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1 Introduction

Chaotic systems and their properties have received much attention in the
mathematics and physics communities in the last two decades, and are re-
ceiving increasing attention in various engineering disciplines as well. Re-
search has traditionally focused on possible causes of or transitions to chaos,
universal properties shared by chaotic systems, and various topological and
ergodic properties of chaotic systems. Recently however, practical applica-
tions of chaotic systems have been proposed for several disciplines including
control, communication, and signal processing.

This report discusses probabilistic state estimation with chaotic systems,
and as a result of the discussion and analysis reveals that distinguishing prop-
erties of chaotic systems may render them useful for practical engineering ap-
plications. The report begins with a brief review of probabilistic approaches
to state estimation. The section continues by introducing the Kalman fil-
ter, a recursive, minimum-error-variance state estimator for linear systems.
A recursive state estimator for nonlinear systems, the extended Kalman fil-
ter (EKF), is derived in Section 3 and shown to be the exact Kalman filter
for linearizations of nonlinear systems. A related state estimator for nonlin-
ear systems, the second order filter (EKF2), is also briefly discussed in the
section.

The report continues with a quantitative and qualitative assessment of
the EKF and EKF2 for performing state estimation with chaotic systems.
Section 4 provides the quantitative assessment and Section 5, the qualitative
assessment. In particular. Section 4 presents experimental performance re-
sults obtained with the EKF and EKF2 when used for state estimation with
three discrete-time chaotic systems: the Henon, Ushiki, and Ikeda maps.
Section 5 interprets these results primarily by focusing on the a posteriori
state density and likelihood function for a chaotic system and contrasting it
with the a posteriori state density and likelihood function for a linear system.

Section 6 briefly reviews linear smoothing terminology and techniques
and introduces the extended Kalman smoother (EKS), an extension of the
EKF, which exploits both past and future observations. The section presents
experimental performance results obtained with the EKS on the same chaotic
systems used with the EKF. Section 7 continues the analysis begun in Section
5 by interpreting the performance results for the EKS and comparing them
with those for the EKF. The analysis focuses on the likelihood function for
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a chaotic system that incorporates both past and future observations. The
discussion reveals an interesting, distinguishing, potentially useful property
of chaotic systems-the simultaneous existence of stal)le and unstable man-
ifolds. This property is shown later in the report to strongly influence the
Cramer-Rao error bound on state estimators for chaotic systems.

Section 8 considers two simpler problems than estimation, which are state
and parameter discrimination among known, finite sets of values. Experi-
mental results presented in the section suggest that robust state and param-
etei discrimination with chaotic systems is possible eveii with extremely low
signal-to-noise (SNR) ratios. The section concludes by briefly discussing how
this robust discrimination property of chaotic systems might be exploited to
provide secure transmission of information.

Section 9 extends the informal analysis presented in Sections 5 and 7
by deriving and interpreting the Cramer-Rao bound on the error covariance
matrix for unbiased estimators for each of three state estimation problems
with chaotic systems. The analysis supports the assertion made in Section 7
that the simultaneous existence of both stable and unstable manifolds at each
point on a chaotic attractor is an extremely important and useful property for
state estimation. Section 9 concludes with a brief discussion of the relevance
of the the error bounds.

Section 10 briefly discusses fundamental differences between linear and
chaotic systems and the reasons that traditional engineering beliefs and as-
sumptions are inappropriate when dealing with chaotic systems. Finally,
Section 11 concludes the report with a brief summary.
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2 State Estimation: Preliminaries

This section presents definitions and concepts used throughout this report.
It introduces the general system model used in all derivations and examples,
and briefly discusses and compares the three state estimation techniques
considered in this report: maximum likelihood, maximum a posteriori, and
minimum error variance. The section concludes with a discussion of the
Kalman filter, a recursive, minimum-error-variance state estimator for linear,
possibly time-varying dynamical systems.

2.1 The System Model

The following, general system model is used throughout the report:

Xn+l = fn(Xn)+ gn(Xn)Wn (1)

yn = hn(Xn) + v. (2)

The first equation is the state equation. In this equation, x is the A-
dimensional state vector we wish to estimate; fn(xn) is a known, discrete-
time, chaotic system; g(xn) is a known, possibly time-varying, and pos-
sibly nonlinear function of the state; and wn, the driving noise, is an Af-
dimensional, zero-mean, Gaussian, white-noise process. The second equation
above is the observation equation. In this equation, y is the P-dimensional
observation vector we use to estimate x; h(xn) is a known, possibly time-
varying, and possibly non-linear function of the state; and v, the observation
noise, is a P-dimensional. zero-mean, Gaussian, white-noise process. We as-
sume that uwn and v are uncorrelated with each other and with the initial
state x0.

The notational convention used in the above equations and throughout
the report is that the first subscript on a variable represents the time index.
Therefore, x, denotes the state at time n. In addition. a second subscript
denotes a scalar component of a vector. Therefore, x ,i denotes the ith compo-
nent of the A-dimensional vector x,, or equivalently xn = [xnl,..., x,,] T

2.2 Probabilistic Approaches to State Estimation

For the sstem model given by (1) and (2), the goal of state estimation is to
estimate x, at each time n in some "optimal" sense given a set of observations
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{Yrn,}. If the set of observations used to estimate x,, for each n includes only
observations y,, for times m < n, the estimation problem s known as a
prediction problem. If the set of observations includes only observations for
times m < n, the estimation problem is known as a filtering problem. Finally,
if the set of observations includes at least some observations for times m > n,
the estimation problem is known as a smoothing problem.

There are many approaches to perform state estimation with linear and
nonlinear systems. In this report, we focus on three, related, probabilis-
tic approaches: maximum likelihood (ML), maximum a posteriori (MAP),
and minimum error variance (MEV). The relationship between the three ap-
proaches is best understood by considering an arbitrary set of observations
Y = {y, m} and the objective of estimating x, for some fixed time n. The con-
ditional density of xn given Y, denoted p(xnlY), is known as the a posteriori
state density and can be expressed using Bayes rule as follows:

p(X, IY) = p(Ylx)p() (3)p(Y)

In this equation, p(Ylx,) is the conditional density of the observation set Y
given the state x, and is known as the likelihood function when considered
as a function of xn for a fixed Y. Also, p(xn) is the unconditional or a priori
state density, and p(Y) is the unconditional density of the observation set.

With ML estimation. one chooses x to maximize p(Ylxn,); with MAP
estimation, one chooses x to maximize p(xnY); (as discussed in the next
subsection) with MEV estimation, one chooses x to maximize the condi-
tional mean E(xIY) given by

E(x IY) = J xnp(Xn IY) dx . (4)

As indicated by (3), all three state-estimation approaches implicitly or ex-
plicitly use the likelihood function p(Ylx~).

2.3 Recursive State Estimation and the Kalman Fil-
ter

For many applications, the observations ym are observed sequentially in time
and one seeks to estimate xn for each n using only observations for which m <
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n. With the taxonomy introduced earlier, one thus has a filtering problem. In
addition, it is desirable and sometimes necessary (for computational reasons)
to recursively compute the "state estimate", hereafter denoted n. That is for
each n, one seeks to calculate i, using only x-nl and the current observation
yn. This is known as recursive state estimation and is the focus of this section
and the next.

The problem of recursive state estimation simplifies when the functions
fn(xn) and h(xn) in (1) and (2), respectively, are linear functions of the
state x, and gn(xn) in (1) is linear (i.e., a matrix) and independent of the
state. For this special case, (1) and (2) can be expressed

Xn+l = Fnxn + Gnwn (5)
yn = Hnx + n, (6)

where Fn and Gn are (A x Ar)-matrices and Hn is a ( x Ar)-matrix. For
this special case, the a posteriori state density p(xnlyon), where Yon = {yi}%=,
is Gaussian [7]. A Gaussian density is completely characterized by a mean
vector and a covariance matrix. Therefore, to recursively compute the density
p(Xnlyn), one need only update two finite sets of parameters at each time n:
a mean vector and a covariance matrix.

A recursive state estimation problem in which only a finite number of
parameters need to be updated to recursively compute the a posteriori state
density is often referred to as a finite dimensional estimation problem. In
contrast, a recursive state estimation problem in which an infinite number of
parameters need to be updated to recursively compute he a posteriori state
density is referred to as an infinite dimensional estimation problem. In gen-
eral, when the functions f(xn), g9n(xn), and h,(xn) are nonlinear functions of
the state (such as when f(xn) is a chaotic system), the recursive estimation
problem is infinite-dimensional and approximations are inevitably needed to
recursively compute the a posteriori density.

It is well-known in the estimation literature that for the assumed system
model and the special conditions on f(x), gn(Xn), and h(x,) given above,
the maximum a posteriori (MAP) and minimum-error-variance (MEV) re-
cursive state estimates are identical. To see this equivalence, first note that
with MEV recursive state estimation one chooses i, to minimize the condi-
tional error variance E [(xn- ni)T(x - in)lYon]. However, the conditional
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error variance is minimized when :n equals the conditional mean,

n = E(x.IYO') = JXnP(Xnlo) dcr,. (7)

As mentioned earlier, p(xnY0 n) is Gaussian and is thuls a unimodal density
centered about its mean. Since by definition the MAP recursive state es-
timate is the value of x for which p(xnlY0) has its maximum, the MAP
estimate is the conditional mean. Therefore, both the MAP and MEV state
estimates are identical for this special filtering problem with the system model
given by (5) and (6)

The discrete-time Kalman filter, hereafter referred to as the Kalman fil-
ter, is a popular, practical, recursire, MEV (and MAP) state estimator for
this special filtering problem The Kalman filter uses a two-step procedure
for recursively computing two quantities-the state estimate xn and the er-
ror covariance matrix P, = E(xn - 5,)(xn - i.)T)lYO]. In the first step,
known as the prediction step, the state estimate and covariance matrix for
time n + 1 are computed using only the final state estimate and covariance
matrix for time n and observations through time n (i.e., Yo). The state es-
timate and error covariance matrix computed in the prediction step for time
n + 1 are typically denoted xn+llj and Pn+lln, respectively, to emphasize that
only observations through time n are used to calculate them. In the second
step, known as the measurement (or observation) update step, the quantities
x,+1ll, and Pn+lln calculated in the first step are updated using the "new"
observation Yn+l. The updated quantities are typically denoted Xn+lln+l and
Pn+lln+l. The equations for the two steps of the Kalman filter are given in
Figure 1 and are applicable to the system model given by (5) and (6) with
Wn (, Q)v,, N \(0O,R,,), and x0 N(mo,P).

The Kalman filter has been successively used in many practical applica-
tions, perhaps most notably the Apollo program in the 1960's Unfortunately,
the Kalman filter is applicable only to the system model given by (5) and
(6) and not the more general model given by (1) and (2). As discussed in
the next section, the extended Kalman filter is a recursive state estimator,
based on the Kalman filter, which is applicable to the system model given
by (1) and (2). However, unlike the Kalman filter which is optimal in the
sense that the state estimate is the MEV and MAP estilnate, the extended
Kalman filter is not optimal in this sense (or in any other usual sense of op-
timality). As discussed in the next section and illustrated with examples in
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Prediction Step

Xn+lln = Fnnln (8)

Pn+In = FnPnlrnF + GnQG (9)

Measurement Update Step

n+lln+l = Xn+lln + In+l[Yn+l - Hn+lan+lln] (10)

·~~~ T
n+ = Pn+llnHn+l [Hn+lPn+lnH+ + Rn+l] (11)

P+n+ = [I - n+lHn+l] Pn+ 11n (12)

Initialization

xoil- = rnMo (13)

Pol- = Po. (14)

Figure 1: The Kalman filter

Section 4, because of this lack of optimality, one can not determine a priori
the performance of the extended Kalman filter for a specific problem. As
aptly remarked in [7] in reference to the extended Kalman filter and related
nonlinear filters, ".. our approximations are ad hoc and must be tested by
simulation."

11
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3 The Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) is a recursive state estimator for the
general system model given by (1) and (2). Unlike the Kalman filter, the
EKF imposes no restrictions on the functions f(x,), g(x,), and h(xn)
in (1) and (2) except that they be differentiable functions of the state x.
Thus. whereas the Kalman filter is applicable only to linear system models
(i.e.. those of the form of (5) and (6)), the EKF is applicable to nonlinear
models as well. However the EKF is a heuristically derived algorithm which
does not in general yield either the minimum-error-variance (MEV) or the
maximum a posteriori (IMAP) state estimate.

3.1 Motivation

As mentioned in Section 2, the estimate of x, based only on Yn (i.e., the set
of observations {y-}In 0) which minimizes the error variance (for both linear
and nonlinear systems) is the conditional mean

E(x~ l Yo) = J xn P(XnlYo) dxn. (15)

Also as pointed out in Section 2, for the system model given by (5) and
(6), the a posteriori density p(a',lY,) is Gaussian and is thus completely
specified by two sets of parameters-a mean vector and a covariance matrix.
Thus. to recursively update p(x,}o' ), one need only recursively update these
two sets of parameters. This suggests why only two sets of parameters-the
state estimate (the conditional mean) and the error covariance matrix-are
updated at each two-step iteration of the Kalman filter. In contrast, for
most nonlinear systems, the a posteriori density requires an infinite set of
parameters for its specification. As a result, MEV recursivre state estimation
for most nonlinear systems requires that an infinite set of parameters be
updated at each time n. Since updating an infinite set of parameters is not
feasible, any practical recursive state estimator for most nonlinear systems
can provide at best only an approximation to the MEV state estimate.

In the past, there have been two basic approaches for deriving approx-
imate MEV state estimators for nonlinear systems. The first approach in-
volves approximating the nonlinear functions f(x,), g,,(xn), and h(x,) in
(1) and (2). Typically, this is done by expanding the unctions in Taylor
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series and truncating all but the lowest-order terms. The second basic ap-
proach involves approximating p(xnIYO') with a finite set of parameters and
updating only these parameters at each time instant.

3.2 Derivation

The derivation of the EKF uses the first approach for deriving approximate
MEV state estimators. An underlying assumption of this approach is that
the functions f(xn), gn(xn), and h(xn) are "sufficiently smooth" or differ-
entiable so that they have Taylor series expansions.

