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1 Introduction

Chaotic systems and their properties have received much attention in the
mathematics and physics communities in the last two decades, and are re-
ceiving increasing attention in various engineering disciplines as well. Re-
search has traditionally focused on possible causes of or transitions to chaos,
universal properties shared by chaotic systems, and various topological and
ergodic properties of chaotic systems. Recently however, practical applica-
tions of chaotic systems have been proposed for several disciplines including
control, communication, and signal processing.

This report discusses probabilistic state estimation with chaotic systems,
and as a result of the discussion and analysis reveals that distinguishing prop-
erties of chaotic systems may render them useful for practical engineering ap-
plications. The report begins with a brief review of probabilistic approaches
to state estimation. The section continues by introducing the Kalman fil-
ter, a recursive, minimum-error-variance state estimator for linear systems.
A recursive state estimator for nonlinear systems, the extended Kalman fil-
ter (EKF), is derived in Section 3 and shown to be the exact Kalman filter
for linearizations of nonlinear systems. A related state estimator for nonlin-
ear systems, the second order filter (EKF2), is also briefly discussed in the
section.

The report continues with a quantitative and qualitative assessment of
the EKF and EKF2 for performing state estimation with chaotic systems.
Section 4 provides the quantitative assessment and Section 5, the qualitative
assessment. In particular. Section 4 presents experimental performance re-
sults obtained with the EKF and EKF2 when used for state estimation with
three discrete-time chaotic systems: the Henon, Ushiki, and ITkeda maps.
Section 5 interprets these results primarily by focusing on the a posteriori
state density and likelihood function for a chaotic system and contrasting it
with the a posterioristate density and likelihood function for a linear system.

Section 6 briefly reviews linear smoothing terminology and techniques
and introduces the extended Kalman smoother (EKS), an extension of the
EKF, which exploits both past and future observations. The section presents
experimental performance results obtained with the EKS on the same chaotic
systems used with the EKF. Section 7 continues the analysis begun in Section
5 by interpreting the performance results for the EKS and comparing them
with those for the EKF. The analysis focuses on the likelihood function for




a chaotic system that incorporates both past and future observations. The
discussion reveals an interesting, distinguishing, potentially useful property
of chaotic systems—the simultaneous existence of stable and unstable man-
ifolds. This property is shown later in the report to strongly influence the
Cramer-Rao error bound on state estimators for chaotic systems.

Section 8 considers two simpler problems than estimation, which are state
and parameter discrimination among known, finite sets of values. Experi-
mental results presented in the section suggest that robust state and param-
eter discrimination with chaotic systems is possible even with extremely low
signal-to-noise (SNR) ratios. The section concludes by briefly discussing how
this robust discrimination property of chaotic syvstems might be exploited to
provide secure transmission of information.

Section 9 extends the informal analysis presented in Sections 5 and 7
by deriving and interpreting the Cramer-Rao bound on the error covariance
matrix for unbiased estimators for each of three state estimation problems
with chaotic systems. The analysis supports the assertion made in Section 7
that the simultaneous existence of both stable and unstable manifolds at each
point on a chaotic attractor is an extremely important and useful property for
state estimation. Section 9 concludes with a brief discussion of the relevance
of the the error bounds.

Section 10 briefly discusses fundamental differences between linear and
chaotic systems and the reasons that traditional engineering beliefs and as-
sumptions are inappropriate when dealing with chaotic systems. Finally,
Section 11 concludes the report with a brief summary.




2 State Estimation: Preliminaries

This section presents definitions and concepts used throughout this report.
It introduces the general system model used in all derivations and examples,
and briefly discusses and compares the three state estimation techniques
considered in this report: maximum likelihood, maximum a posteriori, and
minimum error variance. The section concludes with a discussion of the
Kalman filter, a recursive, minimum-error-variance state estimator for linear,
possibly time-varying dynamical systems.

