
Fault-Tolerant Computation using
Algebraic Homomorphisms

Paul E. Beckmann

RLE Technical Report No. 580

June 1993

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139-4307

This work was supported in part by the Defense Advanced Research Projects Agency monitored by
the U.S. Navy Office of Naval Research under Grant N00014-89-J-1489 and in part by the Charles S.
Draper Laboratories under Contract DL-H-418472.

Fault-Tolerant Computation using Algebraic Homomorphisms

by

Paul E. Beckmann

Submitted to the Department of Electrical Engineering and Computer Science
on August 14, 1992, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Arithmetic codes are a class of error-correcting codes that are able to protect computation
more efficiently than modular redundancy. In this thesis we consider the problem of de-
signing an arithmetic code to protect a given computation. The main contributions are as
follows:

* The first constructive procedure, outside of modular redundancy, for generating arith-
metic codes for a large class of operations. The approach is mathematically rigor-
ous, based on group-theory, and fully characterizes the important class of systematic-
separate codes. The results encompass computation that can be modeled as operations
in an algebraic group, ring, field, or vector space.

* A novel set-theoretic framework for characterizing the redundancy present in a system.
We present a decomposition of a robust system into a cascade of three systems and
determine general requirements for multiple error detection and correction.

* We identify an important class of errors for which the redundancy present in a sys-
tem may be completely characterized by a single integer, analogous to the minimum
distance of a binary error-correcting code.

* We unify the existing literature on arithmetic codes. A wide variety of seemingly
unrelated codes are combined into a single general framework.

* A large number of examples illustrating the application of our technique are presented.

* Detailed analyses of two new and practical fault-tolerant systems: fault-tolerant con-
volution and A/D conversion.

Thesis Supervisor: Bruce R. Musicus
Title: Research Affiliate, M.I.T. Digital Signal Processing Group

2

Dedicated to the glory of God,

Whatever you do, whether in word or deed,

do it all in the name of the Lord Jesus,

giving thanks to God the Father through him.

- Colossians 3:17

and to my wife, Chin.

A wife of noble character who can find?

She is worth far more than rubies.

- Proverbs 31:10

3

Acknowledgments

I would like to thank my advisor, Bruce Musicus, for the excellent guidance and support

that he has given me during the past three years. His enthusiasm, encouragement, and

friendship have made my life as a graduate student both satisfying and enjoyable. Bruce

was always available when I reached an impasse, and gave me the freedom to explore new

ideas.

I am grateful for the support of Professor Alan Oppenheim. Under his direction, the

Digital Signal Processing Group provided a stimulating environment in which to carry out

my research. I am also indebted to all the members of the group for their friendship and

for many thought provoking discussions. I would like to particularly acknowledge Kambiz

Zangi, Mike Richard, Steven Isabelle, and Andy Singer. They were always available and

patiently let me bounce ideas off of them. I would also like to thank Deborah Gage for her

constant encouragement and help, and Sally Bemus for assistant in the final preparation of

the thesis and defense.

This thesis was made possible by the generous financial support of Rockwell Interna-

tional. They supported me unconditionally for the past three years and allowed me to

pursue an interesting thesis topic. Additional funding was provided by the Defense Ad-

vanced Research Projects Agency and Draper Laboratory.

I would like to thank my parents for their steadfast love and support. They have always

been an encouragement and inspiration to me.

Finally, and most importantly, I would like to thank my wife Chin for her unfailing love,

patience, and support. She has always been behind me 100%, and is a perpetual source of

joy. This thesis would not have been possible without her.

4

Contents

1 Introduction
1.1 Major Contributions
1.2 Outline of Thesis

2 Previous Approaches to Fault-Tolerance
2.1 Introduction.
2.2 Modular Redundancy

2.2.1 Summary
2.3 Arithmetic Codes

2.3.1 aN Codes
2.3.2 (aN)M Codes
2.3.3 Integer Residue Codes
2.3.4 Integer Residue Number Systems .
2.3.5 Comparison of Arithmetic Codes

2.4 Algorithm-Based Fault-Tolerance
2.4.1 Codes for the Transmission of Real
2.4.2 Codes for Matrix Operations . . .
2.4.3 Codes for Linear Transformations.
2.4.4 Codes for FFTs
2.4.5 Codes for Convolution

2.5 Summary

·. . .

·. . .

Numbers
. . . .

3 Set-Theoretic Framework
3.1 Set-Theoretic Model of Computation . .
3.2 Redundant Computation.
3.3 Symmetric Errors
3.4 Example - Triple Modular Redundancy
3.5 Summary

4 Group-Theoretic Framework
4.1 Group-theoretic Model of Computation
4.2 Redundant Computation.........
4.3 Error Detection and Correction

4.3.1 Redundancy Conditions . . .
4.3.2 Coset-Based Error Detection and Correction

5

8
9

10

13
13
15
17
17
22
22
23
24
25
26
26
27
31
32
33
34

35
35
37
43
46
49

50
51
52
57
57
59

..............

..............

..............

..............

..............

..............

..............

..............

..............

..............
.............

..............

..............

..............

..............

..............

....................

....................

....................

....................

....................

....................

....................

....................

....................

4.3.3 Determination of the Syndrome Homomorphism .
4.3.4 Symmetric Errors

4.4 Partial Homomorphism
4.5 Code Selection Procedure
4.6 Application to Other Algeb

4.6.1 Rings
4.6.2 Fields
4.6.3 Vector Spaces . . .

4.7 Examples
4.7.1 Triple Modular Red
4.7.2 aN Codes
4.7.3 Matrix Rings . . .
4.7.4 Finite Fields . . .
4.7.5 Linear Transformati

4.8 Summary

............................ 63

. 63

. 65
oraic Systems 66
. 67
. 68
. 68
. 70
undancy 70
. 73
. 74
. 76
ions 78
. 79

5 Systematic-Separate Codes
5.1 Description of Codes
5.2 Determination of Possible Homomorphisms
5.3 Error Detection and Correction
5.4 Multiple Parity Channels
5.5 Application to Other Algebraic Systems

5.5.1 Rings
5.5.2 Fields
5.5.3 Vector Spaces

5.6 Examples
5.6.1 Trivial Codes
5.6.2 Integer Residue Codes
5.6.3 Real Residue Codes
5.6.4 Multiplication of Nonzero Real Numbers
5.6.5 Linear Convolution
5.6.6 Linear Transformations
5.6.7 Gaussian Elimination and Matrix Inversion . . .

5.7 Summary

6 Fault-Tolerant Convolution
6.1 Introduction.
6.2 Winograd Convolution Algorithm
6.3 Fault-Tolerant System

6.3.1 Multiprocessor Architecture
6.3.2 Relationship to Group-Theoretic Framework
6.3.3 Fault Detection and Correction

6.4 Fast FFT-Based Algorithm
6.4.1 FFT Moduli
6.4.2 Algorithm Description

110
.... 110
.... 111
... 114
.... 115
... 117

.... 118

.... 122

... 122

... 123

6

81
82
84
86
89
91
91
91
92
92
93
93
95
97

102
104
107
109

61

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

...........

6.5
6.6
6.7
6.A
6.B

6.4.3 Algorithm Summary
Generalized Likelihood Ratio Test
Fault-Tolerance Overhead
Conclusion
Proof of Theorems
Solution of Likelihood Equations

7 Fault-Tolerant A/D Conversion
7.1 Round-Robin A/D Converter
7.2 Relationship to Framework
7.3 Algorithm Development

7.3.1 Generalized Likelihood Ratio Test
7.3.2 Required Number of Extra Converters
7.3.3 Probability of False Alarm
7.3.4 Probability of Detection
7.3.5 Probability of Misdiagnosis
7.3.6 Variance of Low Pass Signal Estimate

7.4 Simulation of Ideal System
7.5 Realistic Systems

7.5.1 Eliminate the Low Pass Filter
7.5.2 Eliminate the Dither System
7.5.3 Finite Length Filter
7.5.4 Finite Order Integrators
7.5.5 Real-Time Fault Detection Algorithm

7.6 Conclusion
7.A Signal Estimates: Mean and Variance
7.B Ideal Likelihoods: Mean and Covariance
7.C Finite Order Likelihoods

8 Conclusion and Suggestions for Future Research
8.1 Summary and Contributions
8.2 Future Research Directions

8.2.1 Further Exploration
8.2.2 Arithmetic Codes for Other Operations
8.2.3 Other Possible Uses of Homomorphisms

7

127
129
132
134
135
138

142
142
144
148
149
155
155
158
159
160
160
162
163
163
164
169
170
174
174
179
184

186
186
189
189
190
191

.......................
.......................
.......................
.......................
.......................
.......................

Chapter 1

Introduction

Traditionally, the problem of computational fault-tolerance has been solved through modu-

lar redundancy. In this technique, several identical copies of the system operate in parallel

using the same data, and their outputs are compared with voter circuitry. If no errors have

occurred, all outputs will agree exactly. Otherwise, if an error has occurred, the faulty

module can be easily identified and the correct output determined. Modular redundancy is

a general technique and can be applied to any computational task. Unfortunately, it does

not take advantage of the structure of a problem and requires a large amount of hardware

overhead relative to the protection afforded.

A more efficient method of protecting computation is to use an arithmetic code and tailor

the redundancy to the specific operation being performed. Arithmetic codes are essentially

error-correcting codes whose error detecting and correcting properties are preserved during

computation. Arithmetic codes offer performance and redundancy advantages similar to

existing error-correcting codes used to protect communication channels. Unfortunately,

arithmetic codes exist for only a limited number of operations.

This thesis addresses the general problem of designing an arithmetic code to protect a

given computation. A practical arithmetic code must satisfy three requirements:

1. It must contain useful redundancy.

2. It must be easily encoded and decoded.

3. Its inherent redundancy must be preserved throughout computation.

8

The first two requirements are shared by error-correcting codes for protecting data transmis-

sion, while the third requirement is unique to arithmetic codes. This host of requirements

makes designing practical arithmetic codes an extremely difficult problem.

We solve this problem through two key insights. First, we note that many important

arithmetic operations can be modeled using group theory. This provides a mathemati-

cally rigorous and well-defined foundation for our analysis. Second, we begin our study by

focusing on the third requirement of an arithmetic code: that its structure be preserved

throughout computation. This requirement restricts arithmetic codes to the class of map-

pings known as algebraic homomorphisms, which can often be readily identified. From the

set of algebraic homomorphisms, we select those with useful distance structures and that

are easily encoded and decoded. This leads to practical arithmetic codes.

Our results are extremely general and encompass any computation that can be described

as operations in algebraic groups, rings, fields, or vector spaces. This includes a wide

range of important and useful arithmetic operations such as low-level integer arithmetic,

matrix operations, convolution, and linear transformations. Throughout the thesis, we will

emphasize operations which are of interest in signal processing, although our results are

more widely applicable.

1.1 Major Contributions

Several important contributions to the study of arithmetic codes are made in this thesis.

First and foremost is a constructive procedure for generating arithmetic codes for a large

class of operations. This is the first general procedure, outside of modular redundancy, for

constructing arithmetic codes. Our approach is mathematically rigorous, based on group

theory, and yields the class of systematic-separate codes. The difficult problem of finding

arithmetic codes is reduced to the problem of finding subgroups. By finding all subgroups

of a given group, we generate all possible systematic-separate codes.

Another contribution is the general set-theoretic framework for analyzing fault-tolerant

systems. We give explicit measures for redundancy which indicate when error detection and

correction are feasible, and approach this problem from the most general point of view. The

effects of multiple errors are considered, and we are able to tradeoff between the abilities to

9

detect and correct errors. We also identify an important class of errors which enables the

redundancy in a system to be more easily quantified. We answer the question: When is it

possible to analyze the redundancy present in a code by some minimum distance measure?

Our work unifies the vast majority of existing arithmetic codes, including low-level inte-

ger codes, as well as higher-level Algorithm-Based Fault-Tolerance schemes. We show that

the underlying thread common to these apparently unrelated operations is that computa-

tion can be modeled as operations in an algebraic group and that errors influence the result

in an additive manner.

This thesis also contributes two novel and practical fault-tolerant systems and analyzes

their performance in detail. In the first, we apply a polynomial residue number system to

protect the convolution of discrete sequences. Although not the first fault-tolerant convo-

lution algorithm proposed, it is unmatched by its overall efficiency; single system failures

may be detected and corrected with as little as 65% overhead. Also, since residue number

systems are the basis for fast convolution algorithms, we are able to employ FFTs to reduce

the amount of computation required.

Our second major application addresses the problem of reliable A/D conversion. We

add redundancy in an original manner by oversampling the input signal and show that

error detection and correction reduce to a simple form, requiring about as much additional

computation as a single FIR filter.

1.2 Outline of Thesis

Chapter 2 motivates our study of fault-tolerance and reviews previous approaches to the

design of robust systems. We discuss approaches based on modular redundancy, as well as

more efficient methods utilizing arithmetic codes. We summarize existing low-level codes

for protecting integer arithmetic and discuss recently developed high-level codes referred

to as Algorithm-Based Fault-Tolerance. We briefly introduce each coding scheme, paying

particular attention to the manner in which redundancy is added.

Chapter 3 examines the problem of computational fault-tolerance from a set-theoretic

point of view. Motivated by the many examples of fault-tolerant systems in Chapter 2, we

decompose a robust system into a cascade of three subsystems. We study redundancy and

10

derive conditions that allow multiple errors to be detected and corrected. We then present

a specific class of errors, which we term symmetric errors, that enables the redundancy

present in a system to be quantified by a single integer, analogous to the minimum distance

of a standard binary error-correcting code. Our definition of symmetric errors is novel,

and relates the abstract requirements for error detectability and correctability to the more

familiar notion of minimum distance. Our results are extremely general and can be applied

to the analysis of any fault-tolerant system. Unfortunately, the set-theoretic approach does

not yield a constructive procedure for designing robust systems.

Chapter 4 narrows the focus from arbitrary computation to that which can be modeled as

operations in an algebraic group. We first present a group-theoretic framework of redundant

computation based on the decomposition of a robust system presented in Chapter 3, and

show that the constraints satisfied by an arithmetic code are equivalent to those of an

algebraic homomorphism. This reduces the problem of finding suitable arithmetic codes to

that of finding applicable algebraic homomorphisms. We recast the general conditions on

redundancy for error detection and correction in terms of group theory and show that these

functions may be done in an efficient manner using a syndrome homomorphism. Once the

framework for groups is complete, we extend it to rings, fields, and vector spaces. These

are other algebraic systems that have an underlying group structure. Assuming an additive

error model, we show that arithmetic codes for these operations must be homomorphisms

as well. This enables the bulk of the results for groups to be applied to these other algebraic

systems. We conclude with a wide variety of examples which demonstrate the general nature

of our results.

Chapter 5 considers the problem of determining possible homomorphisms for a given

algebraic operation. We use a quotient group isomorphism, and this yields the important

class of systematic-separate codes. These codes are characterized by a checksum computa-

tion performed in a parallel independent channel. We prove that the procedure is capable

of finding, up to isomorphisms, all possible systematic-separate codes for a given opera-

tion. We then extend the results for groups to rings, fields, and vector spaces. The results

for groups carry over completely, and we are able to characterize all possible systematic-

separate arithmetic codes in these other systems as well. We conclude this chapter by

11

presenting several examples of operations protected by systematic-separate codes. The ex-

amples include novel schemes unique to this thesis as well as schemes presented by other

authors.

Chapters 6 and 7 each contained a thorough study of a particular fault-tolerant sys-

tem. Chapter 6 describes a fault-tolerant convolution algorithm which is an extension of

residue number system fault-tolerance schemes applied to polynomial rings. The algorithm

is suitable for implementation on multiprocessor systems and is able to concurrently mask

processor failures. We develop a fast algorithm based on long division for detecting and

correcting multiple processor failures. We then select moduli polynomials that yield an

efficient and robust FFT-based algorithm. For this implementation, we study single fault

detection and correction, and apply a generalized likelihood ratio test to optimally detect

system failures in the presence of computational noise.

Chapter 7 examines a fault-tolerant round-robin A/D converter system. A modest

amount of oversampling generates information which is exploited to achieve fault tolerance.

A generalized likelihood ratio test is used to detect the most likely failure and also to

estimate the optimum signal reconstruction. The error detection and correction algorithms

reduce to a simple form and require only a slight amount of hardware overhead. We present

a derivation of the algorithms, and discuss modifications that lead to a realizable system.

We then evaluate overall performance through software simulations.

Lastly, in Chapter 8 we summarize the major contributions made in this thesis. We also

suggest practical and potentially important directions for future research.

12

Chapter 2

Previous Approaches to

Fault-Tolerance

In this section we motivate our study of fault-tolerance and introduce basic concepts and

terminology. Different types of fault-tolerance are described, and we discuss traditional

approaches to fault-tolerance based on modular redundancy, as well as more recently de-

veloped Algorithm-Based Fault-Tolerance schemes.

2.1 Introduction

High reliability is needed in many signal processing applications to ensure continuous op-

eration and to check the integrity of results. High reliability is needed in life critical ap-

plications, such as aircraft guidance systems or in medical equipment, where failures can

jeopardize human lives, or in remote applications, such as satellites or underwater acoustic

monitors, where repair is impossible or prohibitively expensive. Robustness is also needed

in systems that must operate in hazardous environments, such as military equipment, or in

spacecraft that must be protected against radiation. In all of these applications there is a

high cost of failure, and reliability is of great importance.

The complexity of signal processing algorithms has been steadily increasing due to the

availability of special purpose, high-speed signal processors. Many algorithms that were

once too computationally intensive, are now implemented in real time by multiprocessor

13

systems. In these systems, the large amount of hardware increases the likelihood of a failure

occurring, and makes reliable operation difficult.

It is impossible to guarantee that components of a system will never fail. Instead, failures

should be anticipated, and systems designed to tolerate failures gracefully. This design

methodology is known as fault-tolerant computing and it received considerable attention

by early computer designers because of the unreliability of existing components. After the

development of integrated circuits, which were several orders of magnitude more reliable,

fault-tolerance became a secondary issue. Attention was focused on developing faster, more

complex circuits, and as a result, circuit densities grew exponentially. In many areas,

however, semiconductor reliability has not kept pace with the level of integration, and

fault-tolerance is becoming a major issue again.

A component is said to have failed when it does not compute the correct output, given

its input. A failure is caused by a physical fault, and the manifestation of a failure is errors

within the system [1]. In a fault-tolerant system, the basic idea is to tolerate internal errors,

and keep them from reaching and corrupting the output. This process is known as error

masking.

A fault may be permanent or transient. A permanent fault is caused by a static flaw in a

component and may result from manufacturing defects or physical damage during operation.

A permanent fault need not produce errors for every input. Transient or soft faults are

momentary faults that occur infrequently and are randomly distributed throughout the

system. These types of faults can be induced by several sources: alpha particles emitted from

the substrate and packaging material; cross coupling between closely spaced signal lines;

unpredictable timing glitches from rare, absolute worst case delays; and electromigration

phenomenon in small conductors [2]. The current trends toward higher clock speeds and

denser components aggravate the problem of transient errors [3].

The highest and most desirable level of fault-tolerance is known as concurrent error

masking. In this technique, errors are masked during operation and the system continues

to function with no visible degradation in performance. In general, concurrent error masking

usually requires the following steps:

1. Fault Detection - determine that the output is invalid and that a fault has occurred

14

within the system.