For the EKF, at each time n the functions are expanded about the current
state estimate (either xnL,_1 or xnin) where the subscripts have the same
interpretation as in Section 2 for the Kalman filter. (That is, xnlnI is the
estimate of xn based on the observation set n-i = {y}jn-l Similarly, is
the estimate of xn based on the observation set yon). Specifically, the Taylor
series expansions are the following:

f, (xn) = f(i, 1,) + F, (x,, - i nn) + (16)

gn(x,) = Gn + - (17)

h,(xn,) = h,,n,,_(, ) + Hn(xn - ln-1) + , (18)

where

Fn = af() (,,(19))
ax

G = n1(inj,,) (20)

hn = , (x) .(21)ax

Retaining only those terms explicitly shown in the above expansions, yields
the following approximations to (1) and (2):

Xn+ = fn(inn) + F,,(xn - injn) + Gnwn (22)

= Fnzxn + Gnwn + [(~nn)- nn] (23)

, = hn,,(,n n- ) + Hn(n-Xnn-1 l) +- n (24)

= HnXn + n + [hn(ijn-1)- H,,l,_ ]. (25)
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In (23) and (25), Fn and Hn are matrices, and the bracketed expressions
can be evaluated. Thus, these equations are similar to the state and ob-
servation equations given by (5) and (6), with the addition of deterministic
input terms. However, the Kalman filter equations can easily be modified to
account for deterministic inputs in the state and observation equations. One
simply incorporates the deterministic input terms in the equations for xn+1n
and n+1,n+1 given by (8) and (10), respectively.

In light of this, the Kalman filter (modified to account for deterministic
inputs) is applicable to the system model given by (23) and (25). The result-
ing filtering equations, provided in Figure 2, constitute the extended Kalman
filter.

Prediction Step

5n+l n= .f&(5l,) (26)
PnPj,, =F nnF1 GQnGT (27)

Measurement Update Step

Xn+1n1+ = 2n+lIn + Ini [n-h+i +1 )] (28)

T TKn+ = Pn+linHn+, [Hn+lPn+lnHn+l + Rn+] (29)

Pn+lln+l = [I - Kn+Hn+I] Pn+ n (30)

Initialization

01_l1 = mo (31)

P 01- = Po. (32)

Figure 2: The extended Kalman filter (EKF)

A comparison of the equations provided in Figures and 2 reveals the
similarity of the Kalman and extended Kalman filters. However, whereas the
Kalman filter applies to a "linear" system, the EKF applies to a "linearized"
system. This analogy suggests that the effectiveness of the EKF depends
largely on the accuracy of the linear approximations of he nonlinear func-
tions f(x,), g,(xn), and h(x,). If the neglected higher-order terms in the
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Taylor series expansions of these functions are not negligible, the EKF may
perform poorly. In addition, whereas the Kalman filter is a MEV recursive
state estimator, the EKF in general is not a MEV recursive state estimator
for the original nonlinear system.

One other interesting aspect of the EKF concerns the state estimate equa-
tion in the prediction step (26). This equation follows from (22),

Xn+ln = E(x+ 1 llon) (33)

= fn(xnln) + Fn (E(xnIY 0
n ) - inn) + E(Gnw,) (34)

= fn(5nl-), (35)

since E(x,, Yon) = nn and E(Gw,) = 0. This implies

E(Xn+Yll'0) = E(f(x)lI'o) = f(E(xlto")), (36)

which although true for linear systems is not true in general for nonlinear
systems.

3.3 The Second Order Filter (EKF2)

An alternative to the EKF known as the second order filter, and hereafter
denoted the EKF2, has a similar derivation. However, both first-order and
second-order terms in the Taylor series expansions of fr,(xn) and hn(x,) are
retained in the filtering equations. The derivation of the EKF2 is tedious
and unrevealing. In light of this, only the resulting equations for the EKF2
are provided here.

First define the following [17]:

f(.) = [f(.)... f (.)] (37)

= fxn(x) (38)
X=nln

E=2 f(x) 3
= aX2 (39)

X=XZln

h,() = [h (.),. . . ,h (.)]T (40)

H) = a (41)
= : njn-l
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A 2h,, x)
ft' = h_ () I2 (42)

X=xnln-1

(Note E, and AI, are (A x A)-matrices). With these definitions, the filtering
equations for the EKF2 are as shown in Figure 3. In the equations, the
symbol Tr(.) denotes the trace operator.
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Prediction Step
A,

Xn+1, = fn(:nin) + 2 Z ei Tr (EPnI) (43)
i=I

Pn+lln = tnPnln F T- + GnQ.GT + T (44)

Tn = T (45)

= |2Tr ( nPnlnn Pl,)] (46)

Measurement Update Step

1 Xxc
Xn+lIn+1 = Xn+1n-Inl E ei Tr (Mn+l P n + l ln )

i=1

+Kn+l [Yn+l- hn+l(-'n+lln)] (47)

Kn+l= Pn+nH+ [Hn+P+lnHT+l + Rn+i + Sn+l] (48)

Sn+ = [Si] (49)

= {-Tr (Mn+iPn+ijnJAln'+Pn+ijn) (50)

P+n+nl = [I - Kn+lHn+I] Pn+lin (51)

Initialization

iol- = mo (52)

Pol-1 = Po. (53)

Figure 3: The second order filter (EKF2)
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4 Experimental Performance of the EKF

This section evaluates the extended Kalman filter (EKF) and second-order fil-
ter (EKF2) in performing state estimation with three, discrete-time, chaotic
systems: the Henon, Ushiki. and Ikeda maps. The section begins by intro-
ducing these maps and continues by presenting experimental performance
results for the EKF and EIKF2.

4.1 The Henon, Ushiki, and Ikeda maps

The Henon. Ushiki, and Ikeda maps are two-dimensional, discrete-time,
chaotic systems or maps. ith the notational convention that the com-
ponents of the two-dimensional state vector x, are denoted x,, and Xn,2

(and thus xn = [xn,1,x,,2]T), the three maps have the following functional
forms (n+l =f(X,))

Henon Map

xn+,,, = 1 - 1.4x ,1 + xn,2 (54)

Xn+1,2 = 3Xn,1 (55)

Ushiki Map
Xn+l,1 = 3.7xnl- - x .Xn,lxn,2 (56)

Xn+1,2 = 3 . 7Xn,2 X2 - .15xn,,,Xn,2 (57)

(58)

Ikeda Map

Xn+l, = 1 + .9 [x,,, cos a, - Xn,2 sin cLn] (59)

Xn+1,2 = .9 [n.1 sin an + Xn,2 cos a,,] (60)
6

a = .4 1 x n,2 (61)

Other values of the constants used in the above equations are also permis-
sible. The Ushiki map differs from the Henon and Ikeda maps in that it
is not invertible, while the other two maps are diffeomtorphisms (and thus
invertible).

18



The Ikeda map can also be succinctly expressed with complex notation:

X·+ = f(xn) = 1 + .9 xn exp {j .4- 1+ I] } (62)

where the two-dimensional state vector xn is now treated as a complex vari-
able, with xn , and X,2 corresponding to its real and imaginary parts, respec-
tively. Figures 4, 5, and 6 depict the chaotic attractors for the three maps.

hA I

0.3 
0.2

0.1

0

-0.1

-0.2

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4: Chaotic attractor for the Henon map

4.2 Computer Experiments

Two sets of experiments were conducted to assess the performance of the
EKF and EKF2. Both sets of experiments used the following system model,
a special case of the general model given by (1) and (2):

Xn+l = f(xn) (63)
yn = Xn + vn, (64)

where f(xn) refers to one of the three maps and v was a zero-mean, Gaus-
sian, white-noise process with constant covariance matrix R given by

R [C 0] (65)
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Figure 5: Chaotic attractor for the Ushiki map
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Figure 6: Chaotic attractor for the Ikeda map
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As indicated by (63), driving noise was absent in the state equation; thus,
the state was deterministically generated.

The EKF was tested on the Henon, Ushiki, and Ikeda maps, while the
EKF2 was tested only on the Henon map. Each experiment used 1000 ob-
servations, {yi}-1999. Each performance result was obtained by averaging the
results for five independent trials. The measure of performance was the im-
provement in signal-to-noise ratio (SNR) achieved for each component of x,
where the initial and final SNRs for xj, the jth component of x (where
j = 1 or 2), were calculated as

v-999 (X,

Initial SNR = 10 log1o [-'=(° - 2 (66)
X-999 T 2

1L ?99o(X.~ _ ij)2
Final SNR = 10loglo 9-0 [ : _ )2] ' (67)

where yij denotes the jth component of the ith observation, (ili),j denotes
the estimate of the th component of the state at time i. and where

1 999

1000 xj. (68)

For all three maps, the signal variance -999 )2 for the two com-
ponents of xn differs. Because of this, achieving the same initial SNR for
the two components of x7, required that al and cJ2, the variances of the two
components of vd be given different values.

A mean vector mo0 and covariance matrix Po were needed to initialize the
EKF and EKF2. The same values of mo and Po and different values for a
and 2 were used for each experiment. The mean vector m 0 was chosen as
the actual initial point xo with an added, zero-mean, Gaussian, white-noise
component. Po was chosen as the covariance matrix of this noise component,
which for both sets of experiments was the following

PO [ o6 106 (69)
0 10- 6

Additional experiments showed that the initial error covariance Po had little
influence on performance of the EIKF and the extended Kalman smoother
(introduced later in this report).
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Table 1 contains the performance results for the first set of experiments.
As indicated by the table, the variable in the experiments was the initial
SNR. which was chosen to be the same for the two components of x,. Each
value shown in the columns under the heading SNR Improvement" denotes
the difference between the final and initial SNRs at the indicated noise level
for the indicated component of the indicated map. A positive value denotes
an increase in SNR, while a negative value denotes a decrease. For example,
the value of 4.28 as the first entry of the first column means that with an
initial SNR of 40 dB for the first component of the Henon map, the final
SNR (as averaged over five independent trials) was 44.28 dB. In contrast,
the value of -1.6 as the final entry of the first column means that with an
initial SNR of 6 dB for the first component of the Henon map, the final SNR
(as averaged over five independent trials) was .4 dB.

SNR Improvement (dB)
Henon Map Ushiki Map Ikeda Map

Initial EKF I EKF2 EKF EKF
SNR (dB) Xn zi Xn X,2 n,l _ _2 X x,,,1 2 Zn 71 Xn,2

40 4.28 7.85 4.06 7.81 -29.52 -28.26 -11.89 -10.53
20 -1.37 1.08 3.94 7.70 -13.71 -13.40 -6.79 -6.25
10 -2.34 -1.56 3.43 6.65 -6.65 -6.19 -5.66 -4.96
6 -1.60 -.44 3.30 6.81 -4.25 -3.63 -5.59 -5.00

Table 1: Performance results for first set of experiments

Perhaps surprisingly, even though mo, the estimate of the initial state,
was close to the actual value, the improvement in SNR was small and in
many cases the SNR deteriorated.

One reason for this was that since driving noise was absent from the
system model, the Kalman gain K, given by (29) for the EKF and (48) for
the EKF2, was small for both the EKF and EKF2, and the observations were
essentially ignored. One waxy to avoid this undesirable behavior of the EKF
and EKF2 was to "assume" that the state equation (63) had a small, driving
noise term when specifying the EKF and EKF2 equations. This entailed
assigning nonzero values to elements of G, and Q i the EKF and EKF2
equations given in Section 3.
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With G, chosen as the identity matrix and Q, chosen as

Q [.001 01]
0 .001 (70)

considerable improvement in performance occurred with the EKF but not
with the EKF2, as indicated in Table 2 for this second set of experiments.

SNR Improvement (dB)
Henon Map Ushiki Map Ikeda Map

Initial EKF EKF2 EKF EKF
SN-R (dB) Xn,1 I X, 2 .2n,,l X',2 n n ,2 . ,_ xn2

40 .33 .04 .33 .03 .34 .3,1 .17 .44
20 2.81 2.54 2.74 2.53 3.30 3.83 2.12 3.44
10 3.05 6.08 3.36 6.21 3.48 4.82 .88 1.92
6 1.43 4.47 3.24 6.72 2.23 3.75 -1.07 -. 30

Table 2: Performance results for second set
noise)

of experiments (assumed driving

Other choices of the parameters used by the EKF were also tested as well
as other variations of the EKF, including the iterated EKF. Only a marginal
improvement in performance resulted at best with any of these alternatives.
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5 Performance Analysis of the EKF

As indicated by the performance results in the preceding section, the EKF
and EKF2 perform poorly (or mediocre at best) for state estimation with
at least three chaotic systems. An important question is why? This section
attempts to answer or at least shed light on this question by providing an
initial intuitive interpretation of theoretical results presented later in this
report. In the process. the section reveals an interesting property of all
chaotic systems that is potentially useful when performing state estimation
with these systems. Although simple and revealing, the intuitive analysis
presented in this section is applicable only to diffeomorphisms, and is thus
relevant to the Henon and Ikeda maps but not to the Ushiki map (since it is
not invertible).

5.1 Derivation of the a Posteriori State Density and
the Likelihood Function

Since the EKF is in fact the Kalman filter for a linearized system, one would
expect its performance to depend upon how "close" certain properties of the
corresponding nonlinear system match those of a linear system. One property
of the linear system model given by (5) and (6) is that the a posteriori state
density p(x,JY0on) is Gaussian. As discussed in Section 2, this is a fundamental
factor in the derivation and optimality of the Kalman filter. This suggests
that for the EKF to perform well, the a posteriori state density for the
corresponding nonlinear system should be approximately Gaussian.

The a posteriori state density for the general system model given by (1)
and (2) can be recursively defined as follows [7]:

p(yn+l _Xn+] ) f p(x2n+l xn) p(x~, I5K) dx,
P(X+l IY0+) =f f p(yn+l x,,+ ) p(x+l Ix) p(x. ]Io)dx dx+l (71)

The derivation of this formidable-looking expression is straightforward. Us-
ing Bayes rule, we can express p(xn+liYon+l) as

pnAl" Xi+° ) P(Xn+i)
p(Xn+l Yn+1 ) - p(n+l) . (72)
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Since yo"'+l = {yi}i) = yOn U Yn+l, we can also express (72) as

p(Xn+l Iy5 + 1 ) - p(Yn+l iXn+l, Yof) p(Xn+l 1YOj) (73)

By assumption, the driving noise wn in (1) and the observation noise v in
(2) are white, and uncorrelated both with each other and with the initial
state. Therefore, it follows from (2) and the Markov property of (1) that

P(Y.+1l ],xn+l) = p(yn+llxn+l) (74)

p(xn+l xn,,), n ) = p(xn+l LnX). (75)

Also, we can write p(Yn+l Y5) as

p(y"+1I'Y') = fp(Yn+l,xn+[IYn)dxn+1 (76)

= f P(Yn+1 Xn+1, Yon) P(Xn+l ion ) dxn+1 (77)

= J P(Yn+l lxn+l ) P(Xn+l lyn) dn+, (78)

where the last equality uses (74). Similarly, we can write p(xn+l lyn) as

p(Xn+l ) = J p(Xn+l , Xn I Yon) dxn (79)

= JP(Xn+l Xn, 0 )(nY)dn (80)

= P(Xn+l IXn) P(Xn lyn ) d3 (1 = xn~p~x.[5'nd. (81)

where the last equality uses (75). Combining (73), (74), (78). and (81) yields
(71).