2.1 The System Model

The following, general system model is used throughout the report:

Tnt1 = fn(xn)'*'gn('zn)wn (1)
Yn = hp(z) + vn. (2)

The first equation is the state equation. In this equation, z, is the N-
dimensional state vector we wish to estimate; f,(z,) is a known, discrete-
time, chaotic system; g,(z,) is a known, possibly time-varying, and pos-
sibly nonlinear function of the state; and w,, the driving noise, is an N-
dimensional, zero-mean, Gaussian, white-noise process. The second equation
above is the observation equation. In this equation, y, is the P-dimensional
observation vector we use to estimate z,; hn(z,) is a known, possibly time-
varying. and possibly non-linear function of the state; and v, the observation
notse, 1s a P-dimensional. zero-mean, Gaussian, white-noise process. We as-
sume that w, and v, are uncorrelated with each other and with the initial
state xg.

The notational convention used in the above equations and throughout
the report is that the first subscript on a variable represents the time index.
Therefore, z, denotes the state at time n. In addition. a second subscript
denotes a scalar component of a vector. Therefore, z,,; denotes the i** compo-
nent of the A-dimensional vector z,, or equivalently z, = [zn1,- -+, Z, 47T

2.2 Probabilistic Approaches to State Estimation

For the system model given by (1) and (2), the goal of state estimation is to
estimate 7, at each time n in some “optimal” sense given a set of observations
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{ym}. If the set of observations used to estimate z, for each n includes only
observations y,, for times m < n, the estimation problem is known as a
prediction problem. If the set of observations includes only observations for
times m < n, the estimation problem is known as a filtering problem. Finally,
if the set of observations includes at least some observations for times m > n,
the estimation problem is known as a smoothing problem.

There are many approaches to perform state estimation with linear and
nonlinear systems. In this report, we focus on three, related, probabilis-
tic approaches: maximum likelihood (ML), maximum a posteriori (MAP),
and minimum error variance (MEV). The relationship between the three ap-
proaches is best understood by considering an arbitrary set of observations
Y = {yn} and the objective of estimating z, for some fixed time n. The con-
ditional density of z, given Y, denoted p(z,|Y), is known as the a posteriori
state density and can be expressed using Bayes rule as follows:

pY)

In this equation, p(Y|z,) is the conditional density of the observation set Y
given the state z, and is known as the likelihood function when considered
as a function of z, for a fixed Y. Also, p(z,) is the unconditional or a priori
state density, and p(Y') is the unconditional density of the observation set.

With ML estimation, one chooses z, to maximize p(Y|z,); with MAP
estimation, one chooses z, to maximize p(z,|Y); (as discussed in the next
subsection) with MEV estimation, one chooses z, to maximize the condi-
tional mean F(z,|Y) given by

p(za|Y) = (3)

E(z,]Y) = / z2p(@alY) d2n. (4)

As indicated by (3), all three state-estimation approaches implicitly or ex-
plicitly use the likelihood function p(Y|z,).

2.3 Recursive State Estimation and the Kalman Fil-
ter

For many applications, the observations y,, are observed sequentially in time
and one seeks to estimate z,, for each n using only observations for which m <




n. With the taxonomy introduced earlier, one thus has a filtering problem. In
addition, it is desirable and sometimes necessary (for computational reasons)
to recursively compute the “state estimate”, hereafter denoted &,. That is for
each n, one seeks to calculate Z,, using only ,-; and the current observation
yn. This is known as recursive state estimation and is the focus of this section
and the next.

The problem of recursive state estimation simplifies when the functions
fa(zn) and hy(z,) in (1) and (2), respectively, are linear functions of the
state z,, and g,(z,) in (1) is linear (i.e., a matrix) and independent of the
state. For this special case, (1) and (2) can be expressed

Tnt1 = Fn:rn + ann (5)
Yn = Hn-rn + vy, (6)

where F, and G, are (N x N')-matrices and H, is a (P x A)-matrix. For
this special case, the a posteriori state density p(z,|Yg'), where Y = {y:} %,
is Gaussian [7]. A Gaussian density is completely characterized by a mean
vector and a covariance matrix. Therefore, to recursively compute the density
p(z,|Yy'), one need only update two finite sets of parameters at each time n:
a mean vector and a covariance matrix.