2. Fault Location - determine which system component failed.

3. Fault Correction - determine the correct output.

Concurrent error masking is difficult and expensive to achieve, and basically requires the

entire system to be checked for errors at each time step. Often, lower levels of protection

are acceptable and a few erroneous outputs may be tolerated. In these instances, less

expensive techniques which check only a part of the system at each time step are adequate.

In other applications, there is a high cost for computing erroneous results and a lower cost

for delaying the result. Is these applications, concurrent fault detection coupled with off-line

fault location/correction may be a viable alternative.

2.2 Modular Redundancy

In order for a system to be fault-tolerant, it must contain some form of redundancy. By

redundancy we mean additional states that arise during faults and that are used to detect

and correct errors. Without redundancy, it is impossible for a system to be fault-tolerant

since it is unable to distinguish between valid and invalid internal states. Utilizing redun-

dancy is in contrast to the goal of eliminating as much redundancy as possible. Redundancy

generally increases the complexity of a system and leads to increased cost.

The traditional method of adding redundancy and fault-tolerance to a system is through

modular redundancy [4, 5]. This is a system-level approach in which several copies of the

system operate in parallel, using the same input. Their outputs are compared with voter

circuitry and will agree if no errors have occurred. Otherwise, if the outputs are not identical,

then an error has occurred and the correct result may be determined using a majority voter.

A system, S, protected by modular redundancy is shown in Figure 2-1. Assume that

there are N copies of S labeled S to SN. Then, it is possible to detect D and correct C

errors if N > D + C + 1 where D > C. To detect single errors, at least N = 2 copies of S

are needed (100% overhead). To correct single errors, at least N = 3 copies of S are needed

(200% overhead).

15

Input

Figure 2-1: Example of N-modular redundancy used to protect system S.

Modular redundancy (MR) is the most widely used fault-tolerance technique. This is

because it can be used to protect any system and since it decouples system and fault-

tolerance design. That is, the design of S is basically independent of the design of the voter

circuitry used to check S. Furthermore, totally self-checking checkers capable of protecting

the voting process are available [6].

MR can be applied to a system at a variety of levels. At a low level, logic gates may be

duplicated and the error masking performed by the gates themselves [7]. At a higher level,

integrated circuits may be duplicated and their outputs compared; or the entire system

may be duplicated. The optimal level at which to apply MR depends upon the expected

types of faults and the cost of voter circuitry. An example of system level MR is the

Jet Propulsion Laboratory's Star Space Shuttle Computer [8]. Five copies of the system

operate in parallel and voting is performed in hardware. Other examples include Draper

Laboratory's Fault-Tolerant Parallel Processor [9], and commercial systems by Tandem [10]

and Stratus [11].

Another important area of research has been in developing self-checking systems. These

are systems that are capable of concurrent fault detection. Coupled with MR, a self-checking

system can significantly reduce the overhead required for fault-tolerance. N copies of a self-

checking system contain sufficient redundancy to detect up to N and correct up to N - 1

errors.

Using additional copies of system components is just one form of modular redundancy.

16

If performance is not a major bottleneck, and transient faults are expected, then time

redundancy may be used. The system would perform the same operation N times, and then

compare results. An example of time redundancy is a technique called Recomputing with

Shifted Operands which can protect certain arithmetic operations [12]. In this technique,

all operations ae done twice, once with normal operands and once with shifted operands.

It can be shown that the shifting will prevent any permanent or transient failure in the

ALU from producing incorrect, but identical, results in both cases. This technique may be

applied to yield totally self-checking systems. The hardware overhead needed is only that

of the shifters and equality checker.

The fault-tolerant systems that we have been describing are all capable of concurrent

error detection and correction. If a small number of erroneous outputs can be tolerated, then

other techniques, such as roving emulators or watchdog processors, may be employed [13].

These schemes check only a portion of the computation at each time step and are well-suited

to multiprocessor systems.

2.2.1 Summary

MR is a very general approach to fault-tolerance. It is applicable to any type of system

and allows fault-tolerance to be added even after system design is complete. Redundancy

is incorporated by a brute force approach: system duplication. With sufficient copies of the

system, any desired level of fault-tolerance may be achieved. Fault detection and correction

are especially simple and may be implemented by majority voters. The main drawback of

MR is that it does not take advantage of the specific structure of a problem and thereby

requires a substantial amount of redundancy relative to the protection provided. MR will

certainly continue to be widely used, especially in the protection of general purpose com-

putation.

2.3 Arithmetic Codes

A more efficient method of adding redundancy to computation is via an error-correcting

code. The basic idea is as follows. Redundancy is added to the representation of data within

17

the system, and the system is modified to operate on the encoded data. During error-free

operation, the state of the system remains within a fixed subset of valid states. If an error

occurs, the system state is perturbed, and the redundancy is used to detect and correct

errors, much like an error-correcting code for a communication system.

Standard error-correcting codes can be applied only to protect systems in which the

input matches the output. In general, these codes cannot be used to protect computation

because their distance structure is destroyed during computation. They have been success-

fully used to protect certain components of computer systems, such as buses and storage

devices, where reliability is needed and no computation is performed. Encoding, and the

error detection and correction are usually performed by dedicated hardware in the memory

and disk/tape controllers rather than by the CPU.

Arithmetic codes are a class of error-correcting codes that are capable of protecting

certain binary operations. Let 0 denote an arbitrary binary operation applied to a pair of

operands g91 and 92. The result r is given by

r = 9192gl 2- (2.1)

For example, gl and g2 could be integers, and 0 could be integer addition, subtraction, or

multiplication.

In an arithmetic code, we first encode g, and g2 to obtain operand codewords

= () (2.2)

g2 = 0(g 2). (2.3)

Then a different operation O is applied to the codewords to yield the encoded result

h = 1 0§2- (2.4)

We assume that the system computing (2.4) is not reliable and that an error e could

18

- __ - -___ ___ ____ - ___ -- ----- --

arise during computation. The faulty result is given by

h' = 9(1, 2, e) (2.5)

where u models the manner in which errors affect the result. We denote by - the set of

all possible results, and denote by Hv the subset of corresponding to valid, error-free

results. If h' E 7-v then we declare that no errors occurred during computation. Otherwise,

if h' 0 J-v, we declare that an error occurred, and correct the error using the mapping a,

h = a(h'). (2.6)

Finally, we decode h in order to obtain the desired result,

r = 4-1(h). (2.7)

The central motivation behind the use of arithmetic codes is to provide robust compu-

tation at a lower cost than modular redundancy. Modular redundancy is always a viable

alternative to protecting any computation and thus it serves as a benchmark for evaluating

the efficiency of arithmetic codes. Another important observation is that arithmetic codes

protect the bulk, but not the entirety, of computation. Functions such as error detection

and correction and decoding the final result are usually assumed to be robust. If necessary,

these functions may be protected by modular redundancy. When evaluating the overall

efficiency of an arithmetic code, the cost of functions protected by modular redundancy

should be weighted accordingly.

All existing arithmetic codes can be placed in this framework and described by mappings

and a, operations 0 and 0, and an error process p. When designing an arithmetic code,

we are given a set of operands, and a binary operation, 0, and must determine an encoding

4 and operation O to be applied to the codewords. Furthermore, must have useful error

detecting and correcting properties and must protect against the expected types of errors

arising during the computation of O. Also, computing 4 and O and performing the error

detection and correction should not require substantially more computation than computing

19

O alone. Designing practical arithmetic codes is a difficult task.

Arithmetic codes can be classified as being either systematic or nonsystematic.

Definition 1. A systematic error-correcting code is defined as one in which a code-

word is composed of two distinct parts: the original unencoded operand g, and a

parity or checksum symbol t derived from g [14].

We will denote the mapping used to generate parity symbols by 0. A systematic codeword

has the form

=0(9)= [g,t] = [g,0(g)] (2.8)

where [g, t] denotes the pair consisting of the elements g and t. A nonsystematic code is

defined as one which is not systematic. Systematic codes are desirable since results can be

easily extracted from codewords without additional processing.

Systematic codes can be further classified as being either separate or nonseparate de-

pending upon how computation is performed on the codewords.

Definition 2. A systematic code is separate if the operation O applied to codewords

corresponds to componentwise operations on the information and parity symbols: 0

applied to the information symbols, and O is applied to the parity symbols.

Thus in a separate code,

1l 0 2 = [1, t] 0 [2 , t2] = [l i g2, tl Ot2]. (2.9)

In a nonseparate code, interaction between operands and parity occurs.

In summary, there are three types of arithmetic codes: nonsystematic, systematic-

separate, and systematic-nonseparate. Figure 2-2 summarizes these coding schemes and

shows possible interaction between information and parity symbols.

The first generation of arithmetic codes protected integer arithmetic and they relied on

the same concepts of distance as binary error-correcting codes. We will now briefly discuss

these codes, and our emphasis will be on describing applicable coding schemes X, and on

revealing the form of the redundant information. We will not concern ourselves with details

of the design procedures or with the process of choosing a specific code.

20

g1

r

(a) Nonsystematic

r

(b) Systematic-Separate

aR ry t~ I. Rnt~_ndr I_

L in
Panyd t2

=_aEcode
___ -.] -~ -]- I -

Product

0

t'

Error
Detection

and

- r

Error-

(c) Systematic-Nonseparate

Figure 2-2: Diagram showing the interaction between information and parity symbols for
the three different classes of arithmetic codes.

21

a

2.3.1 aN Codes

aN codes ae nonsystematic arithmetic codes capable of protecting integer addition and

subtraction. An operand g is encoded as follows:

3= (g) = gN (2.10)

where N is an integer. N is referred to as the generator or check base of the code. The

set of all possible results consists of the set of integers while the subset of valid results

consists of multiples of N.

If the operation we wish to protect, D, is integer addition (subtraction), then the

corresponding operation on the codewords, 0, is also integer addition (subtraction). It is

easily verified that the codewords are closed under this operation and that a valid result

will be a multiple of N.

The performance of aN codes depends on the choice of the multiplier N. In general,

additive errors which ae a multiple of N cannot be detected. aN codes can also be defined

on a subset of integers, and error correction may be possible. General design guidelines are

found in [6].

2.3.2 (aN)M Codes

(aN)M codes are systematic-nonseparate codes capable of protecting integer addition, sub-

traction, and multiplication [6]. They are best described by an example.

Assume that we wish to protect modulo 8 addition, subtraction, and multiplication of

the set of integers {0, 1,..., 7}. Consider the encoding § = 0(g) = (25g)40. This is tabulated

below showing both the decimal and binary representations of the numbers.

22

It can be seen that the three least significant bits (rightmost) of the codewords correspond

to the information bits. Thus the code is systematic.

The operation O applied to the codewords is the same as the operation applied to the

information symbols except that now it is performed modulo 40. For example, if modulo 8

multiplication is to be protected, modulo 40 multiplication is performed on the codewords.

In computing 0, information and parity symbols interact, and thus the code is nonseparate.

The general form of this code is 3 = (gN)M, and it is systematic for only certain choices

of N and M.

2.3.3 Integer Residue Codes

Residue codes are systematic-separate arithmetic codes capable of protecting integer addi-

tion, subtraction, and multiplication. Parity symbols are encoded as follows:

t = (g1)N (2.11)

t = (g2)N (2.12)

where N is an integer and (X)N denotes the remainder when x is divided by N.

Let J denote the operation that we wish to protect (integer addition, subtraction, or

multiplication). The operation O applied to the parity symbols is the same as 0 except

that it is performed modulo N. Thus, if one desires to protect integer addition, residue

addition modulo N is used in the parity channel.

As with aN codes, performance depends on the choice of parameter N. Factors which

influence the choice of N include the expected types of hardware errors, and the base of the

23

Decimal Binary Decimal Binary

g 9
0 000 0 000000
1 001 25 011001
2 010 10 001010
3 011 35 100011
4 100 20 010100
5 101 5 000101
6 110 30 011110
7 111 15 001111

number system used.

2.3.4 Integer Residue Number Systems

The last type of coding scheme that we will consider is called an integer residue number

system (RNS). It is a nonsystematic code and is similar in some respects to a residue

checksum.

Let ZM denote the set of integers {0,1, . . ., M - 1}. Assume that we know a priori that

the result of computation lies in ZM. Assume further that M can be written as the product

of N co-prime factors M I= Il 1 nmj. An RNS utilizes the isomorphism between the ring

of integers modulo M and the direct sum of the N smaller rings of integers modulo ink.

Every element a E ZM is uniquely represented by the N-tuple of residues

{al,a 2,.. .,aN} where aj = (a)m . (2.13)

We can perform arithmetic on integers by manipulating their residue representations. Arith-

metic is similar to that performed in the parity channel of a systematic-separate residue

checksum code. For example, to perform the addition, r = a + b, we independently compute

the N residue sums rj = (aj + bj)mj. Similarly for subtraction and multiplication. We re-

construct the result from the residues rj using the Chinese Remainder Theorem (CRT) [15].

Fault-tolerance is added to a RNS by adding C redundant moduli mN+,..., mN+C

and keeping the dynamic range limited to M. These redundant moduli must be co-prime

to each other and to the original N moduli. The encoding for a becomes

+(a) = {al, a2, .. .,aN+c} where ai = (a)m,. (2.14)

Assume that the redundant moduli ae all larger than the original moduli,

i=N+l,... N+Cmi > mj for +C (2.15)
j = 1,...,N.

Then it can be shown that there is sufficient redundancy to detect a and correct 3 < a

errors if and only if a + ,3 < C. Many different methods for error detection and correction

24

have been proposed [16, 17, 18, 19, 20]. Most rely either on multiple CRT or mixed radix

conversions. Error detection and correction can also be protected by a fault-tolerant mixed

radix conversion algorithm [21].

2.3.5 Comparison of Arithmetic Codes

We now make some general statements concerning the three types of arithmetic codes

discussed. Each code has several advantages and disadvantages which govern its use. The

statements we make hold most of the time, but one notable exception is integer RNS. We

discuss this special case last.

The main advantage of systematic codes is that the desired result r is readily available

and extra decoding is unnecessary. This may be critical in high-speed systems where the

extra delay associated with decoding is unacceptable.

Separate codes are also more desirable than nonseparate ones because they do not

require an increase in the system dynamic range. Consider again the (aN)M code described

in Section 2.3.2. The original system had a dynamic range of 8, while the redundant

computation required a dynamic range of 40. The longer wordlength arithmetic needed to

compute O decreases the speed of the fault-tolerant system.

The most desirable coding schemes are usually systematic-separate because they do

not have any of the drawbacks mentioned above. Also, the original system computing 0

is incorporated unaltered, and only the parity channel and error detection and correction

systems must be designed.

Integer RNS is an exception to the above rules because its parallel structure results in

efficient implementations. Although it is by definition a nonsystematic code, it actually

subdivides arithmetic into several smaller operations, each with less arithmetic complexity

than the original operation. Integer RNS also has superior fault coverage since the errors

which it protects against closely match those arising in actual systems.

25

2.4 Algorithm-Based Fault-Tolerance

In this section we discuss a class of high-level arithmetic codes referred to as Algorithm-

Based Fault-Tolerance (ABFT). This technique differs from the arithmetic codes presented

in the last section in two important aspects. Firstly, the data encoded can be real or complex

numbers. The coding schemes which we have discussed thus far have all dealt with either

binary or integer data, which are exact number systems. Error-correcting codes, however,

may be defined over any field, and in ABFT they are extended to include real or complex

data. Secondly, entire sequences or arrays of data are encoded instead of just individual

operands. Just as error-correcting codes with low overhead encode sequences of information

symbols, low-overhead fault-tolerant computation may be achieved by encoding sequences

of operands. The arithmetic codes which we have studied up until now have have only

encoded individual operands.

An important motivation for the development of high-level arithmetic codes is the use of

parallel, multiprocessor architectures for solving large computational tasks. These systems

are amenable to protection by ABFT for the following three reasons:

(i) In these systems, a single operation is usually applied to large amounts of data in a

regular fashion. This regularity allows the development of high-level arithmetic codes

whose distance structure is preserved during computation.

(ii) The resulting codes are well-suited to the types of errors that occur in multiprocessor

systems, such as complete failure of a single or multiple processors.

(iii) In these architectures, there is some flexibility in the partitioning and scheduling of

the algorithm among the various processors. This flexibility allows the algorithm to

be modified in order to accommodate the encoded data.

2.4.1 Codes for the Transmission of Real Numbers

The first codes for protecting sequences of real or complex data were developed by Mar-

shall [22]. While only concerned with protecting data transmission, he prepared the way

for higher-level arithmetic codes. His main contribution was to show that error-correcting

codes are not restricted to finite fields, but can be defined over any field. He demonstrated

26

that many codes, such as BCH codes, have direct counterparts defined using real or complex

data.

2.4.2 Codes for Matrix Operations

Several arithmetic codes exist for protecting matrix operations. We describe these in the

order in which they were developed.

Matrix Checksum Codes

The first arithmetic codes for protecting computation with real or complex data were devel-

oped by Huang [23, 24]. He introduced the term Algorithm-Based Fault-Tolerance because

he realized that adding redundancy to data requires a corresponding change in the algo-

rithm to operate on the encoded data. He applied a simple arithmetic checksum to protect

certain matrix operations. Let A be an M x N matrix of real or complex data. A is

encoded in any of three different ways depending upon which operation is to be protected.

The encoding schemes are as follows:

1) column checksum

+1 (A) = [A = [:A

2) row checksum

+2(A) = A[Ij eI] = [AIAe]

3) full checksum [A jAe
+ 3(A) = [A[I {r = A A

where is a 1 x M row vector T = 1 1.. 1] and gT is a 1 x N row vector eT = [1 ... 1].

These codes are systematic since the original matrix A is a submatrix of its encoded forms.

Codes 41 and 42 have a minimum distance of 2 while code >3 has a minimum distance of 4.

The distance structure of these codes is preserved for various arithmetic operations.

27

Assume that B is another matrix of appropriate dimension. Then

1) Matrix Addition:

+ 1(A) +±1(B) = q(A±B)

+2 (A) ± + 2 (B) = q2 (A + B)

+3 (A) + + 3 (B) = 3(A B)

2) Scalar Multiplication:

cal4(A) = 4'1(aA)

aq 2(A) = + 2 (aA)

a03(A) = 3 (aA)

where a is a real or complex number

3) Matrix Multiplication:

,01 (A)0 2 (B) = 3 (AB)

4) Matrix transposition:

+1(A)' = +2(AT)

02(A)T = 1 (AT)

3(A)T - 3 (AT)

5) LU decomposition:

If A is LU-decomposable, A = LU, where L is lower triangular and U is upper

triangular, then:

+3(A) = X 1(L)+ 2 (U)

where 1(L) is a lower triangular column checksum matrix and +2(U) is an

upper triangular row checksum matrix.

Since these codes have a small minimum distance, Huang applied them to fully parallel

architectures in which each processor calculates only a single element of the result matrix.

Hence with codes 01 and 02, any single processor failure can be detected. While with code

43, any single processor failure can be detected and corrected.

Under the operations of matrix addition, multiplication by a scalar, and transposition,

the codes are separate since no interaction between information and parity occurs. Under

matrix multiplication or LU decomposition, the codes are nonseparate. To understand why,

28

multiply a column checksum matrix and a row checksum matrix to obtain a full checksum

matrix

[_A [BAB jABe 1
01(A)q 2 (B) J [B Be,] = __ = 4 3 (AB). (2.16)

The matrices in the upper right, ABe, and lower left, eTAB, of the result are products

of information and parity, and thus this is a nonseparate code.