In general, it is difficult to evaluate (71) for specific values of xn+l. How-
ever, (71) simplifies and becomes easy to evaluate, when the restricted system
model given by (63) and (64) (which omits driving noise) is used. The model
is repeated here for convenience:

X+ = f(xn) (82)

Yn = Xn+ Vn. (83)

For this model,
P(Xn+l ixn) = 6 (x+l - f(xn)) (84)

25



where (.) is the dirac delta function. Substituting (84) in (71) yields

P(Xn+l Io' +' ) = C1 p(yn+l Xn+l) J (xn+l - f(xn)) p(xn[YOn)dxn, (85)

where C1 is a normalizing constant independent of xn+l. (Actually, Cl is the
reciprocal of the denominator in (71)). After applying a change of variables
and evaluating the integral, (85) reduces to

P(x1n+l2 Yl+ ) C1 p(Yn+lX,+ln)p([x,- f-(xn+l)]lr)

x D{f - (x n+ )} l, (86)

where fl is the determinant operator and D{f -' (x,+)} is the derivative of
f-'(.) evaluated at x,+i (or equivalently the the Jacobian of f-'(-) evaluated
at xn+l). Therefore, D{f-1(x 2 +i)}Il is the determinant of the Jacobian
of f-1 (.) evaluated at xn+l. Iterating the recursion implicit in (86) and
simplifying yields

p(xn+l Iy0on+1) = C p (o = .f-(n+l)(xn+l)) ID{f-('nl)(xn+l)}11
n+l

x I| (y If-(n+l-i) (X+)) (87)
i=0

where f-(+l)(.) means f-1 (.) iterated n + 1 times and D{f-(n+l)(Xn+l)} is
the determinant of the Jacobian of f-(n+l)(.) evaluated at xn+l.

Since vr, in (83) is white and vn . N(O, R) by assumption, it follows that

p(ynlxn) = p([vn~ = Y. - xn]fxn) N(xn, R). (88)

Finally, combining (87) and (88) yields

p(x+lIY' + ) = C 2 p (a0 = f-(n+l)(x+l)) IlD{f('+l)(+)}tl

x exp { -[i- f(r+1i)(X+1 -n+l)] R - 1 [yI _ f-(n+l-i) (x )]}(89)
i=0

where C2 is a normalizing constant. A comparison of (72) and (89) reveals
that p(xn+1 l), the unconditional probability of the state Xn+l, is given by

p(xn+l) = p (x0 = f-(+)(X +)) IlD{f-(n+l)(xn+1)}lI, (90)
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and (Ynjxn), the likelihood function (or equivalently the conditional prob-
ability of the observation set), is given by

p(17x) oc

exp {-E Z fR -f I + ) (x )]TR i -f ( )(Xn+l)]} (91)
i=0

The next subsection considers the properties of p(YOnlxn), and as a con-
sequence shows that the a posteriori state density p(xnlYon) is not Gaussian
for the Henon and Ikeda maps.

5.2 Properties of the Likelihood Function

The relation between the a posteriori density p(xn IY~n) and the likelihood
function p(YonlXn) given by (72) suggests that if the a posteriori density is
Gaussian, then the likelihood function (as a function of xn) should have a
Gaussian "shape" as well. (Note that p(YonlXn) considered as a function of xn
for fixed Yn is not a probability density). This argument is slightly flawed,
since the a priori density p(x,) enters (72) as well. However for the Henon
map, if the initial state density p(xo) is Gaussian, then p(Xn) has a Gaussian
"shape" as well, because the determinant of the Jacobian, ]lD{f-1()}I, is
constant.

Figures 7 and 8 are contour plots of the likelihood function p(Yonlxn) at
a single time n for the Henon and Ikeda maps, respectively, for the system
model given by (63) and (64) with SNRs of 6 dB. The figures depict the
relative values of p(YonlSX) as a function of xn (for a fixed Yon). The set of
observations used in obtaining the figures was not the entire set {Ym}=0 but
the smaller set {Y}n=,_-1O, that is the eleven consecutive observations prior
to and including yn. The center point in each figure corresponds to the actual
value of the state x,. In the figures, nesting of contours indicates increasing
values of the likelihood functions. Alternative graphical representations of
the data are provided in Figures 9 and 10 which are mesh plots of the same
data used for Figures 7 and 8, respectively.

Clearly, the plotted likelihood functions do not have Gaussian shapes.
Instead each has a distinct, thin, elongated region of high functional val-
ues with peaks and valleys scattered throughout this region. A first-order
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Figure 7: Contour plot of p(Yonlxn) as a function of xn for the Henon map

-0.11 -0.105 -0.1 -0.095

Figure 8: Contour plot of p(Yonlx,0 ) as a function of x for the IT-da map

28



Figure 9: Mesh plot of p(Yonlx,) as a function of xr, for the Henon map

Figure 10: Mesh plot of p(Y7onlxn) as a function of xn for the Ikeda map
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analysis provides insight into this interesting property of the likelihood func-
tions. Consider a single term Si of the sum in the exponent of the likelihood
function (91):

S(xn) = [Y - f(n)(Xn)] R - 1 [Yi - (ni)(X )] (92)

where for notational convenience, x, rather than x+l (in (91)) is the state
now under consideration. For a small deviation &n from the actual value of
xn, the following holds to first-order:

f- (n-i)(xn + n) , f-(n-i)(x ) + D{f-(n-i)(X:)} 6, (93)

where D{f-(n-i)(x)) is the derivative of f-(n-i)(.) with respect to x (or
equivalently, the Jacobian of f-(n-i)(.) evaluated at x. Replacing x by
x, + 6, in (92) and using (93) yields

St(x n + n) - [Yi - f-('-i)(xn )-D{f-(n-i)(x))6 T

xR-' [y i-f-(n-i)(x,) - D{f-(n-i)(n)6n,] . (94)

Since
Yn = Xn + n (95)

and as in Section 4

R [ 0 2 (96)0 a~ 2
then (94) reduces to

Si(x, + 6,) 2 {V [( (97)
k=1 0

2 V2 ' [v, f-(n-il) 4+ [ .. -(-"i)~
2 k 2 k [D{f ( )(Xn)} 16n k (kn)En]k (98)

k=l k

where

Vn = [vn,l, Vn, 2]T (99)

D{f-(n-i)(xn)}6 = [[D{.f-('-i)(xn)}5n],, [D{.f'-(-i)(xn)}6n]2]I (100)
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Since vn is zero-mean by assumption, the expected value of Si(xn + ,n) is
simply

2 2 [Dff - (n- i) X,_~))i6 2
E (S (x, + 6)) (E + [D{f (101)a 2

k=1 Uk

where E(.) is the expectation operator. Now the likelihood function p(YonIx,)
is large if each term in the sum in the exponential is small, or equivalently
(on average) if (101) is small for each i. Thus, the value of the likelihood
function depends on the magnitudes of

D{f-(n-i)(xn)}n, i = (,... ,N). (102)

A distinguishing property of an invertible chaotic system is the presence of
a stable and an unstable manifold [3]. (Section 9 discusses these manifolds in
detail). Basically, any small perturbation 6, tangent to the stable manifold of
a point x, (on the chaotic attractor) remains small as the point and perturbed
point propagate through the system dynamics, or more precisely [3],

lim log d(f-(xn),f-'(x, + ,,)) < 0 (103)
-00 

for 5, on the stable manifold of x, for the inverse sstem f-l(). If is
small, an equivalent condition is the following:

lim ID{.f-(xn)}8nl = 0 (104)

where . means the magnitude.
Similarly, if n is tangent to the unstable manifold of xn for the inverse

system f-l(.), the perturbation grows in magnitude as c,, and x, + 8, prop-
agate through the system dynamics. (However, the growth is bounded since
dissipative chaotic systems such as the Henon and Ikeda maps have bounded
attractors). By definition, the unstable manifold of a system is the stable
manifold of the inverse of that system.

In light of the above and its relevance to (101), it appears that the thin,
elongated regions in Figure 7 and 8 correspond to points near or along the
stable manifolds of the inverses of the chaotic systems, which by definition
are the unstable manifolds of the forward systems. The peaks and valleys
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indicated in the figures are possibly due to higher-order effects not considered
in the simple, first-order analysis performed above.

In summary, the likelihood function for the system model given by (63)
and (64) with either the Henon or Ikeda map does not have a Gaussian
shape. As a result, the a posteriori state density is far from Gaussian as
well, which may explain why the extended Kalman filter performed poorly
at state estimation in the experiments summarized in Section 4.
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6 Smoothing

With many applications, improved state estimation occurs if one uses not
only past observations but future observations as well, when estimating the
state at a given time. With respect to the taxonomy given in Section 2.2,
the use of future as well as past observations transforms the state-estimation
problem from a filtering problem to a smoothing problem.

This section introduces and experimentally evaluates the extended Kalman
smoother (EKS), a nonlinear smoother that combines the EKF with the
Rauch-Tung-Striebel linear smoother. The section also experimentally evalu-
ates the EKS when the system dynamics are initially unknown, but a "clean"
reference orbit is available.

6.1 Smoothing Problems

Historically, researchers have focused on three classes of smoothing problems.
The first, fixed-point smoothing, involves estimating the state vector x, based
on the observation set l'om = {Yi}=o for a "fixed" time n and increasing m
(where m > n). The second, fixed-lag smoothing, involves estimating the
state vector Xn-L based on the observation set Yn = {y}~0 for each time n
and a "fixed" lag L. The third, fixed-interval smoothing. involves estimating
the state vector x, based on the observation set y0 N = {yj}N 0 for all times
n satisfying 0 < n < A (for a fixed N). This report considers only fixed-
interval smoothing.

6.2 Optimal Fixed-Interval Smoothing

There are many approaches and associated algorithms for optimal (i.e., mini-
mum error variance (MEV)), linear smoothing in general and optimal, fixed-
interval, linear smoothing in particular [1, 9, 17]. Many of these approaches
combine the output of a Kalman filter which sequentially processes the ob-
servations forward in time, with the output of a recursive filter which sequen-
tially processes the observations backward in time. One such computation-
ally efficient approach is the Rauch-Tung-Striebel smoother [9, 13]. Figure
11 provides the equations for this smoother (applicable to the system model
given by (5) and (6)).
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Forward Filter

Prediction Step

= Fnln
= FP,4,,F + GnQnGn

Measurement Update Step

= n+1rn + Kn+l[Yn+l-Hn+lXn+lln]
- 'T -P H ± 1= P+llnHn+l [Hn+lPn+llnH+l + Rn+l]

= [I-- n+lHn+l] Pn+lln

Initialization

Pol- 1

(110)
(111)

-= mO

= Po.

Backward Filter and Smoothed State Estimator

Backward Filter Update Step

-Ln = Pn Pn+lln

Pn = Pnn-Ln(Pn+1jn-Pn' l)Ln

XnIN

XN IN

Smoothed State Estimate

= i1n + Ln(in+1IN - in+i1n)

Initialization

- XNIN

(112)

(113)

(114)

(115)

(116)PN = PNIN-

Figure 11: The Rauch-Tung-Striebel fixed-interval smoother
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As indicated by the smoothing equations, the "forward filter" is simply
a Kalman filter. The "backward filter and smoothed state estimator" have
little resemblance to a Kalman filter. However, this part of the smoother
actually incorporates an information form of a Kalman filter, the output of
which is combined with the output of the forward filter.

6.3 The Extended Kalman Smoother (EKS)
One can combine the EKF with the Rauch-Tung-Striebel smoother to pro-
duce a simple, (albeit non-optimal), nonlinear, fixed-interval smoother, here-
after referred to as the extended Kalman smoother (EKS). The combina-
tion entails first replacing the "forward filter" of the Rauch-Tung-Striebel
smoother (given by (105)-(109)) with an EKF. Next. one exploits the fact
that for the nonlinear system model given by (1) and (2), the EKF is simply
a Kalman filter in which the matrices used in the filtering equations (F, Gr,
and H, in (105)-(109)) are leading terms in the Taylor series expansions of
the nonlinear functions fn, an, and h. As a result. the "backward filter
and smoothed state estimator" of the Rauch-Tung-Striebel can be included
without modification in the EKS. Figure 12 provides the equations for the
EKS, which are applicable to the system model given by (1) and (2) with
F, G, and H, given by (19)-(21).

6.4 Computer Experiments

The ES was evaluated on the same data as were used to evaluate the
EKF. As with the EKF, the ENS performed better with an appropriately
chosen driving-noise, covariance matrix Q in the smoothing equations. Table
3 depicts the performance results obtained with an appropriately chosen
matrix Q for each noise level.

A comparison of Tables 2 and 3 reveals that the EKS performs much
better than the EKE on the Henon and Ushiki maps and slightly better on
the Ikeda map. The nonrigorous analysis in Section 7 and the interpretation
of the Cramer-Rao error bounds in Section 9 explain why the use of past and
future observations, rather than past observations alone, is essential when
performing state estimation with chaotic systems.
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Forward Filter

Prediction Step

Xn+lln-= fnl(:Cnn) (117)

= ~ (118)P,+~In = FPnP,, F + GQnGT (118)

Measurement Update Step

Xn+lln+l = ^n+ljn + Kn+l [Yn+l- hn+l(3'n+lln)] (119)

Kn+ = Pn+1inH7+1 [Hn+lPn+llnH T I + Rn+l] 1 (120)

Pn+lIn+l = [I- 17n+l Hn+l Pn+1 In (121)= ~~~~~~~~~~~~(121)

Initialization

xol-I = mo (122)

Pol-1 = P0. (123)

Backward Filter and Smoothed State Estimator

Backward Filter Update Step

Ln= PnjnF + (124)

Pn> = Pnf - Ln(Pn+1 1, - Pn+i)Lr (125)

Smoothed State Estimate

XniN = inn + Ln(fn+1IN- n+lIn) (126)

Initialization

:NIN = :NIN (127)

Pk = PNIN- (128)

Figure 12: The extended Kalman smoother (EKS)
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11 SNR Improvement (dB)
Henon Map Ushiki Map Ikeda Map

Initial EKS EKS EKS
SNR (dB) Xn,l Xn,2 Xji Xn,2 Xn, Xn,2

40 27.07 27.16 24.51 21.81 21.25 21.48
20 16.58 15.68 22.83 18.67 9.18 10.58
10 11.50 10.44 9.94 8.79 8.95 10.25
6 9.19 8.88 8.41 8.52 3.S9 5.60
3 7.74 7.08 6.58 6.37 2.71 2.96

Table 3: Performance results with extended Kalman smoothing

6.5 EKS with Unknown Dynamics

All results presented thus far were obtained with known system dynamics.
The question arises as to the usefulness of the EKS, when the system dynam-
ics are initially unknown. This subsection considers the problem of unknown
system dynamics for the special case in which not only the noisy set of obser-
vations (to which one wishes to apply the EKS) are available, but a noise-free
reference orbit is available as well. By assumption, the reference orbit and
noisy set of observations are both generated by the same chaotic system, but
with different initial conditions.

