pipeline buffering, it is necessary to bypass the pipeline registers in the pcode
RAM and in the signals feeding the data and test inputs. As a result, the
pinstruction lines on the 1401 are directly driven by bits from pcode RAM
instead of from the pipeline register. pcode RAM bits also directly control PAL -
#uCP1, which generates a test bit from the next contents of the MDR register or
from the host controlled bit Hflag0. A more complicated issue is the control of
the 1401 D inputs, containing data to be used by the sequencer. Because the D
inputs are latched, circuitry will supply either the next value of pconst or the
next value of MDR to the 1401. This allows the software to place a constant
value in the same microcode word which uses the value, or to have the
sequencer use the value written into MDR in the previous instruction.

In the following, we will describe this system in more detail. A comment
on notation: signals such as Y0 are positive true logic, whereas signals such as
-EnpAdr with a ‘=’ in front are negative true logic. Also note that in the Mentor
Graphics blueprints, some of the signal names have been abbreviated; for
example, NextMDR is called nmdi (“next MDR input”).

5.2. ADSP 1401 Microprogram Controller Chip

The pcontroller is organized around an Analog Devices ADSP 1401
program sequencer chip. This is a 16 bit wide, moderate speed, single chip,
48-pin sequencer built with CMOS, dissipating a measly 1/3 Watt. The chief
advantage of this chip is that it is a complete sequencer on a chip with great
interrupt capabilities and low power consumption. Major disadvantages are its
moderate speed (90nsec cycle time in version J, 70 nsec cycle time in version
K), an obscure instruction set which makes high level language
implementations difficult, and the limited number of pins which forces external
multiplexing of test conditions, input sources, and reset logic.

The sequencer sports a 64 deep stack, dynamically configurable into a
subroutine stack, global register stack, and local register stack. Four
independent counters control loops. Absolute, relative and indirect addressing

Hflag0 MDR

— pconstant

Flag Test
Logic

L R R I O R I I A I I I A R R A S

N Stack Limit Width
: SLR Reqister | s Control
N I Interrupt
X _ R Vectors C'ounter
: | I [sign
+ | LssP_|| GsP || LsP
S . v Y ¥ |6axi6
: \%AM address mu/ RAM
: Stack Adder
' >
: v
' Compare ‘ v
N l wrogram Address MV
: 9
E Interrupt ‘ Program
E Control Latch Counter
' 47 ‘

HulntR MicroCode Memory

8K x 88
Bkt l Pipeline Register
ADSP 1401 Control l L‘s

AAP Control Lines Hconstant

ADSP 1401 MicroSequencer, Microcode Memory,
External Flag Logic, Sequencer Input Data
(Programming Model)

modes are available. The next address may come from the data input (D-por),
the subroutine stack, the register stack, the program counter, or any selected
location in the stack RAM. The value of any of the three stack pointers, four
counters, or stack contents may be read or written via the D-port. An extensive
interrupt system allows 8 external interrupts, plus a counter overflow interrupt,
and stack under or overflow interrupts. Interrupts are prioritized and masked on
the chip, and the interrupt vectors are contained in registers on the chip. An
external flag input pin supports conditional execution. Most conditional
instructions can be made to depend on the flag being true or false, the internal
sign bit being true, or can be unconditional.

Unusual and unpleasant features of this chip abound. The instruction set
is rather irregular, and does not map neatly into a simple high level language
viewpoint. Certain conditional instructions can not test the internal sign bit.
Either the local or the global register pointer may be accessed at any time, but
not both. Four "registers” in RAM may be indexed off the iocal and global stack
pointers and may be used for loading the counter or as jump/call addresses.
Register selection, however, is tightly coupled with counter selection, and only
the top register on the stack can be read or written directly.

To run a loop N times requires loading the counter with either N-2 or
0x8000+N-2, depending on whether the loop termination instruction is at the
beginning or the end of the loop. Putting the loop termination at the start works
best if the jump address enters via the D-port. Putting it at the end works best if
the jump address is in a register. Complications involving the use of loop
counters force the aapcompile compiler to only use counter 0 in the “loop()”
program construct. Before each loop, the previous value of counter O is saved,
and the counter is restored after the loop exits. Setting up a loop requires about
3 microinstructions of overhead, and terminating the loop requires about 2
microinstructions of overhead; the compiler attempts to merge these extra
instructions into surrounding AAP microcode in order to disguise this large
amount of loop overhead.

The instruction at location 0, as well as the first instruction of any interrupt
service routine, must be a continue. (Admittedly, there are excellent hardware
reasons for this). A Reset pulse must last for at least 3 clock ticks. Although the

- 45

46

1401 directly supports writing into microcode RAM, this feature would be most
useful if part of the microcode were in ROM.

5.3. Clock System for the ADSP 1401

The clock for the sequencer and the array is generated by PAL's #uCP3,
#uCP4 and #uCP5. PAL #uCP3 synchronizes various Run and Reset signals
from the host interface to the board's high speed osc clock signal. It produces
signals -Go and -DoReset, which request the array to Run or to perform a
Reset operation. PAL #uCP4 is a finite state machine which actually produces
the fundamental clock cycles. When in Run mode, this PAL can produce 4
different length clock cycles on the c1k line (depending on microcode bits
SelClk0, SelClk1.) It also outputs an -Enmem strobe to enable the microcode
and data memories (this saves power during long clock cycles or when the
array is halted). It also outputs a data memory write strobe -Dmemw during array
or host writes to data memory. In Reset and Halt modes, it outputs appropriate
-Reset and Halt signals.

The c1k signal from PAL #uCP4 passes to PAL #uCP5, which developes
a variety of clocking signals for the sequencer, the various PAL's, and the
microcode pipeline registers. Signals from #uCP4 also go to board #2, where
PAL's develop more clock signals for the MDR, MAR and PGreg registers. The
sequencer itself is clocked by pclk. In a typical clock cycle, this signal goes
high for one osc period, then goes low for 1 to 10 osc cycles. When the clock
generator is halted, pclk will be kept high.

More details on the clock generation system will be found in a later
section.

5.4. Y-bus, Tristate Control of the ADSP 1401

Wiring of the micro-address bus Ybus0-Ybus15 is straightforward. The
lower 13 bits drive the address lines on the 11 microcode RAM chips. The
microcode address bus is shared with a pair of 74ALS245A octal transceivers

connected to the host data bus Hp0-HD15. This allows the host to sample the
current microcode address by asserting -DoEnHpAdr, which PAL #uCP2
interprets to assert -EnHuAdr. (The direction of the transceiver is controlled by
the host read/write line, -Write.)

The host can also control the microcode address when reading or writing
microcode memory. Accessing locations I0reg+6 Or I0reg+8 will first cause
-VMEHit to be asserted, which will stop the sequencer clock. (This is handled
by PAL's #1.CP3 and #uCP4). ucik will be left high. On the next osc tick after
the clock halts, PAL #HPS5 will assert the pHold line and -DoEnHpAdr, causing
PAL #uCP2 to raise the TTR line, thus causing the 1401 to tristate the Ybus.
After TTR is high, PAL #uCP2 will assert -EnHpAdr, thus enabling the host data
bus HDO-HD15 to drive the microcode address bus Ybus0O-Ybus12. When the
host is finished and the VME bus cycle completes, PAL #HP5 will release
HHold and -DoEnHpAdr, and PAL #uCP2 will release ~EnHpuAdr and TTR. This
strategy minimizes the overiap between the tristate drivers on the Ybus.

5.5. Micro-Instruction Control Lines for 1401

A major peculiarity of the 1401 is that the microinstruction control lines,
together with the interrupt, flag and the data input lines, are latched into
transparent latches inside the 1401 at the beginning of the pcik period, when
pclk goes high. Inputs on all these lines must therefore be stable well before
the clock edge.

This unusual feature has major implications for the design of this system.
The micro-instruction latch functions as a pipeline register. Therefore, the
microinstruction bits that feed the 1401 and associated circuitry, ubsel, n10-6,
Bkpt, and uso0-1, are taken directly from the microcode RAM, before the
pipeline register.

47

48

5.6. D-port of the 1401

Wiring of the 1401 data port is greatly complicated by the latching,
bidirectional behavior of this port. During the first part of the clock cycle, while
pclk is high, the D-port may function as an output port. On "pop stack”
instructions, for example, the value at the top of the stack will appear on the D-
port at this time. On the second half of the clock cycle, while pclk is low, the D-
port will act as an input port. The value read on this port at this time, however,
will not be used until the next clock cycle. To cope with these features, our
design latches the outgoing value of the D-port when pc1k is high. Also, during
the second half of the clock cycle, either the next value of the MDR register or
the next pconst value will be fed into the D-port. This allows using either
calculated values, values read from data memory, or constants when loading
counters, registers, stack, or choosing a next address. Using the next values
simplifies the programming task, since it removes an extra pipeline level from
the design. Pushing the value of MDR onto the sequencer stack, therefore, will
push the value that was loaded into MDR as recently as the previous instruction.

On the first half of the clock cycle, when pclk is high, the sequencer may
output a value on the D-port. This value must be captured and held available
during the second half of the clock cycle so that it may be written into the MDR
register, if so desired. A pair of 74F543 transparent latch transceiver chips is
used for this purpose. The input lines of the MDR register connect to the B side,
while the D-port of the sequencer connects to the A side. Back to back
transparent latches connect the two sides. During the first half of the clock
cycle, PAL #uCP5 outputs both a pclk and a -pclk signal. These are exactly
opposites, and their transitions occur almost simultaneously. When -pclk goes
low during the first half of the clock cycle, the A-to-B latch in the 74F543 is

“enabled, so that it passes the value being output on the D-port. During the

second half of the clock cycle, -pclk will go high, and the latch will hold this
value. lf the -EnSegMDR signal is asserted during this cycle by PAL #PP08 on
the second board, then this latched value will drive nextMDR into the MDR
inputs, so that the MDR register will load this value on the next rising edge.