Weighted Matrix Checksum Codes

The codes developed by Huang are simplistic, and have a small minimum distance. Jou ex-

tended Huang's work by adding multiple weighted checksums to rows and columns resulting

in codes with a larger minimum distance [25, 26, 27]. The M x N matrix A is encoded as

follows:
1) weighted column checksum

2 1) (A) = [EIA]A = [TEA]

2) weighted row checksum

2(A) = A[I E] = [A AE,]

3) weighted full checksum

I ~~~~~~~~~~~~~~~~EA EAE

(A) = ['ET] A Er] = [TA E TAE]

where E T is a C x M matrix and Er is a N x D matrix. E T and E, serve the same purpose

as the encoding matrix of a linear error-correcting code. If ET and E, are properly chosen,

Ow and 02 will have a minimum distance of C + 1 and D + 1 respectively. Similarly, 3

can have a minimum distance as large as (C + 1)(D + 1). Weighted checksum codes can

be applied to protect the same operations as matrix checksum codes. The large minimum

distance permits the detection and correction of multiple errors.

One important issue that was never properly treated by Huang and Jou was that of com-

putational noise. Error-correcting codes require exact arithmetic, and the computational

noise inherent to floating point systems corrupts results slightly, and appears as small errors

29

in the output. Huang and Jou glossed over this issue by ignoring all small errors. Later,

Nair developed optimal weighted checksum codes which minimized the effects of quantiza-

tion noise [28, 29, 30]. The design procedure is a constrained optimization, and a tradeoff

is made between the ability to detect small errors and quantization noise minimization.

Nair also gave a procedure for summing large vectors which minimizes quantization noise.

To implement this algorithm efficiently, however, requires the use of a nonstandard ALU.

Also, although minimizing quantization noise, Nair does not deal with its effects in a proper

manner.

Other Developments in ABFT for Matrix Operations

Several other papers have been written in the area of ABFT for matrix operations, and all

rely upon the coding schemes mentioned above. We briefly describe these papers. Anfinson

related Jou's work directly to linear error-correcting codes and showed that the coding

schemes involved are essentially equivalent [31]. However, one important limitation arises

in real number systems: lookup tables cannot be used to correct errors because the set of

possible errors is infinite. Also, multiple error correction requires solving an overdetermined

nonlinear system. Anfinson also gives a specific code with minimum distance 4 based on a

Vandermole matrix that permits simplified error detection and correction.

Banerjee experimentally evaluated the fault coverage and computational overhead of

Jou's weighted checksum method [32]. Megson implemented Huang's checksum scheme on a

triangular processor array [33]. Anfinson applied Jou's weighted checksum scheme to protect

processor arrays performing QR decomposition [34]. Luk applies weighted checksums to

systems performing LU decomposition, Gaussian elimination with pairwise pivoting, and

QR decomposition [35]. He also analyzed the effects of quantization noise in floating point

systems. Bliss computed the probability of system failure as well as the probability of

undetected errors for a variety of ABFT coding schemes and architectures [36, 37]. A good

summary of papers dealing with ABFT for matrix operations is found in [1].

30

2.4.3 Codes for Linear Transformations

Musicus and Song proposed a weighted checksum code for protecting linear transforma-

tions [38, 39, 40]. Assume that the linear transformation F must be computed N times

using different sets of data _ yielding results yi,

y. = F for i = 1,...,N. (2.17)

This can be written as a matrix-matrix multiply,

Y =FX (2.18)

where Y consists of the column vectors y., and X consists of the column vectors i,

Y = '. YN | and X ZN (2.19)

To protect (2.18), Musicus and Song use a systematic-separate error-correcting code as

shown in Figure 2-3. They compute a parity matrix Xp from X by post-multiplying by an

encoding matrix 9,

X = (X) = Xe. (2.20)

e is determined in a manner similar to choosing the encoding matrix for a systematic

linear error-correcting code. Then the main computation Y = FX along with the parity

computation Yp = FXp ae performed.

To detect errors, they compute the syndrome matrix

S = Y - Y . (2.21)

Substituting in for Y and Yp, we find that

S = F(Xe) - (FX)e. (2.22)

31

x
A
y

Figure 2-3: Underlying structure of the systematic-separate coding scheme proposed by
Musicus and Song to protect linear transformations.

Since matrix multiplication is associative, this equals zero if no errors have occurred. If

the syndrome is nonzero, then its value can be used to correct the error. Note that the

placement of parentheses in (2.22) is critical since it reduces the amount of computation

in the parity channel significantly. (It is assumed that e is chosen such that the parity

Xp = xe has far fewer columns than X.)

In addition to demonstrating this coding scheme, Musicus and Song made several other

important contributions. Firstly, they developed encoding matrices e containing only small

integers that have a good minimum distance. At the time of their paper, this was impor-

tant since it reduced the computation needed to calculate the parity data. Now, however,

arithmetic units and signal processors are optimized for floating point arithmetic, and an

integer operation is computationally as expensive as a floating point operation. Thus this

contribution is no longer significant. Secondly, and most importantly, they developed a

stochastic model of the computation and fault processes. Quantization noise was modeled

as additive white noise and a generalized likelihood ratio test used to optimally detect and

correct errors. Their method is able to reduce overall quantization noise, and yields more

accurate solutions in an error-free system. Thirdly, they provided a detailed error analysis

and performed thorough simulations of their system operating under various conditions.

2.4.4 Codes for FFTs

Two authors independently developed fault-tolerance schemes to protect FFTs. Both re-

quire fully parallel implementations on butterfly architectures. We mention both here, but

only consider one to be a true ABFT implementation.

32

Choi and Malek proposed a fault-tolerant FFT algorithm that detects errors by recom-

puting the result using an alternate path through the butterflies [41]. Once an error is

detected, the faulty butterfly can be located in a few steps. Although offering algorithm-

level fault-tolerance, we do not consider this work to be an example of ABFT since the data

is not encoded. Rather, we feel that their work more properly fits in the area of modular

redundancy since recomputation is needed to detect errors.

Jou proposed a systematic-separate code to protect FFTs [25, 42]. He considers an N-

point FFT with input x[n] and output X[f]. He utilizes the following relationship between

x[n] and X[f] to detect errors:
N-1

Nx[O] = E X[f]. (2.23)
f=0

This is essentially equivalent to Huang's matrix checksum code and has a minimum distance

of 1.

2.4.5 Codes for Convolution

Redinbo developed a fault-tolerant convolution algorithm that is based on linear cyclic

error-correcting codes [43, 44]. Let a[n] and b[n] be P-point sequences which ae nonzero

for 0 < n < P- 1. The linear convolution, denoted by c[n] = a[n] * b[n], results in a

Q = 2P - 1 point sequence c[n] as follows,

P-1

c[n] = E a[i]b[n - i] for n = 0, 1,..., Q - 1. (2.24)
i=O

Redinbo represents a[n] by the polynomial a(x) as follows:

P-1

a(x) = E a[i]I (2.25)
i=0

and in a similar manner represents b[n] and c[n] by b(x) and c(x). The convolution c[n] =

a[n] * b[n] corresponds to the polynomial multiplication c(z) = a(x)b(x).

To add fault-tolerance, Redinbo computes parity symbols from the operands as follows:

ta(X) = (xCa(x))g() (2.26)

33

tb(x) = (xb(x)) (2.27)

where g(x) is called the generator polynomial, and C = degg(x). Then he computes the

desired convolution c(x) = a(x)b(x) and then a product involving the parity symbols,

to(x) = (f(X)ta(x)tb(x))g(x) (2.28)

where f(x) = (xQ)g(). This code is equivalent to a BCH code defined over the field of

real or complex numbers, and its error detecting and correcting properties depend upon the

generator g(x). In general, the code is capable of detecting up to degg(x) erroneous output

samples in the result, where degg(x) denotes the degree of g(x). Existing techniques may

be used to choose the generator polynomial g(x), and fast algorithms for detecting and

correcting errors exist [14].

2.5 Summary

This chapter discussed existing approaches to protecting computation based on modular

redundancy and arithmetic codes. The main advantage of modular redundancy is its ease

of use and universal applicability. However, it is much less efficient than techniques based on

arithmetic codes. Arithmetic codes add redundancy in a manner similar to error-correcting

codes for protecting communication channels, and offer advantages in terms of lower redun-

dancy and better fault coverage.

The main drawback to applying arithmetic codes is that the code must be tailored to the

specific operation being performed, and codes exist for only a limited number of operations.

In the following chapters, we will study in detail the problem of designing a arithmetic

codes. Our goal is to develop a general design procedure for generating useful arithmetic

codes for a large class of operations.

34

Chapter 3

Set-Theoretic Framework

In this chapter we develop a general framework that is able to characterize a wide variety

of fault-tolerant system. The framework is based on set theory, and its purpose is to

extract common features shared by all fault-tolerant systems. Although not a constructive

procedure, the framework is useful for determining if sufficient redundancy exists in order

to perform error detection and correction.

We first make some basic definitions using set theory, and model computation as a

mapping from a set of operands to a set of results. The effects of errors are then included

and a decomposition of a robust system into a cascade of three subsystems is presented. We

derive requirements on redundancy assuming a general error mechanism such that errors

may be detected and corrected. We show that for a certain class of errors, the redundancy in

a system is completely characterized by a single integer, analogous to the minimum distance

of an error-correcting code. This leads to a simplified analysis of the inherent redundancy

of a system. Lastly, we demonstrate how this framework may be applied by studying a

system protected by modular redundancy.

3.1 Set-Theoretic Model of Computation

A set 5 is an arbitrary collection of elements. For example, G could contain integers, real

numbers, vectors, or any other type of element. The order of set G, denoted by X (5), equals

the number of elements in G and may be finite or infinite. The set without any symbols is

35

called the empty-set and is denoted by 0.

Let g and 1' be two arbitrary, nonempty sets. The Cartesian product of 5 and -t,

denoted by G x -(, is the set of pairs

x 7- = [g, h g E , h E t}. (3.1)

The Cartesian product can be defined for any finite number of sets in a similar manner.

Let 1, 52,.. , QN be N arbitrary nonempty sets. The Cartesian product of these N sets is

defined as

x 2 - XN = {[91,2,...,9N] I g E 1,92 2,.--,9N E N} (3.2)

Any deterministic operation can be modeled as a mapping 7 from a set of inputs 5 to a

set of outputs R. The mapping r associates with each input g E g a unique output r e R.

We denote the mapping of g to r by r = r(g).

This model also encompasses multiple inputs and multiple outputs in a natural manner.

If we have M inputs gl E 1,...,g E M and N outputs r E 'R71...,rN E RN, then

we would let = 1 x --- x gM and 7R = R1 x- x 7N. This model assumes that any

combination of inputs and outputs can arise during operation. If only certain combinations

of inputs are possible, then we would choose g to be the subset of Gi x... x gM corresponding

to the domain of . Similarly, we would choose R to be the subset of R1 x ... x N

corresponding to the range of .

Systems with internal state can also be modeled in this manner as well. We simply treat

the state as another set of inputs and the updated state as another set outputs. No other

changes are necessary.

Now assume that a fault occurs in the system computing r. A fault is a permanent or

intermittent hardware failure that affects the result of computation. We call the net effect

of the fault the error, and denote it by e. Let , denote the set of all possible errors that

are caused by a single fault arising during computation of r. We assume that £ can be

deduced a priori by a careful study of the system used to compute . The specific error

caused by a fault is unknown, but it will be some element of 4. is a function of the

36

hardware architecture and specific computational steps used to compute r. £ contains

a special element, denoted by 0, which represents the case of no error. We also define

* = 4 - {0}. We include the effects of errors in our model by letting be a mapping

from 5 x £ to 2. r(g, e) denotes the result of the system given input g and assuming that

error e occurred. Note that a fault need not corrupt the result for all inputs. That is, it is

possible that IL(g, e) = #(g, 0) for some g E g and error e ~ 0 E 4,.
We can further generalize this model and include the effects of multiple errors. If A errors

occur during the computation of r, then we will denote the output by r(g, el,..., e,). We

can also describe this in terms of sets as follows. Let £E() = 4 x ... x 4 where 4 appears A

times in the Cartesian product. Then r can be described as a mapping from 9 x £() to R.

Defining r in this manner requires a detailed knowledge of the set of errors 4 and how they

affect the result. Also, in choosing G x £(A) as the domain of r assumes that any error could

potentially arise for any operand. If the hardware architecture dictates that only certain

errors can occur for certain combinations of operands, then we would choose the domain of

r to be the subset of g x £$) containing possible operand-error combinations.

Definition 3. We say that the system r is robust for C simultaneous errors if

7(g,el,...,ec) = r(g,0) for all g E ,ej E . (3.3)

Intuitively, a system is robust if it is unaffected by up to C simultaneous errors. Most

systems are not robust, and additional steps are required in order to protect them.

3.2 Redundant Computation

We study robust systems by examining how they exploit redundancy. By redundancy we

mean additional states that arise during faults and that are used to detect and correct errors.

We model a robust system r as a cascade of three subsystems: a redundant computation

unit /A, an error corrector a, and a result decoder ar. This is illustrated in Figure 3-1. z

computes the desired operation, , but utilizes a redundant representation of the output.

We denote the possibly faulty output of p by h' and refer to it as the encoded result.

37

Operands --- Results

Error e

Figure 3-1: Decomposition of a robust system into a cascade of three subsystems: a redun-
dant computation scheme p, an error corrector a, and a decoder a.

The redundancy present in h' is used to detect errors, and when possible, to correct them.

Let 'i denote the set of all possible outputs of pI; those arising from error-free computation

as well as those arising during errors. Let X(v be the subset of XH corresponding to error-free

(valid) results,

v = {(g, 0) Ig 9 E G}. (3.4)

We assume that a one-to-one mapping of valid encoded results in)-v to desired results in

7R exists. We denote this mapping by a and refer to it as the decoder. Located between pj

and a is the error corrector which attempts to correct errors that occurred in p using only

the output h'. a is a mapping from ?i onto ?iv whose operation is most easily described

as error detection followed by error correction. Error detection utilizes the following test:

If h' E Hv we declare that h' is valid.
(3.5)

Otherwise, if h' O Jv we declare that h' is invalid.

If no errors are detected then a(h') = h'; no correction is required. Otherwise, if an

error is detected, a attempts to correct it. If the error is correctable, then a returns the

error-free result h. Otherwise, if it is deemed that the error is uncorrectable, then a(h') = *

where * signals a detectable, but uncorrectable error. Uncorrectable errors must be handled

separately.

The decomposition shown in Figure 3-1 is not always precisely defined, but the rationale

behind it is as follows. When an error occurs in a robust system altering its internal state,

the effect of the error must be canceled before it reaches the output. That is, the system

38

must contain redundancy at the point of the error, and the system ahead of the error location

must perform error correction. In practice, the error corrector a and decoder a may not be

clearly delineated. Often, they are combined into a single mapping which simultaneously

corrects errors and decodes the result.

In order for the overall system to be robust, we must make some assumption about

the inherent reliability of a and a. Otherwise an error in either of these systems would

be able to corrupt the result. We assume that errors are constrained to pit and that a and

a are inherently robust. In practice, the bulk of computation is performed by it and the

probability of failure of far outweighs the probability of either a or a failing. If necessary,

these functions may be protected by modular redundancy.

We begin our examination of robust systems by studying what form of redundancy must

exist at the output of the redundant computation i. For all h E 1 v, define

h ={g E I (g,)=h}. (3.6)

Gh is the inverse image in of the valid result h; all elements in h map to h during

error-free computation. Now consider the set

7h, = {(g, el,...,e,) g E h, ej E £},-.(3-7)

This set contains all elements in 7- that should have been mapped to h, but that were

corrupted by up to A errors. Note that by definition, 1t'h,o = {h} and h e 14h,, for all A.

Also, since 0 E £4, hA C h , ,+l-

Assume that we are interested in detecting up to D errors. Then in order to detect all

errors, we require that

/(g, el,..., eD) 0 7gv for all el E £0,, e2 E £,,...,eD E £ (3.8)

where by choosing e E , we have assumed that at least one error occurs during the

computation of . This is an extremely difficult requirement to meet since, in practice,

errors do not always corrupt the result. We will concentrate on detecting errors that corrupt

39

the result and will thus require that either

P(9, el,.. , eD) = 0(#,) (3.9)

or

,(g, el,..., eD) 7v (3.10)

for all g E and el E ,,...,eD E . Let h = p(g,0) be the error-free result and

let h' = ,(g,e,...,eD) denote the possibly faulty result. (3.9) implies that h E Rh,D

and (3.10) implies that 1'h,D n 7-v = 0. Combining these yields

lHh,D n -v = {h} for all h E '-v (3.11)

or equivalently,

7h,,D n f{h2} =0 for all hi # h2 E liv, (3.12)

as a necessary and sufficient condition to detect D errors. This requirement is illustrated

in Figure 3-2a which shows the output set Jt and the error sets 7'th,D for four valid results

h = a, b, c, and d. In order to be detectable, each subset l'h,D can contain only a single

element of ?/v, namely h.

Errors that do not corrupt the result are referred to as latent errors. They are unde-

tectable solely by examination of the output and require fundamentally different strategies

to detect than those we have been discussing. Latent errors within p may not appear to be

a serious problem since they do not corrupt the result. Still, they should be guarded against

because, in combination with other errors, they may lead to system failure. Latent errors

generally occur in idle parts of the system that are infrequently used. They are especially

a problem in systems protected by modular redundancy since a standby system is often

switched in to take the place of a faulty system. Errors in a standby system are latent until

it is activated.

We now examine requirements on redundancy such that C simultaneous errors may be

corrected. We are able to correct errors if it is possible to determine the error-free result

h given only h'. The set 'h,C contains all elements that should have been mapped to h

40

H

. .------. Hh,D

(a) Detection of D errors.

H

HhC

(b) Detection and correction of C errors.

H

h,c
-. -- -Hh.D

(c) Detection of D and correction of C errors.

Figure 3-2: Diagrams showing conceptually the requirements on redundancy for various
levels of fault tolerance. The elements h = a, b, c, and d denote 4 possible error-free results.

41

but that were corrupted by up to C errors. The error corrector a must map all elements in

lih,C to h. In order for ae to be well-defined, each element in the output set must map

to a unique element in -v. This implies that the sets h,,c and 7/h 2,c must be disjoint if

h, 5 h2. That is,

1 th,,c n Hh2 ,C = 0 for all h, 0 h2 E lv. (3.13)

This requirement is shown in Figure 3-2b which illustrates the disjoint sets l-h,c for the

four values h = a, b, c, and d.

The requirements for error correction ae more stringent than those necessary to detect

the same number of errors. Assume that we can correct C errors such that (3.13) is true.

Then since h2 E th2,c, this implies that h,c n {h 2} = 0 for all h, $ h2 e -v. Hence at

least C errors can be detected as well.