With a given noise-free reference orbit and unknown system dynamics, we
used the following procedure to apply the EKS to a noisy set of observations:

1. Given the present state estimate xinn obtained with the forward filter
portion of the EKS, find the K nearest neighbors (in a Euclidean sense)
to nln in the reference orbit.

2. Using the K nearest neighbors and their immediate successors in the
reference orbit, determine the parameters of an affine mapping which
minimizes the one-step, squared, prediction error from the K neighbors
to their successors.

3. Use the parameters of the affine mapping as an estimate of the system
dynamics at xnn.
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4. Apply the forward filter portion of the EKS using these estimated dy-
namics to estimate n+llln and subsequently n+1lln+1.

5. Repeat the procedure until all observations have been processed

6. Apply the backward smoother and combined state estimator portions
of the EKS using the estimates {inl} and the estimated dynamics.

Since an affine mapping is simply a linear mapping plus an offset, the EKS
reduces to a "linear", fixed-interval, Rauch-Tung-Striebel smoother in this
special case of unknown system dynamics.

The use of an affine mapping (calculated using nearest neigbors) as an
estimate of the dynamics at each point on a chaotic orbit is generally referred
to as "locally linear prediction" and was apparently first proposed in [3] and
later applied extensively in [4]. Two alternative state-estimation algorithms
which use locally linear prediction are introduced in [4, 8]; both alternative
algorithms treat state estimation as a constrained optimization problem. The
application of locally linear prediction to other signals. including speech,
along with extensions of the technique are discussed in [14, 15].

The state-estimation algorithms discussed in [10, 12] also use a refer-
ence orbit to estimate certain algorithm parameters. With these algorithms,
the "phase space" is first quantized into a finite set of states with the sys-
tem dynamics approximated as obeying a first-order Markov process in this
quantized phase space. The reference orbit is used by both algorithms to
estimate the transition probabilities between states: and it is used by the
algorithm discussed i [12] to estimate the state output probabilities as well

Table 4 contains the performance results for the Henon and Ushiki maps
that were obtained with a 5000-point reference orbit for each map and with
the use of 10-nearest neighbors for estimating each set of affine parameters.
A comparison of Tables 3 and 4 indicates that for the enon map, the per-
formance of the EKS with unknown dynamics is only slightly worse than the
performance with known dynamics at each noise level. This is not surpris-
ing in light of the fact that the EKF used for the forward filter portion of
the EKS is simply a linear Kalman filter applied to a "linearization" of the
system dynamics. For the Ushiki map, the performance of the EKS with
unknown dynamics is inexplicably much worse than the performance with
known dynamics at low noise levels (high SNRs), but comparable at high
noise levels (low SNRs).
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Table 4: Performance results with extended Kalman smoothing and unknown
dynamics
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SNR Improvement (dB)
Henon Map Ushiki Map

Initial EKS EKS
SNR (dB) X, 1 Xn, 2 Xn I 3_n,2

40 22.65 22.43 7.31 7.41
20 15.82 14.94 16.14 14.21
10 10.21 9.66 10.45 8.90
6 9.01 8.82 8.45 8.01
3 7.68 7.03 6.16 6.42



7 Performance Analysis of the EKS

Section 5 strongly suggested that the likelihood function p(xIY,) for an
invertible chaotic system is ridgelike. It attributed this property to the un-
stable manifold of the system and suggested that this property was partially
responsible for the poor performance of the EKF. This section continues the
analysis begun in Section 5 by considering the likelihood functions that re-
sult when only future observations are used, and when )both past and future
observations are used. The discussion reveals that when both past and future
observations are used, the likelihood function rapidly becomes impulse-like.
which helps explain the superior performance of the EKS over the EKF for
chaotic systems. This section also briefly discusses a heuristic state estima-
tor that exploits the singular property of the likelihood function. Section
9 formalizes the intuitive interpretations provided in this section by deriv-
ing and interpreting Cramer-Rao bounds on the error covariance matrices of
unbiased state estimators for chaotic systems.

7.1 The Likelihood Function with Future Observa-
tions

As briefly mentioned in Section 5, an invertible chaotic system has both
a stable and an unstable manifold, and by definition the stable (nstable)
manifold of the system is the unstable (stable) manifold of its inverse.

In light of this, consider a set of "future"' observations Yn+m'

y+n = {yi}n+m (129)

where is the "present" time.
Using a similar approach as that used earlier in deriving the a posteriori

state density p(xn]o 'I) and likelihood function p(Y0nx X), one can easily derive
the likelihood function p(Yn+mnx,) for the system model given by

Xn+ = f(x,) (130)
yn = xn + vn, (131)
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where v, is a zero-mean, Gaussian, white-noise process with constant, diago-
nal, covariance matrix R. The resulting likelihood function has the following
form:

p(yn m Ix) x

exp {- E [Yi - fIl)(x )] R 1Yi f_1(i-n)(X )] }
2.=n

(132)

In contrast to the likelihood function p(Y Ix,) given by (91) which has terms
involving iterates of the inverse function f-'(.), the above likelihood func-
tion has terms involving iterates of f(.). Given the discussion and results
presented in Section 5. one might expect a contour plot of p(n+mIlx,) for
the Henon or Ikeda map to be similar to that of Figure or 8, but with the
thin, elongated region now corresponding to the stable manifold of f(x,), or
equivalently the unstable manifold of fl(xn). Figures 13 and 14 confirm
this expectation. The figures are contour plots of p(lYn+lxn) as a function
of x at a single time n (for m = 15) for the Henon and Ikeda maps. The
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Figure 13:
map
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Contour plot of p(1Yn+'lx,) as a function of x, for the Henon

center point in each figure corresponds to the actual value of the state x,.
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Figure 14: Contour plot of P(Yr+" m xn) as a function of xt, for the Ikeda map
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Figure 15: Superposition of Figures 7 anrd 13
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Figure 16: Superposition of Figures 8 and 14

Figure 15 is the superposition of Figures 7 and 13, and Figure 16 is the
superposition of Figures 8 and 14. As indicated by Figures 15 and 16, the
state x lies in the intersection of the two elongated regions in each figure.
One would expect this, since the stable and unstable manifolds of a point on
a chaotic attractor intersect at the point (and possibly elsewhere as well).

In [5, 6], an iterative state-estimation algorithm for two-dimensional, in-
vertible, chaotic maps is discussed which exploits the known presence of a
stable and unstable manifold at each point on a chaotic orbit. The algorithm
first takes a fixed interval of noisy observation, Y6~ = {y-)} 0, and calculates
the one-step prediction error, y - f(y-l), for each pair of points in the
interval. Each error is then decomposed into a component along the stable
manifold and a component along the unstable manifold at the correspond-
ing point. Finally, the algorithm uses a recursion running forward in time
to reduce the error component at each point along the stable manifold and
a recursion running backward in time to reduce the error component along
the unstable manifold. The algorithm is then iterated using the resulting
state estimates as the new observations. The algorithm appears to work
reasonably well when the noise level is low (i.e., the initial SNR is large).
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7.2 The Likelihood Function with Past and Future
Observations

The question arises as to the properties of the likelihood function that results
when both "past" and "future" observations are used. that is the likelihood
function p(Y,,n+m Ix,) where

yn+rnm _= y ln+m
n-r -I Yi i=n-r (133)

Use of a similar approach as that used earlier to derive the posteriori
state density p(xlYon) and likelihood function p(Y]' a,) yields the following
expression for p(Yn+nmlxx) for the system model given by (130) and (131):

p() n+m c
n-r Xn) a

0

(134)
n+m T)

exp - E [Yi- f(i- n)(X.)] R-1 [Yi- f(i- )(x)] ·
i=n-r

Figures 17 and 18 are contour
Henon map with two sets of values
similar contour plots for the Ikeda

0 .2

0.4

0.38
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0.34

plots of this likelihood function for the
for m and r, and Figures 19 and 20 are
map. The center point in each figure is

-1.32 -13 -1.28 -1.26 -1.24

Contour plot
m=12)

of p(Yn+mjlxn) as a function of xn for the Henon

the value of the actual state x. As indicated b Figures 18 and 20, the
likelihood function rapidly becomes impulse-like.
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Figure 19: Contour plot of p(Y1T+m I, ) as a function of x, for the Ikeda map
(r=3, m=15)
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Figure 20: Contour plot of p(Y,n+m xn) as a function of x, for the Ikeda map
(r=6, m=25)

By construction, a contour plot depicts the values of a function at only
a finite set of grid points. Figures 21 and 22 depict the likelihood function
p(Y,,n+m Ixn) for the same values of m and r as used for Figures 18 and 20, but
with the center point now the perturbed state vector xr, + [1.5 x 10- 4, 1.5 x

1 0 -4]T and the actual state not one of the plotted points. (The grid spacing
in both figures, as in the four earlier figures is .002). The figures further
emphasize the impulse-like behavior of the likelihood function.

The impulse-like behavior of the likelihood function p(}n+m Ixr,) for chaotic
systems suggests that state estimation with almost arbitrary precision is the-
oretically possible with these systems. Unfortunately. the likelihood function
is nonlinear, and for smaller values of m and r, the function has multiple
local minima. Furthermore, for larger values of m and r. the impulse-like be-
havior of p(Yn+,lnx,) precludes the use of popular, nonlinear, optimization
methods to maximize the likelihood function. We are currently investigating
alternative optimization methods for maximizing the likelihood function and
will report the results in a future report.

46



0.42

0.4

0.38°

0.36

0.34 -

-1.32 -1.3 -1.28 -1.26 -1.24

Figure 21: Contour plot of p(Y3njm7lx,) as a function of x, for the Henon
map with value for actual state not plotted (r=5, m=20)
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7.3 Maximum Likelihood State Estimation

This subsection briefly considers practical heuristic approaches for exploit-
ing the likelihood function p(Y~+ir m l:xn) to perform maximum-likelihood state
estimation with chaotic systems. Several practical considerations must be
dealt with when attempting maximum-likelihood state estimation. First,
one must maximize a likelihood function that is nonlinear and rapidly be-
comes impulse-like as the number of observations before and after the present
time increases. Second. given a finite sequential set of observations and the
goal of estimating the state at each time for which there is an observation,
in theory one need only maximize the likelihood function at a single time,
since the system dynamics are completely deterministic. That is, given the
maximum-likelihood state estimate in at time n, the miaximum-likelihood
state estimate at time mn is simply

= f-n(i ). (135)

However, because of finite-precision arithmetic and round-off errors inherent
to all computers, the system dynamics are not truhly deterministic in practice,
and thus (135) is not true in practice.

Perhaps the simplest, albeit suboptimal way to deal with these two con-
siderations is to calculate a separate likelihood function for each time n, to
only use observations occurring near time n when determining the likelihood
function, and to estimate the state at time n using only the corresponding
likelihood function. The use of observations only near time n circumvents
the problem of an impulse-like likelihood function. However, as show by
the figures in the preceding subsection, the resulting likelihood function will
be multimodal. In light of this, a simple, potentially useful, but suboptimal
approach to maximize the likelihood function is a "brute-force" grid search.
That is, one evaluates the likelihood function at a finite set of points and
then uses the point yielding the maximum value as the estimated state.

We applied this simple, heuristic, maximum-likelihood state estimation
approach to the Henon and Ushiki maps. In particular. the state at time n
was estimated by first calculating the likelihood function based on the six
observations immediately before time n, the observation at time n, and the
six observations immediately after time n. Next the likelihood function was
evaluated at a finite set of test points. The test points were those on a four-
thousand point orbit with arbitrarily selected initial starting point. We used
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the test point that maximized the likelihood function as the state estimate
at time n. In light of the expression for p(Yn+!jxn) given by (134) and
the method for choosing the test points, the estimation procedure essentially
entailed finding for each time n, the segment of the four-thousand point orbit
that best "fit" (in a least squares sense) the noisy observations near time n.

Table 5 indicates the improvement in SNR obtained with this estima-
tion approach on one hundred point segments of the Henlon and Ushiki maps
for various noise levels. Surprisingly, despite its simplicity, the heuristic ap-

Table 5: Performance results for heuristic, maximum likelihood state estima-
tion with the Henon and Ushiki maps

proach works reasonably well, with the results superior to those obtained with
the extended Kalman smoother at most SNR levels. By itself, this simple
approach probably does not constitute a useful, robust, state-estimation algo-
rithm. However, it illustrates the value of the likelihood function p(YT+~m Ix,)

for performing state estimation. Also, it might be a useful component of an
effective state-estimation algorithm.

An alternative technique for using the likelihood function for state es-
timation is discussed in [4]. This technique uses a linear approximation of
the system dynamics, resulting in a closed-form solution to the problem of
maximizing the likelihood function. The technique purportedly works well
when the initial SNR is large.

Because of the Gaussian assumption on the additive white noise, the
summation in the exponential of the likelihood function also arises with a
constrained least-squares formulation of the state-estimation problem [5].

49

SNR Improvement ()
Henon Map Ushiki Map

ORIGINAL EKS EKSS
SNR (dB) Ir, j Xn,2 Xn X2

20 12.48 14.88 10.46 4.98
10 12.98 13.17 9.17 11.98
6 11.82 6.85 11.82 9.81
3 14.02 11.48 13.26 9.76



Unfortunately, this formulation of the problem offers little additional in-
sight into maximizing the likelihood function, or equivalently minimizing
the constrained least-squares cost function in [5]. As a consequence, the
state-estimation algorithm discussed in [5] uses a linear approximation of the
system dynamics (similar to the approximation used in [4]) to simplify the
minimization problem.
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8 Discrimination with Chaotic Systems

As the preceding sections implicitly suggest, state estimation with chaotic
systems remains a challenging, unsolved problem even when the system dy-
namics are known. In contrast. this section shows that discrimination among
a "finite" number of known states is relatively simple. even when the number
of states is large and the SNR is low. The section also shows that discrimina-
tion among a "finite" number of known systems is also relatively simple, even
with a large number of almost identical systems. In fact. the same properties
of chaotic systems that complicate the problem of state estimation, simplify
the problems of state and parameter discrimination.