On the second half of the clock cycle, when pclk goes low, the D-port
becomes an input. upse1=0 implies that the value to be input on the D-port is

49

the micro-constant; upSel=1 implies that the value is the contents of MDR. If it
is to be a constant, then for programming convenience, the value should be that
stored in the same microcode word which holds the jump or load instruction
using the constant. Since u10-5 is taken directly from the RAM's, the constant
should also be taken directly from the RAM's, not from the pipeline register.
Thus, a pair of 74F244 octal drivers connect the Nextpconst field to the D-port;
these are enabled by the -EnpcSeq control line from PAL #uCP2, which is
pulled low when pclk is low and ppsel=0. Note that -EnpcSeq drops low one
PAL delay after pc1k drops low; this should allow sufficient time for -pc1k to
rise and latch the output value from the D-port, and also allow time for the D-port
to begin disabling its own tristate drivers.

If the value to be used on the D-port is the contents of MDR, then the
situation is more complex. It would be convenient to allow the programmer to
calculate or retrieve a value into MDR, and then load it into a counter, register,
or jump to this address in the very next microinstruction. For this to be possible,
however, the D-port input latch must be loaded with the same value that is
being loaded into MDR. If MDR is not being loaded on this clock cycle, then the
D-port input latch must b3 loaded with the latest value of MDR.

To accomplish this, we use the B-to-A transparent latch in the 74F543.
During clock cycles in which MDR is being loaded, the ~LdMDR signal is
asserted, and when c1k goes low, PAL #1CP3 will assert -MDRpc1k. This
makes the B-to-A latch transparent, passing the MDR register inputs directly into
the 1401 D-port. At the next rising clock edge -MDRpclk goes high at the same
time that the MDRpc 1k signal generated on board #2 clocks MDR. As a result,
the D-port, the 74F543 and MDR all get loaded with the same new value for
MDR. During clock cycles in which MDR is not loaded, then the -LdMDR signal
is not asserted, and PAL #uCP3 will not assert -MDRpc1k. During these clock
cycles, the 74F543 B-to-A latch holds its current value, which is also the same
value held in MDR, and loads it into the D-port.

If upsel=1, then on the second half of the clock cycle, when -pc1k goes
high, PAL #.CP2 will assert -EnMDRSeq. This enables the 74F543 to drive the
sequencer D-port. If MDR is being loaded on this cycle, the B-to-A latch will be
transparent (PAL #uCP3 is asserting -MDRpclk), and the D-port will load the
same value that MDR will load. |f MDR is not being loaded on this cycle, the B-

50

to-A latch drives the current value of MDR into the D-port. Note that -EnMDRSeq
is asserted one PAL delay after -pc1k goes high, thus allowing time for the data
output by the sequencer on the D-port to latch in the A-to-B latches of the
74F543.

In effect, the 74F543 is a local copy of MDR, and the transparent feature
is used to bypass a level of pipelining when MDR is loaded in order to avoid
extra pipeline delays. On the second half of the clock cycle, the latch output will
always be the value that MDR will contain after the rising pclk edge. A
potential problem is that, on power-up, the MDR register and the 74F543
latches will contain different data. This should be no problem provided that
MDR is always loaded before its value is used.

Note that timing of the strobes controlling the D-port is critical. The -pcik
signal must go back high at almost the same time as pclk goes low, so that the
74F543 A-to-B latches correctly grab the sequencer's output. The -EnpcSeq
and -EnMDRSeq strobes must be delayed until 1 PAL propagation delay after
-pclk goes high, so that they do not start driving the D-port until the latch has
safely grabbed the data and the sequencer stops driving the bus. Thus PAL
#uCP2 conditions -EnjicSeq and -EnMDRSeq On -pclk going high so that
overlap is avoided. A drawback of this scheme is that at the start of the clock
cycle, pclk will go high, enabling the sequencer's D-port drivers, but -EnpicSeq
and -EnMDRSeq will not disable until 1 PAL delay later. This may cause some
overiap of the tristate lines, although it should be minimal because the D-port
drivers are relatively slow to turn on.

5.7. Flag Input for Conditional Execution

‘Four different conditions can be selected for an external test condition to
control conditional jumps, calls, returns, and so forth. These are:

0) The NAND of all the bits in the MDR register
1) The OR of all the bits in the MDR register

2) The most significant bit in MDR, MDR15

51
3) The value of the host flag Hf1ag0

The microcode control bits uso-pus1 determine which of these conditions will be
chosen. Because the flag input is latched when pc1k goes high, we must be
careful to calculate the appropriate function of MDR using the next value of MDR
rather than the current value. To simplify this, the NextMDR value from the
inputs to the MDR register is passed through a pair of 74F573 transparent
latches into PAL #1CP1. If the MDR register is being loaded on this cycle, then
an inverted copy of the MDR clock, -MDRpc 1k, generated by PAL #uCP3, will
acquire and pass NextMDR on the latter half of the clock cycle when pclk is low.
If the MDR register is not being loaded on this cycle, then ~-MDRpclk remains
high, and the last value of MDR will be trapped in this latch to feed PAL #uCP1.
In either case, on the latter half of the clock cycle, the output of these latches will
be the next value of MDR.

PAL #uCP1 is a 24 pin high speed PAL. It is fed all 16 bits of the next
MDR value, together with Hf1ag0, and the select lines pso-psi. Note that
these select lines are driven directly by the microcode RAM, before the pipeline
register. This PAL will compute the appropriate function of the next MDR value
or Hf1ag0, and forward the result to the flag input of the 1401.

Note that this arrangement has been carefully designed to minimize the
propagation delay from NextMDR to the 1401, and from the microcode RAM to
the 1401. Both sets of paths contain at most 2 chip delays. A substantial
difficulty is that we have 3 independent copies ot MDR (one on the array
processor board, one in the 74F573's, and one in the 74F652's). This makes
debugging more difficult, because the host will not be able to load all copies of
MDR directly. It also means that the three copies will power-up with different
values.

5.8. Micro-Interrupt System

One of the major strengths of the 1401 is its sophisticated interrupt
capabilities. Unfortunately, these are mostly unnecessary in this array
processor. The host HpIntR flag is connected to the EXI4 external interrupt pin,

52

while the breakpoint bit in microcode memory, Bkpt, is connected to the Ex13
external interrupt pin. Pins EXI2 and EXI1 are simply connected to ground.

Interrupts can be independently masked and enabled inside the 1401,
and the interrupt vectors are also stored inside the chip. When the host sets
HUIntR, it could potentially cause both a level 8 and a level 4 interrupt. Only
one of these should be enabled by microsoftware. Because there is no external
micro-interrupt acknowledge pin, there is no way to clear the HuIntR flag
automatically when the micro-interrupt occurs. Either the host or the microcode
must explicitly clear this bit. The Bkpt bit in RAM will cause both a level 7 and a
level 3 micro-interrupt. Note that this bit is taken directly from the RAM, and will
not be stable until well in the second half of the clock cycle when pc1lk is low.
Therefore, only the level 3 interrupt is legitimate and should be enabled. The
interrupt handler routine for the breakpoint will be called directly after the
sequencer has executed the micro-instruction containing the Bkpt bit.

Level O interrupts, caused by counter overflow, should not be needed in
this product. Level 9 interrupts, caused by stack under or overflow, may be
useful.

Note that the first instruction in an interrupt handler must be "Continue”.
Note that no external interrupt sources can cause level 1, 2, 5, or 6 interrupts.

5.9. Sequencer Flags

The sequencer is capable of setting a HIntR flag to request an interrupt
from the host processor. This flag may be set or cleared on any micro-
instruction for which the upper 3 instruction bits are p14=p15=p16=0. (The
continue instruction has this pattern, for example). None of these instructions
test the flag line, and therefore they do not use the select lines uso, usi. Thus
PAL #1CP2, in conjunction with half of a 74LS74 D flip flop, will adjust this Host
interrupt request flag HIntR when it detects one of these instructions, together
with bit us1=1. If pso=0 then the flag will clear; if uso=1 then the flag will set. If
host interrupts have been enabled by the host setting the HIntEn flag, then a
host interrupt will be generated. When the host acknowledges the interrupt, the

~-HIntA signal will clear the HIntR interrupt request. A Reset cycle, with
-Reset asserted during a rising edge on pclk, will also clear this flag. HIntR
will also clear if the host sets HintEn=0 in the command register.

Another special capability is that the sequencer can clear the host
microinterrupt request flag HuIntR. When pI4=p15=u16=0, and ps1=0 and
nso0=1, then PAL #uCP2 will pulse the -C1rHuIntR line on the last half of the
clock cycle, thereby clearing this flag in the host command register.
-ClrHUIntR will also be brought low when -Reset goes low.

Ordinarily, if neither of these flags is to be adjusted, the programmer
should ensure that when pl4=ui5=p16=0 then lines uSO0=uS1=0 (the compiler
handles this automatically.) Another point to notice is that PAL #uCP2 actually
looks at the microinstruction control bits ThispI4, ThispIS, ThispIs,
Thispus0, and Thisps1, which are derived afterthe pipeline register (the
sequencer looks at the values of these bits before the pipeline register. The
reason is that the 1401 sequencer effectively latches these bits (or bits such as
the flag which depend on these) on the rising puclk edge, and thus does not
actually use them until the next clock cycle. So that PAL #uCP2 remains
synchronized with the sequencer, it is necessary to use the control bits from the
pipeline register.