A recursive state estimation problem in which only a finite number of
parameters need to be updated to recursively compute the a posteriori state
density is often referred to as a finite dimensional estimation problem. In
contrast, a recursive state estimation problem in which an infinite number of
parameters need to be updated to recursively compute the a posteriori state
density is referred to as an infinite dimensional estimation problem. In gen-
eral, when the functions f,,(z,), gn(z,), and h,(z,) are nonlinear functions of
the state (such as when f,(z,) is a chaotic system), the recursive estimation
problem is infinite-dimensional and approximations are inevitably needed to
recursively compute the a posteriori density.

It is well-known in the estimation literature that for the assumed system
model and the special conditions on f,(z,), gn(z,), and h,(z,) given above,
the maximum a posteriori (MAP) and minimum-error-variance (MEV) re-
cursive state estimates are identical. To see this equivalence, first note that
with MEV recursive state estimation one chooses Z, to minimize the condi-
tional error variance £ {(:cn — &) (2, — a":n)IYO"]. However, the conditional




error variance is minimized when z, equals the conditional mean,
in = E(@lYg) = [ ap(eal¥) dan. (7)

As mentioned earlier, p(z,|Yy") is Gaussian and is thus a unimodal density
centered about its mean. Since by definition the MAP recursive state es-
timate is the value of x, for which p(z,|Yy*) has its maximum, the MAP
estimate is the conditional mean. Therefore, both the MAP and MEV state
estimates are identical for this special filtering problem with the system model
given by (5) and (6)

The discrete-time Kalman filter, hereafter referred to as the Kalman fil-
ter, is a popular, practical, recursive, MEV (and MAP) state estimator for
this special filtering problem The Kalman filter uses a two-step procedure
for recursively computing two quantities—the state estimate z, and the er-
ror covariance matrix P, = El(‘mn — o )(Tn — :cn)T)lyz)”] In the first step,
known as the prediction step, the state estimate and covariance matrix for
time n + 1 are computed using only the final state estimate and covariance
matrix for time n and observations through time n (i.e., };?). The state es-
timate and error covariance matrix computed in the prediction step for time
n+1 are typically denoted &1 and P, 11}, Tespectively, to emphasize that
only observations through time n are used to calculate them. In the second
step, known as the measurement (or observation) update step, the quantities
Tpi1n and Poyqpn calculated in the first step are updated using the “new”
observation yn41. The updated quantities are typically denoted #4141 and
P.t1jn+1- The equations for the two steps of the Kalman filter are given in
Figure 1 and are applicable to the system model given by (5) and (6) with
wy, ~ N(0,Qr), vtan ~ N(0,R,.), and z¢g ~ N(mg, Fp).

The Kalman filter has been successively used in many practical applica-
tions, perhaps most notably the Apollo program in the 1960’s. Unfortunately,
the Kalman filter is applicable only to the system model given by (5) and
(6) and not the more general model given by (1) and (2). As discussed in
the next section, the ertended Kalman filter is a recursive state estimator,
based on the Kalman filter, which is applicable to the system model given
by (1) and (2). However, unlike the Kalman filter which is optimal in the
sense that the state estimate is the MEV and MAP estiinate, the extended
Kalman filter is not optimal in this sense (or in any other usual sense of op-
timality). As discussed in the next section and illustrated with examples in
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Prediction Step
£n+1|n = Fné\:nln (8)
Pn+1|n = FnPnlan + GnQnGZ (9)

Measurement Update Step

Tnttntr = Tngrpn + Kngr{ynsr — HoprEngapnl (10)

Kot = PostnHo [Hun P Bl + Bunt] (1)

Pn+1|n+1 = [I—'I\’n+1Hn+l]Pn+lin (12)
Initialization

io|-1 = Mg (13)

Py = Po (14)