The section begins by demonstrating that nearly perfect discrimination
among a finite set of initial states is possible even with SNRs as low as -20
dB. It continues by demonstrating that nearly perfect discrimination among
a finite set of similar systems, given a finite known set of initial states, is
also possible even with extremely low SNRs. Next, the section shows that
robust state discrimination is still possible even with multiplicative noise.
The section concludes by discussing potential, practical applications of these
results. A comprehensive analysis of both the experimental results presented
in this section, as well as the general problems of state and parameter dis-
crimination, will be provided in a future technical report.

8.1 State Discrimination

As suggested by the increasingly impulse-like behavior of the likelihood func-
tion p(Y +jT x) as the number of observations grows, a chaotic system ex-
hibits extreme sensitivity to the state xn. As a result. robust discrimination
among a finite number of states is possible even with extremely low SNRs.
In fact, this subsection and the next experimentally confirm that chaotic or-
bits are like "snowflakes", in that no two orbits are identical and are readily
distinguishable given "enough" points on the orbits.

Perhaps surprisingly, the "dynamical noise" caused by round-off errors
and finite precision arithmetic on all computers actually assists in state and
parameter and discrimination. The reason is simple. Theoretically, a stable
manifold is associated with each point on a chaotic attractor. As explained
earlier, the orbits starting from this point and from each point on its stable
manifold eventually converge. However, in light of comput er round-off errors,
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the experimental existence of a stable manifold for any point on a chaotic
attractor is questionable. The practical implication is that experimentally
for "invertible" chaotic systems, the orbits evolving from any two starting
points may become "close", but they will not "remain" close.

Table 6 indicates the robust state discrimination achievable with chaotic
systems. The table provides the probability of correctly discriminating among
4000 initial states for the Henon map at various SNR levels for orbit lengths
of 100, 1000, and 4000 points.

Probability
of Correct Decision

SNR 100 1000 4000
(db) Points Points Points

-3 1.00 1.00 1.00
-6 .80 1.00 1.00

-10 .20 1.00 1.00
-15 .05 .85 1.00
-20 0 .30 1.00

Table 6: Probability of correctly discriminating among 4000 initial states
(average for 20 independent trials at each SNR level)

The results were generated as follows. First, the 40(00 initial states were
selected by generating a 5000 point Henon orbit with an initial state of (0,0)
and dropping the first 1000 points. Since the Henon map is a two-dimensional
map, each of these points was a two-element vector. Next, a small perturba-
tion of .001 was subtracted from the first component of each these points, to
ensure that most (if not all) of the orbits emanating from these points were
distinct. These perturbed 4000 points constituted the set of possible initial
states.

For each trial, one of the 4000 points was selected at random, an orbit gen-
erated with that point as the initial state, and Gaussian, white noise added to
the orbit. The first component of this noise-corrupted orbit constituted the
"observation" data. Next, a likelihood test was applied to the "observation"
data to choose among the initial states. As discussed earlier in this paper,
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with additive, Gaussian, white noise, the likelihood for each initial state
was simply the sum of squared errors between observation points and cor-
responding points on the orbit associated with that initial state. (Since the
"observation" data consisted only of the first component of each two-element
orbit point, only the first component of the each orbit point associated with
each initial state was used in the likelihood calculation). The likelihood test
consisted of simply choosing the initial state among the 4000 for which the
corresponding sum of squared errors was smallest. Each probability shown in
the table is the average number of correct decisions for twenty independent
trials at the corresponding SNR. (Note that the probability of choosing the
correct initial state by simply guessing is .00025).

The table shows that discrimination at extremely low SNRs is possi-
ble if 'enough" data points are available. (A rigorous analytic definition of
"'enough" will be provided in a future report). The results support the earlier
assertion that distinct chaotic orbits remain distinct.

8.2 Parameter Discrimination

As with state discrimination, robust discrimination among a finite number
of known, similar, chaotic systems is also possible if there are a finite number
of known initial states. The results reported in this section were obtained
with the family of Henon maps given by

Xn+ll = 1 ax + Xn,2 (136)

Xn+l,2 = .3Xn,1, (137)

in which a was the variable parameter which distinguished the different
systems. Table 7 depicts the results of discriminating among one hundred
equally-spaced values of a between 1.39 and 1.4 with orbit lengths of 100,
1000, and 4000 points. The macroscopic properties of the orbits and attrac-
tors corresponding to many (if not all) of these parameter values are almost
indistinguishable. The results shown in the columns for the 100 and 1000
point length orbits were obtained using the same 4000 initial states as were
used for obtaining the results in Table 6. Because of computational consider-
ations, the results shown in the column for the 4000 point length orbit were
obtained using only the first 2000 of these possible initial states.

Likelihood tests. similar to those described in the preceding subsection,
were used to discriminate among the parameter values. For each trial, a
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Table 7: Probability of correctly discriminating among 00 parameter values
(average for 20 independent trials at each SNR level)

parameter value and initial state were selected at random. an orbit generated,
Gaussian, white noise added to the orbit, and the first component of the
noise-corrupted orbit retained as the "observation" data. Next, for each
possible parameter value, a likelihood test was conducted to determine the
most likely initial state for that parameter value. Finally, the parameter value
with the "most likely" initial state (i.e., smallest sum of squared errors) was
chosen as the parameter for that trial. Each probability shown in the table
is the average number of correct decisions for twenty independent trials at
the corresponding SNR. (Note that the probability of choosing the correct
parameter value by simply guessing is .01). As suggested b)y the performance
results in the table. discrimination among the 100 closely spaced parameter
values is possible even with SNRs as low as -20 dB.

8.3 Discrimination with Multiplicative Noise

Preliminary results suggest that robust state and parameter discrimination
with chaotic systems is possible not only with additive noise, but with mul-
tiplicative noise as well. Table 8 depicts the results of discriminating among
the same 4000 initial states as were used for Table 6 based on a 100 point
length orbit. In light of the confusion in defining SNR with multiplicative
noise, the performance is indexed by the standard deviation of the multiplica-
tive noise. (For comparison, the standard deviation of the first component
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Probabilityi
of Correct Decision

SNR 100 1000 4000
_(db)/Points Points Points

-3 .90 1.00 1.00
-6 .15 1.00 1.00

-10 0 1.00 1.00
-15 0 .50 1.00
-20 0 .10 .85



Probability
Std. Der. of Correct Decision

of Noise 100 Points

.71 1.00
2.89 1.00
7.79 .85
74.9 .10

Table 8: Probability of correctly discriminating among 4000 initial states
(average for 20 independent trials at each noise level) with multiplicative
noise

of the Henon map is approximately .71).
We will provide details of the experimental procedure in a future report.

Basically, we used the same likelihood test procedure as discussed earlier, but
applied it in the "log" domain. To avoid the need for complex logarithms,
we added a constant positive bias to the uncorrupted orbit data so that all
values would be positive. Each multiplicative noise term was the sum of
a small positive bias and the squared value of a sample from a Gaussian,
white-noise process.

Additional experiments suggest that robust state and parameter discrim-
ination is still possible even when both additive and multiplicative noise is
present.

8.4 Applications

In light of the encouraging discrimination results presented in the preceding
three subsections, chaotic systems may be useful for several communication
applications. For example, one might exploit the robust parameter discrim-
ination capability to provide secure binary or m-ary communication over
noisy channels. Each of m parameter values for a family of chaotic systems
would correspond to one of m different signals to be transmitted. One would
choose the parameter values so that the macroscopic properties of the orbits
and attractor corresponding to each were nearly identical. In addition, the
values for N allowable initial states would also be chosen. To transmit each
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signal value, one would generate a fixed length orbit segment with the ap-
propriate parameter value. The initial state for the segment would be the
one of N allowable initial states that was "closest" to the final state of the
preceding segment. If N were sufficiently large and the N known states prop-
erly distributed on the chaotic attractor, no discernible discontinuities would
occur at the intersection of these segments. In addition. white noise could
also be added to each orbit segment to thwart unwanted interception of the
transmitted information. As long as the mrn possible parameter values and N
possible initial states were known at the receiver, one could apply the simple
likelihood test (discussed earlier) to each received noisy segment to determine
the correct parameter value and thus the signal value corresponding to that
segment.

The discussion and preliminary results in the preceding subsection suggest
that chaotic systems might be useful as modulating carriers. For example, to
transmit a signal sequence, one might use the sequence to modulate contigu-
ous orbit segments from a known chaotic system. The initial state for each
segment would be the allowable initial state closest to the final state of the
preceding segment. As discussed above, if N were sufficiently large and the
N known states properly distributed on the chaotic attractor, no discernible
discontinuities would occur at the intersection of these segments. One could
apply the simple likelihood test mentioned earlier (in the log domain) to each
received segment to determine the initial state of the chaotic carrier and thus
every value of the carrier for that segment. The original signal sequence could
then be recovered by exponentiating the difference of the logarithm of the
received signal and the logarithm of the chaotic carrier at each point. The
use of different orbit segments of fixed length rather than a single orbit would
enable the receiver to resynchronize to the chaotic carrier at the beginning
of each segment.
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9 Cramer-Rao Bounds

This section extends the informal analysis in Sections 5 and 7. Specifically,
the section derives bounds on the error covariance matrix for an unbiased
estimator for each of three estimation problems with chaotic systems. The
analysis supports the earlier assertion that the simultaneous existence of
both stable and unstable manifolds, at each point on the attractor of an
invertible chaotic system, is an extremely important and useful property for
state estimation.

9.1 Preliminaries
Throughout this section we use the following system model, which notation-
ally is slightly different than the model used in Sections 5 and 7.

X,+1 = f(xn) (138)

= h(x,) (139)
zn= Yn + n. (140)

The first equation is the state equation. In this deterministic equation, x is
the A-dimensional state vector and f(xn) is a known. discrete-time, chaotic
system. The second equation is the output equation. In this equation, y, is
the P-dimensional output vector, and h(xn) is a known, possibly nonlinear
function of the state. The third equation is the observation equation. In
this equation, z is the TP-dimensional observation vector used for estimating
the state and output, and and v is a P-dimensional. zero-mean. Gaussian
white-noise process known as the observation noise. which by assumption is
independent of the initial state x.

We seek error bounds for three related state-estimation problems. The
first consists of using a set of N + 1 sequential noisy observations {z,I}N ton'-
estimate the initial state x0 . The second consists of using the observations
{z,},= 0 to estimate the output ym for a specific time rnt where 0 < m < N.
We also consider a special case of this problem which consists of using the
observations {z"}N 0 to estimate the state xm for a specific time m where
0 m < N. The third problem consists of using the observations {Z }N
to estimate all of the outputs {i}i=O.
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The derivation of all three error bounds uses p(Zt:xo), where Z N _

{zi} 0 . This is the conditional probability density of a set of sequential ob-
servations given the initial state x0 . As noted in an earlier section, with state
(or output) estimation one often treats p(ZoNlxo) as a function of the condi-
tioning variable x 0. With this treatment, p(ZfNIxo) is known as a likelihood
function. For the model given by (138)-(140), the maximum likelihood esti-
mate of x0 is that value of x0 which maximizes p(Z0 Ix0 ) for a given ZN. Also,
since the state equation (138) is deterministic, if .-AL denotes the maximum
likelihood estimate of xo given the observations Z6, then the the maximum
likelihood estimate of x,, given the observations Z6' is simply f m (2ML), and
the maximum likelihood estimate of ym given Z N is simply h(f'm (ML)).

The error bounds derived in the next subsection apply only to unbiased
estimators, io and m, that is those for which the following conditions hold:

E(xolXo) = f io p(Zo fxo) dZ6' =o (141)

E(Pmlxo) = J m p(Z6fjxo) dZ0' = y,. (142)

The above integrals make sense since the estimators io and ~, are, in general,
functions of the observations Zp . Also, both expectations are conditioned
on x0. For the second expectation, this conditioning on .X0 is more restrictive
than conditioning on the actual output Ym (since y, = h(f m (xo)); but the
error bound on y, is more useful and amenable to interpretation with the
more restrictive conditioning.

Wie define the conditional error covariance matrices, P'N(io) and PN(P,),
as follows:

PN (o) - E [(to - Xo)(po - Xo)TIXoj (143)~~1 3

PN(Ym) E [(Ym,, m - y)(ym-Ym),7Xo0] (144)

We are particularly interested in the traces of PNj(io) and PN(Y,) (i.e., the
sum of the diagonal elements). These traces are the sum of the conditional
error variances for the individual components of the estimators.

The next two subsections derive and interpret lower bounds on both these
error covariance matrices and their traces. The Cramer-Rao inequality pro-
vides one such lower bound, which is commonly referred to as the "Cramer-
Rao bound". One advantage of the Cramer-Rao bound over other bounds is
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the ease in explicitly deriving it for certain estimation problems (including
the problems considered in this paper). In addition, an unbiased estimator
for which the error covariance matrix satisfies this bound with equality, is
also the maximum-likelihood estimator, that is the one that maximizes the
appropriate likelihood function.

The general form of the Cramer-Rao inequality for PN(5o) is the following
[16]:

PN(io) J(Xo), (145)

where JN(xo) is known as the Fisher information matr'tr and is given by

J (o) = E { DTo {lnp(Z txo)} Do {lnp(Z jxo)}| xo}, (146)

and where D 0{ .} denotes the derivative of the bracketed argument with
respect to the vector x0 . (If the bracketed argument is a scalar, the result is
an A'-element row vector, where Ar is the dimension of .ro).

The next subsection derives and interprets the Crainer-Rao bound on
PN(&O) by calculating the Fisher information matrix JN(xo). The following
subsection then uses this bound to derive a lower bound on PN(Ym). The
subsections establish a close relation between these bounds, the Lyapunov
exponents of the chaotic system f(-) in (138), and the stable and unstable
manifolds of f(-). To aid in the interpretation, the subsections also consider
error bounds for the following linear model closely related to the model given
by (138)-(140):

xn+l = Fxn (147)

Y,~ = Hx~ (148)

l - Yn + n. (149)

where the constant ( x \')-matrix F replaces the nonlinear function f(.)
and the constant ( x Ar)-matrix H replaces the nonlinear function h(.).