5.10. Clock Generator

PAL's #uCP3, #uCP4, and #uCP5, together with PAL #PP03 on board
#2, implement a finite state machine which controls the array clock, enables
micro-control and data memories, and synchronizes Reset cycles and host
activity to the system clock. If either Run or SingleStep are high, and the host
interface is not asserting -vMEHit, then PAL #uCP3 will assert -Go. Ordinarily,
if -Go is deasserted (high), PAL #uCP4 is in the "Halt" state, with the Halt
output line high, and the -DmemW, ~Enmem and c1k lines also high. Bringing
-Go low allows the clock generator to enter the "Run” state. The Halt line is first
brought low on the next rising osc edge. The c1k line will then be brought low
and held low for a period determined by the two SelC1k0 and SelC1k1 lines
from the microcode pipeline registers. c1k will then come high for one period of

53

54

osc. PAL's #uCP3 and #uCP5, and PAL #PP03 on board #2, translate this
rising edge into rising clock edges on the sequencer, various PAL's, the
processor chips, the microcode pipeline registers, and sometimes on the
PGreg, MAR and MDR registers. sel1C1k0 and SelC1k1 will be loaded on this
edge with a new clock length, and the next period will be chosen to have the
appropriate length. The clock generator is currently programmed with the
following clock periods:

SelClk1,0 = 0,0 2 osc periods
SelClk1,0 = 0,1 4 osc periods
SelClk1,0 = 1,0 8 osc peribds

SelClk1,0 = 1,1 11 osc periods

The pclk signal is used to reset the singleStep flip flop. Thus, if the
Rrun flip flop is cleared and the clock generator is halted, when the host sets
SingleStep, it will force a single uclk cycle, the singlestep flip flop will
clear, and the clock generator will return to Halt state.

The -Enmem signal is used to enable micro-control and data memory.
This signal will drop low 2 osc periods before the rising c1kx edge, and will
remain low 1 osc period after the rising edge. PAL #uCP5 converts this signal
into the microcode RAM chip enable strobes -E1 and -G. At the fastest clock
rates, ~-Enmem will remain low and the RAM's will remain enabled for reading.
During slow clock periods, however, or when the array is halted, -Enmem will go
high, disabling the RAM's when they are not needed, and thus conserving
power.

-Enmem is also used by the chip select PAL's #MEP1 and #MEP2 in the
data memory. To conserve power, data memory RAM's are only enabled when
-Enmem is asserted.

The -Dmemw strobe controls the write enable on the data memory RAM's.
It is normally held high. If -Memw is low, however, then a data memory write

S5

operation is required on this clock period. Thus PAL #uCP4 will assert -Dmemw
during the last osc period before the rising edge of c1k. The duration of this
write pulse is thus exactly one osc period, and it occurs at the end of the clock
cycle. Timing of the pulse is critical. The rising edge of -DmemW and the rising
edge of c1k should occur nearly simultaneously. Both -DmemW and c1k pass
through similar buffer gates. The write strobe then connects directly to the write
enable pins on the data memory RAM's. The c1k signal, however, must pass
through a layer of PAL's before the pclk, -pclk, ppclkl, ppclk2, MDRpclk,
-MDRpclk, MARpclk, and PGpclk clocking signals occur. Thus the ~Dmemw
write pulse should be deasserted at least 1 PAL delay before the address lines
on the RAM's will change. Note that the -Dmemw strobe is also used to enable
tristate drivers to present the data to the data memory RAM's, and that therefore
the data to be written will only be available at the RAM data pins for somewhat
less than 1 osc period.

PAL #uCP4 also coordinates the data write strobe timing for host
accesses to data memory. During a host write operation, -vMEHit will be
asserted, thus causing the clock generator to go to Halt mode. One osc tick
after reaching Halt (or state Halt2), PAL #HP3 will assert -Hostmem to give the
host control over the data memories. It will simuitaneously assert -HDmemw if 2
write operation is required. On the next osc tick, PAL #1CP4 will respond by
bringing -Dmemw low for one tick, then will bring it high again. This allows
sufficient time for the host address to stabilize on the bus before -Dmemw
appears. PAL #HPS will assert ~-CcmdDTACK to acknowledge the bus cycle on
the osc tick following ~Dmemw.

Clocking strobes are generated from c1k by three different PAL's. To
increase the drive, and also delay the signal to match -Dmemw, the c1k signal
passes through a buffer gate. It then goes to PAL #uCP3, which generates
-MDRpclk, PAL #uCP4 which generates pclk, -pclk, ppclkl, and ppclk2,
and to PAL #PP03 on board #2 which generates MDRpc1k, MARpclk and
PGpclk. The delays through all of these PAL's must be very close so that all
these clocks occur almost simuitaneously, and no undesirable race conditions
occur.

If the -Go sirobe rises high while the clock generator is in "Run" mode,
the present clock cycle will continue running until the c1k and -bDmemw lines go

56

high again. When c1k goes high, the Ealt line will also go high. If -Go
remains high on the next osc period, then PAL #uCP4 will turn off -Enmem. If
-Go rises high while the clock generator has c1k high, then PAL #uCP4 goes
immediately to Halt mode, with c1x held high, Halt asserted, and -Enmem
deasserted. The timing is carefully designed to minimize the delay between
-Go rising high, and Halt being asserted. This is important, because the host
will ask the clock generator to stop the clock before every host access by
asserting -VMEHit, and will not continue until PAL #1.CP4 asserts Halt.

"Reset" mode will be entered if the VME bus signal -sysReset drops
low, or if the HReset flip flop in the command register is set by the host. These
two signals are combined in PAL #1CP3 to form the signal -DoReset. This line
goes to the clock generator, PAL #uCP4. If the clock generator is in "Run”
mode, and -Go is asserted, then the present clock period will complete, then
with c1k held high, the -Reset line will drop at the next osc edge. Three
periods of pc1k will then follow, each 2 osc periods long, with -Reset held low.
(This is sutficient to completely reset the sequencer). The pclk signal is tied to
the clear tine on the Hreset flip flop in the host command register. Therefore, if
this reset were caused by the host setting this flip flop, at the conclusion of 3
Reset clock cycles, ~-HReset will be deasserted and -DoReset will also be
deasserted. PAL #uCP4 brings -Reset high again, then resumes normal "Run”
mode.

~ If -DoReset ocsurs when the -Go line is deasserted, then PAL #.CP4
will finish the current clock cycle, assert Halt, and then on the next osc edge,

" will assert -rReset and deassert -Enmem. This is "Reset/Halt” mode. (Note that

a VME System Reset will clear all host command register flip flops, including the
Run bit, and thus a VME System Reset will place the array into "Reset/Halt"
mode). When -Go is asserted again, then PAL #1CP4 will deassert Halt,
assert ~-Enmem, and go to the usual "Reset” mode. (Three c1k periods will
follow with the -Reset line held low.)

If the clock generator is in Halt state, with the host interface flag Run
deasserted, then if the host sets both HReset and SingleStep, the clock
generator will produce three pclk periods with -Reset held low throughout,
and then it will return to Halt state with both HReset and Singlestep cleared.

One major purpose of the -vMEHit signal is to allow the host interface
PAL's to request the clock generator to halt before allowing the host further
access into the internal state of the array.

5.11. Writeable Micro-Control Store RAM

The writeable micro-control store contains 8K words of 88 bits each. It is
formed from 11 MB8464 static CMOS RAM chips, each 8Kx8. Each of these
chips can consume up to .33 Watts in active mode; keeping them in standby
mode by deasserting the -pE1 line will reduce power consumption to .05 Watts.
The 13 address lines are driven by the low 13 bits of the sequencer's Y-bus, or
by the 74F245A transceivers from the host data bus.

Enable strobe E2 is permanently tied high. Enable strobe ~pE1 and the
output enable strobe -uG are driven by PAL #uCP5. -uE1 will be asserted if
-Enmem is asserted, or if the host is accessing microcode memory with the
-HumemR Or -Hpmemw strobes. The output enable strobe -uG is asserted if
-Enmem is asserted or if -HumemR is asserted. The write enable strobe is driven
directly by the -Bumemw strobe. (11 CMOS loads should not overtax the PAL or
the sequencer pin drivers).

The data lines from the micro-code memory drive the inputs of AM29818
diagnostic pipeline register chips. To reduce the drive load, duplicate control
lines for the parallel clock ppclkl, ppclk2, the serial clock pdclk1, pdeclk2,
and the mode pmode1, pmode2 are generated by PAL's #uCP3 and #uCP5, and
each line drives only half the pipeline register chips. Normally, PAL #.CP5
outputs parallel register clocks ppclk1 and ppclk2 to follow c1k. These
parallel register clock lines also pulse if the host interface pulses the Dopupclk
or Dopclk control lines. .

The tristate outputs of these register chips drive the control lines for the
rest of the array. These registers are always enabled. Control lines affecting
the sequencer or its associated PAL's, drivers and latches are drawn directly
from the microcode RAM, bypassing the pipeline register, since the 1401
sequencer has pipeline registers built in.

57

S8

Each AM29818 register dissipates .5 Watt. The advantage of these
chips, however, is that behind each parallel register is a shadow serial register.
These serial registers are organized into a 288 bit circular shift register which
starts in a pair of 74L.S299 shift registers in the host interface, passes through
logic in PALs #HP8 and #uCP3, , then runs through the 11 microcode pipeline
registers (LSB to MSB), then PGreg, MAR, MDR and finally back into the
74L8299's. The host can load data into this serial shift register or read data
from it under control of PAL #HP6. It can transfer data between the serial and
parallel registers via PAL's #HP7 and #HP8. It can write the serial register into
a selected micro-code location via PAL #HP8, or can read a selected micro-
code location into the parallel pipeline register via PAL #HP7. Serial data
enters the microcode pipeline via the usp1 line, and exits via the uspo line. The
model, mode2 and pdclkl, pdclk2 lines are used together with the usual
parallel clock lines ppclk1, ppclk2 to control these registers. PAL's #uCP3
and #uCP5 combine signals from various host interface PAL's with c1k from the
clock generator PAL #1CP4 to produce these signals. PAL #PP03 on board 2
similarly produces the control lines for PGreg, MAR and MDR.