Figure 1: The Kalman filter

Section 4, because of this lack of optimality, one can not determine a prior:
the performance of the extended Kalman filter for a specific problem. As
aptly remarked in [7] in reference to the extended Kalman filter and related
nonlinear filters, “...our approximations are ad hoc and must be tested by
simulation.”
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3 The Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is a recursive state estimator for the
general system model given by (1) and (2). Unlike the Kalman filter, the
EKF imposes no restrictions on the functions f,(z.), gn(zn), and h,(z,)
in (1) and (2) except that they be differentiable functions of the state z,.
Thus, whereas the Kalman filter is applicable only to linear system models
(i.e.. those of the form of (5) and (6)), the EKF is applicable to nonlinear
models as well. However the EKF is a heuristically derived algorithm which
does not in general yield either the minimum-error-variance (MEV) or the
maximum a posteriori (MAP) state estimate.

3.1 Motivation

As mentioned in Section 2, the estimate of z, based ounly on Y (i.e., the set
of observations {y;}™,) which minimizes the error variance (for both linear
and nonlinear systems) is the conditional mean

E(aa7) = [ 20 plaa¥7) don. (15)

Also as pointed out in Section 2, for the system model given by (5) and
(6), the a posteriori density p(a,|Yy') is Gaussian and is thus completely
specified by two sets of parameters—a mean vector and a covariance matrix.
Thus. to recursively update p(z,|Yy'), one need only recursively update these
two sets of parameters. This suggests why only two sets of parameters—the
state estimate (the conditional mean) and the error covariance matrix—are
updated at each two-step iteration of the Kalman filter. In contrast, for
most nonlinear systems, the a posteriori density requires an infinite set of
parameters for its specification. As a result, MEV recursive state estimation
for most nonlinear systems requires that an infinite set of parameters be
updated at each time n. Since updating an infinite set of parameters is not
feasible, any practical recursive state estimator for most nonlinear systems
can provide at best only an approximation to the MEV state estimate.

In the past, there have been two basic approaches for deriving approx-
imate MEV state estimators for nonlinear svstems. The first approach in-
volves approximating the nonlinear functions f.(z,), ¢.(z»), and h,(z,) in
(1) and (2). Typically, this is done by expanding the functions in Taylor
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series and truncating all but the lowest-order terms. The second basic ap-
proach involves approximating p(z,|Yy') with a finite set of parameters and
updating only these parameters at each time instant.

3.2 Derivation

The derivation of the EKF uses the first approach for deriving approximate
MEV state estimators. An underlying assumption of this approach is that
the functions fn(z,), gn(zn), and h,(z,) are “sufficiently smooth” or differ-
entiable so that they have Taylor series expansions.

For the EKF', at each time n the functions are expanded about the current
state estimate (either Z,,—1 or I,p,) where the subscripts have the same
interpretation as in Section 2 for the Kalman filter. (That is, Z,j,—; is the
estimate of z,, based on the observation set Y3 ! = {y;}/Z,. Similarly, Lo is
the estimate of z, based on the observation set Y;*). Specifically, the Taylor
series expansions are the following:

fn(xn) = fn(inin) + Fn(xn - i’nln) + - (16)
gn(@n) = Gn+-- (17)
hn(xn) = hn(i'n|n—l_) + Hn(xn - inln—-l) + ) (18)
where
_ Ofu(2)
Foo= —5— e (19)
Gn = gn(i'n|n) (20)
_ Ohu(x)
H, = =22 e (21)

Retaining only those terms explicitly shown in the above expansions, yields
the following approximations to (1) and (2):

Trt1 = fr(Znjn) + Fr(zn — Zopm) + Gaw, (22)
= Fa,+ Gw, + [fn(i'nln) - Fninin] (23)

Yn = hn(i'nln—l) + Hn(xn - énln—l) + Un (24)
= an'n + v -+ [hn(i'nln—l) - Hni'nin—l] . (25)

13




In (23) and (25), F,, and H, are matrices, and the bracketed expressions
can be evaluated. Thus, these equations are similar to the state and ob-
servation equations given by (5) and (6), with the addition of deterministic
input terms. However, the Kalman filter equations can easily be modified to
account for deterministic inputs in the state and observation equations. One
simply incorporates the deterministic input terms in the equations for Z,,4},
and 241,41 given by (8) and (10), respectively.