9.2 The Cramer-Rao Bound on PN(x()

This subsection establishes the Cramer-Rao bound o the error covariance
matrix PN(:o) for unbiased estimators o of te initial state x0 given a set
of iN + 1 sequential observations Z6 = {zi}= 0 . It also provides a qualitative
interpretation of the bounds it establishes.
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As noted in the previous subsection, the Cramer-Rao inequality for the
error covariance matrix PN(xo) of any unbiased estimator :o for the initial
state xO is the following:

PN(-O) J 1 (Xo), (150)

where JN(xo), the Fisher information matrix, is given by

JN(XO) = E {DXo {lnp(Zxo) Dxo lnp(ZxoNI)} XO}, (151)

and where DxO denotes the derivative with respect to the vector x0. Since
lnp(Z T Ixo) is a scalar, D 0 {lnp(ZN Ixo)} is an Ar-element row vector. Estab-
lishing the Cramer-Rao bound on PN(io) requires that JN(xo) be expressed
in terms of the parameters of the system model given by (138)-(140).

Since {vn} is a zero-mean, Gaussian, white-noise process, then for any
observation z,,

p(znly) = p([vnzr,-Yn]lYn) = N(yL,,, R), (152)

where N(m, E) indicates the normal density with mean ector m and covari-
ance matrix Z. However, since

y, = h(xn) = h(f'(Xo)), (153)

it follows that

p(zIxo) = p(znj[y,, = h(f'(xo)]) = N ([h(fr(.x,))], R). (154)

Therefore,

lnp(znlxo) = C- [z, - h(fn(xo))]T R 1 [z, - h(f'(xo))], (155)

where C is a normalizing constant and R is the covariance matrix of v.
Therefore, we can express n p(Z6 lx0 ) as

lnp(ZoNIxo) = CN - E [zi- h(fi(o))] R -1 [zi - h(fi(xo))] , (156)

where CN is a normalizing constant. Note that (156) is a sum of weighted
squared-error terms in which each error is the difference between an obser-
vation vector zi and the corresponding output vector yi (for a given value of
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xo), and the weighting matrix is the inverse of the covariance matrix of the
noise vector vi.

Applying the rules of vector calculus and using the fact that R -1 is sym-
metric, we can express Dr0 {lnp(Zo'lxo)} as

N

DX:O{lnp(Z'{lxo)} = [z. - h(fi(xo))] R-1Do{h(fi(xo))} (157)
i=0

N

- [ - h(ft(XO))] T R-1
i=o

x D{h(fi(xo))}Dxo{fi(x0)} (158)
N

- z - h(fi(xo)) R-1
i=o0

x D{h(fi(xo))} Txo (159)

where

I'r, (the (A' x A)-identity matrix) i = 0

T i j H= D{f(f J(xo))}, i > 0 (160)
TX 0 O3 f - 1 OfJ

H,=j+j D{f(fj (xo))}, i < 0

and where D{} without a subscript indicates the derivative of the function
that follows with respect to the argument of the function. For example,
D{h(fi(xo))} indicates the derivative of h(.), with respect to f(xo).

Substituting (159) in (151) yields the following expression for the Fisher
information matrix JN(xo):

JA(xo) = E {Z [TZO] D T {h(ft(xO))}R-1 [ -h(ft(xo)jJ

x Z [Zk-h(fk(xo))]T RD{h(f/(co))}To0 XO} (161)

N N

= zz [T] DT{h(fi(xo))}R - '
i=0 k=0

xE { [-h(f (xo))] [zk - h(fk(ao)) XO

x R-lD{jh(fA(xo))}T. (162)
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Since {v,j} is a zero-mean, white-noise sequence

E{ [zi - h(f?(xo))] [Zk - h(fk (o))] T i = i R (163)

where
1, i= k6ji,k R (164)
0w , otherwise (164)

Applying (163) to (162) yields

N T

JN(XO) = E [Tjo] Dh(f'(xo))}R-Djh(.f2(xo))} To (165)
i=0
N

- ZE DxO {h(ft(xo))}R-1 D 0o{h(f(;rxo))} (166)
i=o

The above equation for JN(xo) has a revealing structure when the function
h(.) in (139) and R, the covariance matrix of vn in (140), have the following
forms:

h(x) = x (167)

R = o2 x ', where I,g is the (Af x A')-idenitity matrix. (168)

With these restrictions on h(.) and R, (165) reduces to

i~z°)- 2 E [Too] rzO- (169)J"V (X C) = 2 TT To
i0

The above expression for JN(xo) is closely related to he expression used
to define the Lyapunov or characteristic exponents of the system f(.). In par-
ticular, the Lyapunov exponents of f(.) are defined as the natural logarithms
of the eigenvalues of the following matrix [3]:

[Ti ] Ti )~,A =lim([T0 T0 )0 · . (170)

A comparison of (169) and (170) reveals that the Fisher information matrix
JN(xO) consists of a sum of partial products of the infinite product of matrices
which determines the Lyapunov exponents of the chaotic system f(.). As a
result, the Lyapunov exponents of f(-) strongly influence both the eigenvalues
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of JN(xo) for each N, as well as the asymptotic properties of these eigenvalues
as N goes to infinity.

The Lyapunov exponents determine the "local" expansion rates along
different directions at each point x on a chaotic attractor. Local expansion
refers to the change in size that a small perturbation of x undergoes when
acted on by the system. Positive Lyapunov exponents cause a perturbation
of x (in certain directions) to increase in size, whereas negative Lyapunov
cause a perturbation to decrease in size when acted on by the system. That
is, given an infinitesimal perturbation 5x0 of x0 , the perturbation , after n
iterates of the system (i.e., the distance from x) is given by

6XE - Tzxo - 8xo exp(n A), (171)

where A is the appropriate Lyapunov exponent for the direction of 6x 0 .
Associated with the negative Lyapunov exponents at each point x on a

chaotic attractor is a nonlinear manifold V8 known as the stable manifold
and defined as [3]

V = {y' lim log d(fi(x), fi(y)) < } (172)
t --c o 'I

where d(., ) is the Euclidean metric. Intuitively, Vs is the set of points with
orbits that eventually converge to the orbit of x. Perhaps surprisingly, this
nonlinear manifold is tangent at x to the linear manifold (i.e., subspace)
spanned by the eigenvectors of A in (170) corresponding to the negative
Lyapunov exponents (i.e., the eigenvalues of with magnitudes less than
unity).

Similarly, if f .) is invertible, associated with the positive Lyapunov ex-
ponents is a nonlinear manifold 1 u defined as

Li = y lirm 1 logd(f (x),f (y))< 0} (173)

Intuitively, Vx is the set of points with orbits that eventually converge to
the orbit of x backward in time. This nonlinear manifold is NOT tangent
at x to the linear manifold spanned by the eigenvectors of A in (170) cor-
responding to the positive Lyapunov exponents (i.e., the eigenvalues of A
with magnitudes greater than unity). However, it is tangent at x to the
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linear manifold spanned by the eigenvectors corresponding to the negative
Lyapunov exponents of the following matrix

-= lim([T i] T-i)2 (174)im [---*c ] T Oi

In fact, the Lyapunov exponents of A- are the negatives of the Lyapunov
exponents of A. Equivalently, the eigenvalues of A are the reciprocals of the
eigenvalues of A-.

For discrete-time linear systems (such as the one given by (147)), the Lya-
punov exponents are simply the logarithms of the eigenvalues of the one-step,
state transition matrix (F in (147)). The "unstable manifold" is the subspace
spanned by the eigenvectors corresponding to eigenvalues with magnitudes
greater than one, while the "stable manifold" is the subspace spanned by the
eigenvectors corresponding to eigenvalues with magnitudes less than one.

For both linear and nonlinear systems, the stable and unstable manifolds
are invariant. This simply means that if y is any point lying on either the
stable (unstable) manifold of x, then f(y) (or Fy for the linear case), is on
the stable (unstable) manifold of .f(x) (or Fx for the linear case). Similarly,
f-(y) (or F-ly for the linear case) is on the stable (unstable) manifold
of f-'(x) (or F-1x for the linear case). As shown later in this section, this
invariance of the stable and unstable manifolds has important implications for
the asymptotic behavior of the Cramer-Rao bound on Pv(5o). In addition,
if there are no infinite or zero-valued Lyapunov exponents, the stable and
unstable manifolds span RAX (where AN is the dimension of the system) for
linear systems; and the linear subspaces (mentioned above) tangent to the
stable and unstable manifolds at "most" points on a chaotic attractor span
T ^ ' . Therefore, any perturbation b. can be decomposed into a component
along the stable manifold and a component along the unstable manifold of x
for most points on a chaotic attractor.

As claimed earlier, the Lyapunov exponents of the chaotic system f()
influence the eigenvalues of the Fisher information matrix JN(xo) and thus
the Cramer-Rao bound on PN(xo). This influence is direct and most easily
understood for the Fisher information matrix for the linear model given by
(147)-(149), in the special case in which H is the Ar x A-identity matrix, R
is given by (168), and F is a diagonal matrix, with diagonal elements {A~}
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that are real, distinct, nonzero, and have non-unity magnitudes:

A1 0 -.. O
F= 0 A2 0(175)

0 0 .-. A

For this system, (169) reduces to the following:

1 N
JN(xo) = -T F 2 (176)

i-0

SNv,I 0 ... 0
0 SN,2 1

-= 2 O SN,2 {~ (177)

0 0 ... SN,^'

where
N

SN,j = A. (178)
i-=o

1 , 2- N + 2

1'" _2(179)

Thus, the Cramer-Rao inequality for PN(Xo) is the following:

sN,' 0 ... 
SO ~S- 1 0

PN(io) > J,'(Xo) = 2 . N,2 (180)
0 O ... ,A

where from (179),

S-1 1 Al (181)SNJ = \ 2N+2'
3.

The error variance for each component of io is bounded b)elow by the corre-
sponding diagonal element of J1(xo). For N = 0 (i.e., only 1 observation),
each element of Jl(xo) has the value a2, which is the variance of each com-
ponent of v,. As indicated by (181), for each component ioj of io (where
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o = [x0,1 ,", x, Xo ']T) for which the diagonal element Aj of F has magnitude
greater than one, the lower bound of o2Slj onIL the error variance decreases
with each additional observation, with the rate of decrease being almost ex-
ponential for large N as indicated by the following approximation:

I - x3 -Ir2Sj- = 12- A _ 2N + for large N. (182)
N I A2 N + 2 2N i1 - AiN+ A~

In contrast, for each component o, of io for which the diagonal element Aj
of F has magnitude less than one, the lower bound of 2S 1 on the error
variance asymptotically approaches a nonzero limit given by

2 -=2 1-3 - 2(1 2)cra 21 A (as oc). (183)
_ 2N+

Since F is diagonal, its diagonal elements {Aji}il are also its eigenvalues.
In addition, the direction of the eigenvector corresponding to Aj is simply
ej , the unit vector along the jth standard coordinate axis in Rz (i.e., the
vector of all zeros except for a one as the Ijth component). The logarithms
of these eigenvalues are the Lyapunov exponents of this linear system. As
such, for each component o,j of 0O for which the eigenvalue Aj of F is
greater than one in magnitude, hence the Lyapunov exponent is positive, the
lower bound on the error variance decreases almost exponentially with each
additional observation (and asymptotically approaches zero). In contrast, for
each component i0j of io for which Aj is less than one in magnitude, hence
the Lyapunov exponent is negative. the lower bound on the error variance
decreases only slightly with each additional observation and has a positive
asymptotic value of or2(1 - )2).

This relation between the magnitudes of the eigenvalues (or equivalently,
the signs of the Lyapunov exponents) and the behavior of the Cramer-Rao
bound along the corresponding eigenvector directions has a simple intuitive
interpretation. Consider the m th observation Zm. From (148) and (149), and
since H = IAr by assumption,

zm = + m. (184)

Since F is diagonal and invertible,
Ar

F-m(zm) = F-m(xm + vm) = xo + E ) mvm,jej, (185)
j=l
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where vm = [m,,-", vm,vr]T. For each Aj with magnitude greater than one

IA3 m om,,I < |Vmj, (186)

whereas for each Aj with magnitude less than one

Aj Vmj > V mv, (187)

Thus, applying the inverse system, F- 1, m times to zm reduces the noise
along each component zm,j for which A.1 > 1 and yields a "less" noisy ob-
servation of Xoj than that similarly obtained with each previous observation.
In contrast, applying the inverse system, F -', m times to Zm increases the
noise along each component zm,j for which AIj < , and ields a noisier
observation of xo,j than that similarly obtained with each previous obser-
vation. Equivalently, the signal-to-noise ratio "increases" with time along
components Zm,j of zm for which Aji > 1 and "decreases" with time along
components Zm,j for which IA jl < 1. Therefore, an improvement of the esti-
mate of each component zo,j of xo for which IAj > 1 is possible with each
additional observation. As a result, the minimum error variance of unbiased
estimators for these components decreases with time. In contrast, almost no
improvement in the estimate of each component x0oj of xo for which IAJI < 

is possible with each additional observation since the signal-to-noise ratio
decreases with time for observations of these components. As a result, the
minimum error variance of unbiased estimators for these components remains
nearly constant.

A useful and important quantity for many applications is a lower bound
on the trace of PN(,o) (i.e., the sum of the diagonal elements), which is the
sum of the conditional error variances for the components of o. From the
Cramer-Rao inequality, it follows that

Tr{PN(:o)} - Trace ofPN(io)

> Tr{J&'(io)} (188)

An important fact from linear algebra is that the trace of a matrix is the sum
of its eigenvalues. For the specific linear model being considered here, the
Cramer-Rao bound on the trace reduces to the following (after substituting
(180)):

1- A?2
Tr{PN(=o) > 2 (189)

i1 A.
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As noted earlier, with a single observation (N = 0) the Cramer-Rao bound
on the error variance for each component of o is 2. Therefore, the trace of
P0(2 0) is bounded below by A'o2 . However as implied by (189), this bound
decreases with each additional observation with an asymptotic value given
by

Tr{Po,(io)} - lim Tr{PN(xo)} (190)
N--oo

> lim Tr{J 1(xo)) (191)
-- N---oo

= a2 (1-A2) (192)
*=1

IA.i<1

where the sum is over those i for which lAd is less than one. As indicated
by (192), only eigenvalues of F with magnitudes less than one make nonzero
contributions to the asymptotic bound on the trace of PNr(&o).