5.12. Microcode Bit Assignment (88 total)

Name Function

Sequencer Control Lines (13)
Bkpt Breakpoint interrupt request
HI6 Microcontroller instruction bus
HIS -)
BHId
MI3
pIz -
pIl -
RIO -

59

pDSel Select constant or MDR input to sequencer
sl Flag Select/HIntR flag control

HSO

SelClk1l Clock length selection

SelClk0

AAP Chip Control Lines (41)

117 DC pin control

I16

115 Internal/External direction control
114 Carry mux control

113

112 OD1 mux selector

I11

I10 Bypass and ripple data control
19

18 Select ALU arg A

17

16 RS latch control

15 RS source control

14 Direction Control data path 2

I3

12 Direction Control data path 1

I1

10

WERS RS latch enable

-WEC Carry reg enable

SWEB Conditional B write enable if S=1
WEB Conditional B write enable if S=0
WEA A write enable

F3 ALU Function Select

F2

F1

FO

60

Ss2
Sl
SO

A4
A3
A2
Al
AQ

BS
B4
B3
B2
Bl
BO

Select flag address

A address

B address

Peripheral PE Array Control Lines (1)

-Carryln

Carry Input

Memory Control Lines (2)

-MemW
SelAdr

Read/Write Control
Select data memory address source

Data Path Routing Control (14)

-1LdPGreg
-LdMDR
-LdMAR

D.Out2
D.Outl
D.Out0

D.In2
D.Inl
D.InO

Load page register
Load MDR
Load MAR

MDR bus driver select

MDR bus receiver select

A.Qut?2
.Outl
A.Qut0

L)

A.In2
A.Inl
A.InO

Constant Field (16)
pconst

MAR bus driver select

MAR bus receiver select

16 bit constant field

61

63

Section 6 — OVERVIEW OF PROCESSORS, DATA MEMORY, DATA
BUSSES

6.1. Processor Array

Board #2 contains a 16 by 16 array of single-bit processors, two major
and one minor 16-bit bus systems for shuffling data around, and a 128K to §12K
byte data memory. The processor array is built from four OKI AAP chips, each
organized as an 8 by 8 array, and arranged in two rows of two chips each. 16-
bit data can be fed into or out of any side of the array on the DC pins (carrying
data path 1 information), and/or from the top and bottom of the array on the SD
pins (carrying data path 2 information). Data can be transferred up, down, right,
left or in any diagonal direction through the array on data path 1 using either
synchronous or asynchronous data transfer. Data path 2 supports only
synchronous data shift in an up or down direction.

6.2. Data Memory, MAR, MDR, PGreg

The data memory contains between 128K and 512K bytes of fast (55-70
nsec) static CMOS RAM. 20 address lines access the memory, and 16 bits are
fetched on every clock cycle. The low 16 bits of addresses are supplied from
either the pconst field in the microcode word, or from the MAR register. The
upper 4 bits come from PGreg, a page register, which can be loaded by a
microcode constant, or by a computed or stored value. The paging constraint
implies that only 32K bytes can be accessed at'a time without changing the
page register. This matches well to 128x128 images with up to 16 bits per pixel,
since each such image occupies 32K bytes. Data fetched or written into data
memory by the array always passes through the MDR register. (The host
computer can access data memory directly, however.)

The most unusual feature of the data memory system is that the memory
is nibble (4 bit) addressable, fetching or writing 16 consecutive bits starting at
any 4 bit boundary in the memary. This allows fetching words from memory

which overlap by 25%, 50%, or 75%, and is highly useful for fetching and
writing overlapping subimages stored by bit-planes or by pixels. A substantial
amount of rotation, alignment, and address computation circuitry is dedicated to
supporting this feature. (Propagation time through this circuitry is about equal to
the propagation delay through the RAM chips.)

The purpose of the MAR and MDR registers is to facilitate pipelined
transfers of address and data information between the processor array and the
data memory. They allow the memory and the processor array to work in
parallel, thus approximately doubling the speed of the system. The PGreg
register is required because the array and the microcode can only support
computation of 16-bit addresses.

6.3. MDBS, MABS, PFBS Data Busses

A major difficulty in the design of the array is that a large amount of data
needs to flow in every clock cycle among all four sides of the array (both data
paths), and the data memory pipeline registers. Data output on one side of the
array may need to be transferred not only to memory, but also to another side of
the array, or even may need to be input on the other data path on the same side
of the array. Micro-constant data from the microcode may also need to be input
into any side of the array, or loaded into MDR, MAR, or PGreg.

Two major and one minor bus system are used to transport data between
the processor array and the data memory. The two major busses are called
mabs and mdbs, because they respectively feed the MAR and MDR registers in
the data memory. Each bus connects through transceivers to the DC pins on all
four sides of the array, and to the SD pins on the top and bottom. Up, down,
right, left, and diagonal data transfers are supported between chips and at the
array boundaries. The pconst field also can drive either bus. The MaR and
PGreg registers may be loaded from mabs, while MDR may be loaded form mdbs.
MAR can drive mabs, while MDR can drive either bus. Data output from the 1401
sequencer can be routed into the MDR register. The control over the bus
transceivers allows each bus to be driven by only one bus driver, and to drive
only one bus listener. The extra minor bus system implements a special bypass

65

path, allowing data from MDR to feed the top or bottom SD pins directly, while
addresses shifted out of the SD pins on the other side are routed over the mabs
into the MAR register. This allows the next input bit plane to be fetched from data
memory, while the mdbs bus is free to support simultaneous computation in the
processor array using data path 1.

6.4. Using the Data Busses and Pipeline Registers Effectively

The design of the memory system, busses, and processors is intended to
support computation on 16x16 blocks of numbers. In typical use, the processor
array will read successive 16x16 blocks of bits, bringing in all the bits of all the
numbers that-form the complete 16x16 subimage. It then performs the
computation, and finally writes out the result, one 16x16 bit plane at a time. To
read each bit plane, the processor starts by computing the 16 starting
addresses of each word of 16-bit data, placing one address in each row of the
array. Using bit-parallel arithmetic, this computation typically requires 2 long
clock cycles. PGreg must be loaded with the page number. Next, the processor
array will shift the computed addresses out on data path 1 via the top or bottom
DC pins, onto the mabs bus, and into the MAR register. The data memory will
read data at the address specified by MAR and PGreg, putting the 16-bit value
into MDR. The MDR register in turn will drive the mdbs bus, and data from there
will enter either the top or bottom SD pins, and will be shifted into the array on
data path 2. The fastest clock period can be used for this operation. After 18
clock ticks, an entire 16x16 block of bits can be input, and the 16 addresses can
be updated to point to the next block of bits. For a write operation, data path 1
could be used to supply addresses to MAR over the mabs bus, while data path 2
supplies corresponding data to MDR via the SD pins and the mdbs bus. 17 fast
clock ticks would be required to write a 16x16 block of bits and to update the 16
address pointers to point to the next output block.

Note that numerous variations on this theme exist. Addresses may be
computed in rows of processors, or in columns; in the latter case they would
have to be shifted on data path 1 left or right out the DC pins and onto the mabs
bus. Data path 1 could be used for addresses and data path 2 for data, or vice
versa. On read operations, by using the bypass path, data path 2 could be used

66

both for shifting out addresses onto the mabs bus, and also for shifting in data
via the SD pins directly from MDR. (Note that in this mode, addresses must be
stored by rows in the array).

The wiring of the transceivers on the two busses allows a wide variety of
circular shift, rotate, and transpose operations. For example, data clocked out of
the DC pins on the left side can drive either the mabs or mdbs busses, and the
DC pins on the opposite side may input the values from these busses. This
connection could be used, for example, to circularly rotate bits in all rows of the
array one position to the left. Similar connections could be used with the top
and bottom DC pins to rotate columns up or down one bit, or with the top and
bottom SD pins to rotate bits in data path 2 by one bit. “Circulant” rotations of
the data can be accomplished by using both data paths. Connect the left side
DC pins to the right side DC pins via one bus, and connect the top side DC pins
to the bottom side DC pins via the other bus. Now do a diagonal shift. Ina
single clock tick, data in each row will be circularly rotated by 1 bit, and the rows
themselves will be circularly rotated by one position.

16 by 16 arrays of bits can be easily transposad or rotated with this
arrangement, using only 16 fast clock ticks. First, note that bus line O connects
to the rightmost pins of the top and bottom DC and SD pins, and to the topmost
pins of the left and right DC pins. To transpose a bit array about the main anti-
diagonal, shift the data out the rightmost DC pins, onto mabs or mdbs, and into
the bottom SD pins. The top row will become the right column, and the bottom
row will become the left column, with the bits ordered properly. To rotate the

~ array clockwise 90°, shift right out the DC pins onto mabs or mdbs, and into the

top SD pins. The top row will become the right column, the bottom row will
become the left column, and the order of the bits will be such that the matrix has
been rotated. The effect of other combinations of shifts is listed below: (For
each desired effect, we list several different shift patterns that will achieve the
effect.)

Transpose on anti-diagonal:

Shift out DC right, shift in SD up

Shift out DC left, shift in SD down
Shift out SD up, shift in DC right
Shift out SD down, shift in DC left
Rotate Clockwise by 90°:
Shift out DC right, shift in SD down
Shift out DC left, shift in SD up
Rotate Counterclockwise by 90°:
Shift out SD up, shift in DC left
Shift out SD down, shift in DC right
Reverse all columns:
Shift out SD (DC) up, shift in DC (SD) down
Shift out SD (DC) down, shift in DC (SD) up

More complicated transpose, reversal, and rotation operations need to use
multiple operations, or use the data memory as intermediate storage, and will
take approximately twice as long or more. For example, to reverse the bits in
the all the rows, transpose about the main anti-diagonal (shift out DC right, shift
in SD up), then rotate counterclockwise 90° (shift out SD up, shift in DC left). To
transpose a 16x16 array about the main diagonal, first reverse all the bits in
each column (shift out SD up, shift in DC down), then rotate clockwise 90° (shift
out DC right, shift in SD down).

The “prefetch” bus is useful in certain situations to expand the data
transfer bandwidth of the array. The OKI AAP processor chips support data
shifts along data path 2 in parallel with computation using data path 1. The
prefetch bus pfbs is intended to further support this potential overlap of
computation and I/0. Put 16 addresses to read from data memory into the 16
rows of DIO registers on data path 2. Now shift these addresses one by one
over the SD pins onto mabs bus and into MAR, and read the corresponding data

67

68

elements into MDR. The old MDR contents can transferred in parallel into the
opposite SD pins over the pfbs bus, and shifted into the DIO registers. This
leaves the mdbs bus free. Therefore, while this I/O operation goes on, the
processor array can be computing using the ALU's, A[], B[], RS, C, LF registers,
and shifting data via data path 1 and the mdbs bus.