In the most general case, it is desirable to be able to tradeoff between the number of

errors that we want to detect and the number that we want to correct. Assume that we

want to be able to detect up to D errors and if C or fewer errors occurred, to correct the

result. Otherwise, if between C + 1 and D errors occurred, the system should recognize

this and signal an uncorrectable error *. (Note: C must always be less than or equal to D

since being able to correct C errors implies being able to detect at least C.) What form of

redundancy is required to perform this tradeoff? First of all, to detect D errors, we require

that 17h,D n {h 2} = 0 for all h, 5 h2 e Xv. Second of all, to correct C errors, we require

that 'Hh,,c n lih 2 ,c = 0 for all h # h2 E -v. Finally, to distinguish correctable errors

(those yielding results in 1 h,,c for some h E X/v) and uncorrectable errors (those yielding

results in KHh 2,D - (h2 ,C for some h2 E Xv), we need

{ U (H-h2,D - I-h 2,C)} f 1 h,C = 0 for all h tv. (3.14)
h2 E/v

Simplifying, this becomes

(i-h 2,D -H-h 2 ,C) n 'h,C = 0 for all hi, h2 E 'tv (3.15)

42

or

(lih 2,D - 7'Hh2,C) n Hhl,C = 0 for all hi h2 E 7/v (3.16)

since (h 2,D - 'Hh2,c) n l'h 2,C = 0. Expanding (3.16) leads to

(lth2,D n th~h,c) - (h 2 ,c n 1 h4,c) = 0 for all h1 $ h2 E X*v. (3.17)

Since we assumed that we are able to correct C errors, the second term in the above

expression is empty. We find that

1'h2 ,D n h,,C = 0 for all hi h2 E v (3.18)

is a sufficient test in order to simultaneously detect D and correct C errors. This redundancy

condition is illustrated in Figure 3-2c. The diagram shows the relationship between the sets

?'h,C and ?/h,D for h = a, b, c, and d.

The tradeoff between error detectability and correctability regulated by (3.18) is the

most general condition on redundancy which we will study. The former conditions for

detectability only, (3.12), and detectability and correctability of the same number of errors,

(3.13), are both special cases of (3.18). Setting C = 0 in (3.18) yields (3.12), and setting

D = C in (3.18) yields (3.13).

The conditions on redundancy for error detection and correction lead to the following

error correcting mapping a in a straightforward manner:

a(h') = h if h' e h,C (3.19)
· else.

3.3 Symmetric Errors

We have thus far assumed a very general error model in our study of redundancy. We

now consider a class of errors that leads to a simplified analysis of the error detecting and

correcting potential of a system.

43

Definition 4. The system u has a symmetric error model if whenever

p(#,el, ... ,ec) = ,(g', e...,e) e(3.20)

for some g,g' E Q, ej, e E ,, and integers a and 3, then there exists some e+ 1 E C,

such that

p(g, el,..., e,- = (g', e,.-*, e+,). (3.21)

Symmetric errors arise in a wide variety of systems and the redundancy in these systems

is completely characterized by a single integer called the minimum distance. We define this

as follows.

Definition 5. Let p be a system with a symmetric error model. Then the minimum

distance of /u is the smallest integer t such that

7h,t nl v # {h} for some h E 7 v. (3.22)

Conceptually, the minimum distance is a measure of the separation between elements of Wv.

It is analogous to the minimum distance of an error-correcting code and can be treated in

a similar manner.

Theorem 1. Let A be a redundant computation that has a symmetric error model

and denote the minimum distance of by t. Then we can simultaneously detect D

and correct C errors if and only if

t > D + C + 1. (3.23)

Proof. We prove the sufficiency of (3.23) by contradiction. Assume that we can't

simultaneously detect D and correct C errors. Then according to (3.18), the intersec-

tion l'h 2 ,D n -h,,c is not empty for some h2 hi E v. Let h be some element in

"h 2 ,D nfIhl,C. Then h = p(g,el,...,eD) = (g',e,...,e&) for some g,g' E 5 where

44

p(g, 0) = h2 and p(g', 0) = hi and for some ej, e E £. Since p has a symmetric error

model, we know that there exists some element e +1 E , such that

L(9, el, ... , eDl) = l(g', e'l,..., e&+i). (3.24)

Applying the symmetric error condition repeatedly, we find that

A(g, el,.. .,eD-2) = A(g', e,..., eC+2) (3.25)

(3.26)

y(g,) = (9g',e, * *.*, e+D)

for some eC+2 , ... , eC+D E ,. The left hand side of (3.27) equals

h2 while the right hand side is some element of ihh,C+D. Thus,

the error-free result

lv n lh,,C+D # {hi } (3.27)

which implies that t < D + C + 1.

To prove necessity assume that t < D + C + 1. Thus there exist h2 0 h E -v such

that h2 E ,h,C+D. This implies that

y(g, 0)= (g' e, . e+D) (3.28)

for some g,g' E and e,...,eC+D E £ where (g,0) = h2 and p(g',0) = h.

Applying the symmetric error condition D times, we find that

(3.29)

where ju(g, el, . . ., eD) E ?(h2,D and ,(g', el . . ., e) E 7th,,c. Therefore hh 2,D n l/a 1,c

is not empty and we are thus unable to detect D and correct C errors.

A system with a symmetric error model can be more easily analyzed because the redun-

45

/.Z(g, 161i - - -, 16D) �-- A(9', e'i - - -, e'C)

.--------------- - -------------------------- II .C

r

g

r3

Figure 3-3: Figure illustrating how a system r protected by triple modular redundancy can
be described using the set-theoretic framework.

dancy condition (3.18) does not have to be repeatedly checked for various values of C and

D. Instead, once the minimum distance is found, we can use (3.23) to trade-off between

error detectability and correctability.

3.4 Example- Triple Modular Redundancy

Triple modular redundancy (TMR) is a good example illustrating how a fault-tolerant

system can be analyzed using our framework. A system r protected by TMR is illustrated

in Figure 3-3, and the system has been partitioned according to the standard decomposition

of a robust system. Assume that r has input g E and output r E R. The redundant

computation unit is composed of three identical copies of r, labeled r1 , r2, 73, each receiving

the same input. The error corrector a detects and corrects errors using a majority voter.

Finally, the result is decoded by a which arbitrarily chooses one of the outputs of a. In

practice, a and a are always combined.

We assume that errors are restricted to A, and that a single fault in rk, corrupts only

the output rk. We analyze this system assuming two different computation models:

1. A fault in k leads to a random output rk E R.

2. A fault in rk forces the output to the fixed value rk = A E R.

The first model is more general, and encompasses errors of the second type. Thus, we

46

expect errors obeying the first model to be more difficult to protect against. We will see

that this is indeed true.

Assume that the first computation model holds and that faults lead to random outputs.

Then the set of all possible outputs equals

= { [ri, r2 , r 3] I r E , r2 E , r3 E (3.30)

and the subset of error-free outputs is given by

7iv ={[r, r, r] I reZ}. (3.31)

With this error model, it is possible to transform any valid result [a, a, a] into any other

valid result [b, b, b] through a sequence of three errors. Also, [b, b, b] can be changed into

[a, a, a] through a similar transformation along the same sequence of outputs. From this,

we see that the error model is symmetric and we can thus analyze the behavior of the overall

system by determining its minimum distance. The erroneous output sets are given by

1r~rr],o = { [r, r, r] } (3.32)

H,,~r,r,l, = ~r,r,r],o U { [r, r, e], [r, e, r], [e, r, r] I e E 1Z} (3.33)

7"/r[r,r],2 = '1r,r,r], U { [r, el, e2], [el,r, e2], [el, e2, r] I el, e2 E R} (3.34)

-=r,r,],3 = 1. (3.35)

By testing when H[r,,r], n 7 v { [r, r, r]}, we find that the system has a minimum

distance of 3. Thus, there is sufficient redundancy to detect D and correct C < D errors

where D + C + 1 < 3. We may do any of the following:

1. Detect 1 and correct 0 errors.

2. Detect 2 and correct 0 errors.

3. Detect and correct 1 error.

The second error model is characteristic of bus, I/O, or power failures. These types of

errors often yield outputs that are either all zeros or all ones, and we denote this fixed output

47

state by A. Note that A is a valid output for some inputs, and faults cannot be detected

solely by checking if r = A. This error model leads to a slightly different system which

exhibits a higher level of robustness. The error model is no longer symmetric, and analysis

of the system becomes more complicated. We begin by determining relevant subsets of the

output. We find that

Hv = {[rr,] r IE R} (3.36)

r~r'r]O { [Xr, r r] } (3.37)

[rr,r,],1 = t[rr,r],o U { [r r, A], [r, A, r], [A, r, r] }(3.38)

1 r,r,r], X= H,,, U { [r, A, A], [A, r, A], [, A, r] }(3.39)

1lrr,r],3 = 1t,r,r],2 u { [A,A,A]} (3.40)

With these subsets available, we can test for error detectability as follows:

taaa],i n v = { [a, a, a] } can detect 1 error

ta,a,a],2 n hv = { [a, aa]} can detect 2 errors

' 3,aa],3 n v = { [A, A, A], [a, a, a]} cannot detect 3 or more errors.
(3.41)

Similarly, we can test for error correctability. Let a ~ b. Then

t[aaa],l n i[b bb] = 0 can correct 1 error

aaa,2 [bbb],2 = 0 can correct 2 errors (3.42)
[a,a,a],2 [b,b,b],2
[]~~a3,3 flH[b~b~b33 = { [A,7 A, A] } ~ cannot correct 3 or more errors.

Thus this system can correct up to 2 simultaneous errors. This is in contrast to the first

system which only had sufficient redundancy to correct single errors.

Applying (3.18) we are also able to tradeoff error detectability and correctability. We

would find that this system is never able to detect or correct more than 2 simultaneous

errors.

48

3.5 Summary

The set-theoretic framework presented in this section is a useful method of analyzing fault-

tolerant systems. Our investigation was based entirely on a study of redundancy, and we

were unconcerned with the internal workings of the system. This is true in general: the

robustness of a system is determined entirely by the redundancy present in the output and

the manner in which errors corrupt the result. This suggests an analysis of fault-tolerant

systems in terms of the interaction between errors and results. Pursuing this approach, it

is possible to determine more elaborate conditions for error detectability and correctability.

This approach, however, do not bring us any closer to the solution of our general problem:

constructing robust systems from nonrobust ones. The set-theoretic framework, although

a good tool for measuring redundancy, is not a constructive procedure. For the case of

arbitrary computation, no general solution, outside of modular redundancy, exists. Instead,

we will narrow our focus and study computation that can be modeled as operations in certain

algebraic systems. For these types of systems, we give procedures for adding redundancy

and efficiently performing error detection and correction.

49

Chapter 4

Group-Theoretic Framework

We now specialize to the case of computation that can be modeled using group theory. We

apply group theory because it encompasses a wide range of arithmetic operations and im-

poses sufficient structure on computation allowing the form of redundancy to be accurately

characterized. Once the framework for groups is complete, we generalize it to rings, fields,

and vector spaces, and show that the results for groups carry over completely to these other

systems. Background material in group theory helpful to understanding our results is found

in [45].

We proceed in the following manner. First, in Sections 4.1 and 4.2, we develop a

group-theoretic model of computation and add redundancy by mapping computation to a

larger group using an algebraic homomorphism. We then apply results from Chapter 3

in Section 4.3, and give conditions on redundancy such that errors may be detected and

corrected. In Section 4.4, the definition of an algebraic homomorphism is relaxed slightly,

and a more general mapping called a partial homomorphism is defined. Section 4.5 gives an

iterative procedure for choosing a specific coding scheme from a set of possible codes. Then

in Section 4.6, we extend the framework to other algebraic systems that have an underlying

group structure. Lastly, in Section 4.7, we demonstrate the application of our technique by

several examples, and then conclude in Section 4.8.

50

4.1 Group-theoretic Model of Computation

Definition 6. An Abelian group G = [; 0, 0o] is an algebraic system that consists

of a set of elements, G, and a binary operation, 0, called the group product that

satisfy the following five properties:

(i) For all g91,g2 E G, 91g g2 is in G. (closure)

(ii) For all gl,g2 E G, 91g 0g2 = g20g1. (commutativity)

(iii) For all gl,g2,g3 E G, gl9(g2°g3) = (91g92)09g3. (associativity)

(iv) There is an element, 00, called the identity, which satisfies g["00 = g for all

g E G. (identity)

(v) For every g E G, there is an element in G called the inverse of g, and denoted

by g-l, such that gOg- 1 = 00. (inverses)

For example, let G be the set of integers and let 0 denote integer addition. That is, for

g91, g92 E G, 91g 0g2 = 91 + 92. It can be quickly verified that this is an Abelian group with 0

playing the role of the identity, 0O, and -g that of g-'. We will frequently use this group,

and will denote it by Z+. An example of an Abelian group containing a finite number

of elements is the set of integers = {0, 1,..., M - 1} under modulo M addition. For

91g,g2 E 5, g 1g92 = (91 + g2)M where (X)M denotes the remainder when x is divided by

M. The identity is 0, and g-1 is given by (M-)M. We denote this group by Z+ .

We assume that the operation we wish to protect can be modeled as a series of P - 1

products

r = 91 9g2 .. ' 09gp (4.1)

in some Abelian group G = [; 0, O0]. We define G(P) as the Cartesian product of G with

itself P times,

G(P) = G x G x x G. (4.2)

P times

We place the operation (4.1) in the set-theoretic framework of Chapter 3 by considering r

51

to be a mapping from G(P) to G,

' ([g91,g 2 ,. .. ,gP]) = 91 0 92'*- -0 9P (4.3)

where [1, 9, ... ,gp] denotes the P-tuple of elements gl, g2,..., g9P.

We assume that if A errors occur during computation, then the result is given by

r([91g,g2, .. ,gp],el,e2,...,e,) = g919g2 ... OgpOelOe2O ... ex (4.4)

where ek is the net effect of the kh fault on the result. ek is an element of e, the set

of all possible single errors, and E£ is a subset of G. This model is a key aspect of our

theory, and inherently contains several assumptions. We discuss and justify each in turn.

First, it is assumed that errors influence the result in an additive manner through the 0

operation. This additive model closely matches the interaction between faults and errors

observed in real systems. For example, soft errors in arithmetic units can be modeled as

inducing additive errors in the final result [6]. Additive errors are also the standard model

used to describe the interaction between codewords and errors in binary communication

systems [14]. The second assumption inherent to our fault-model is that errors ae inde-

pendent of the operands g1,g2,...,gp. This is realistic since, in most circumstances, errors

result from external faults and do not depend on the specific choice of operands. Still, some

data specific errors, such as stuck-at faults [6], ae not covered by this model.

4.2 Redundant Computation

The operation shown in (4.4) does not contain any redundancy since every output is a valid

result for some set of operands. We add redundancy by mapping computation to another

Abelian group, H = [; 0, 00], of higher order. The additional elements of H will be used

to denote erroneous results. We assume that the redundant system has the general form

shown in Figure 4-1.

The redundant computation unit functions as follows. Each operand gk is first encoded

52

Redundant Computation

Operands

g

Result

,Err Result rh' rrector h Decoder
a CY

errors ek

Figure 4-1: Diagram showing the general structure of a redundant fault-tolerant system in
which computation can be modeled as a series of group products.

using a mapping kk to obtain an operand codeword

§k = Okk(9k) (4.5)

that is an element of H. In order that no information is lost during encoding, k must

be one-to-one. Next, we compute the product of codewords in H, and use the same error

model developed earlier. We assume that errors affect the result in an additive manner

(4.6)

where ek is the net effect of the k fault on the result. ek is an element of Co, a subset of

H containing possible single errors. The mappings a and have the same basic function

as in the set-theoretic framework. a tests for errors in h', and when possible, computes the

error-free result h. Then, maps h back to G to obtain the desired result,

r = (h) (4.7)

53

Encoder gI

I

Encoder g2

Encoder gp

. OP

Group
Product

0

.

h' =.U([§li§2i ... 7 M el, e27 -, eA) = 91 0§2 0... O§pOelOe20 -- - OeX

f

The subset of error-free results 7Hv is given by

=HV {q51 (91g) 02(g 2) .0p(gP) I g9,g2, ... ,g9P E G}. (4.8)

a is defined as a one-to-one mapping from 7tv onto G. We assume that errors are restricted

to the products O and to the encoders 4k, and assume that a, and a are inherently robust.

If necessary a and a may be protected by modular redundancy.

We have thus far only outlined the basic structure of the system, and will now examine

the mappings more closely. We begin by ignoring errors, and determine restrictions on

mappings such that the correct result is computed by an error-free system. Ignoring errors

and combining (4.1) and (4.5)-(4.7), we find that in order to compute the correct result,

the encoders bk and decoder a must satisfy

9109g20 ... gp = a(1l(g9l)02(g2)0 Op(gp)) (4.9)

for all g1,g 2 ,...,gp G.

Assume that some mappings exist which satisfy (4.9). Then an alternate set of mappings

also satisfying (4.9) is given by

4k(x) = hkO k(X) (4.10)

c'(x) = a(xOh-l1OhlO ... Oh l) (4.11)

where the hk are arbitrary elements of H. In fact, any encodings k which differ by only

constant offsets ae essentially equivalent. Thus, without any loss of generality, we can

assume that the mappings k preserve the identity,

Ok(0O) = 00 for k -1,2,...,P. (4.12)

We can always select constants hk and define q4 and a' such that this is true.

The decoder is defined to be a one-to-one mapping from 7iv onto G. Therefore, a is

54

invertible, and (4.9) can be written as

-(91z I92 - -1-1 9gp) = 4l(g1)O0 2(g2)O -- O p(gp). (4.13)

Setting all operands 9k to the identity 0n except gj, and using our assumption (4.12), we

find that a-'(gj) = ¢>j(gj). Repeating for all gj, we find that

o-'(g) = q10(g) = 2()=-= Op(g). (4.14)

Thus the mappings are equivalent, -1' = 1 = 2 = -- = 4p, and from now on we will

denote them all by . (4.13) then becomes

(g1 9g2 11 ...' 9gp) = (91) ¢(g 2)O .. 0q(gp) for all gl,9g2,. .. , gP e G.

(4.15)

Theorem 2. The constraint on mappings shown in (4.15) is equivalent to

(g91 g192) = ,(91)q) (g 2) for all 91, g2 E G.

Proof. Assume that (4.15) is true, and let g3 = 0,g4 -= 0,...,gp = 0l0. Since

¢k(0O) = 00, we obtain (4.16).

Now assume that (4.16) is true. Then

¢(g910(g 2E9g3 0 . .. Ogp)) = (g91) 0(g92g3D . . DgP) (4.17)

for all 91gi, 2,. . , gP E G.

Reapplying (4.16) to the term 4(g92 g2 Q ...- Ogp) on the right hand side in (4.17)

yields

¢(9 1)0(g 2 9g23 ... g9P) = 0(gl9)Oq(g2)Oq(g3 lg41 ... ogp). (4.18)

Continuing this process yields (4.15). [-

55

(4.16)

Equation (4.16) is recognized as the defining property of an algebraic homomorphism. A

homomorphism is a mapping from one algebraic system, G, to another, H, which preserves

structure [45]. It is specifically this property of q which we exploit to define redundant

computation schemes.

We now examine more closely the form of redundancy introduced by a homomorphism.

Let = {q(g) I g E G} denote the set of encoded operands in H. We can show that under

0, 5 satisfies the five properties of an Abelian group, and is thus an Abelian group which

we denote by G.

(i) (closure) Let §1, 2 E G. Then (gl) = 1 and (g92) = 92 for some g,g2 G.