If F is not diagonal but is real and symmetric, similar results apply since
F can be diagonalized with a unitary matrix. However, for an arbitrary ma-
trix F, such a simple analysis is not possible. Nor is such a simple analysis
possible for the original nonlinear system given by (138)-(140). However,
for real linear systems F, for which all eigenvalues are real, nonzero, distinct,
and non-unity in magnitude, and for the discrete-time chaotic sstem f),
"cexperimental" results indicate that the eigenvalues of JK'(xo) behave simi-
larly with increasing N as do the eigenvalues of JN1(xo) for a linear system
with diagonal matrix F. In particular, for a chaotic system f (.), the same
number of eigenvalues of J~'(xo) as the number of negative Lvapunov ex-
ponents of f(.) have positive asymptotic values. while the same number of
eigenvalues of JK'(xo) as the number of positive Lyapunov exponents of f(.)
decrease with additional observations with asymptotic values of zero. This
behavior of the eigenvalues directly influences the Crainer-Rao bound on the
trace of PN(io), since the trace is bounded below by the trace of J'(xo),
and the trace of a matrix equals the sum of its eigenvalues.

(Unfortunately, for a chaotic system or a linear system with eigenvalues
both greater and less than one in magnitude, JN(Xo) and J'(xo) quickly
become ill-conditioned with increasing N. Because of this ill-conditioning, it
is difficult to accurately determine the eigenvalues of either JN(xo) or Jj,'(xo)
for even moderate values of N).
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We can use a similar argument as that used above, to intuitively explain
the observed relation between the the eigenvalues of J~l(x0 ) and the Lya-
punov exponents of f() for chaotic systems and of F for linear systems.
However, unlike the diagonal case, we have yet to find a direct relation be-
tween the eigenvalues of J(xo) and the Lyapunov exponents of f(.) or
F. That is, although we can qualitatively explain the asymptotic behavior
of the eigenvalues of J 1l(zxo), we cannot analytically express each of these
eigenvalues in terms of the Lyapunov exponents of f(.) or F.

For linear systems, we apply the argument used above to the eigenvec-
tor directions rather than to the directions of the coordinate axes. Given
the above restrictions on the eigenvalues, these directions are invariant sub-
spaces and provide a direct sum decomposition of 1ZA'. Therefore. one can
decompose each observation into components along the eigenvector direc-
tions. Since (by definition) these eigenvector directions are invariant, the
earlier explanation (specifically the discussion beginning with (184)) is ap-
plicable with the coordinate axis directions eJ replaced by the eigenvector
directions.

For chaotic systems, we apply the argument used for diagonal systems to
the linear subspaces tangent to the stable and unstable manifolds at x0 and
at each point of the orbit {fi(xo)}. In particular, at x0 we use the subspace
spanned by the eigenvectors corresponding to negative Lapunov exponents
for A (given by (170)) and the subspace spanned by the eigenvectors corre-
sponding to negative Lyapunov exponents for A- (given by (174)). At most
points on a chaotic attractor. these subspaces span R.,x . At other points on
the orbit of x0 , we calculate similar Lyapunov-exponent defining matrices and
choose the appropriate subspaces. For small perturbations, these subspaces
are invariant; a small perturbation along the subspace corresponding to the
negative Lyapunov exponents of A at xo gets mapped by f(.) along the sub-
space corresponding to the negative Lyapunov exponents of A at f(xo), with
the expansion (contraction) rate bounded above by exp(Amax) where Amax
is the largest negative Lyapunov exponent. In light of this, we can apply
the earlier argument to these subspaces by using the "linearized" dynamics
of f(.) (given by the Jacobian) at each point of the orbit of x0 . Thus, for
chaotic systems, this intuitive explanation for the relation between the eigen-
values of J'(xo) and the Lyapunov exponents of f(.) is only a first-order
approximation valid for observations that are infinitesimally small perturba-
tions from the actual orbit of xo. However, the behavior of the eigenvalues
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of the Fisher information matrix is actually independent of the observation
noise level.

Figure 23 experimentally supports this intuitive argument. The figure
shows the eigenvalues of JJQ (i 0) as a function of N. Note that one eigenvalue

SP I
--0

§ -15C'
-

O

2 -20

S' -25 

-30

0 1 C 20 30

Number of Observatons
4(

Figure 23: Eigenvalues of J'1(%o) as a function of N for the Henon map

rapidly approaches zero while the other decreases slowly. Unfortunately,
because J'l(5 0 ) becomes increasingly ill-conditioned with increasing N, the
eigenvalues of JRl(so) could not be accurately calculated for values of N
larger than those shown.

9.3 The Cramer-Rao Bound on PN(yrn)

This subsection uses the Fisher information matrix .IN(xo) derived in the
previous subsection to derive a lower bound on PN(ym,) defined by (144) and
repeated here for convenience:

PN(Ym) _ E Ym)(m ym) T I.Co (193)

As shown in the appendix, if
S = t(x)

for some arbitrary differentiable function t, then

P(3) > D{t(x)}J-l(x)D T{t(X)),

(194)

(195)
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where is any unbiased estimator for s,

P(§) =- E [(. - t(x))( - t(x))Tx], (196)

and where J(x) is the Fisher information matrix for x.
Since,

yn = h(f m (xo)), (197)

it follows that

PN(~m) > Dxo{h(f "(Xo))}J(X 0)Dro{ht(f '(X 0 ))} (198)

D{h(.f}(xo))}D{ff( o)}Jl ( o)
x DT{ftn (Xo) }DT{h(fm '(Xo))}. (199)

Also, note that since
xm = f m (xo), (200)

it follows that

PN(im) > D{f (xo)}JNj(xo)D T {f( x o)}, (201)

where
PN() - E [( , - Xm)(~m - Xm) lzX] (202)

As with the expression for JN(xo) given by (165), the above expression
for JN (Ym) has a revealing structure when f(.) is a diffeomorphism and h(.)
and R are given by

h(x) = x (203)

R = 2 I r. (204)

With this restriction on h(.), Ym = Xm, and thus (198) reduces to

PN(m) > D{f'm(xo)}Jl(xo)DT {fm(xo)} (205)

- J (m). (206)

Since f(.) is a diffeomorphism, D{fm(xo)} is invertible and thus

JN(Ym) = D-T {f m (xo)}JN(xo)D- {fJ" (Xo)}, (207)
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where
D {fm(xo)} {D {fm(;r)}}. (208)

Substituting (160) and (169) in (207) yields

JN("' =1 N Tff-(o 
Ji(Y-) = D ToD f m(xo)}, (209)

t--0

where Tx0 is given by (160) which is repeated here for convenience:

If,, (the A' x A'-identity matrix) i = 0

T '.= D{f(fi-J(Xo))}, i > 0 (210)

o = D{f-(f(xo))} i < 

Using the following identity from vector calculus, valid for an arbitrary
invertible function g(.) at a specific point (vector) x,

D: 1{g(x)} = Dg(){g-l(g(x))}, (211)

one can show that (209) is equivalent to

JN ( m ) -a2 [Tm]Tm (212)

T '=mm

T=-M t=O

The expressions for J\(xo) and JN(ym) given by (169) and (213). respec-
tively, are similar with the only difference being the limits on the summa-
tions. This apparently minor difference has profound iplications since (as
indicated by (160)) the terms in the first summation of (213) involve prod-
ucts of iterates of the Jacobian of the inverse function j-(). As a result,
whereas the Lyapunov exponents of f(-) influence the eigenvalues of JN(xo),
the Lyapunov exponents of both f(.) and f-1 (.) influence the eigenvalues of
JN(Yr). However, the Lyapunov exponents of fl (.) are the negatives of the
Lyapunov exponents of f(). Equivalently, whereas the Lyapunov exponents
of f (.) are the the logarithms of the eigenvalues of the following matrix

A = lim( [T i] r T / )7, (214)
-. CO
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the Lyapunov exponents of f-l(.) are the logarithms of the reciprocals of
these eigenvalues.

In the preceding subsection, we argued that the bound on the error vari-
ance of estimators for x0 should decrease asymptotically to zero in directions
tangent to the unstable manifold of f(.) at x0 , as the number of observations
increased. Clearly, the same result holds for the bound on the error variance
of estimators for ym, as the number of observations after' time m increases.
In addition, it is shown below for diagonal linear systems and is argued for
other linear systems as well as for chaotic systems, that as m increases and
thus the number of observations "before" time m increases, the bound on
the error variance of estimators for y, in directions tangent to the unstable
manifold of fl(.) decreases asymptotically to zero. However, (by definition)
the unstable manifold of f(.) is the stable manifold of f(). Therefore.
as the number of observations "before" time m increases, the bound on the
error variance in directions tangent to the stable manifold of f(-) decreases
asymptotically to zero. As a consequence, as the number of observations
before time m and after time m both go to infinity, the bound on the error
variance in directions tangent to the stable and unstable manifolds of f(-)
and consequently in all directions goes to zero. As a result, the lower bound
on the trace of PN(ym) given by the Cramer-Rao inequality goes to zero as
well.

We now explicitly show this result for the linear model given by (147)-
(149) with diagonal matrix F. As in the previous subsection, let F be given
by

1 0 ... 0

F= . A2 0 (215)

0 0 ... AS

where the diagonal elements Ai are real, distinct, nonzero. and have non-unity
magnitudes.

For this system, (212) reduces to the following:

1 *VF(6
JN(ym) = F (216)

' rt ,
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SNJ 0 .. 0[ 0 SN,2 N (217)

0 0 ~SN,^:

where

N-m

SN,J = Z (218)
i=-m

1 A2 N+ 2

2- (219)
A?- (1 A?)'

Thus, the Cramer-Rao inequality for PN(y,) is the following:

S - 1 0 ... 0

PN(Ym) > JI(Ym) -0'22 ] (220)

0~~. S-10 " X

where from (219),

- =2"~(1 A2) (221)
1 - A N + 2

A comparison of (181) and (221) reveals that the diagonal elements of JK'(xo)
and Jj(ym) are nearly identical, with the only difference being the inclusion
of the factors A. in the diagonal elements of J1'(ym), but not of Jj7'(xo).

Equation (221) reveals that for a fixed m, for those diagonal elements
of J' 1(yi) for which I I > 1, then

M (1- VX)=
lir S

- 1
lira3 ___-) -0 (222)

N--.~o N~j= _ 2N+2N-oo N -oo 1
"3

This result is analogous to that given earlier for the diagonal elements of
jT (xo) and has a similar interpretation. That is, for each component .0m,j of

Y, (where .m = [m,' ... , i.,,]T) for which the diagonal element (or equiv-
alently the eigenvalue) AJ of F has magnitude greater than one, the lower
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bound on the error variance given by the Cramer-Rao inequality asymptot-
ically decreases to zero as the number of observations "after' time m goes
to infinity. The reason for this asymptotic behavior is identical to that dis-
cussed in the previous subsection for the asymptotic behavior of elements of
J;1'(xo) for which the corresponding diagonal elements of F had magnitudes
greater than one.

However, a certain type of asymptotic behavior of diagonal elements of
JK'(yi) for which the corresponding elements of F have magnitudes less
than one differs dramatically than the behavior observed earlier for the same
diagonal elements of Jl(zxo). In particular, as the time of interest m goes
to infinity, or equivalently the number of observations before time m goes to
infinity, then for those diagonal elements S`,r' of J;l(ym) for which IAjl < 1,

A m( - A~)
lim S = lim S= - AN+2 = 0. (223)

M CIO O rn -oc Nj I "- A2N+2 =0

Therefore, the lower bound on the error variance for each component Ym,j
of m, for which the diagonal element Aj of F has magnitude less than one,
goes to zero as the number of observations "before" time m goes to infinity.
The reason for this asymptotic behavior is similar to that for the components
Pm,j for which IAjl > 1, but with the inverse system F - ' used in the analysis.
This follows from the fact that the diagonal elements (or eigenvalues) of F- 1

are the reciprocals of the diagonal elements of F. Therefore, the diagonal
elements of F-' with magnitudes greater than one are the diagonal elements
AJ of F with magnitudes less than one. In addition, the condition that the
number of observations "after" time m goes to infinity for the system F - is
the same as the condition that the number of observations "before" time m
goes to infinity for the system F.

The overall result is that as the number of observations both "before"
and "after" time m go to infinity, the lower bound on the error variance
for each component of !m goes to zero and thus the lower bound on the
trace of PN(Pm) goes to zero. This result on the asymptotic behavior of the
Cramer-Rao bound on PN(P,) can be explained with a similar argument
in terms of stable and unstable manifolds and signal-to-noise ratios as was
used in Section 9.2 to explain the asymptotic behavior of the Cramer-Rao
bound on PN(io). In fact, the exact same argument applies to the decrease
in error bound along the unstable manifold (the subspace spanned b the
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eigenvectors of F corresponding to eigenvalues with magnitudes greater than
one) with each additional observai. ion after time m. The same argument
also accounts for the decrease in error bound along the stable manifold (the
subspace 'spanned by the eigenvectors of F corresponding to eigenvalues with
magnitudes less than one) with each additional observation before time m if
one applies the argument to the inverse system F- 1.

This argument also intuitively explains the experimentally observed de-
crease in all eigenvalues of J'-l(ym) for other linear systems and for chaotic
systems, as the numbers of observations both before and after time mrn in-
crease. In particular, the same number of eigenvalues of Jk'(ym) as positive
Lyapunov exponents of f(.) experimentally decrease asymptotically to zero
as the number of observations after time m increases. Also. the same number
of eigenvalues of JK'(y,) as negative Lyapunov exponents of f(.) experimen-
tally decrease asymptotically to zero as the number of observations before
time mrn increases. For linear systems, we apply the above argument to the
eigenvector directions rather than to the coordinate axis directions. For
chaotic systems, we apply the argument to the linear subspaces tangent to
the stable and unstable manifolds at axm and at each point of the orbit of xm,
both forward and backward in time.

Figures 24 and 25 depict this behavior of the eigenvalues of J'(y,,m)
with increasing number of observations before and after time m. Figure 24
shows the eigenvalues of J(y,,) plotted as a function of the number of
past observations with no future observations. Figure 25 shows the trace of
Jjl(ym), which is the sum of its eigenvalues, as a function of the number
of past and future observations. That is, each value oit the horizontal axis
indicates the number of past observations as well as the number of future
observations. In both figures, the N in J'(ym) loses its meaning, since the
time of interest m is fixed but the number of observations prior to this time
is increasing.