6.5. Other Data Bus Data Sources

Other input sources for the mabs and mdbs busses are the MAR, MDR,
and PGreg registers themselves. MAR may drive mabs, PGreg may drive mdbs
(n.b. the current prototype does not allow reading PGreg), and MDR may drive
either mabs or mdbs or both. This helps save the state of the array during a
micro-interrupt, and also allows pointers to be retrieved from data memory and
then used as addresses.

16-bit constants from the microcode, pconst, can be read into the array
or into the pipeline registers by driving mabs or mdbs with pconst, and then
reading into any of the DC or SD pins, or into MAR, MDR, or PGreg. Often
constants need to be broadcast to all the processors in the array; simply input
the constant via the DC pins, and configure the internal AAP muiltiplexors for the
appropriate broadcast operation.

6.6. Connections with the 1401 Sequencer

If program execution must depend on a computed result, simply shift data
out of the array over the mdbs and into MDR, then conditionally execute a jump,
call, return, or other instruction on the OR or NAND of the bits in MDR, or on its
most significant bit. Values read from memory or transferred from the array into
MDR can also be loaded into the sequencer via its D-port. This is useful, for
example, to calculate jump addresses or loop iteration counts, or to save
computed values temporarily on the sequencer stack. Values from the
sequencer may also be written into MDR via the D-port. This allows saving and
restoring the state of the sequencer on a micro-interrupt. Note that when

loading MDR from the sequencer, the MDR bus may not be used for data
transfer, even though it is not actually used during this operation.

69

mabs

DCU | MAR PGreg

v v

Output
16 addresses in rows of RS MEMORY
ARRAY

Input *
16 data in rows of DIO MDR

SDD mdbs

Typical Configuration to Read 16x16 Block of Data

(Shift addresses in rows of RS up through DCU into MAR,
read data at address MAR,PGreg into MDR,
shift data from MDR through SDD up into rows of DIO)

mdbs

PGreg
Output
16 addresses in rows of RS MEMORY
ARRAY
Output f
16 data in rows of DIO MDR

{

Typical Configuration to Write 16x16 Block of Data
(Shift address in rows of RS up through DCU into MAR,
shift data in rows of DIO up through SDU into MDR,
write MDR at address MAR,PGreg)

DCUo

—>

After 16 shifts soe

Transpose About Main Anti-Diagonal (16 shifts)

DCU1S ...f DCUO

—p

After 16 shifts see

DCR15

Rotate Data Counter-Clockwise (16 shifts)

DCU15... o DCUO

[ocro

—

After 16 shifts d

DCR15

Rotate Data Clockwise (16 shifts)

mabs

—_——

SDU MAR PGreg
Output
16 addresses in rows of DIO MEMORY
ARRAY
Input ‘
16 data in rows of DIO MDR
SDD pfbs

Read 16x16 Block of Data Using Prefetch Bus

(Shift addresses in rows of DIO up through SDU into MAR,
read data at address MAR,PGreg into MDR,
shift data from MDR on prefetch bus through SDD up into rows of DIO)

71

Section 7 -~ WIRING OF THE MSME6956AS AAP CHIPS

The wiring of the MSM6956AS AAP chips is straightforward except for
the diagonal input pins and carry input and output pins on each chip. The
microcode instruction control lines are bussed directly from the microcode
pipeline register on board #1 to ali four chips. Between chips, the DC, SD, and
the input and output carry pins Cl and CO are connected to their nearest
neighbors, allowing data flow both horizontally and vertically. Tristate control
lines are wired so that all tristate buffers are always enabled. The clock lines
aapclk are fed a copy of the system c1k powered by PAL #PP03.

The 16 carry input pins on the right, CIR, and the 16 pins on the up side,
ClU, are all driven by the CIN carry input bit in the microcode pipeline register.
The 16 carry output pins on the left, COL, and on the down side, COD, are not
connected to anything. With the standard configuration of the AAP chip
boundaries, therefore, all the carry inputs to all rows or to all columns must be
uniformly forced either high or low. To achieve bit-by-bit control over carry
inputs, or to capture the carry outputs, use the multiplexed CT pin mode. In this
mode (selected by microcode bits 116 and 117), input values on the DC pins on
the right or up sides are diverted to the carry inputs, and carry outputs on the left
or down sides are diverted to the DC pins. This allows supplying arbitrary carry
inputs via the mabs or mdbs busses, and capturing the carry outputs via the
same busses.

Supporting diagonal transfers is tricky. The problem is that when data in
the processor array is shifted diagonally, 31 bits of new data must be shifted into
the array on two adjacent sides, and 31 bits of old data are shifted out on the
opposite sides. Unfortunately, this structure does not mesh well with the 16-bit
data bus structure of the array. The boundaries of the AAP chips are configured
so that during a diagonal shift, each processor along the boundary of the chip
drives its output onto its horizontally and/or vertically adjacent DC output pin(s).
Processors in the corners of each chip drive two output pins. Input into each
processor along the chip boundary is taken from the pin in the appropriate
diagonal direction, with one corner processor pulling its input from the adjacent
diagonal input pin. All diagonal pins on the chips are used solely for input.

72

The problem is where to connect the diagonal input pins. Inside the
array of 4 chips, the diagonal pins are connected to an appropriate output DC
pin on the diagonally adjacent chip. In the center of the four outside edges of
the array, the diagonal pins are wired to the adjacent DC pin on the adjacent
chip. These connections are all straightforward. At the four outside diagonal
corners, unfortunately, good arguments could be made for wiring the diagonal
pins to the DC pin at the other end of either the horizontal or the vertical row of
DC pins. We have chosen, somewhat arbitrarily, to connect the diagonal pins in
a counter-clockwise fashion. Thus the upper left DCUL diagonal input pin is
connected to bit 15 of the left DCL bus, the upper right DCUR diagonal input pin
is connected to bit 15 of the upper DCU bus, and so forth. When we connect the
DCU pins to the DCD pins via one bus, and connect DCL pins to DCR pins via
the other bus, then perform a diagonal shift, this configuration causes the rows
of bits to be rotated by 1 bit, and the rows themselves to be rotated by one
position. If we perform a diagonal shift, say in the up-right direction, and feed
the left DCL inputs with MAR and feed the down DCD inputs with MDR, then this
connection causes the MDR value to end up in the bottom row of the
processors, rotated right one bit, and bits 0 through 14 of MAR end up in the left
column of processors, shifted up one bit. Bit 15 of MAR is lost.

(1apoly Buiwwesbouid)
(Aesay dvy ul 3asayl Jo 962) aimoalyodly 3d

(moyaq 10ssasosd uo N1H
‘yay 0} Jossadoid uo Yo ol)

(ss0ss9201d Juadelpe g

0D (moaqosssoaid uo [nloig
== ‘gaoqe 10ss320id uo [gloiqg o)) uo sindui flai oY)
0 4 oia ao
A
09
a v 09 xn Indino
A S 1 yied ejeg
S d Ssawv A 3 7'y
xny v E] SH o%
S sSaiv 5
a wm?
v SH
S S ¥
» olia
I fran s\
uono38|es 4
vg s (4o 4 a |

! a

jueg
S ol “A J91s|bay [e0] ny Indu e LIS Hw\g Indu|
”_m.mm< 2 yied eieqQ 01S I yied eleg /+
3 XXX
S -» Jalsibay . r 4 _o_+o_o 4:_9 wala| | nla
g » 4 » [nlola [nlar | ldlar |luniar
v halai [5)/¢e]]

DCU DCU DCU DCU DCU DCU DCU DCU

15 14 13 12 3 2 1 0
(DCUL) (DCUR)
ceeebeoacaacahecscaahmascsseosaacnssasassasnssy sesqeaccgeccpana
[} L]

DCL X 1 DCR
0 N — L L - w X 0
DCL : J 1] [N oo e [I] : DCR
DCL : [XX I I 1 X DCR

—— = b v
2 : l L] 2
ocL __|. (™] ! b +| DcR
3 : | \ 3
: [X N J [N N] [X X] :
. .

OCL ' | ' DCR
12 \ . Ny ' 12
ool | | IXIXTX | per
13 ' — —_ : 13
14 2 pEyglgly — 1 1 7 14
oot |+ AL 1 ceo [XIXIX | oer
15— o0 L g C 15
N X
(DCDL) (DCDR)
DCD DCD DCD DCD DCD DCD DCD DCD

15 14 13 12 3 2 1 0

Diagonal DC Input Pin Wiring, AAP Array

73

Section 8 — WIRING OF THE MABS, MDBS, AND PFBS BUSSES

8.1. MABS - The MAR bus

The MAR bus, mabs, connects the DCU (up), DCD (down), DCL (left),
DCR (right), SDU (up), and SDD (down) pins from the array, feeding the MAR
(chips MARO and MAR1) and PG (chip MAR2) registers. These registers are all
formed of AMD29818 Serial Shift Registers, so that the host computer can
directly read and write the values of MAR and PG. The MAR output (the lower
16 bits of the 20-bit maad bus) can be output back onto the mabs. The pconst
field from microcode can be enabled to drive this bus. This allows reading the
value of MAR, and allows MAR to be used for temporary storage. Several
codes for the fields controlling mabs in microcode are unused, thus allowing
opportunity for exp'anding the set of sources and sinks for mabs data.

Note that in the schematics, the buffers/transceivers in any pair are drawn
to be mirror reflections of each other (about a vertical axis) - but the numbering
of lines has been done consistently - the LSB (least significant bit) line is given
to A0/BO in both, etc.