Consider the product §1 0 2 = (g91) 04(g2). Since is a homomorphism, this equals

g(91 g92), and since g91 0g2 E G, this implies that 1 02 E G.

(ii) (commutativity) G inherits commutativity from H.

(iii) (associativity) G(inherits associativity from H.

(iv) (identity) Since On E G, 0o is in G by our assumption (4.12).

(v) (inverses) Let E (and let = 4(g) for some g E G. Since G is a group, g- E G.

Then O(grg-l) = (Oo) = 0 = (g)OO(g - 1) = ~Ob(g). Thus 4(g-1) is the

inverse of 9, and since g-1 e G, (g9-1) E .

Since 4 is one-to-one as well as a homomorphism, the groups G and G are isomorphic. They

are essentially the same except for the naming of their elements. Given a computation in

G, the isomorphism allows us to carry out an analogous computation in G.

The subset of valid results in H is then given by

'/ = §1020 .. OP | 1,92,...,9 E G} . (4.19)

Since is a group, it is closed under O and therefore 1-Hv = G.

In summary, to add fault-tolerance to a group G, we map computation to an isomorphic

copy, G, which is a subgroup of a larger group H. We detect errors by checking if the result

is in , and correct them via the mapping a. Then the result is decoded using + -1. These

steps are illustrated in Figure 4-2.

56

Original Redundant
Computation Computation

Figure 4-2: Model of a fault-tolerant group operation. Computation in G is mapped to an
isomorphic copy which is a subgroup of a larger group H. Errors force results out of &
and are corrected by a.

4.3 Error Detection and Correction

In this section, we determine conditions on redundancy such that errors may be detected and

corrected. Using these conditions, we then derive a possible error detection and correction

algorithm, and show that it may be reduced to a function of a syndrome. We then give a

constructive procedure, based on a quotient group isomorphism, for determining the form

of the syndrome mapping.

4.3.1 Redundancy Conditions

We begin with the error model (4.6), and since O is associative, we may write

h' = (§102 0 ... Op)O(elOe2 0 ... Oe) (4.20)

= hOe (4.21)

where h = g1 0§20 ** Op is the error-free result in -v, and e = el O e 2 0 .-- O ex is the

net effect of all the errors on the result. We can thus consider errors to be applied to the

result of an error-free computation. We define _G?) = G Oo O - Oo as the product

of GO with itself A times. The error e is some element of (X).

Restrictions such that errors are detectable and correctable can be easily derived by

57

applying results from the previous chapter. It can be shown from the associativity of the

error model that

7/h, = hO(). (4.22)

Substituting this into (3.18), we find that in order

that

(h 2 o'(D)) n (h06(c)) = 0

to detect D and correct C errors requires

for all hi h2 E v. (4.23)

This may be transformed as follows

h2 0 e2

hl Oh2 0e 2

hOe 2

hOe2

hl Oh2 0e2

h2 Oe2

GOe 2 n Oe,

hl O el

=#54

#
el

hlOel

0

where we have used the fact that G is a subgr

subgroup of H, the sets 0G0 el and GOe2 are

cosets of G in H are either identical or have no

for all hi h E G,ele E E), 2 E E D)

for all

for all

for all

h A 0 E G,e1 E gC),e 2 E£D)

hOe E () e2 e (D)

h1, h2 E G, el (C) 54 e2 e (D)

for all el E C) e2 E c(D)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

oup in steps (4.26) and (4.28). Since G is a

cosets of G in H. It is well-known that two

elements in common. We can thus treat the

cosets as elements rather than sets, and write (4.30) as

GOel # GOe2 for all el E() e2 E E(D)

In this form, we see that the ability to detect and correct errors implies the uniqueness of

the cosets of G in H. This suggests a different method of correcting errors based on first

identifying the error e, and then canceling its effect on the result, rather than mapping

directly from h' to h. We examine this technique in detail.

58

(4.31)

4.3.2 Coset-Based Error Detection and Correction

The coset (GOe contains all possible results that could arise if an error e occurred in the

system. (4.31) implies that every detectable error forces the result into a nonzero coset (i.e.,

the result does not lie in GO0o = G). Furthermore, every correctable error e e E(C) forces

the result into a distinct coset,

G(Oel (GOe 2 for all el $ e2 £(c) (4.32)

and these cosets differ from the cosets of detectable but uncorrectable errors,

GOe1 £ GOe2 for all el (C) e2 E £(D). (4.33)

Thus, an alternative method of correcting the result is to first determine the net error, if

possible,

e= arg h' GOa. (4.34)

a E (C)

If h' ~ GO a for all a E £(c), then the error is uncorrectable. Otherwise, once the net error

is determined, we subtract it from h' to determine the error-free encoded result

h = h O e -1. (4.35)

The revised error detection and correction test (4.34) works by checking which coset the

result lies in. This is an awkward and computationally expensive procedure since we must

manipulate sets of elements. We can perform this same procedure more efficiently using a

homomorphism b from H to another group T = [T; O, 0o].

Definition 7. Let b be a homomorphism from H to T. The set of elements in H

which map to the identity in T is called the kernel of 4 and is denoted by K,;

K, = {h E H I (h) = 0}. (4.36)

59

The kernel of a homomorphism is similar to the nullspace of a linear transformation.

Theorem 3. Let ib be a homomorphism from H onto T with kernel KV, = G. Suppose

that h' = hOe where h e G. Then h' is in the coset G(Oe if and only if 4'(h') = O(e).

Proof. Assume that h' e GO e. Then h' = Oe for some E . Applying the

homomorphism Ob to h' we find that 4'(h') = 0(§Oe) = 0(§)O*b(e) = b(e) since

§ E K,. Thus i(h') = O (e) if h' E G Oe.

Now assume that 4(h') = +(e). Then ?P(h') = 4'() b(e)if and only if e K = G.

Since 4b is a homomorphism, we may write O(h') = 0(gOe). This implies that h' =

O e for some g E 0. Thus h' GOe. L

The homomorphism 4 condenses all information relevant to error detection and correction

into a single element, b(h'). We will refer to O(h') as the syndrome of the result h'. Note

that =(h') = (hOe) = P(e), and effectively removes any component of the error-free

result h E G from the syndrome.

Theorem 3 shows that a one-to-one correspondence between cosets and syndromes exists.

It is convenient to restate the redundancy condition (4.31) in terms of syndromes rather

than cosets. We may detect D and correct C errors if and only if

4'(el) $ tp(e 2) for all el E £(c) 0 e2 £(D). (4.37)

Instead of identifying the error by checking cosets as in (4.34), it can be done using the

syndrome as follows. Given the possibly faulty result h', compute 4(h'). Then

If (h') = Oo, then no errors have occurred, e = 0o

else if Ob(h') = O(e) for some e E £(C), then error e has occurred (4.38)

else an uncorrectable error has occurred.

If the error is correctable, we would compute the error-free encoded result using (4.35).

If £(C) contains a small number of elements, then error correction may be performed

60

using a lookup table A as follows. Define

e for all e E()
A ((e))= E (4.39)

* else.

Then, the error may be determined from h' by using 0b(h') as an index into the lookup

table, e = A (O(h')).

Error correction using a lookup table is efficient only when the set of expected errors

£(C) is small. In practice, E(C) may be large or even infinite, and in these instances, other

techniques must be used. The usual approach is to exploit the structure of () and to invert

b(e) over the set £(C). An interesting observation is that 0 (T) determines the maximum0*

number of distinct errors which may be corrected. Since T contains 0 (T) - 1 nonzero

elements, we may correct, at most, 0 (T) - 1 different errors.

This method of error correction corrects the result by subtracting the error e from the

final result h'. This is computationally efficient only if several products are computed.

Otherwise, if only a single product is computed (P=2), then error correction requires as

much computation as we originally sought to protect. This is clearly impractical.

4.3.3 Determination of the Syndrome Homomorphism

In order to apply this syndrome-based error correction procedure, we must have some

method of determining a suitable homomorphism b and group T. Often, , and T are readily

found by inspection, while in other cases, they may not be so easily identified. In these

instances, we propose the following quotient group construction to aid in the identification

of and T.

The construction method identifies a homomorphism from H onto another group

T= [T; , 00] whose kernel equals G. We will find that computation in the group T is

cumbersome to perform, and by examining T, we will recognize that it is isomorphic to a

simpler group, in which computation can be more conveniently performed. This simpler

group will be denoted T, and it is derived by renaming the elements of T. The actual

syndrome homomorphism used in practice will be denoted by b.

Let H/(denote the collection of cosets of G in H. Each element of H/G is a subset of

61

H. Let the product of subsets serve as a product in H/G. That is, for G Ohi, G Ohj E H/G,

GOhiOGOhj = hlOhm I h E GOhi,hm E Ohj}. (4.40)

The set H/G forms an Abelian group under this product. We verify that it satisfies the

properties of an Abelian group:

(i) (closure) Let COhi, GOhj E H/G. Then GOhiOGOhj = GOGOhiOhj by com-

mutativity. Since G is a subgroup, GOG = G. Thus GO Ohi Oh3 = GO hi Ohj E

H/G, and we see that H/G is closed.

(ii) (commutativity) H/G inherits commutativity from H.

(iii) (associativity) H/G inherits associativity from H.

(iv) (identity) Consider the element 00o e H/G. For an arbitrary coset GOh E H/G,

GOhOGO 0 o = GOh. Thus GO 0 o is the identity in H/G.

(v) (inverses) Let COh be an element of H/G. Then COh-' is also an element of H/G.

Multiplying, we find that GOhOGOh - = CO0o which is the identity in H/G.

Thus, each element of H/C has an inverse in H/G.

The group H/G defined in this manner is called the quotient group of H by C.

Given H/G, we can always define a mapping b from H onto H/G by

O(h) = GOh. (4.41)

, maps h to the coset containing h. Now, consider applying to the product h Oh2 ,

'i(h Oh2) = GO(hlOh 2) (4.42)

= (OGOhlOh 2 (4.43)

= (OhlOCOh 2 (4.44)

= 4(hl) O0 (h 2). (4.45)

Hence , is a homomorphism from H onto H/G. Purthermore, the kernel of k equals G.

62

Thus by letting T = H/G and (h) = Oh, we have a procedure for finding suitable

syndrome groups and homomorphisms.

Note that when implementing a system using such an homomorphism, we will never

perform computation in the quotient group T by manipulating cosets. Rather, by forming

the quotient group, we will recognize that T is isomorphic to a simpler group T which we

obtain by renaming the elements of T, and this simpler group will be used to perform error

detection and correction. Examples of this construction technique are given later in the

chapter.

4.3.4 Symmetric Errors

Symmetric errors are also easily placed in the group-theoretic framework. The cancellation

shown in (3.21) occurs if and only if every e E go has an inverse e- 1 that is in Go as well.

The minimum distance is found to be the smallest integer t such that

(hO£(t) nf tv $ {h} for some h e tv. (4.46)

Set Hiv = G, and multiply both sides of this expression by h-l. This is an invertible

transformation, and we obtain

gg)nG5 o} (4.47)

or, equivalently,

elOe2 0 --Oet ~ 0 E G for some el,e 2 ,...,et E go. (4.48)

Thus, the minimum distance can be thought of as the smallest number of errors that must

be combined in order to obtain a nonzero element of G. This interpretation often allows

the minimum distance of a system to be easily computed.

4.4 Partial Homomorphism

This section briefly describes an alternate method of adding redundancy to computation

performed in algebraic groups. The mappings that we will use are related to homomor-

63

phisms, but only satisfy (4.15) for certain combinations of operands. We will refer to these

mappings as partial homomorphisms.

Assume that computation has the same overall structure as before: redundancy is adding

by mapping computation to another group H = [; 0, 00] as shown in Figure 4-1. Assume

that 41 = 2 = ... -p = - 1 as well. Previously, we allowed all possible combinations

of input operands, and this forced to be an algebraic homomorphism, and as a direct

consequence, the set of valid results X-v formed a subgroup (G.

In a partial homomorphism, we select a redundant group H and then explicitly specify

the subset of valid results. Call this subset l-v in accordance with our former notation,

and keep in mind that ?/v must no longer be a subgroup. We then restrict computation

to operands such that error-free results lie in ?/v. That is, computation is only defined for

operands g91 , g2,..., gp such that

4(gl)0 (g2)0 ... O 0(gp) E 'iv. (4.49)

In order for the correct result to be computed in an error-free system, the mapping must

now satisfy

°(gl9 9g2 rOlgp) = 0(91) 0 0(92) 0 .. 00(gp) (4.50)

for all gg2, ... ,gp such that 4(gl)0)(g2)0 O (gp) E iv.

We refer to a mapping of this form as a partial homomorphism since it is structurally similar

to (4.15) but only holds for certain operands.

We now develop some tools for analyzing systems that utilize partial homomorphisms.

The redundancy condition shown in (4.23) was a direct application of the set-theoretic

framework, and it did not assume ay special form of Xv; it only assumed that errors

influence the result in an additive manner. Thus, as long as an additive error model applies,

(4.23) may be used to measure the redundancy present in a partial homomorphism. The

remainder of the results from Section 4.3 may not be used since they make explicit use of

the fact that G is a subgroup.

To determine the form of the error-correcting mapping a, we must return to (3.19).

64

Substituting in for 7lh,C, we find that

h if W'E hO £(C)
a h ') e 0 °(4.51)

* else.

Symmetric errors have the same interpretation since errors affect the result in an additive

manner. The minimum distance of a system is determined by (4.46); (4.47) and (4.48) no

longer apply since 7¥v is not a subgroup.

Our main motivation for studying partial homomorphisms is that they model compu-

tation in systems protected by integer residue number systems, an important fault-tolerant

system. Although partial homomorphisms do not fit precisely into our framework, there

are, nevertheless, many important similarities: the same basic overall structure, mappings

with properties akin to algebraic homomorphisms, and an additive error model. We will

use the rudimentary tools developed in this section to study a fault-tolerant convolution

algorithm which is based on a polynomial residue number system. This is presented in

Chapter 6.

4.5 Code Selection Procedure

For a given homomorphism X, we are able to determine if sufficient redundancy exists to

detect D and correct C simultaneous errors in the set £o. In reality, one begins with G,

and needs to determine and H such that sufficient redundancy exists in order to protect

against the expected set of errors £o. This is a difficult problem because of the interaction

between 4, H, and £o. Each group H has an operation O associated with it which has its

own set of errors £o. The errors o are determined by H, which is in turn determined by .

There is also some flexibility in the manner in which the product O is computed. Different

computational procedures lead to different sets of errors £o, and thus it is necessary to

check the fault-tolerant capability of different procedures and architectures for computing

O0. Thus choosing a code 0 is not a straightforward task. We propose the following iterative

approach:

1. Select some mapping and group H which satisfy the homomorphism (4.16).

65

2. Determine the set of errors £o which would arise during computation. Be sure to

check for equivalent computational procedures yielding different errors £o.

3. Check if 0 has sufficient redundancy to protect against the expected number of simul-

taneous errors. If sufficient redundancy exists continue to step 4. Otherwise return

to step 1 and repeat with different and H.

4. Check if the encoding , group product 0, and error detection and correction may be

done in an efficient manner. If they can, then we have identified a practical arithmetic

code and we are done. Otherwise return to step 1 and repeat with different and H.

Although this is an indirect procedure, it can still be very fruitful. The constraint that

be a homomorphism narrows the search for possible groups H. Also, in many instances,

the form of the redundancy is recognized as a standard error-correcting code, and existing

techniques may be used to choose 4.
Suppose that the desired computation consists of a total of P - 1 group products, and

that we wish to detect D and correct C simultaneous errors. Suppose further that no

suitable homomorphism is found which contains sufficient redundancy to protect against

this number of errors. It may still be possible to attain the desired level of protection by

performing error detection and correction repeatedly throughout computation rather than

once at the end. Check the intermediate result of computation after every P' < P group

products. Since less computation occurs, a lower number of simultaneous errors should

occur, and a homomorphism may exist which can protect against this number of errors.

4.6 Application to Other Algebraic Systems

A number of other algebraic systems exist in which useful computation can be performed.

These include rings, fields, and vector spaces, and this section discusses how our framework

may be extended to protect computation in these systems as well.

These other algebraic systems differ from groups in several ways, the most notable of

which is that they have two operations defined on the set of elements. The additional

operation yields a greater amount of flexibility in the types of computation which may be

performed. In groups the most general computation consisted of computing P -1 products

66

of P operands as shown in (4.1). In these other systems, however, computation consists of

some arbitrary sequence of the two operations applied to the input operands. By defining

the homomorphism properly, it is possible to protect arbitrary computation of this form.

We will outline the structure of each algebraic system and then state the necessary form of

the homomorphism.

All of the systems which we will study have an underlying structure of an Abelian group,

and this structure well-models the effects of errors. In all cases, error-free results form a

subgroup of the redundant output. Since an additive error model is used, we can continue

to apply the syndrome-based redundancy measures and error detection and correction pro-

cedures that were previously developed. An important point to keep in mind is that since

errors influence the result in an additive manner, the syndrome homomorphism must only

preserve the structure of the additive operation and is thus still defined by (4.16).

4.6.1 Rings

Definition 8. A ring G = [; O, , oJ] is an algebraic system with two operations,

E and 1, defined on the set G. Under E1, G is an Abelian group with O serving

as the identity. The second operation, !, is defined by the following properties:

(i) For all g91 , 92 E G, 91 092 is in G. (closure)

(ii) For all g1,g2,g3 E G, g1lM(g 2 lEg3) = (gllg2)0g3. (associativity)

(iii) For all g91, 92, g93 E G,

g91 (g2lg3) = (91g 9 2)[°(g91 g3) (4.52)

(g2 1lg3)g 1 = (g 21Mg 1)[l(g31g). (4.53)

(distributive laws)

E and [ae referred to, respectively, as the additive and multiplicative operations

of G.

67

A homomorphism + from a ring G = [; 0, 0, 0n] to another ring H = [; O0, , 00]

is a mapping which preserves both arithmetic operations,

~(gDg2) = ~(g~)O¢>(g2)(2) = 0(1) 0 (g2) for all gl,g 2 E G. (4.54)
0(g91g 2) = 0(g) 0(g2)

A ring homomorphism maps computation to G, a subring of H which is isomorphic to G.

4.6.2 Fields

Definition 9. A field F = [; 0, 1], 0a] is a ring in which the nonzero elements of

F form an Abelian group under B.

Structurally, fields and rings are very similar, and a field homomorphism is defined

by (4.54) as well. One difference to keep in mind is that the redundant system H will not

be a field, but rather a ring. This is because a field cannot contain any subfields, while it

is possible for a ring to contain subfields. The redundant computation occurs in a subfield

C of H that is isomorphic to G.

4.6.3 Vector Spaces

Definition 10. A vector space over a field F = [; O, 4, 00] consists of an Abelian

group G = [; 0[,0j] together with an operation called scalar multiplication and

denoted by such that for all a, E F and v, w E G,

(i) av E G

(ii) (-v) = (*). v

(iii) (a*p) v = ()0(v)

(iv) a. (vow) = (v)O(a w)

(v) 1.-v = v

The elements of G are called vectors and the elements of F are called scalars.