In light of this, the Kalman filter (modified to account for deterministic
inputs) is applicable to the system model given by (23) and (25). The result-
ing filtering equations, provided in Figure 2, constitute the eztended Kalman

filter.

Prediction Step A
Poian = FuPunFI 4+ G,Q.GT (27)

Measurement Update Step

Tntipntr = Tpgapn + Anpr [yn+1 - hn+1(5'n+11n)] (28)
- -1
Knty = PonpHiy [Hovt PussnHoyy + Ron (29)
Pn+1]n+] = [] - Kn+1Hn+1] Pn+l|n (30)
Initialization
.’20|..1 = My (31)
P()l._l == Po. (32)

Figure 2: The extended Kalman filter (EKF)

A comparison of the equations provided in Figures 1 and 2 reveals the
similarity of the Kalman and extended Kalman filters. However, whereas the
Kalman filter applies to a “linear” system, the EKF applies to a “linearized”
system. This analogy suggests that the effectiveness of the EKF depends
largely on the accuracy of the linear approximations of the nonlinear func-
tions fn(zn), gn(zr), and hy,(z,). If the neglected higher-order terms in the

14




Taylor series expansions of these functions are not negligible, the EKF may
perform poorly. In addition, whereas the Kalman filter is a MEV recursive
state estimator, the EKF in general is not a MEV recursive state estimator
for the original nonlinear system.

One other interesting aspect of the EKF concerns the state estimate equa-
tion in the prediction step (26). This equation follows from (22),

Enpiln = E(aa1]Yg) (33)
= fn(i’nln) + Fy (E(InIYOn) - fnln) + E(ann) (34)
= fn(i"n‘n)v (35)
since E(z,|Yy") = &, and E(Grwy) = 0. This implies
E(zna|Yy) = E(f(z)|Yg) = f(E(zn|Y7")), (36)

which although true for linear systems is not true in general for nonlinear
systems.

3.3 The Second Order Filter (EKF2)

An alternative to the EKF known as the second order filter, and hereafter
denoted the EKF2, has a similar derivation. However, both first-order and
second-order terms in the Taylor series expansions of f,(z,) and A,(z,) are
retained in the filtering equations. The derivation of the EKF2 is tedious
and unrevealing. In light of this. only the resulting equations for the EKF2
are provided here.

First define the following [17]:

FAOREIN P H O RIS O (37)

F, = -———ag‘i’c) ‘ (38)
T=Tp|n

. Bfilx)

E B Ozx? I (39)

hn() = [h}z()”hf()]T (40)

H, = Sl (41)
T=Tn|n—1




0%h, ()

0zx?

M = (42)

:c:-i'nln—l

(Note E}, and M are (A" x A")-matrices). With these definitions, the filtering
equations for the EKF2 are as shown in Figure 3. In the equations, the
symbol Tr(-) denotes the trace operator.

16




Prediction Step
) A 1 & ;
Tngiljn = fn(a7nln) + '2_2 e; I'r (EnPnIn)
=1

Pn+1|n = Fn:Pnlan + GnQnGZ; + Tn
T, = [17]
1 ; ,
= |57 (FiPunFiPap)]

Measurement Update Step
. . 1, & ;
Tptllntl = Toatijn — Tz‘I\nﬂ Z e; Ir (Mn+1Pn+l|n)
=1

K1 [yt = hnta ()]
-1
Kn+l = Pn+l|nH71;+1 [Hn+1Pn+1|an+l + Rn+1 + Sn+l]
Sn+1 = [S;{?]
1 i j
_ [gTr (Mn+an+1|n.f\:ln+1Pn+1|n)]

Pn+1|n+l = [] - Kn+1Hn+1] Pn+]|n

Initialization
j0]-1 = Mo
PO]-—] = Po.