Six microcode bits are used for controlling the MAR data path, three each
for the bus driver (a0UT) and the listener (AIN). The encoding of the mabs driver
and listener microcode fields is shown in the following tables:

MABS Input Coding MABS Output Coding ~
AINcode Listener AOUTcode Driver
0 DCU, DCD 0 DCU, DCD
1 DCL, DCR 1 DCL, DCR
2 Sbu, SbD 2 SDuU, SDD
3 PSU, PSD 3 MAR
4 Unused 4 pconst
5 Unused 5 MDR
6 Unused 6 Unused
7 Unused 7 Unused

Note that opposite pairs of array pins (DCU & DCD, DCL & DCR, SDU & SDD)
are never both inputs or both outputs, since we are not supporting the
individually programmable data shift mode in which microcode bit 115=1.
Hence, we specify only which group is to drive the bus or listen to the bus, and
then use microcode bits 115, 10, 11, 12 which determine the shift direction on
data path 1, or bits 13, 14 which determine the shift direction on data path 2, to
infer exactly which of the pair is to be used. The decoding is done by PAL's
#PP05 and #PP06, and is based on the following tables:

DC Paths SD Paths
(I = Input, 0 = Output) (I = Input, 0 = Output)

115 1012 code [DCU |DCD |DCL IDCR 134 code | SDD | SDU

l 0
0 |
l |
| 1

Ko O = O

- 0O 0O 0O O O O Ol
X NI O s WO
— - O O O = = |-
— O O~ P PP
sadll ol ol o @ I o I o I} & B @)

) Note that code value 3 in the mabs AIN microcode field is used to activate
the prefetch bus pfbs. PSU and PSD refer to the buffer-pairs (MAB20, MAB21)
and (MAB30, MAB31) directly connecting the MDR output to the SDU and SDD
pins respectively. Also note that some of the eight mabs driver and listener
codes are unused. These could be used for expansion. At present, all listeners
or all drivers are disabled when one of these codes is specified. All DC drivers
and listeners are also disabled when the microcode bit 115=1, specifying
individually programmed data transfer mode inside the AAP array. Note that
separate microcode field bits -LdMAR and -LdPGreg are used to enable

loading MAR and PG from the mabs bus. Thus it is possible to use the value

75

driven onto the mabs bus to simultaneously load MAR, PG, and also to drive a
side of the array.

The MDR output (mdo) is fed to the mabs through buffer pair (MABOO,
MABO1) as well as to each SD port, through butfer pairs (MAB20, MAB21) and
(MAB30, MAB31). These latter buffers provide the p£bs prefetch bus path
described earlier.

This prefetch is performed by selecting one of the SD ports as output
(rouT=2), and selecting the PSU, PSD pair as input (A1N=3). Simultaneously
we program the DIO data path 2 registers to shift up or down (set 134=0 or 1
respectively), and we assert -LdMAR to clock the addresses shifted out of DIO
into MAR. Suppose we choose to shift the addresses in DIO up (134=0)
through SDU into MAR, and the data in from MDR through SDD. Then the
transceiver-pair (MAT10, MAT11) will be turned on, and addresses will be
delivered to the MAR through the mabs. Simultaneously, the buffer-pair
connecting the MDR directly to SDD (MAB20, MAB21) will turn on, thus ,
delivering the data to the SDD port. Note that the DC paths and the mdbs are
not involved in this operation, and remain free for computation.

The 74ALS245 transceivers and 74ALS244 buffers which drive and
listen to mabs are controlled by setting the transceiver direction (these control
lines are shared with those used for the mdbs) using the microcode data
direction fields 1012 and 134 combined with the AIN and A0OUT microcode field
values. The naming convention for the control lines is as follows:

Busses (eg DCU, DCD, etc.) <BusName>(<bus width>)

Output Enables:
MARbus a._oe.<name of associated bus>
MDRbus d._oe.<name of associated bus>

Direction Control t._r.<name of associated bus>

76

8.2. Detailed mabs Control Example

Suppose that we wanted to bit-reverse the columns of a 16x16 array of
bits. We choose to shift out data from the SDU port, and immediately shift it
back into the DCU port. We can use the mabs to do this transfer by selecting
the SDU port as a bus driver (output) and the DCU port as the bus listener
(input). This requires the following set of microcode fields:

134 = 0 This sets up the SD datapath to shift up, outputting data on
the SDU port.

1012 = 0 This sets up the DC datapath to shift down, inputting data
from the DCU port.

I15 = 0 This selects conventional,uniform data propagation.
AIN = 0 This selects the DCU port for input from mabs.
aouT = 2 This selects the SDU port to drive mabs.

The detailed decoding of the signals controlling the DCU transceivers (MAT50,
MAT51) is as follows. PAL #PP0S sets “u” high. Note that this is an internal
term, not a PAL output. This causes the t ._r.dcu line to go low, which sets up
the 74ALS245 transceivers MAT50 and MAT51 to function as B to A buffers.
Also, if 1156 =0, a._oe.dcu goes low, thus turning on the B to A transceivers.
So the datum on mabs gets routed to the DCU pins. The SDU transceiver
control signals can be derived similarly.

The current PAL #PP05 and #PP06 programming does not force tristate
enables to turn off before others turn on. Unfortunately, this can allow transient
bus clashes at each clock edge when the next microcode instruction begins.
Also, no interlocks have been provided to prevent programming the same pins
to listen to both busses. For example, it is possible to select the DCU/DCD pins
to listen to both mabs and mdbs, which could cause a bus conflict at the input
DC pins. Currently, it is the programmer's responsibility to never allow this (the
ROS operating system and the aapcompile compiler both help to avoid
producing microcode with bus conflicts.)

8.3. Timing, Loading, Power Details for the mabs Bus

Timing:

T1 = CK to pipeline + 2'PAL's + Chip Enable time ('ALS245)

=13+ 225 + 20 = 83 nsec.

T2 = CK to pipeline + F,l codes to DC, CO stable + Delay ('ALS245)

=13+85+10=108nsec. > T1

T3 = T2 + Propagation Delay ('ALS245) + Setup Time(DC)

=108 + 10 + 30 = 150 nsec.

CLOCK PERIOD 2 150 nsec.

Total Bus Loading:
Inputs Capacitance High Current
9*Tristate 9*12 = 108 pf 9°20 = 180 uA
3*AM29818 3*5 =15 pf 3*100 = 300 pA
TOTAL: 125 pf 0.5 mA
Can be handled by 'ALS245

Power Consumption: (excluding MAR, PGreg)
12" ALS245 12°60=0.72 A = 3.6W
10*'ALS244 10°30=0.3A = 1.5W.

Total 5.1W

Low Current
9'0.1=0.9mA
3'0.45=1.35mA

2.3 mA

77

78

8.4. MDBS - The MDR Bus

The mdbs bus connects the DC and SD pins and the pconst field to the
MDR register. The coding of the microcode fields for the mdbs driver DouT
(output) and the mdbs listener DIN (input) are similar to those for the mabs bus,
and are given in the table below:

MDBS Input Coding MDBS Output Coding
DIN code Listener DOUT code Driver
0 DCU, DCD 0 DCU, DCD
1 DCL, DCR 1 DCL, DCR
2 SDu, SDD 2 SDU, SDD
3 MDR 3 MDR
4 Sequencer 4 puconst
5 Unused 5 Unused
6 Unused 6 Unused
7 Unused 7 Unused

Note that there is an explicit MDR input selection code, DIN=3, as well as a
separate -LdMDR load enable strobe. This is necessary because the MDR
register can be loaded from three distinct sources, and we must differentiate
between these. The three possible inputs are the mdbs bus, the left rotator
(rotleft) output (i.e. data memory output), and the 1401 sequencer D-port
output. The -Ld4MDR field in microcode controls whether the MDR register will
be loaded at all. Note that if the MDR register is to be loaded from the mdbs bus,
then no other bus listener can be selected.

Another compromise is that code DIN=4 is used to force MDR to load
from the sequencer D-port output. Pal #PP08 decodes the DIN microcode field
and generates the ~-EnSeqMDR control line, which is transmitted back to board
#1 to turn on the F543 B outputs. At the same time, an appropriate sequencer
micro-instruction should be selected which will output a value on the D-port.

79

(The aapcompile compiler automatically selectes the appropriate DIN code
whenever it detects a sequencer instruction which will output on the D-port.)

The MDR output (mdo) connects to the mabs through the buffer pair
(MABOO, MABO1), and to the SDD and SDU ports through buffer pairs (MAB20,
MAB21) and (MAB30, MAB31) (these form the pfbs prefetch bus). This output
can also be routed back to mdbs, or to the memory via the right rotator. The
enables and controls for the right rotator are discussed in the section on the
data memory. These enables also depend on the signals ~-vMEHIt, ~IOMatch,
and Halt which are generated by the host interface on board 1.

8.5. Timing, Loading, Power Details for MDBS

Timing Details:

T1 = CK to pipeline + PAL's + Chip Enable time ('ALS245)
=13 +25 + 20 = 60 nsec

T2 = CK to pipeline + F,| microcode to DC, CO stable + Delay ('ALS245)
=13+85+10=108 nsec> T1

T3 = T2 + Propagation Delay ('ALS245) + Setup Time (DC)
=108 + 10 + 30 = 150 nsec.

T4 = T2 + (Path to Flag input of usequencer) '
= T2 + Delay ('ALS244) + Delay ('F573) + Delay (PAL)
=108 + 10 + 8 + 15 = 141 nsec.

Thus CLOCK PERIOD > 150 nsec.
Total Bus Loading:
Less than MAR bus. Can be handled by 'ALS245.
Power Consumption (Excluding MDR and Rotators)
12" ALS245 12'60=0.7A=3.5W
6"'ALS244 6'30=02A=1W
TOTAL <5W

80

8.6. Datapath Control PALS (PAL's PP05 to PP08)

PALs #PP05 and #PP06 are primarily responsible for controlling the
mabs, while PALs #PP07 and #PP08 are responsible for mdbs. The transceiver
direction control lines t . _r.xxx are shared between both busses. Each PAL
drives at most four t ._r.xxx lines, which needs 0.4 mA sinking current, which
can be handled by these Tl PALs. The total power consumption is 4W, and the
delay 25 nsec max.

The convention for the naming of the select lines is:

mabs: a.<in0-2> forinput, a.<out0-2> for output
mdbs: d.<in0-2> forinput, d.<out0-2> for output

PAL #PP08, in addition to producing the d._oe .md signal to turn on the
buffer from mdbs to the MDR register, drives -EnSegMDR, turning on the 'F543
latches driving the sequencer D-port output into the MDR input, as described in
the previous section. PAL #PP04 decodes DIN to generate the signal enabling
the left rotator, selecting whether MDR will load from data memory or from the
mdbs bus.