68

A vector space homomorphism is a mapping b from a vector space G = [; 0, 03] over

F to another vector space H = [-; 0, 00] over F such that

~(vOw) = St(v)O~(w)
v W~) = OM()0O(M) for all v, w Gand a F (4.55)

0(a v) = a: (v)

where: denotes the operation of scalar multiplication between elements of H and F. The

key difference between a vector space homomorphism and a group homomorphism is that

redundancy is added to vectors, but not to scalars. A vector space homomorphism maps

computation to G, a subspace of H which is isomorphic to G.

Carefully distinguishing the operations in a vector space is a tedious process that does

not clarify the presentation significantly. Instead, we will use + in place of both 0 and O,

and use juxtaposition in place of *, , and :. Also, 0 will denote the identity in G, H, and

F. It will always be clear from context which operation we are referring to. With this new

notation, a vector space homomorphism is a mapping satisfying

4(v + w) = (v) + (w) (4.56)

+(av) = a(v)

for all v, w E G and a E F.

We will always utilize the familiar vector spaces containing elements of the form

G = { [al,a 2, 7 ... ,aN] ai E F} (4.57)

for some integer N. Operations in G are defined as

[a1,a2,...,aN] + [3 1,P2,...,PN] = [a1 + 1,a2 +P2,...,aN+ PN] (4.58)

7 [1,a 2, ... ,aN = [7al,7a2, ... , 7aN] (4.59)

for all [, a2 C ,...,a] Ii,2 - N] E G, and y? E F. We denote this vector space by

F(N), and when dealing with elements of F(N), will use underbars (e.g., v) to stress that

69

the elements are vectors.

4.7 Examples

In this section we give several examples to demonstrate the application of our technique.

The examples were chosen to illustrate how the framework can be used to analyze fault-

tolerant systems, and are not constructive procedures. For each example, we describe the

original operation in G and give a possible homomorphism 4. In some cases, we determine

the error detection and correction procedures and show which errors are protected against.

A thorough treatment of each coding scheme is beyond the scope of this thesis since the

choice of code is closely tied to the set of expected errors which is, in turn, determined by

the specific hardware architecture employed. In many cases, the resulting code is shown

to be equivalent to one studied by other authors. In these cases, we refer the reader to

references in which a more thorough presentation is made.

Most of the examples that we give are for protecting a single product of two operands.

This was done in order to simplify the presentation and more clearly reveal the form of the

redundancy introduced by the homomorphism . In all cases, our techniques ae able to

protect a series of operations.

4.7.1 Triple Modular Redundancy

Let G be any Abelian group and let H be the direct product of G with itself three times,

H = G x G x G. Elements of H are of the form [g1,g2, g3] where g1,g2,g3 E G, and the

product in H is componentwise multiplication

[gl,g2,g3] ° [g4,g 5,g6] = [gliOg 4 , 2rgs,0g3-g9 6] . (4.60)

Define the mapping from G to H as follows,

O(g)= [g, g, g]. (4.61)

70

Plugging (4.61) into (4.16), we see that this is a valid homomorphism,

b (91 °g2) = [g1 92, gl g 2 ,gl Og2 = (91(gl) 0 (g2). (4.62)

Also, the subgroup of valid results is given by G = { [g, ,] 9 E G}.

Suppose that (4.60) is computed by three independent processors, with one product

computed per processor. Assume that when a processor fails, an error e E G is added to

its output. The set of single errors is of the form

o = {[e, o, o], [0oe 0], [0o,O ,e] I e E G}. (4.63)

Since every e E G has an inverse e- 1 E G, the errors are symmetric, and we may analyze

the system via its minimum distance. It is seen by the following progression of sets that

the minimum distance of this code is 3,

E() = { [e, 0O, 0O], [O, e, 0a], [0, O, e] e E G} (4.64)

£(2) = {[el, e 2 , Oo], [el,Oo,e2], [0, el, e 2] el, e 2 E G} (4.65)

£(3) H H. (4.66)

Thus we may detect D and correct C errors where D + C + 1 < 3 and D > C.

We derive the form of the error detection and correction procedures used in this system

via a quotient group construction. We must determine the structure of the cosets as well

as the group product within the quotient group. An arbitrary coset is of the form

0GO[a,b,c] = { [gOla,gOlb,gOc] I g E G} (4.67)

= { [g',g'/ a- l l- i b,g'0 a- loc] g'EG}. (4.68)

From this we see that there are only two degrees of freedom, and the quotient group consists

of the set of elements

H/G {t[a,b] a, b E G} (4.69)

71

where

(4.70)t[a,b] = { [g,gOa,gb] g E G}.

The homomorphism b from H onto H/G is derived by combining (4.68) and (4.70), and

equals

/.([a, b c]) = t a-'0ba-1Oc]' (4.71)

Multiplying cosets, we find that the group product is given by

ta,b]Ot ,, = {[g,gOa,gOb] 0 [g',g'Oc,g'Od3 I g,g' G}

= { [gO ,g'ac,gg'bcg OOd] g,g' E G}

= {[g,gaaDc,gOb d] I g E G}

= t[a O c,b O d]'

(4.72)

(4.73)

(4.74)

(4.75)

Examining this product, we see that H/G is isomorphic to the simpler group T = G x G.

The coset t[,b] is renamed [a, b], and the homomorphism from H onto T is given by

?,[abc1) = [a-'Db,a'Oc]- (4.76)

We declare that no errors have occurred if P([a,b,c]) = [0D, 0D], i.e., if a = b = c.

This is an equality checker. The identity of the failed processor and the exact value of the

error is determined from the syndrome as well. We find that

(e O3,)

P([00, e,oo])
,0([O , ,])

= Iet', e~-]

= [e, 0o]

= [0r, e]

error e in processor # 1

error e in processor # 2

error e in processor # 3.

Once the error-free encoded

mapping h back to G using 4-1.

result h is found, we determine the desired result r by

This corresponds to choosing any element of h,

(4.77)

This example is the standard form of triple modular redundancy. An equality tester

72

'0-1 (1g, g' gl) = g.

detects errors and a majority circuit determines the most likely result. The framework is

able to verify the error detecting and correcting capabilities of triple modular redundancy,

as well as determine the required error detection and correction procedures.

Although presented in terms of groups, it can be readily seen that these results apply

directly to all other algebraic systems. In fact, triple modular redundancy may be utilized to

protect any system since, when the system is triplicated, the set of valid outputs always form

a 1-dimensional subgroup of the larger 3-dimensional redundant output space. Redundancy

has the exact same form, and the same error detection and correction procedures may be

used.

4.7.2 aN Codes

Let G = Z +, H = 4, and (g) = 11g. is a one-to-one mapping from G to the subgroup

G = {0, 11,22,33,44}. It is a homomorphism since

q(g91Og 2) = 11 (g91 +9g2) 5 = (11gl + 1192) 55 = (gl91) O(g92). (4.78)

Assume that O is computed by a 6 bit binary adder and that we expect single bit er-

rors of the form o = {0, ±1, ±2, ±4, ±8, ±t16, ±32} = {0, 1, 2,4,8,16,32,48,56,60,62, 63}.

These are symmetric errors and the minimum distance is found from the sets

£(1) = {0,1,2,4,8,16,32,48,56,60,62,63}

£(2) = {0,1,2,3,4,5,6,7,8,9,10,12,14,15,16,17,18,20,24,28,

30,31,32,33,34,36,40,44,46,47,48,49,50,52,54,55,

56,57,58,59, 60,61,62, 63}.

Since) = {0} and 6(2) n $ 0}, the minimum distance equals 2. Thus we can, at

most, detect single errors.

The form of the syndrome mapping b can be found using a quotient group homomor-

phism. It is well-known that, for this example, H/G is isomorphic to T = Z+l. The

mapping from H onto T is given by tk(h') = (h')11. If (h')11 = 0, we declare that the result

73

is error-free. Since the group Z+ contains a total of 10 nonzero elements, there is insuffi-

cient redundancy to correct the 12 nonzero errors in (1). (This is an alternative method

of testing if sufficient redundancy exists to correct a given set of errors.)

This type of code is referred to as an integer aN code. The general form of the encoding

is 4(g) = gN where N is an integer called the generator or check base. These codes have

been studied extensively, and for certain values of N, can detect and correct errors [6].

4.7.3 Matrix Rings

Let be the set of all N x N matrices with coefficients that are elements of a field F.

This set forms a ring, G, under standard matrix addition and multiplication. We protect

computation in G by embedding it in the larger ring H containing matrices of dimension

(N + C) x (N + C). The coefficients of H are elements of F as well. The encoding from G

to H is given by

+(A) = PiA42 (4.79)

where Pl and 4 2 have dimensions (N+C) x N and N x (N+C), respectively, and 0201 = I,

the N x N identity matrix. X is a ring homomorphism since

O(A+B) = 01(A+B) 2 = OIA 2 +OIB4 2 = +(A)+¢(B)

O(AB) = 4 1AB 2 = 4A4 2 4IBd2 = (A)O(B)

for all A, B E G. The homomorphism is satisfied for arbitrary matrices 01 and 02 as long

as 201 = I.

In this example, we will further assume that the encoding matrices have the following

special form

~01 = [q50] 02 i5~ I |](4.80)

where ~1 and i2 have dimensions C x N and N x C respectively. This leads to a systematic-

nonseparate version of the encoding which is more easily analyzed. In order that 020 1 = I,

the rows of i1 must be orthogonal to the columns of @2.

Assume that a single fault occurring during computation corrupts a single element of

74

the (N + C) x (N + C)-dimensional result. We model this as an additive error

H'=H+E (4.81)

where H' is the faulty result, H is the error-free result, and E is a matrix containing only

a single nonzero element e of F. Assume that e can be an arbitrary element of F. Then the

induced errors will be symmetric and we can analyze this system by its minimum distance.

Redundant matrix arithmetic of this form was studied in detail by Jou [25], and was

mentioned briefly in the introductory material presented in Section 2.4.2. He showed that

by proper choice of the encoding matrices Al and 2, the minimum distance of the code

may be as high as (C + 1)2. He also presented algorithms for detecting and correcting errors.

The subring of valid result matrices is given by

451A { 1 A~2 J 0E AEG J (4.82)

In order to detect errors, we compute a syndrome based on the result H'. Since the

redundant space has a dimension of (N + C)2, and since the subspace of valid results has

dimension N 2 , the syndrome group must have dimension (N + C)2 - N 2 = 2C + C 2. Any

homomorphism from H onto a 2C + C 2 dimensional space that has kernel G will suffice as

the syndrome mapping. One possible mapping is as follows. First, partition H' into the

submatrices

H' = l(4.83)
LP2 P3

where R' is N x N, P1 is N x C, P 2 is C x N, and P 3 is C x C. Then, compute the

syndrome consisting of the three matrices

(u P = [S 1 , S 2 , S 3] (4.84)
P2 P3

75

where

S = R'2 - (4.85)

S2 = '1 R'-P 2 (4.86)

S 3 = l 2 - P 3. (4.87)

The result is in G if and only if all three matrices in the syndrome equal zero. The general

form of the error correction procedure is described in [251 and is quite complicated. The

procedure basically first localizes the error by examining the nonzero elements of S1 and

S2. Then the exact value of the error E is determined using all three syndromes.

Many variations of this basic encoding scheme are possible. Our analysis assumed a

very simple error model, but it can be tailored to the specific hardware architecture used to

perform the computation. Also, operations with nonsquare matrices can be protected by

embedding computation in square matrices.

4.7.4 Finite Fields

Let G be the field consisting of the integers {0,1,..., P - 1} where P is a prime number

along with modulo P addition and multiplication. All finite fields containing P elements

are isomorphic to G.

We embed computation in the ring H consisting of the set of integers {0, 1,. . ., Q - 1}

under modulo Q addition and multiplication. Assume that Q = PN for some integer N

that is relatively prime to P. We will denote the additive operations in G and H by +, and

the multiplicative operations by juxtaposition. Define r as the multiplicative inverse of N

in G. r is the element in G satisfying

(7rN)p = 1. (4.88)

The mapping from G to H which adds redundancy is given by

+(g) = (Ng)Q (4.89)

76

where the product rN can be precomputed. satisfies the additive property of a ring

homomorphism since

(91 + 2) = (rN (g + 2)p)Q

= (irNg1 + rNg2)Q

= (91) + (2)-

(4.90)

(4.91)

(4.92)

Showing that 4 satisfies the multiplicative property of a ring homomorphism is slightly more

complicated,

0(g9 1)0(g2) = (rNgl)Q (rN92)Q)Q

= (7rNrNglg2)Q

= N (r(rN)g919g2)p

(4.93)

(4.94)

(4.95)

where the last line follows since N divides Q. We can reduce this further by noting that

(rN)p = 1. Then,

0(gl)0(g2) = N (g919 2)p = (Nglg 2)Q = (g919g2). (4.96)

Under this homomorphism, the subgroup of error-free results consists of the multiples

G= {O,N, 2N,...,(P- 1)N}. (4.97)

The redundancy is equivalent to that in aN codes which were presented in Section 4.7.2.

The same error detection and correction procedures may be used, and the performance of

the code is determined by N. Guidelines for choosing N are given in [6].

77

4.7.5 Linear Transformations

Suppose that we wish to protect the linear transformation r = L(g) from A(M) to (N)

This computation can be modeled as the vector-matrix multiplication

r = gL (4.98)

where L is an M x N matrix describing the transformation. We can protect this operation

by splitting the transformation into smaller operations, each of which may be placed in our

framework. Rewrite (4.98) as

- i.~-l

r= [g ' gM] (4.99)

-L-

M

= gi/ (4.100)
i=1

where is the row of L, and gi is a scalax denoting the i element of g. Computation

consists of a weighted linear combination of N-dimensional vectors in N), and this may

be placed in our framework.

We add redundancy by embedding computation in 0 N+C). Redundancy is added to

the vectors i but not to the scalars gi. The homomorphism that encodes the vectors is

given by

1 = O(U) =/1 (4.101)

where 0 is an N x (N + C) matrix with full row rank (this ensures that 4b is one-to-one).

Next, we perform a sequence of operations on the encoded vectors similar to the desired

computation shown in (4.100),
M

h= gi-i. (4.102)
i=1

As usual, an additive error model is assumed. If A errors occur, then the result is given by

h' = h + e (4.103)

78

where e = = e, and e is the net effect of the it h error on the result. We assume that

e- contains only a single nonzero element and is of the form [0 ... 0 ei 0. -0] where e E R.

This is a symmetric error, and the distance of the code depends on 4i. Codes similar in

form to these were analyzed by Wolf [46] and Jou [25]. By proper choice of 0, they may

have a minimum distance as large as C + 1.

To detect and correct errors, we must compute a syndrome based on the result h'.

Recall that the syndrome mapping , is a homomorphism from H onto another vector

space in which the kernel KI = G. In this case, is an N-dimensional subspace of

F~(N+C) equal to the row space of 4i. It can be shown that the left nullspace of the matrix

q = I pT (4T)-1 equals G. Thus I is a homomorphism from (N+C) onto Rc), and

the syndrome is given by hi'P.

The error correction procedure is quite elaborate and is outside the scope of this pre-

sentation. We refer the reader to [46] and [25] for a more complete presentation.

4.8 Summary

This chapter applied the general set-theoretic results of Chapter 3 to the special case of com-

putation in an algebraic group. We showed that in order for the structure of the redundancy

to be preserved throughout computation, redundancy must be added via an algebraic ho-

momorphism. Conditions for error detectability and correctability were rephrased in terms

of group operations, and we showed that error detection and correction may be performed

in an efficient manner using a syndrome. We then extended these results to other algebraic

systems that have the underlying structure of an Abelian group. Our results for groups

carried over completely to these other algebraic systems. We concluded with a wide variety

of examples of the application of our techniques.

The results of this section were specifically geared towards computation performed in

algebraic groups, rings, fields, and vector spaces. We feel, however, that many of our re-

sults are more widely applicable, especially those concerning error detection and correction.

Section 4.3 was based entirely on these three assumptions:

(i) the set of outputs may be modeled as an Abelian group H.

79

(ii) valid results lie in a subgroup G of H.

(iii) errors influence the result in an additive manner as shown in (4.21).

Any redundant system satisfying these properties, independent of exactly what computation

occurs, may utilize the techniques which we have developed.

The main drawback of this chapter is that we do not have, as of yet, a general method of

determining possible homomorphisms . This makes the results and techniques developed

difficult to apply. We solve this problem in Chapter 5 in which we give a step-by-step

procedure for finding homomorphisms for the important class of systematic-separate codes.

80

Chapter 5

Systematic-Separate Codes

The results of the previous chapter are only useful if a procedure for determining possible

homomorphisms exists. In this chapter, we consider the class of systematic-separate codes

which protect computation using a parallel, independent parity channel. For these codes,

we provide a constructive procedure for determining all possible homomorphisms. These

homomorphisms may or may not be useful for protecting against the expected set of errors

which would arise during computation, and the iterative code selection procedure is still

needed to determine suitable codes.

We first introduce systematic-separate codes in Section 5.1 and show how they fit into

our framework. We then present a procedure for finding homomorphisms in Section 5.2, and

prove that it identifies all possible systematic-separate codes. The technique relies upon a

quotient group homomorphism, and reduces the problem of finding homomorphisms to that

of finding subgroups. We derive the form of the error detection and correction algorithms in

Section 5.3, and reinterpret redundancy conditions. Section 5.4 considers systems protected

by multiple parity channels, and 5.5 extends the results for groups to rings, fields, and

vector spaces. Finally, we present several examples of systems protected by these codes in

Section 5.6, and conclude in 5.7.

81

5.1 Description of Codes

A systematic arithmetic code is defined as one in which a codeword is composed of two

distinct parts: the original unencoded operand g, and a parity or checksum symbol derived

from g. For our purposes, we can model a systematic code as mapping G to a Cartesian

product of groups, H = G x T, where T = [T; O, 0o] denotes the group of parity symbols.

An element g E G is mapped to its corresponding element in H as follows:

= (g)= [g,t] = [g, O(g)] (5.1)

where is the parity mapping from G to T. A nonsystematic code is defined as one which

is not systematic. Systematic codes are desirable since the result decoder a is unnecessary.

Systematic codes can be further classified as being either separate or nonseparate de-

pending upon how computation is performed on the codewords. In a separate code, the

group operation O in H corresponds to componentwise multiplication of the operands and

parity,

glg0 20 0 gP = [gl, tl] 0 2 , t2 0 ... 0 [gp, tp] (5.2)

= [lg 2 ... 9gp,tlt 2 0* .. ' *Otp]. (5.3)

In a nonseparate code, interaction between operands and parity occurs.

The general form of an operation protected by a systematic-separate code is shown

in Figure 5-1. It consists of two parallel, independent channels. In the upper channel,

the original product 91°0920 ... [Ogp which we sought to protect is computed. We will

refer to this as the original or main computation. In the lower channel, we compute the

parity symbols, and then their product t Ot 2 0 ... *Otp. Then the results of both channels

are used to detect and correct errors. The details of the error detection and correction

procedures are developed in Section 5.3.

Since is a homomorphism, this places additional constraints on . Starting with (4.16)

82

vZ

gp

gp92
go

result

g

Parity Computation Error Detection
and Correction

Figure 5-1: General model of a group operation protected by a systematic-separate coding

scheme.

83

11 M

and substituting in (5.1), we find that

[g1g2,0(gl09g2)] = [g91,(g91)] 0 [g2 ,0(g2)] (5.4)

= [gl-g2,0(gl)0(g2)]. (5.5)

Equating terms in T, we find that must satisfy

0(91g 92) = (g91) ° 0(g2) for all g91,g92 E G. (5.6)

Thus 0 must be a homomorphism from G to T.