9.4 Practical Implications

In practice, one does not have an infinite number of observations. The prac-
tical implication of the preceding analysis is that for a finite number of obser-
vations {Zm}N the lower bound on the trace of PN(P0) given by the trace

of J'T(ym), is largest at times m near the beginning (i.e., m - 0) and end
(i.e., m. m N) of the observation set and smallest for times m in the middle
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of the observation set. As suggested by the preceding analysis, for times m
near the beginning of the observation set, the bound on the error variance
is small in directions tangent to the unstable manifold of Xm, but near its
initial value (i.e., the value when only the observation at time m is available)
in directions tangent to the stable manifold of m. Similarly, for times m
near the end of the observation set, the bound on the error variance is small
in directions tangent to the stable manifold of xm, but near its initial value in
directions tangent to the unstable manifold of xm. However, for times near
the middle of the observation set, the bound on the error variance is small
in all directions. Figure 26 experimentally confirms this predicted behavior
on the trace of PN(,r) for the Henon map with 20 observations. The figure
shows the trace of PN(Ym) as a function of m for 1 < rn < 20. (Note the
initial observation occurs at time 1 and not time 0).

0, . , , , _
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Figure 26: Trace of Jx'(/m) as a function of mn for the Henon map with 20
observations

One practical constraint ignored in the error bound derivation is that
the precision available for representing and processing data in all comput-
ers is finite. As a result, finite-precision arithmetic and round-off error are
inevitable; and the assumption expressed by (138) that the state x, evolves
deterministically is never true in practice. One can account for round-off error
by including a driving noise component in the state equation. The inclusion
of this component complicates the derivation of Cramer-Rao bounds on the
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initial state x0 and output y,.m For example, as was discussed in Section
5, whereas the state transition probability density p(xlxnl) is simply an
impulse in the absence of driving noise, it satisfies the discrete-time "forward
Kolmogorov" or "Fokker-Planck equation" in the presence of driving noise.
The complexity of the resulting error bounds precludes any straightforward
intuitive interpretation. We will analyze the complicated omnipresent influ-
ence of round-off error and finite-precision arithmetic on state and output
estimation with chaotic systems in a future report.

The discussion in the preceding subsection also helps explain the ridgelike
properties of the the likelihood functions p(Y0n Ix) and p(Yn +m Ix,) apparent
in the figures in Sections 5 and 7. For example, since p( ' la-,) uses only past
observations, the uncertainty in the estimate of xn has decreased consider-
ably along the stable manifold of x, but decreased little along the unstable
manifold. Thus, the observed ridge of high likelihood values probably corre-
sponds to points along or near the unstable manifold of x,. The finite width
of this ridge probably reflects the remaining but much smaller uncertainty
along the stable manifold. Similarly, since p(y-m+n lX) uses only future ob-
servations, the observed ridge of high likelihood values probably corresponds
to points along or near the stable manifold of x, with the finite width of the
ridge reflecting the remaining uncertainty along the unstable manifold.

9.5 Bound on the Sum of the Traces of the ML Esti-
mates {yi}No

It is straightforward to derive a lower bound on the following quantity

N N A

Tr PN(Ym) = Tr {PN(m)}, (224)
m=O m=O

when R. the covariance matrix of the observation noise v, equals or2 1A-. The
above expression is the sum of the traces of the error covariance matrices of
unbiased output estimators for all observation times. The resulting sum is a
measure of the accumulated, summed, error variances of the components of
the estimators Pm for each m where 0 < m < N. From (198), we know that

PAN(Ym) > D 0 {h(f'(:ro))}Jl(xo)Do {h (f'(xo))}. (225)
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It follows that

Tr{PN(Pm)} > Tr {D o{ 1(f-(xo))}J'(xo)DTo{h(f7(xo))}} (226)

Therefore, a lower bound on (224) is given by

N

E Tr{PAT(im )} _

m=0
N

Z Tr {Do {h(fm(xo))}Jl'(xo)D {h(f" (xo))}}. (227)
m=O

The following fact from lineal algebra, valid for any two ." x A'-matrices
A and B,

Tr{AB} = Tr{BA}, (228)

allows the following identity to be established:

Tr {Dxo {h(fm(xo))}J:1(xo)DOT {h(fm(xo))}} =

Tr {JN'(xo)Do {h(f m (xo))}DO {h(f`l(xo))}}. (229)

Substituting (229) in (226) yields the following:

N N

Tr{PN(y)} > Tr{, Jj:(xo)DT{h(fm(ro))}
mrn=0 m=O

xDxo{h(f m (xo))}} (230)
N

= Tr{J 1(xo) Z DTo{h(fm(xo))}
m=O

xDx0 {h(f m (xo))}}. (231)

But, from (165) and since R = 2 Ig,

N

JN(XO) = DT{h(f'(xo))}R-Do{hff(xo))} (232)
i=o

N

= a-2 E DTo{h(fi(xo))}D {h(fi(xo))} (233)
i=O
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Thus, (231) reduces to the following:

N

E Tr{PN(ym)} > Tr{J (xo)T 2JN(x:o)} (234)
m=O

= o 2. (235)

As shown earlier, the covariance matrix of Zm, when conditioned on ,
is R = o 2 IA, the covariance matrix of V, and the trace of this covariance
matrix is Aa 2. Note that this quantity is the trace of the error covariance
matrix for the maximum likelihood estimate of ym given only the observation
Zm. (The M\L estimate of ym given only Zm is in fact zm). As a result, it
is also the bound given by the Cramer-Rao inequality on the trace of the
error covariance matrix of any unbiased estimator for Yi, given only the
observation zm. We denote this quantity the "a priori processing error".
Since the observation time m is arbitrary, it follows that the the "total a
priori processing error" defined to be the sum of the a priori processing
errors for all observation times m, where 0 < m < N is ,'V(N + 1)oa2.

Using the same line of reasoning, we can interpret the trace of Jl(ym)
as the "a posteriori processing error" for time m, since it is the bound given
by the Cramer-Rao inequality on the trace of the error covariance matrix of
any unbiased estimator for y, given all the observation {Zm}= 0. Similarly,
we can interpret the following sum

N

E Tr{Jl(ym)} (236)
m=O

as the "total a posteriori processing error", which from (235) is Aa 2 .
Therefore, the "processing gain", defined as the ratio of the total a priori

processing error to the total a posteriori processing error is simply N + 1,
the number of observations. Perhaps surprisingly, this is the same processing
gain that results for a linear system.
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10 Discussion

The preceding section showed that the Cramer-Rao bounds on the error
covariance matrices of unbiased estimators for the initial state xo and output
ym have similar properties for both linear and chaotic systems. The section
also indicated that the total processing gain for unbiased estimation of the
output ym for all observation times was identical for both linear and chaotic
systems. In light of this, the question arises as to what advantages, if any,
chaotic systems offer over linear systems for performing state estimation and
thereby reducing the effect of additive observation noise on a signal.

The answer to this question requires consideration of a fundamental prac-
tical issue ignored in the analysis in Section 9. Specifically, the discussion of
linear systems considered the existence of eigenvalues both greater and less
than one in magnitude. However, a linear system with at least one eigen-
value greater than one in magnitude is an unstable system, since for initial
conditions and inputs with components along the corresponding eigenvector
direction, the output grows without bound.

In contrast, certain nonlinear systems, in particular chaotic systems, have
both positive and negative Lyapunov exponents (the equivalent of eigenvalues
greater and less than one in magnitude for discrete-time linear systems),
but nonzero, bounded, steady-state outputs (i.e., chaotic attractors) over a
range of initial conditions. Locally, these systems are unstable, in that a
small perturbation about a point on the attractor increases under iterations
of the system; but. the increase is bounded by the size of the attractor.
In fact as noted earlier, this local instability is responsible for the impulse-
like property of the likelihood function p(Yn+nhjx,) considered in Section 7
and the difficulty in performing probabilistic state estimation with chaotic
systems. However, this local instability is also responsible for the "snowflake"
property of chaotic systems exploited in Section 8 for performing state and
parameter discrimination.

Because of the simultaneous presence of positive and negative Lyapunov
exponents and the concomitant existence of stable ad unstable manifolds
with chaotic systems, many traditional engineering attitudes and assump-
tions are not applicable to such systems. For example. most engineering
applications emphasize the zero-state-response (ZSR) of a system, with the
zero-input-response (ZIR) treated as either an undesirable nuisance (as in
power systems) or something to be ignored (as suggested by the often used
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statement, ".. . the response after all transients have died away." In contrast,
as this report has shown, with chaotic systems the initial state is often the sin-
gle most important quantity, and the ZIR often a non-transient phenomenon
with many interesting, potentially useful properties.

In addition, as suggested by the performance of the EKF in Section 5
and the Cramer-Rao bound derivation in the preceding section, the use of
recursive filtering (i.e., recursive state estimation with only past observa-
tions) prevalent in the engineering community has little, if any, practical
value for chaotic systems. With most "useful", discrete-time, linear systems,
all eigenvalues have magnitudes less than one (i.e., negative Lyapunov ex-
ponents) and thus these systems have "only" a stable manifold. In light of
this. as the analysis in the preceding section showed. "past" observations
alone are often sufficient (and necessary) for performing accurate state esti-
mation. However, because chaotic systems have both positive and negative
Lyapunov exponents, accurate state estimation requires that both past and
future observations be used.
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11 Summary

This report has discussed probabilistic state estimation with chaotic systems,
and through the discussion revealed interesting, potentially useful properties
of such systems. The report began by introducing and experimentally evalu-
ating the extended Kalman filter (EKF), which is a nonlinear recursive filter
closely related to the Kalman filter. Experimental results revealed that the
EKF is a poor state estimator for chaotic systems. The report also intro-
duced and experimentally evaluated the extended Kalman smoother (EKS),
a nonlinear smoother which combined the EKF and Rauch-Tung-Striebel lin-
ear smoother. The performance of the EKS was shown to be much better
than the EKF on two chaotic systems, and slightly better on a third sys-
tem. The report provided a nonrigorous analysis of the performance of the
EKF and EKS, primarily by investigating the properties of relevant likelihood
functions. The analysis revealed that the presence of bot h positive and nega-
tive Lyapunov exponents and associated stable and unstable manifolds with
chaotic systems, has an important impact on these likelihood functions and
on any probabilistic state estimation technique applied to chaotic systems.

The report also derived and interpreted Cramer-Rao error bounds for
several related estimation problems involving chaotic systems. The derivation
revealed a close relation between these bounds and the Lyapunov exponents
of the systems. In addition, the asymptotic behavior of these bounds was
found to be similar for linear and nonlinear systems.

Two simpler problems, closely related to state estimal ion, were also briefly
considered. These were state and parameter discrimination with chaotic
systems using a a finite known set of possible states and parameter values.
Experimental results confirmed that accurate discrimination is possible even
at extremely low SNRs and with both additive and multiplicative noise. The
report speculated on potential practical applications of state and parameter
discrimination with chaotic systems in the area of secure communications.
Finally, the report briefly discussed similarities and differences between linear
and chaotic systems and pointed out that traditional engineering beliefs and
assumptions are inappropriate when dealing with chaotic systems.

State estimation with chaotic systems remains a challenging problem. As
shown in this report, chaotic systems have unique properties that simultane-
ously aid and hinder accurate state estimation. A distinguishing property of
a deterministic chaotic system is that perfect knowledge of the initial state or
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the state at any time reveals everything about past and future states; imper-
fect knowledge reveals almost nothing. As noted in this paper, this property
may render chaotic systems useful for several practical applications. How-
ever, it remains to be seen whether chaotic systems offer superior alternatives
to existing techniques for these or any other applications.
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A Appendix

This appendix proves the following proposition stated without proof in [16].

Definitions:

Let x denote an unknown k-dimensional parameter vector, z an observa-
tion vector with a probabilistic dependence on x, and p(zla) the conditional
density which reflects the probabilistic relation between z and x. Also, let 
denote an "unbiased" estimator for x based on the observation , that is

I x p(zlx)dz = x. (237)

Finally, let s denote a P-dimensional vector defined as

s = t(x), (238)

where t(.) is a differentiable function; and let s denote an unbiased estimator
for s based on the observation z as conditioned on x. That is

J . p(zlx)dz = s = t(x). (239)

Proposition:

The matrix
P( - D{t(x)}J-'(x)DT {t(x)} (240)

is positive semidefinite, where P(s) is the error-covariance matrix for given
by

P(s) - [( - t(x))(s - t(x))T x. (241)

and J(x) is the Fisher information matrix for x

J(x) = E {D[ {lnp(zjx)} Dx {lnp(Zlx)} x) } (242)

Therefore, a lower bound on P(s) is the following:

P(s) > D{t(x)}J-(x)DT {t(x)}. (243)

Proof:
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The following proof is a generalization of a proof given in [16] which
establishes the Cramer-Rao inequality.

Since is an unbiased estimator,

si= si p(zlx)dz (244)

where si and i are the ith components of s and respectively. Differentiating
both sides of (244) with respect to xj, the jth component of x, yields

2i = _ J s p(zlx)dz (245)
ax= xj

- &p(zx )dz (246)

jS alnp(zix) p(zlx)dz. (247)
f.i Ox 

Also note that

si Ox - dz-0. (248)

Now define the vector y as follows:

1 - SI

a np(zlx)
axl

a 1np(zx)
_x¢

(249)

A straightforward, albeit tedious computation yields:

E {.~ j P(A Df~x/) ] /(20)
{ } [ D{t(x)} J(x) ] (250)

A useful fact from linear algebra [2] is that given a matrix M partitioned as

AI= C I, (251)
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where A, B, C, and D are appropriately sized matrices, then if D is invertible,

IMII = 11A - BD-'C I, (252)

where 11l is the determinant operator.
Applying this fact to (250) yields

JE {YYT 11 = P D{t( I (x)} (253)
~~Y~f D {jt(X)} j(X)

= JIP(A) - D{t(x)}J-1 (x)D T {I(X)} I. (254)

Since E {yyT} is a covariance matrix, it is nonnegative definite. Therefore,
its determinant and the determinant of each of its submatrices is nonnegative.
It is easy to show that the determinant of each submatrix of E {yyT} is the
same as the determinant of the submatrix of P(.) - D{t(x)}J-'(x)DT {t(x)}
formed by omitting the same rows and columns. Therefore, the determinant
of P() )-D{t(x)}J-l(x)DT{t(x)} and each of its submatrices is nonnegative.
Therefore, P() - D{t(x)}J-'(x)DT {t(x)} is nonnegative definite.
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