PAL's #PP03 and #PP04 generate the signals for controlling the MAR
and MDR registers, the clocks to the array, enables for rotators, etc. These are
documented in detail in the data memory section

81

Section 9 -~ DATA MEMORY SYSTEM

9.1. Overview

The data memory is organized to allow reading and writing 16-bit words
on any nibble (4-bit) addressable boundary. This unusual memory structure is
required to support many image processing and related problems. For
example, suppose we wish to apply a 3x3 low pass filter to an image stored in
data memory. The image may be stored in bit plane format (consecutive bits in
memory come from the same bit position in consecutive pixels) or in bit-parallel
format (consecutive bits in memory are consecutive bits from a single pixel). We
read in one 16x16 block of pixel data at a time, do the convolution with the filter
coefficients, write out the result, then bring in the next block and repeat the
operation. Unfortunately, the edges of each output block contain incorrect
results, and only the center 14x14 block of data is correct. Thus the next 16x16
block that is input must overlap the previous block by two pixels. In bit-plane
storage, this means that successive tlocks overlap by 2 bits. As a hardware
compromise, we allow succesive reads to overlap by 4 bits. This leads to a
minor level of inefficiency, since we will have to overlap input blocks by 4
columns instead of 2.

Using conventional static RAM's in this unusual memory leads to
substantial addressing difficulties. The scheme we use is to break the memory
into two banks, each bank at least 16 bits wide. We supply appropriate
addresses to each bank of memory, and fetch at least 32 bits. Data alignment
and rotation circuitry selects the 16 bits we want from these. On a write
operation, the 16 bits will have to be rotated appropriately into the correct
position within the two banks, then written into a subset of the memory chips in
each bank. Depending on the position of the desired 16 bits in the banks, the
two addresses fed to the two banks may either be the same, or may differ by
one.

uPD4362 16Kx4 55nsec MIX-MOS static RAMs are used to fabricate the
data memory. Sixteen memory chips are read out in parallel, with eight in each
bank. Of these, only two or four will be affected by the read or write operation.

82

In all, 128Kbytes of memory are installed. The delay (40 nsec) through the data
rotation circuitry is almost equal to the access time of the memories. The
address incrementer attached to one bank adds another 29 nsec to the access
time. Total power consumption for the data memory system is 18 Watts.

9.2. Memory Address

When the array accesses data memory, the top four bits of the memory
address (mead - 20 bits) always come from the PG register. The low 16 bits can
come from the MAR register or from the pconst field in microcode. On host
accesses, the address is derived directly from the VME bus address supplied by
the host. The maximal address space decoded by the PALs is 512 Kbytes. In
the current version of the system, only 128 Kbytes has been installed, and thus
the two higher order bits mead18 and mead19 are unused.

Because the top 4 bits of the address are always driven by PGreg when
the array accesses memory, the array is limited to operating within a single 32
Kbyte page unless it modifies PGreg. Both PGreg and MAR are loaded from the
mabs bus; PGreg is loaded from the lower 4 bits of this bus.

The host always addresses data aligned on word (16-bit) boundaries.
Hence the two least significant memory address lines mead0 and mead1l are
always zero during host access. During host access, we connect VME address
lines hal through ha18 to memory address lines mead2 through mead19. The
uppermost host address lines (and perhaps also hal7 and hal8) are decoded
by the host interface on board 1 to determine whether this VME bus cycle is
aimed at the data memory or at some other address block. VME bus signals -
DSO and -DS1 are used to determine which byte(s) are to be accessed.

Array access to data memory is more complicated. Each 16-bit access to
data memory affects four consecutive 4-bit wide RAM chips. If the low nibble we
want is located in the first 13 chips, MEMO through MEM12, then all 4 nibbles
will be in the same address in successive chips. However, if the low nibble is
located in chips MEM13, MEM14, or MEM15, then one or more of the upper
nibbles in the word may be located in address+1 in chips MEMO, MEM1, MEM2.

DATA MEMORY BANK 1

DATA MEMORY BANK 2

>&amm9 0 2 3 4 5 6 7 8 9 10 V/ﬂ/.////d/m///d/w/,//ﬁ/ﬂ 15
»ﬂ$> ﬁhaﬁ N

extMDR bus (nmdi)

!

BOD

MDR

Key to Memory Layout

N\ Address 11
z Address 18
7| Address 46
/| Address 55
Address 63
Data
Memory
Concept

To accomodate this, we break the chips into two banks. The address for chips
MEMO through MEM7 comes from an adder circuit add1, while the address for
chips MEM8 through MEM15 comes from mead (this arrangement balances the
loading of the address drivers). The adder circuit conditionally increments the
address on mead if the low nibble falls in chips MEM8 through MEM15. This
arrangement ensures that the desired 16 consecutive bits will always be
located within the 16*4=64 bits that are potentially available at one time from
the data memory. Only bits mead4 through mead19 are used to compute the
addresses for the chips. The low order bits mead0 through mead3 are used to
derive chip enables to select the appropriate 4 chips. Bits mead0 and mead1
are used to control data rotation and alignment circuitry. This is all described in
a later section.

The selection of who drives the mead bus is determined as follows.
When the array is driving data memory, the microcode control line seladr
chooses between using the MAR or the pconst field for the low 16 bits. The top
4 bits always come from PGreg. However, if the host is accessing data memory,
then the mead values come from the VME bus. The host interface on board 1 is
responsible for deciding when a host data memory access is taking place.
Three signals, -VMEHit, -IOmatch, and Halt are send from board 1 to board
2, and help determine whether a host memory access is in progress. PAL
#PP03 determines the source for mead as follows:

0 1 1 X Host
...Other combinations... 0 MAR
1 Heonst

The address lines from the VME bus are latched (chips MELO, MEL1, MEL2)
using -vMEHit. This is necessary because the VME bus address might change
after a -DTACK acknowledge has been asserted, but before the current bus
cycle has ended. The -vMEHit signal is deliberately delayed by board 1 so
that it disappears only after -DS1 and -DS0 strobes have been deasserted and
the VME bus cycleis finished. PAL #PP03 decodes the signals from board 1 to
produce the latching signal _oe .HAD from the signals sent by board 1.

83

84

Timing of a write operation is particularly tricky. When the array writes to
data memory, it must first preload the datum to be written into MDR. Next it
issues a write command. The SelAdr microcode bit from the microcode
pipeline register selects the appropriate address source (MAR or pconst), and
at the end of the cycle the -DMemW signal is asserted, writing the datum at the
MDR output into the specified location in the enabled chips. Board 1 ensures
that ~-DMemw is deasserted 1 PAL delay before the next clock rising edge, thus
preventing any glitches at the end of the write cycle. If -LdAMDR is asserted in
this same clock cycle (loading MDR, for example, from the mdbs bus), then the
value of MDR will only change after the next clock edge, well after the write
cycle is complete.

When the host accesses data memory, ~-VMEHit and Halt are asserted
and -IOMatch is deasserted at least one oscillator cycle before ~—DMemw is
asserted. This allows both the address and chip selects to stabilize before any
write takes place.

Reading data into MDR is complicated by the fact that three separate
copies of MDR are maintained. The version on board 2 is used to drive data
memory and the data busses. A copy is kept in the sequencer circuitry for use
when the sequencer inputs data through its D-port. Yet another copy is
effectively kept in the circuitry which develops the flag test bit for the sequencer.
All three copies must be loaded whenever a data memory read is performed, or
when MDR is loaded from the mdbs or from the sequencer. To do this, PAL
#PPO03 uses the seladr bit from the microcode pipeline, together with the host
interface signals from board 1, to generate the _oe .maad, _oe.ucad, _oe.had,
and the _oe.pgr signals. These are asserted (pipeline register delay + cable
delay + PAL delay) = 13+15+25 = 55 nsec after the rising clock edge. This
selects the appropriate address bus driver for this cycle, and the memory
contents will be output for loading into MDR on the next clock rising edge.
Simultaneously, because -LdMDR is asserted, the ~-MDRpc1k signal goes high
in the second half of the cycle, causing the 'F573 latches on the sequencer D-
port to become transparent, directly passing this memory value into the D-port
input latch. A computed flag value based on the memory value will also be
latched for use as a test bit. At the next rising clock edge, the sequencer D-pont,
the 'F573, the flag, and the MDR regist'er all latch this copy of the memory

85

contents. This strategy maintains synchronism between the multiple copies of
MDR.

9.3. Memory Rotator, Alignment Circuitry

The data pins on the RAM chips are connected through a pair of rotators
to MDR, and through a bidirectional port to the VME bus. During host reads, no
data alignment is necessary since access is always on word boundaries.
Sixteen nibbles are read out in parallel, of which four nibbles are used for a
word read operation, or two nibbles for a byte read operation. On a write
operation, either two or four chips are enabled to write the given byte or word
data into the specified address.

When the array accesses data memory, data alignment is ensured by
using 74F350 barrel rotator chips, one set for reads and the other set for writes.
The amount of rotation is selected from the low three memory address bits, and
the rotator outputs are selactively enabled by PAL #PP04 on the basis of the
values of the DIN microcode field, -bMemw, and the -VMEHit, Halt, and
-IOMatch signals. During host access, both rotator outputs are disabled.

The “read” rotator outputs are enabled whenever the data memory is
configured for a read operation, and MDR is not being loaded from the mdbs
bus or from the sequencer D-port.

The “write” rotator outputs are enabled when the -DMemw signal is
asserted, and no host access is in progress. The timing here is quite critical.
Note that the -DMemw signal enables the RAM's to write through two 'ALS244
buffers. This delays this strobe by about 10 nsec. However, the enable signal
for the “write” rotator is derived from -DMemwW by PAL #PP04, which has a delay
of about 25 nsec. Hence at the end of the write cycle, the RAM chips should be
disabled from writing before the rotator outputs return to tristate. Also note that
the -DMemw signal is a strobe which goes low only in the last osc period of a
clock cycle. Thus the “write” rotator outputs are valid for somewhat less than a
single osc period.