The problem of finding systematic-separate codes becomes that of finding groups T and

homomorphisms 0. This is the same problem which we faced in Chapter 4 with H and . In

order to solve this problem, we make an important simplifying assumption: we require that

0 map G onto T. We make this assumption for three important reasons. First, requiring

9 to be onto ensures that T will have the same number, or fewer elements as G. Hence

the complexity of the parity calculation O will most likely be the same, or less than, the

complexity of the original product O. Second, efficient use of parity symbols is made since

there are no unused elements. Third, the structure of G is heavily reflected in T, and we can

use a well-known isomorphism involving quotient groups of G to identity possible groups T

and homomorphisms .

5.2 Determination of Possible Homomorphisms

We now begin the derivation of the main result of this chapter. Our goal is to provide a con-

structive procedure for determining all possible groups T = [T; O, 0] and homomorphisms

9 which yield systematic-separate codes. We rely upon a quotient group isomorphism, and

find groups T= IT; O, 0<>] which are isomorphic to all possible parity groups T. As in

Chapter 4, we will never perform computation in a quotient group by manipulating cosets.

Rather, by forming the quotient group T, we will recognize that T is isomorphic to a simpler

group T in which computation can be more conveniently performed.

We showed in Section 4.3.3 that the collection of cosets H/G forms a group under the

84

product of subsets. This group was referred to as the quotient group of H by G, and its

construction relied on the fact that G was a subgroup of H. A quotient group GIN may be

formed in a similar manner using any subgroup N of G, and a homomorphism from G onto

G/N is given by (g) = NOg. Letting T = GIN and 0(g) = NOg, we have a procedure

for finding suitable parity groups and mappings. By selecting different subgroups N, we

obtain different groups T and mappings .

We now show that this procedure is guaranteed to find, up to isomorphisms, all possible

groups T and mappings . Assume that we have some homomorphism from G onto T.

We prove that T is isomorphic to GIN for some subgroup N of G.

Theorem 4. Let be a homomorphism from G onto T. The kernel KG is a subgroup

of G.

Proof. See Lemma 2.7.3 in [45]. -

Theorem 5. Let be a homomorphism from G onto T with kernel Ke. The quotient

group G/Ke is isomorphic to T.

Proof. See Theorem 2.7.1 in [45].]

Thus, any group of parity symbols T is isomorphic to GIN for some subgroup N. A natural

question arises: by finding all subgroups N of G, is our method guaranteed to find all

possible systematic-separate coding schemes? This is answered in the following theorem.

Theorem 6. Let be a homomorphism from G onto T, and let ' be another

homomorphism from G onto T'. If Kg = K 6, then T - T'.

Proof. We know by Theorem 5 that T : G/Ke and T' ; G/Ke, = G/Ke. Using

transitivity we find that T z T'. I

Thus, by finding all possible subgroups N of G, we are able to find, up to isomorphisms,

all possible parity groups. We do not distinguish between isomorphic copies of the same

parity group because they are structurally identical and have equivalent error detecting and

correcting properties.

85

The reason that we can always define T in this manner is that structurally G and G/N

are very similar. Given an element t E G/N, we know its corresponding element in g E G

"up to N." That is, we know that g is in the coset NOg. A certain amount of information is

blotted out by this mapping, but the remaining information is often sufficient for detecting

and correcting errors [45].

The problem of finding groups T and homomorphisms 8 has been reduced to one of

finding subgroups. For many groups that compute useful arithmetic operations, finding

subgroups is a trivial task. In these instances we are able to determine all applicable

systematic-separate coding schemes.

5.3 Error Detection and Correction

In this section we derive the form of the error detection and correction algorithms which

would be used in a systematic-separate coding scheme. We also restate the redundancy

conditions in terms of the specific structure of systematic-separate codes.

Assume that we expect up to A simultaneous errors to occur during computation. From

the error model (4.21) and from the definition of 0, the result [g', t'] may be written as

[g',t'] = .,t] O [7,r] (5.7)

= [gOy,tOr] (5.8)

where [g, t] is the error-free result and [, r] is the net effect of the error on the result.

and r represent the errors in the main and parity channels respectively. [, r] is an element

of £), the set containing up to A simultaneous errors.

The key to understanding systematic-separate codes is to determine the form of the

syndrome homomorphism 0. From the definition of b, the subgroup of valid results is given

by

G= { [9, (g)] g E G} (5.9)

86

Forming the quotient group H/G, we see that an arbitrary coset has the form

GO [a,b] = {[gO[a, (g)Ob] I g G}

= { [', (g'Oa-')b] I g' E G}

= { [9', 0(g')o (a1)*b] I 9' E G}

(5.10)

(5.11)

(5.12)

for some a E G and b E T. Two cosets GO [a, b] and GO [c, d] are equivalent if and only

if 0(a-1)Ob = 0(c-1)Od. Thus, the entire quotient group consists of the elements

T = {t a E T} (5.13)

where

ta = [, (g)Oa] I g G - (5.14)

The mapping b from H onto H/G is found from (5.12), and equals

(5.15)

Multiplying cosets, we find that the group product in T is given by

ia O ib = { [g, (g)Oa] 0 [g',0(g')Ob] 9g,g' E G}

- ([gg',0(gg')OaOb] g,g'E G}

= {[g,O(g)aOb] I g G}

=
t aOb

(5.16)

(5.17)

(5.18)

(5.19)

From this, we recognize that T is isomorphic to the original parity group T. The mapping

which computes the syndrome of the result [g', t' is given by

0([g',t I) = (9) - ot. (5.20)

Detecting and correcting errors in a systematic-separate code is now a matter of com-

puting the syndrome and using it to identity the error. This may be done using a lookup

87

,0([a, b] = TO [a, b = 8(a)-l *b-

table A as is illustrated in Figure 5-1. Note that we do not bother correcting the result t'

of the parity channel since we are only interested in the result g of the main channel.

Given the syndrome homomorphism O, it is easy to determine redundancy conditions

by applying (4.37). Substituting in the definition of b, we find that we can detect D and

correct C errors if and only if,

0(i)-'otr5 0 (72)-1'r 2 for all [y1,r] c([Y2,r 2] e C(*). (5.21)

In many cases, the complexity of the main channel far outweighs that of the parity

channel. In these instances, we might expect the probability of failure in the main channel

to be much larger than the probability of failure in the parity channel, and we could model

the parity channel as being error-free. Errors would then be of the form

co = {[I, O*] e o} (5.22)

where I is the set of all possible single errors occurring in the main channel. In order to

detect D and correct C errors of this form requires that

6(-Y) 0(-Y2) for YI e £(C) 72 E C(D). (5.23)

An alternate method of analyzing systematic-separate codes is to study undetectable

errors. An error [, 7] is undetectable if it leads to a syndrome that equals O0. This occurs

when (y) = r. These errors have a balanced effect on the main and parity channels and

corrupt the result in a manner such that it appears to be error-free. If a fault corrupts the

main channel only, such that the error is of the form [y, Oo], then it is undetectable if and

only if 0(a) = 00. This implies that 7 E K 9. Undetectable errors of this type do not affect

which coset the result of the main channel lies in. If a fault corrupts the parity channel

only, such that the error is of the form [OE, r], then the error is always detectable since it

leads to a nonzero syndrome.

88

5.4 Multiple Parity Channels

We have thus far been analyzing systems protected by a single parity channel. We now

discuss how several parity channels can be combined to protect against a wider range of

errors. Our main result is that a system protected by multiple parity channels is always

isomorphic to a system protected by a single parity channel of higher order.

Consider a system containing N independent parity channels as shown in 5-2. This

figure, for simplicity, illustrates the protection of a single group product. Multiple products

may be protected in the same manner. The underlying structure of this system is identical

to that of Figure 5-1 except that a total of N parity channels are used to check the result.

Denote the parity group used by the i parity channel by Ti and denote the it parity

mapping by 8i. Also denote the kernel of the it parity mapping by K 1 and the Ath syndrome

by Si. Since the parity channels are independent and parallel, and each performs a group

operation, the collection of parity channels is itself a group T which is isomorphic to the

direct product T1 x T2 x ... x TN.

It would be convenient if the multiple parity system were equivalent to a system pro-

tected by a single parity channel utilizing group T. This, however, is not the case since

the overall homomorphism from G to T1 x T2 x ...-- x TN is not necessarily onto. Instead,

we must analyze this system by determining the kernel Ks of the overall homomorphism

from G to T1 x T2 x *.. x TN. In order for g E G to be in K, g must be in K6i for all i.

Therefore,

K = Ko, n K2 n ... n KON. (5.24)

The performance of the multiple parity channel system is equivalent to a system with a

single parity group T :, G/Ks.

Although multiple parity channels are isomorphic to a single channel, they may have

several advantages. The multiple channel system decomposes the parity computation into

operations in N smaller groups. This yields more efficient, less complex parity operations

in a manner similar to residue number systems [15]. By selecting kernels Ks, containing

common elements, it is possible to incorporate redundancy directly into the parity channel.

This redundancy, though not providing additional coverage for the main channel, can be

89

I

2

'2

gj

g

result

g

Parity Computation N Error Detection and Correction

Figure 5-2: Diagram showing the architecture of a system protected via multiple parity

channels. The example shows a single group product protected by N independent parity

channels.

90

used to detect and correct errors within the parity channels. Lastly, the multiple channel

architecture will have a different set of parity channel errors than the single channel system.

This set may lend itself more readily to error detection and correction.

5.5 Application to Other Algebraic Systems
I

This section discusses the construction of systematic-separate codes in other algebraic sys-

tems. We cover rings, fields, and vector spaces, which are algebraic systems containing two

distinct operations. The general form of the computation which we desire to protect is some

arbitrary sequence of these operations applied to the input operands. We will show that

systematic-separate codes may be defined that are capable of protecting computation of

this form. The essential properties of systematic-separate codes are unchanged from those

for groups. The only major difference is the manner in which homomorphisms are found.

A quotient-type construction is still used, but other algebraic structures take the place of

subgroups.

5.5.1 Rings

The kernels of ring homomorphisms are algebraic structures known as ideals.

Definition 11. An ideal N of a ring G = [; 0-] , 00] is a subgroup under 0 with

the additional property that

ng E N and gn N for all n E N and g E G. (5.25)

Quotient rings are constructed as G/N, and by finding all ideals, we are guaranteed to find

all ring homomorphisms. Error detection and correction reduces to a syndrome test, with

the same structure shown in Figure 5-1.

5.5.2 Fields

As in rings, the kernels of field homomorphisms are ideals. Unfortunately, a field contains

only trivial ideals, N = G and N = {O}, and thus a nontrivial systematic-separate

91

code cannot be defined. The only alternative is to use modular redundancy or to embed

computation in a larger ring using a nonsystematic code.

5.5.3 Vector Spaces

Systematic-separate codes are of special interest in vector spaces because a nonsystematic

encoding may be computationally expensive. The kernels of vector space homomorphisms

are algebraic structures known as subspaces.

Definition 12. Let G = [; O,0] be a vector space over F. A subspace N of G is

a set such that

ag 1O/392 E N for all a,/ E F and gl,g2 E N. (5.26)

Quotient spaces are constructed as G/N, and by finding all subspaces, we are guaranteed

to find all systematic-separate codes.

Quotient spaces are easily described for the vector space F(N). The homomorphism

from F(N) onto F(C), C < N, is always isomorphic to the vector-matrix multiplication

= (g) = g9 (5.27)

where e is an N x C dimensional matrix of rank C. The kernel of 0 corresponds to the

left nullspace of e. Because of the flexibility in choosing subspaces as kernels, the set of

all possible homomorphisms is equivalent to the set of all rank C matrices of dimension

N x C. This large set of available homomorphisms allows codes to be constructed that

protect against a wide variety of errors. Also, the structure of these code is similar to that

of linear error-correcting codes, and we may apply results from this area in a straightforward

manner.

5.6 Examples

We now illustrate our theory through several examples. Our intention is to derive the form of

the redundancy in a wide variety of systems by using a quotient-type construction. Many

92

of these examples are equivalent to coding schemes already presented by other authors.

The power of our approach is that it is not only able to derive the form of redundancy in

these systems, but also in many instances, shows that no other coding schemes exist. For

simplicity, most of the examples deal with protecting a single binary operation, but may be

extended to multiple operations in a natural manner.

5.6.1 Trivial Codes

We begin by giving two coding schemes that can be applied to any group. Every group

G contains two trivial subgroups, N = {OE } and N = G, and these yield two systematic-

separate codes. First, consider N = {O0}. Then T = G/N is isomorphic to G. Computa-

tion in the parity channel is isomorphic to the main channel, and this corresponds to double

modular redundancy. Second, when N = G, then T = G/IN [{Oo}; 0, OoJ. maps all

elements to the identity O0. Although defining a valid homomorphism, this encoding has

no error detecting or correcting ability.

Trivial codes have exact counterparts in rings, fields, and vector spaces.

5.6.2 Integer Residue Codes

Let G = Z+ be the ring of integers under standard integer addition and multiplication.

Ideals of G are of the form

N = {O, ±M, ±2M,.. .} (5.28)

where M is an integer. If M = 0 or M = 1, then the kernel defines a trivial code, and we

assume in the following that M > 2. Cosets of N in G are of the form

N + g = g,g M,g ± 2M,...}. (5.29)

93

Since elements of the kernel are evenly spaced by M, the cosets N + g and N + (g + iM)

are equal for all integers i. Thus, there are only M unique cosets, and we denote them by

o = N + 0 = { 0,± M,±2M,...}

= N+1 = {1,1±:M,1±2M,...}

t(M-1) = N+(M-1)= {(M-1),(M-1)±M,(M-1)±2M,...}.

The mapping 0 from G onto T maps g E G to the coset containing g, and is given by

9(g) = M (5.30)

The sum '> and product ~ in T can be shown to be

titj = (N+i)+(N+ j) = N+ (i + j)M = (i+j)M (5.31)

tiStj = (N + i)(N + j) = N + (ij)M = t(ij)M- (5.32)

Examining T, we see that it is isomorphic to T = Z + , the ring of integers {O 1, . .,M - 1}

under modulo M addition and multiplication. This isomorphism is accomplished by map-

ping coset ti to the integer i. The mapping from G to T equals

t = (g) = (gM (5.33)

and the parity operations equal

tiOtj = (ti + t)M (5.34)

ti tj = (titj)M. (5.35)

This fault-tolerance scheme is equivalent to a residue checksum modulo M. In fact, we have

just shown that the only systematic-separate code capable of protecting integer addition

and multiplication is a residue checksum. The only flexibility which we have is in the choice

of M. This is the same result obtained by Peterson [47], but we have obtained it through

94

a group-theoretic argument.

Let g' and t' denote the possibly faulty results of the main and parity channels. In order

to detect and corrects errors, we compute the syndrome

S = t- (g')M. (5.36)

If S = 0 we declare that the result is correct. Otherwise, the value of S identifies the specific

error. Since the parity ring contains M - 1 nonzero values, the system can correct up to

M- 1 different errors.

If G were instead the finite ring N containing N elements, then we can apply a similar

checking scheme. The only difference is that we are now constrained in the choice of the

modulus M. In order for (5.33) to define a valid homomorphism, M must divide N.

5.6.3 Real Residue Codes

Residue codes can also be defined to protect the addition of real numbers. Let G = RF+ =

[;+, 0] be the group of real numbers where + denotes normal real number addition.

Subgroups of G are also of the form shown in (5.28) where M is now a real number. The

quotient group T = GIN contains an infinite number of elements and we represent its

members by the cosets

{t I0 <g < M} (5.37)

where

t_ = + g. (5.38)

The mapping becomes

@(g) = t(g)~ (5-39)

where (g)R denotes the real number residue of g modulo M which we define as

(g)M g - pM (5.40)

95

where p is an integer chosen such that 0 < (g)R < M. The product in T is given by

t,*tb = R . (5.41)(a+b)M

Examining (5.39) and (5.41) we see that T is isomorphic to the group

T = [{t10< t < M};(+)M,0]* (5.42)

The mapping from G to T is given by

t = 0(g) = (g)M (5.43)

and the product of elements in T equals

tiOtj = (ti + tj)M- (5.44)

This coding scheme is essentially a residue checksum defined over the real numbers.

Residue codes can also be defined over the group C+ of complex numbers under addition.

Since C + is isomorphic to the direct product R+ x R +, the parity channel is isomorphic to

two real residue codes; one defined on the real part, and one on the imaginary part. Ignoring

trivial codes in either channel, the general form of the code is

T = [{[rx,r2] 0 < r < M~, < r2 < M2}; 0,[0,0]] (5.45)

t, = [tg,r,,t,i] = 0(g) = [(Re[g])RM, (Im[g])M2] (5.46)

and

[ta,r, ta,i] [tb,r, tb,i] = [(ta,r + tb,r)M , (tai + tb,i)M2] (5.47)

where M1 and M2 are arbitrary positive real numbers.

These two examples illustrate how addition of real or complex numbers may be protected

by a residue code. In both cases, we have identified all possible subgroups and thus we have

identified the form of all possible coding schemes. One may be tempted, as in integer

96

residue codes, to protect multiplication as well as addition of real or complex numbers.

Unfortunately, R and C are fields and we therefore cannot simultaneously protect addition

and multiplication.

5.6.4 Multiplication of Nonzero Real Numbers

It is possible to protect only the multiplication of real numbers. Let G = [*; x, 1] where

R denotes the set of nonzero real numbers, and x is ordinary real number multiplication.

For simplicity of notation, we drop the group product in gl x g2 and merely write gg2.

Exponents will also have the expected meaning of repeated products.

The group G has several types of subgroups, and each leads to a different coding scheme.

Some subgroups are of the following types

NI = {1}

NII = G

NIII = { g > O and g e G}

NIV = {-1, 1}

Nv = {..., ±M - 2 , M - I, 1, ±M, M 2,...} where M E G

NV, = {...,M - 2, M - 1, 1 ,M,M 2,... } where M E G

As we have already shown, NI and NII lead to trivial codes.

Now consider the kernel NIII. It partitions G into two cosets which we denote by t+

and _,

t+ = {gjg > O,g e G} (5.48)

L = {gg < O,gEG}. (5.49)

The homomorphism is given by

ifg>0
((g)= ifg < . (5.50)

if g <0.

97

Multiplying cosets, we find that the product O in T obeys

t+ t+ := + 4+6t_ = L

L6i+ = L L6 = t+.

From this we can see that T is isomorphic to T = Z+ , the integers modulo 2. The mapping

from G to T is given by

0 if >0

(g) 1 ifg (551<O

and the parity operation becomes

t<tj = (ti + tj)2. (5.52)

This coding scheme is shown in Figure 5-3. Basically, it checks the result using the rule:

positive x positive = positive

positive x negative = negative

negative x positive = negative

negative x negative = positive.

Errors influence the result through the group product, in this case, multiplication. If an

error e occurs in the main channel, then it is undetectable if e > 0. We can only detect an

error if it affects the sign of the result.