Figure 3: The second order filter (EKF2)
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4 Experimental Performance of the EKF

This section evaluates the extended Kalman filter (EKF) and second-order fil-
ter (EKF2) in performing state estimation with three, discrete-time, chaotic
systems: the Henon, Ushiki. and Ikeda maps. The section begins by intro-

ducing these maps and continues by presenting experimental performance
results for the EKF and EKF2.

4.1 The Henon, Ushiki, and Ikeda maps

The Henon, Ushiki, and lkeda maps are two-dimensional, discrete-time,
chaotic systems or maps. With the notational convention that the com-
ponents of the two-dimensional state vector z, are denoted z,; and z,,
(and thus z, = [zn1,7.2])7), the three maps have the following functional
forms (2,41 = f(z,)):

Henon Map
Tpp1q = 1— 14z, + 202 (54)
Tnt+12 = -31:11,1 (55)

Ushiki Map

Tny11 = 3.7zp1 — xi’l — 12,100 (56)
Tnt12 = 3.7Tpo — :rfl,2 — .18zn12n 2 (57)
(58)
Ikeda Map
Tnt1g = 14.9[z.1 cos a, — T, sin ] (59)
Tnt12 = .9[Tn1 sin an + Tn2 COS ay) (60)
6
a, = 4 (61)

- 2 2 -
1 + xn,l + xn,?

Other values of the constants used in the above equations are also permis-
sible. The Ushiki map differs from the Henon and lkeda maps in that it
is not invertible, while the other two maps are diffeomorphisms (and thus
invertible).

18




The Tkeda map can also be succinctly expressed with complex notation:
6
i1 = f(zn) =1+ .9 2, 4 - ——— 62

where the two-dimensional state vector z, is now treated as a complex vari-
able, with z,, and z, , corresponding to its real and imaginary parts, respec-
tively. Figures 4, 5, and 6 depict the chaotic attractors for the three maps.
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Figure 4: Chaotic attractor for the Henon map

4.2 Computer Experiments

Two sets of experiments were conducted to assess the performance of the
EKF and EKF2. Both sets of experiments used the following system model,
a special case of the general model given by (1) and (2):

Tnt1 = f(zs) (63)
Yn = Tn+ Uy, (64)

where f(2,) refers to one of the three maps and v, was a zero-mean, Gaus-
sian, white-noise process with constant covariance matrix R given by

o 0
R:[O 0_3]. (65)
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Figure 6: Chaotic attractor for the Ikeda map
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As indicated by (63), driving noise was absent in the state equation; thus,
the state was deterministically generated.

The EKF was tested on the Henon, Ushiki, and Tkeda maps, while the
EKF2 was tested only on the Henon map. Each experiment used 1000 ob-
servations, {y;}?2. Each performance result was obtained by averaging the
results for five independent trials. The measure of performance was the im-
provement in signal-to-noise ratio (SNR) achieved for each component of z,,
where the initial and final SNRs for z,;, the j'* component of z, (where

J =1 or 2), were calculated as

Initial SNR = 10log [ iﬁ@m-—@f} (66)
4 = 10 999 ] Y
i=0($i, - yz, )
oy
Final SNR = 10lo U A ], 67
glo{ (@i — Eipiy,j)? (67)

where y; ; denotes the j** component of the i** observation, Z(;);),; denotes
the estimate of the jt* component of the state at time 7. and where

B 1 999
T; = mglfid (68)

For all three maps, the signal variance $929(z; ; — z,)? for the two com-

ponents of z, differs. Because of this, achieving the same initial SNR for
the two components of x,, required that o7 and o3, the variances of the two
components of v,, be given different values.