86

PAL #PP04 is responsible for enabling the rotator outputs. The amount
of rotation is controlied by the low two address bits mead0 and mead1.

During host access, the transceivers between the VME data bus and the
data RAM's are controlled by the -write and -DMemw signals. f the host is
reading, the transceivers are tumed on as soon as -VMEHit and Halt are
asserted, and -10Match and -wWrite are deasserted. If the host is writing,
however, then we have to wait until the RAM chip outputs have been disabled
and the address and chip selects stabilize. Thus the transceivers during a host
write are not enabled until -DMemw is asserted in the final osc period of the host
access. This is handied by PAL #PP04.

9.4. Loading MAR, PG, and MDR Registers

During normal operation, loading of the MAR, PGreg, and MDR registers
is enabled by the micricode fields -LdMAR, -LdPG, and -LdMDR in the microcode
pipeline register. These pipeline bits are gated with the c1xk signal from board 1
in PAL #PPO03 to form the clocking signals MARpclk, PGpclk, and MDRpclk.
These signals latch new values into the corresponding registers at the next
rising edge of the clock, thus loading the register with whatever values have
been computed during this clock cycle. The 85 nsec oscillator period is enough
to accomodate any delays (clock to pipeline output + cable delay) in the
appearance of these signals.

The MDR, MAR, and PG register are all built from AM29818 serial shift
registers, and are connected with the microcode pipeline registers and the host
interface into an 18-byte circular shift register. The uspo output from the
microcode pipeline register (UCRO) on board 1 connects to the sp1 pin of the
PGreg. This in tum connects to the MAR register, which in turn connects to the
MDR. Finally, the MDR-SDO output goes back to the 'ALS299 register HRO in the
host interface on board t. If the host wishes to load the MAR, MDR, and PGreg
registefs, it first shifts in the new values via the shadow serial shitt registers, and
clocks the values into the parallel registers. To examine the contents of these
registers, the host can transfer their values into the shadow serial shift register,
then shift the values out.

PALs #HP7 and #HP8 in the host interface coodinate copying the
shadow shift registers into the parallel registers, and the paralle! registers into
the shadow registers respectively. PAL #HP7 uses signals -Modea, Dopclk
and PAL #HP8 uses signals -ModeB, DoMdc1k for this purpose. Both -Modea
and -ModeB are normally deasserted. PAL #u1CP3 on board 1 combines these
signals, driving signal MMode low, thus enabling all the shadow shift registers for
shifting, and enabling the parallel registers to load normally from their D-ports.
Dodclk and Dopclk are clock signals generated to drive the shadow register
pipeline and the parallel registers during host access. MARpclk, PGpclk, and
MDRpclk are unconditionally generated by PAL #PP0O3 whenever Dopclk on
board 1 pulses low. This only occurs during certain host accesses, and when
clk is high. Similarly, PAL #PP04 unconditionally generates an Mdc1k signal
to clock the shadow serial shift registers on board 2 whenever board 1 pulses
Dodclk.

When the shadow serial shift registers are to be copied to the parallel
registers, PAL #HP7 assets -Modea, which in turn causes Mmode to be asserted
by PAL #1CP3. This sets up the AM29818's to load the parallel registers from
th shadow registers when Dopc1k is brought low and then high by PAL #HP7.
Note that #HP7 also handles reading pcode RAM into the parallel registers.
When reading microcode, however, a separate Dopclk signal is generated only
for the pipeline registers, and not for the MAR, MDR, or PG registers.

When the parallel registers are to be copied into the shadow shift
registers, PAL #HP8 asserts -ModeB, which causes MMode {0 be asserted by
PAL #uCP3. This sets up the AM29818's to load the shadow registers from the
respective Y ports when Dodclk is brought low and then high by PAL #HP8.
Note that before bodclk appears, PAL #HP8 has waited long enough for a low
value to propagate through the sp1/spo pins of all the AM29818's. Also note
that the -EnPipe signal is not used on board 2, since the outputs of all 29818's
area always enabled. Finally note that when PAL #HP8 writes the contents of
the shadow shift registers into pcode RAM, Dodc1k does not appear on board 2
and so the MDR, MAR, and PG registers do not participate in this action.

In order for timing to be correct, PALs #PP03 and #PP04 must be
matched in speed with PAL #uCP5 (25 nsec), so that clocks ppciki, ppclk2,
udclki, pdclk2, and so forth are clocked simultaneously. Note also that the

88

clock for the array, aapc1lk, is delayed through PAL #PP03 to synchronize its
timing with the other pclk's.

9.5. Chip Selection, Loading, and Timing

The lower four bits of the memory address, mead0 through mead3, the
-EnMem from the clock generator PAL's on board 1, -vMEHit, Halt, and
-IOMatch from the host interface, and -ps1 and -ps0 strobes from the VME
bus, are all combined by PAL's #MEP1 and #MEP2 to form the RAM chip
enables. All chip selects are turned off if ~-EnMem is high, unless -vMEHit and
Halt are asserted, -I0OMatch is deasserted, and either -ps0 or -DS1 are
asserted (the clock generator is in a halt state during host access, and cannot
conflict). Note that during host access, -VMEHi t is asserted one osc cycle
before ~-DMemw arrives, thus allowing both the address and chip selects to
stabilize before any write takes place. The PAL's #MEP1 and #MEP2 used for
the logic are fast 15nsec PAL's. Tables describing the selection logic used by
these PAL's are shown talow:

Chip Selection Logic
Normal Operation (VMEHit & Halt & ! IOMatch =0, EnMEM = 1)

Chip selection (1 = selected)

Addr 0 1 2 3 4 5 6 7 {8 9 10 11 12 13 14 15

0 11 1 1

1 1 1 1 1

2 11 1 1

3 11 1 1
4 11 1

N
s
s o |2 |
-
N

89

9 i 1 1 1
10 1 1 1 1
1 1 1 1 1
12 1 1 1 1
13 11 1
14 1 1 1
15 11 1
Chip Selection Logic
Host Access (VMEHit & Halt & !IOMatch = 1)
Chip Selection (1 = selected)

S1DS0 A3 A210 1 2 3 45 6 71 8 9 10 11 12 13 14 19 -
1 X Q o111 1
1 X 0__1 11
1 X 1 0 1 1
1 X 1 1 1 1
X 1 Q0 1 1
X 1 Q1 1 1
X 1 1 0 1.1
X 1 1 1 _1 1

The -DMemw strobe is fed to all 16 chips. Two buffers provide enough
drive capability to handle the heavy 80 pf capacitance of these lines. Timing on
the write cycle is compensated by delaying the -DMemw signal through a 25
nsec delay in PAL #PP03 to delay the enables on the rotators.

The critical propagation delay path is from the output of the pipeline
register, through the address section PAL #PP03, then through the memory
address bus buffers (or the enable time of the 'F573), through the adder, the
memory chips, the rotator, and finally through the setup time for the MDR

80 .

register. The time taken is surprisingly large, as high as 160 nsec, close to the
maximum delay anywhere in the entire system. Of this, almost 40 nsec is due to
the data rotation circuitry, and another 29 nsec to the adder. (In a future design
we could improve things somewhat by using a faster 15 nsec PAL. At the same
time, however, we should drive AAPclk, MARpclk, PGpclk, and MDRpclk with a
slower PAL to keep the time allowed for -DMemw Skew to 25 nsec, and thus
preserve a correct write cycle.)

The RAM's consume much of the power on board 2 (about 7.5 W peak).
By using ~EnMem to disable the memories when they are not used, however, the
average power consumption should be well below the peak levels.

9.6. Timing, Loading, Power Details

Timing Details:

Adder = 'AS30 + 'AS02 + 2"'F283
=5+45+8.5+10.5 nsec = 29 nsec.

T1 = (Clock to MAR) + 'ALS244 + Adder + uPD4362 + 'F350 +
Setup(MDR)
=13+10+29+55 + 11 + 8 nsec = 126 nsec.

T2 = (Clock to pipeline) + PP03 + 'ALS244/F573 + Adder + uPD4362 +
'F350 + Setup(MDR)
=13+25+20+29+55+ 11 + 8 nsec = 160 nsec.

Minimum CLOCK PERIOD 2 160 nsec.
Total Bus Loading
A3 drivers:
2 * 'ALS244 outputs 24 pf
1 * 'F283 input 5pf 0.6 mA
2 * 'AS02 input 10 pt 0.2 mA

2 * TIBPAL16LS8 10 pt 0.4 mA
TOTAL 50 pf 1.2 mA
an 'ALS244 can easily handle this.

A4-A11 drivers:

2 * 'ALS244 outputs 24 pt

1 * 'F283 input 5 pf 0.6 mA
1 * "AS30 input 5 pf 0.1 mA
8 * uUPD4362 40 pt

TOTAL 75 pt 0.7 mA

an 'ALS244 can easily handle this.

-DMemW:

16 * uPD4362 80 pf (shared between two drivers)
Adder Outputs:

8 * uPD4362 40 pf

uPD4362 Outputs:

3 other uPD4362 outputs 21 pf

1 'F350 output 12 pf
2 'F350 inputs 10 pf
1°'ALS245 1/0 12 pf
TOTAL: 55 pf.

Specs are rated at 30 pf!!! Good thing we got 55 nsec chips!
Power Consumption:

Host Addr 3*'F573 3°30=90mA 0.5W

82

pconst Addr

PG, MAR Addr

Adder:

2 * TIBPAL16LS8
16 * uPD4362
8 * 'F350

MDR

Host Data

TOTAL:

3 * 'ALS244 3°30 = 90 mA

3 * 'ALS244 3°30 = S0 mA

3 * 29818

4 *'F283
1 * 'AS02
1*'AS30

2" 29818

3*155 = 465 mA

4*55 = 220 mA
20 mA
5mA

2°180 = 360 mA
16"90 = 1.44 A
8°42 = 336 mA
2°155 = 310 mA

2 * 'ALS245 2°60 = 120 mA

05W

0.5W
24 W

1.1 W
0.1W

1.8W
75W
1.6W
15W
0.6 W
18W