A mean vector mg and covariance matrix P, were needed to initialize the
EKF and EKF2. The same values of mg and P, and different values for o,
and o, were used for each experiment. The mean vector my was chosen as
the actual initial point zq with an added, zero-mean, Gaussian, white-noise
component. Py was chosen as the covariance matrix of this noise component,
which for both sets of experiments was the following :

107° 0
Fo= [ 0 10-6]

Additional experiments showed that the initial error covariance P, had little
influence on performance of the EKF and the extended Kalman smoother
(introduced later in this report).

(69)
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Table 1 contains the performance results for the first set of experiments.
As indicated by the table, the variable in the experiments was the initial
SNR, which was chosen to be the same for the two components of z,. Each
value shown in the columns under the heading “SNR Improvement” denotes
the difference between the final and initial SNRs at the indicated noise level
for the indicated component of the indicated map. A positive value denotes
an increase in SNR, while a negative value denotes a decrease. For example,
the value of 4.28 as the first entry of the first column means that with an
initial SNR of 40 dB for the first component of the Henon map, the final
SNR (as averaged over five independent trials) was 44.28 dB. In contrast,
the value of —1.6 as the final entry of the first column means that with an
initial SNR of 6 dB for the first component of the Henon map, the final SNR
(as averaged over five independent trials) was 4.4 dB.

SNR Improvement (dB)
Henon Map Ushiki Map Ikeda Map
Initial EKF EKF2 EKF EKF
SNR (dB) wn,lJ Tn2 || Tn, 1 Ln,2 L1.1 [ Ln.2 Ln,1 I Tn,2
40 4.28 | 7.85 | 4.06 | 7.81 || -29.52 | -28.26 || -11.89 | -10.53
20 -1.37 | 1.08 || 3.94 | 7.70 || -13.71 | -13.40 || -6.79 | -6.25
10 -2.34 | -1.56 |} 3.43 | 6.65 | -6.65| -6.19 | -5.66) -4.96
6 -1.60 | -.44 11 3.30 [ 6.81 || -4.25| -3.63] -5.59 | -5.00

Table 1: Performance results for first set of experiments

Perhaps surprisingly, even though my, the estimate of the initial state,
was close to the actual value, the improvement in SNR was small and in
many cases the SNR deteriorated.

One reason for this was that since driving noise was absent from the
svstem model, the Kalman gain A, given by (29) for the EKF and (48) for
the EKF2, was small for both the EKF and EKF2, and the observations were
essentially ignored. One way to avoid this undesirable behavior of the EKF
and EKF2 was to “assume” that the state equation (63) had a small, driving
noise term when specifying the EKF and EKF2 equations. This entailed
assigning nonzero values to elements of G, and @, in the EKF and EKF2
equations given in Section 3.
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With G, chosen as the identity matrix and @, chosen as

considerable improvement in performance occurred with the EKF but not
with the EKF2, as indicated in Table 2 for this second set of experiments.

0. = |

.001
0 .001})°

SNR Improvement (dB)
Henon Map Ushiki Map || Tkeda Map
Initial EKF EKF?2 EKF EKF

SNR (dB) Tn 1 J Tn,2 Q'n.l1 T2 xn,li Zn,2 Tn,1 ( Tn2
40 330 .04 .33 .03 .34 34 AT .44

20 2.81 | 2.54 || 2.74 | 2.53 || 3.30 | 3.83 | 2.12 | 3.44

10 3.05 | 6.08 || 3.36 | 6.21 || 3.48 | 4.82 .88 | 1.92

6 1.43 1 4.47 | 3.24 16.72 || 2.23 | 3.75 || -1.07 | -.30

Table 2: Performance results for second set of experiments (assumed driving
noise)

Other choices of the parameters used by the EKF were also tested as well
as other variations of the EKF, including the ilerated EKF. Only a marginal
improvement in performance resulted at best with any of these alternatives.
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5 Performance Analysis of the EKF

As indicated by the performance results in the preceding section, the EKF
and EKF2 perform poorly (or mediocre at best) for state estimation with
at least three chaotic systems. An important question is why? This section
attempts to answer or at least shed light on this question by providing an
initial intuitive interpretation of theoretical results presented later in this
report. In the process. the section reveals an interesting property of all
chaotic systems that is potentially useful when performing state estimation
with these systems. Although simple and revealing, the intuitive analysis
presented in this section is applicable only to diffeomorphisms, and is thus
relevant to the Henon and lkeda maps but not to the Ushiki map (since it is
not invertible).

5.1 Derivation of the a Posteriori State Density and
the Likelihood Function

Since the EKF is in fact the Kalman filter for a linearized system, one would
expect its performance to depend upon how “close” certain properties of the
corresponding nonlinear system match those of a linear system. One property
of the linear system model given by (5) and (6) is that the a posteriori state
density p(z,]Yy") is Gaussian. As discussed in Section 2, this is a fundamental
factor in the derivation and optimality of the Kalman filter. This suggests
that for the EKF to perform well. the a posteriori state density for the
corresponding nonlinear system should be approximately Gaussian.

The a posteriori state density for the general system model given by (1)
and (2) can be recursively defined as follows [7]:

1 | T Yy dx
Yy = P(Yn+112n+1) J p(Tnts ITn)p(:c,;l ¢)dzn o
P(.r +1 I 0 ) f fp(yn+l ]171+1}P($n+1 ‘xn) P(mn!yon) dajn dxn-{-l ( )

The derivation of this formidable-looking expression is straightforward. Us-
ing Bayes rule, we can express p($n+1[}’0”+1) as

p(Y3 2 41) p(Tnt1)
p(Yyt)

Pz |YgH) = (72)
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Since Yot = {5} = Y U ynq1, we can also express (72) as

p($n+1|},n+1 p(yn+1|$n+lvl/0 )I:’L(l'nﬁ'l{yo ) (73)
P(yn+1[Y3")

By assumption, the driving noise w, in (1) and the observation noise v, in
(2) are white, and uncorrelated both with each other and with the initial
state. Therefore, it follows from (2) and the Markov property of (1) that

PUn41 Y0 Znp1) = P(Ynt1|Tnt1) (74)
P ]2a. Yg) = p(zngalza). (75)

Also. we can write p(y,+1|Ys") as

PUialE) = [ pnsr 2ea|¥5) donas (76)
= [ plynsilanss ) planna ¥ dany (70)
= [ pnrlen) plean |¥§) e, (78)
where the last equality uses (74). Similarly, we can write p(z.41|Y7') as
Pennls) = [ plensrzal¥5) da, (79)
= [ Plrnlen Y) peal¥5) do (80)
= [ plensslen) plealg) dav. (81)
where the last equality uses (75). Combining (73), (74), (78). and (81) yields

(71).

In general, it is difficult to evaluate (71) for specific values of z,;1. How-
ever, (71) simplifies and becomes easy to evaluate, when the restricted system
model given by (63) and (64) (which omits driving noise) is used. The model
is repeated here for convenience:

Tny1 = f(-'rn) (82)
Yn = Zn+ Un. (83)

For this model,
P(Tns1]zn) =6 ($n+l - f(Tn)) (84)
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where 6(-) is the dirac delta function. Substituting (84) in (71) yields

Plenni¥+) = Co plynsilenss) [ 6(enss = f(20)) plaal¥) dzn,  (85)

where C) is a normalizing constant independent of z,,;. (Actually, C is the
reciprocal of the denominator in (71)). After applying a change of variables
and evaluating the integral, (85) reduces to

Pzt |Y5H) = C1 p(ynia|ntn) p ([2a = FHza)]YE)
<\ D~ @asn) H, (86)
where || -|| is the determinant operator and D{f~!(z,41)} is the derivative of
f7Y(-) evaluated at z,41 (or equivalently the the Jacobian of f~1(-) evaluated
at z,41). Therefore, ||D{f ! (zn+1)}| is the determinant of the Jacobian

of f7!(:) evaluated at z,4;. Iterating the recursion implicit in (86) and
simplifying yields

P(@ana V7)) = Cip(z0 = F " (2pp1)) ID{FD (@)}
n+1
< I1 p (