The kernel NrV partitions G into an infinite number of cosets of the form

g = NIv x g = {-g,g}. (5.53)

We will choose the set of cosets {g g > 0} to represent the elements of T. The mapping

from G onto T becomes

(g) = tgI (5.54)

where Ig denotes the absolute value of g. Multiplying elements of T we find that

ta6 tb= tab. (5.55)

98

-1

92

Main Computation Channel

,

Type III Parity Channel

01

81 sgn

21] tesn0

-- - - - - - - - -- - - - - - - - -- - - - - - - -

Error
Detection

and
Correction

- g

Figure 5-3: This figure illustrates one possible systematic separate coding scheme which
may be used to protect the multiplication of nonzero real numbers. The code was derived
using the subgroup NIII and is equivalent to a sign check of the result.

The group T is isomorphic to the group of positive real numbers under multiplication,

T= I[{t > t E }; x 1]. Then

t = (g) = [gI (5.56)

and the group product is real number multiplication of strictly positive values

taOtb = tatb- (5.57)

This coding scheme is shown in Figure 5-4. In the parity channel, we perform the original

multiplication ignoring the signs of the operands. Then we check if this equals the absolute

value of the result from the main channel. This scheme can detect all errors in the main

channel except e = -1. This error affects only the sign, but not the absolute value of the

result.

It is interesting to note that a combination of types III and IV parity channels can

detect any error in the main computation channel. This is a consequence of the results for

99

gl

g2

gl

g2

g

Figure 5-4: Systematic-separate coding scheme derived from the kernel NIV for protecting
the product of nonzero real numbers. The code checks only the magnitude of the result.

multiple parity channels. The intersection of these kernels equals

NII n Niv = NI = {1} (5.58)

and the overall parity computation is isomorphic to the original computation in G. This is

equivalent to double modular redundancy.

The kernel Nv leads to yet another coding scheme. The cosets T = G/Nv are of the

form

= NV x g = {... .gM , ±g-,gM-, ±ig, gM, ±gM2 , .. }. (5.59)

As before, we choose a convenient set of cosets to represent the elements of the quotient

group, T = { i 1 _< tg < M}. The mapping 6 is then given by

t9 = O()= R<<ll (5.60)

where ((z)) R denotes the multiplicative residue of x modulo M which we define as

R 0 MP (5.61)

100

--^

Ip~ / \

I~~~~

Error
Detection

g

Figure 5-5: Systematic-separate coding scheme derived from the kernel Nv for protecting
the product of nonzero real numbers.

where p is an integer chosen such that 1 < ((x))M < M. Multiplying cosets we find that

t°tb = t R (5.62)
((ab))M

The operation performed by the parity channel can be more easily understood if we

map T to an isomorphic copy T = {t 0 < t < log M}; (+)logM, 0]. The element t E

is renamed to log g. Then

ta Otb = (ta + tb)logM (5.63)

and the mapping from G to T is given by

tg = (g) = (log Igl)logM* (5.64)

The basic structure of this coding scheme is shown in Figure 5-5. By defining T in this

manner, we see that this is in essence a real residue code defined on the logarithm of the

operands. Also, the signs of the operands are dropped in the parity channel and we work

with positive numbers.

The kernel NVI leads to an even more complicated system, and its structure can be

101

--p

gI

91

92

understood by noting that

Nv = N n Nv. (5.65)

Hence, this kernel yields a system which is isomorphic to a parallel combination of types

III and V codes.

Thus we see that each type of kernel yields a different coding scheme, and each scheme

has different error detecting and correcting properties. The code to use in a specific appli-

cation depends mainly on the set of errors go that we want to protect against. Code type

III can only protect against errors in the sign of the result while the other codes can protect

against a wider variety of errors. These other codes, however, are computationally expen-

sive, and further work is needed to refine them into efficient and practical implementations.

5.6.5 Linear Convolution

An important operation in signal processing is the linear convolution of two sequences. Let

a[n] and b[n] be P-point sequences which are nonzero for 0 < n < P- 1. The linear

convolution, denoted by c[n] = a[n] * b[n], results in a Q = 2P - 1 point sequence c[n] as

follows,
P-1

c[n]= E a[i]b[n - i] for n = 0,1,...,Q - 1. (5.66)
i=O

Assume that the samples ae members of a field F. For example, F could be the field

of real or complex numbers. Denote by F[x] the set of all polynomials in an indeterminate

x with coefficients in F. Then G = [F[x]; +, x, 0] is a ring with + and x denoting ordinary

polynomial addition and multiplication. We will represent the sequence a[n] as an element

of G as follows:
P-1

a(x) = a[i]x2 (5.67)
i=O

and will similarly represent b[n] and c[n] by b(x) and c(x). It can be shown that the

convolution c[n] = a[n] * b[n] corresponds to the polynomial product

c(x) = a(x) x b(x). (5.68)

Thus, if we can protect this ring product, we can protect convolution.

102

To protect (5.68), we choose a systematic-separate code. The ideals of G are sets of

polynomials of the form

N = {g(x)M(x) I g(x) E G} (5.69)

where M(x) is an element of G. We skip the details of this derivation and proceed directly

to the final result. We compute the parity symbols

ta(x) = (a(x))M(_,) (5.70)

tb(x) = (b(x))M(.)

where (a(x))M(x) denotes the remainder when a(x) is divided by M(x), and then perform

the parity computation

to(X) = (ta(x) x tb(x))M(x). (5.71)

Since all ideals are of the form shown in (5.69), all systematic-separate codes are isomorphic

to the one presented here.

To finish the design of a fault-tolerant convolution system, we must choose the poly-

nomial M(x) to protect against the expected set of errors. We can apply existing error

coding techniques by noting that (5.70) is the standard method of encoding a systematic

cyclic error-correcting code. Furthermore, fast algorithms for detecting and correcting errors

exist [14].

The technique outlined in this section is similar to a method proposed by Redinbo [43]

and discussed in Section 2.4.5. He protects R-point circular convolution which is equivalent

to convolution in the polynomial ring modulo N(x) = xR - 1. Recall from our example of

integer residue checksums in Section 5.6.2, that when we changed from the infinite group

Z+ to the finite group Z+ , the modulus of the residue channel had to divide N. Similarly,

to protect convolution modulo N(x), it can be shown that M(x) must divide N(x). The

scheme which we developed in this section is isomorphic to the one proposed by Redinbo,

and hence they have equivalent error detecting and correcting properties. Our scheme,

however, is preferable since the parity encoding , and parity computation ae easier to

implement.

103

5.6.6 Linear Transformations

We continue the example of linear transformations which was begun in Section 4.7.5. Recall

that the underlying operation which we sought to protect occurs in the N-dimensional vector

space DRN) and consists of the weighted sum of vectors shown in (4.100). As discussed

in Section 5.5.3, any parity vector space used to check this computation is isomorphic

to a C-dimensional vector space, and the parity encoding is given by (5.27). Thus to

protect (4.100), we first compute the parity vectors

t. = ie for i = 1,2,...,M (5.72)

where e is a N x C-dimensional matrix with rank C. Then, we compute the original

computation along with an identical sequence of parity operations,

M

q = iti (5.73)
i=1

(In this example, we will use q to denote the result of the parity channel rather than t.) We

can write the main and parity computations jointly as

- q- =] .gm] (5.74)

-AM- -m

This emphasizes that the sequence of operations applied to the parity vectors is identical

to that applied to the vectors .

This coding scheme is similar to the weighted checksum code used by Jou and described

in Section 2.4.2. Errors are modeled as adding some vector e to the result of the main channel

yielding r' = r + e. Error detection consists of computing the syndrome s = q - r'e. If

s = 0, then we declare that no errors have occurred. This can detect any error e as long as

e_ 0 . Errors can be corrected if each error has a unique nonzero syndrome.

We can generalize this example from a single to multiple linear transformations, and

this leads to yet another practical coding scheme. Suppose that we wish to apply the same

104

linear transformation L to P vectors g 1 ,.. ,gp obtaining results rl,...,p. Using the

approach from the previous paragraphs yields a scheme in which each transformation is

independently protected. The overall computation involved equals

1 [
(5.75)

- .7~- -- r - -g-- -~--- -- tM--

where there is a parity qi corresponding to the iA result r.

Suppose that each transformation Li = g.L is computed on a separate processor and

that a general error model is used. If an error occurs in the processor computing the ih

transformation, then

r= + (5.76)

where e is some element of (N) The coding scheme, in its present form, is unable to

protect against these errors since e = 0 for some e E RN)

A possible coding scheme to protect against this set of errors may be derived by adding

redundancy between rows. Rewrite (5.75), without the parity vectors t, using column vector

notation as follows

I I
-h"f, ... kx

l Il

· 1 ~ (5.77)

The ih column of the result is formed from the weighted some of column vectors

M

fj = E k,. (5.78)
i=1

where lij equals the itA element of the column vector j. We can thus consider computation

to consist of a sequence of column operations in R (P), and add redundancy accordingly. We

105

. I I .
ki - - - km

I I

I I I

11 ... IN

- I I .

compute the parity column vectors from the columns _ as follows

t = ek. for j = 1,2,...,M (5.79)

where e is now a C x P dimensional matrix of rank C. We then perform computation in

the main and parity channels. The overall computation equals

I I
... ~iN

I I
lI

l I

I I
I I
I I

l I I

(5.80)

where the vector _j denotes the result of the jth parity channel. We detect errors by

computing syndromes for each parity vector

s = j - e, for j = 1,2,...,N. (5.81)

If j = 0 for all j, then we declare that the result is error-free.

This example brings out a very important point: the form of the redundancy depends

upon how we view the underlying operations occurring in the system (i.e., what algebraic

system G we select to model computation). In both cases, the computation which we sought

to protect consisted of applying the same linear transformations L to P different operand

vectors. At first, we considered the underlying computation to consist of row operations,

and this yielded the coding scheme shown in (5.75). Next, we considered the computation

to consist of column operations and this led to the coding scheme shown in (5.80).

It is also important to keep in mind that both of these coding schemes define valid

homomorphisms, and that either homomorphism may be used independently of exactly

which operations are used to compute the actual result. For example, the computation

106

i
I I I

� -i ... :IX

I
I I I

shown in (5.80) does not have to be performed as column operations; we can compute each

row of the result independently, as originally suggested, and use the second form of parity

information,

1E * ~ I ~ (5.82)

-_L-

This flexibility allows redundancy to be added which protects against the expected set of

hardware errors. Sufficient redundancy exists to detect and correct errors of the form (5.76).

This coding scheme is equivalent to the one proposed by Musicus and Song and outlined

in Section 2.4.3. They give general guidelines for selecting the parity encoding matrix e
and describe how to perform error detection and correction efficiently.

An interesting extension to this coding scheme is to combine the row checksums of (5.75)

and the column checksums of (5.80). This incorporates a higher amount of redundancy and

leads to a more robust system. This combined approach is similar to the weighted matrix

checksum code presented by Jou and described in Section 2.4.2.

5.6.7 Gaussian Elimination and Matrix Inversion

As the previous example illustrates, any computation consisting of a weighted sum of vec-

tors may be placed in our framework. Gaussian elimination and matrix inversion are two

important computational procedures that may be described in this fashion.

Gaussian elimination is a well-known procedure for the solution of simultaneous linear

equations [48]. Let A be an N x N matrix consisting of the coefficients of the equations to

be solved,

A= : (5.83)

Gaussian elimination consists of two steps: elimination and back-substitution. During

107

-ri

-ry--

_qi

_ -qr-
i

I

- gi

I - 915--

1 - h

- tc

elimination, we add weighted copies of the first row of A to the other rows in order to

eliminate the first coefficient from the remaining equations. Next, we add weighted copies

of the second row to rows 3 through N eliminating the second coefficient. This process

continues until the matrix is upper triangular. During back-substitution, we add weighted

copies of the last row to the other rows in order to eliminate the last coefficient in each row.

This procedure continues until the matrix is diagonal.

Gaussian elimination may be protected by a systematic-separate code in a straightfor-

ward manner. First compute the a parity vector t = ae for each rows of A, and append

these to the rows of A,

]1 = ' . *(5.84)

Then proceed with Gaussian elimination of the left half of A. For each row operation in

A, perform the corresponding operation to the neighboring parity row. Once the process is

complete, the parity rows may be used to detect and correct errors just as in the previous

vector space examples.

Matrix inversion can also be computed using Gaussian elimination. We first form an

N x 2N matrix B containing A on the left half and an N x N identity matrix on the right.

To each row of B we append parity vector t = b, where bi denotes the itA row of B. This

forms the matrix

1 0 ... 0

0 1 0 .. O

0 ... 0 1

-=[T(
= [AII]T] (5.85)

-N-

Next, use Gaussian elimination to eliminate the elements in the left half of B. The elimina-

tion process transforms the identity matrix I into A - ', and the redundancy of the parity

code is preserved throughout computation.

These examples of Gaussian elimination of matrix inversion are equivalent to schemes

108

B-

- - -

proposed by Jou [25]. Our group-theoretic framework, however, gives us much deeper

insights. If we view these computations as operations on rows or columns of vectors, then

the parity schemes proposed are the only systematic-separate codes available.

5.7 Summary

The main emphasis of this chapter was on developing a procedure for finding possible

homomorphisms. We focused on systematic-separate codes, an important class of arithmetic

codes characterized by a parity-like operation in a parallel, independent channel. We used a

quotient group isomorphism, and reduced the problem of finding systematic-separate codes

to that of finding subgroups. The power of our approach is that, in many cases, we are able

to determine all possible systematic-separate codes that may be used to protect a given

operation. Also, we can show when it is impossible to protect an operation with a code

of this form. In these instances, a nonsystematic code or modular redundancy must be

used. The results for groups carry over completely to rings, fields, and vector spaces, and

we showed that the structure of fields prohibits the definition of systematic-separate codes.

We showed that the error detection and correction algorithms may be reduced to func-

tions of a syndrome, and then reinterpreted redundancy requirements for the special case of

systematic-separate codes. A wide variety of examples of the application of our technique

were presented, and our focus was on determining homomorphisms and revealing the struc-

ture of the parity channel. We showed that in many cases, the results of other authors were

special cases of the application of our framework.

In the next two chapters, we will study in detail two specific fault-tolerant systems. For

each system, we will present an architecture and derive a realistic fault model. Then we

will tailor a code to protect against the expected set of errors.

109

Chapter 6

Fault-Tolerant Convolution

In this chapter we present a detailed study of a fault-tolerant convolution algorithm. The

algorithm is based on a polynomial residue number system, and is a direct extension of

integer residue number system coding schemes applied to polynomial rings.

6.1 Introduction

Convolution is an important operation used in many digital signal processing applications.

It is the basis of digital filtering and correlation, and performing convolution is often the

most computationally intensive step of an algorithm. Extremely high throughput convolu-

tion systems use multiprocessor configurations [49]. Computation is distributed over several

processors, and each computes a portion of the result. Unfortunately, the large amount of

hardware in multiprocessor systems increases the likelihood that a soft or hard failure will

occur and corrupt the result. Thus some degree of fault-tolerance is desirable in these

systems.

Protection of convolution operations has been previously studied by Redinbo [44]. His

approach is discussed in Section 2.4.5, and he applies generalized cyclic error-correcting

codes with known minimum distance properties [22]. These codes are basically BCH codes

defined over the fields of real or complex numbers. Redundancy is incorporated by pre-

multiplying sequences by a generator polynomial. The resulting code is systematic and

separate, with parity symbols being processed in an independent channel. As discussed

110

in Section 5.6.5, Redinbo's coding scheme is isomorphic to the systematic-separate code

derived by applying our framework to polynomial rings.

The main limitation of Redinbo's work is that the error detecting and correcting prop-

erties of generalized cyclic codes only allow errors equal in number to the degree of the

generator polynomial to be detected. This dictates that direct convolution, rather than

more efficient FFT-based methods, be used.

This chapter presents a novel nonsystematic arithmetic code for protecting convolution

that is based on a polynomial residue number system (RNS). Computation is decomposed

into independent residue channels and redundancy incorporated by adding extra residue

channels. This decomposition yields an algorithm which is computationally equivalent to

the Winograd Convolution Algorithm (WCA), and its parallel structure makes it ideally

suited for multiprocessor implementations. Furthermore, and most importantly, our fault-

tolerant algorithm has the same underlying structure as fast convolution algorithms, which

are based on polynomial residue number systems, and this makes our algorithm fast and

efficient as well.

The derivation of the fast fault-tolerant algorithm is done in several steps, and its practi-

cality becomes evident only at the very end. In Section 6.2 we present background material

in polynomial rings and summarize the WCA. Then in Section 6.3 we add redundancy to

the WCA and show how the polynomial RNS defines a partial homomorphism. We then

present a fault detection and correction scheme which can handle multiple processor failures.

The derivation is very general, and yields a wide variety of implementations. Section 6.4

focuses on single error correction, and we choose moduli such the algorithm may be com-

puted efficiently with FFTs. In Section 6.5 we apply a generalized likelihood ratio test to

deal with computational noise inaccuracies, and in Section 6.6 discuss the efficiency of our

algorithm. We conclude with Section 6.7 in which we summarize the contributions made in

this chapter.

6.2 Winograd Convolution Algorithm

In this section we describe the fundamentals of the Winograd Convolution Algorithm which

forms the basis of our fault-tolerant algorithm. The operation we are interested in protecting

111

is the linear convolution of two finite length data sequences. Let a[n] and bn] be P-point

sequences which are non-zero for 0 < n < P- 1. The linear convolution, denoted by

a[n] * b[n], results in a Q = 2P - 1 point sequence c[n] as follows:

n

c[n] = a[i]b[n-i] for nO 0,...,Q-1. (6.1)
i=O

A key idea we exploit is to represent individual samples as elements of a field F, and

entire sequences as elements of a polynomial ring [50]. Let F[x] denote the set of polynomials

with coefficients in F. F[x] is a ring under the operations of polynomial addition and

multiplication, and is called the ring of polynomials in x over F. We represent the sequence

a[n] by the polynomial
P-1

a(x) = a[i]x' (6.2)
i=O

and represent b[n] and c[n] by b(x) and c(x) in a similar fashion. The degree of polynomial

a(x), denoted by deg a(z), refers to the highest power of x in a(x).

Let M(x) be an element of F[x], and denote by F[z]/M(x) the set of polynomials in

F[x] with degree less than deg M(x). F[z]/M(x) is a ring under normal polynomial addition

and multiplication modulo M(x). We use the notation r(x) = (a(x))M(_) to represent the

remainder when a(x) is divided by M(x). M(x) is called the modulus and r(x) is called the

residue. The division algorithm for polynomials guarantees the uniqueness of the modulo

operation [45].

It is well-known [51] that the polynomial product c(x) = a(x)b(x) is equivalent to the

linear convolution in (6.1). Furthermore, the product can be computed in the finite degree

polynomial ring F[x]/M(x) by choosing an M(x) such that degM(x) > degc(x). The

modulo operation will not affect the result and a linear convolution will still be computed.

A polynomial residue number system (RNS) [51] is an isomorphic representation of the

finite degree polynomial ring F[x]/M(x). It decomposes a large ring into a direct sum of

several smaller rings. To define a polynomial RNS isomorphic to F[x]/M(x), we first factor

M(x) into N relatively prime polynomials,

M(x) = ml(x)m 2(x) ... mN(x) (6.3)

112

where each mk(x) is a member of F[x]/M(z). Then, it can be shown that the direct sum

of rings F[x]/m1n(x) x -... x F[x]/mN(X) is isomorphic to F[x]/M(x). The mapping from

a(x) e F[x]/M(x) to its direct sum representation is accomplished by computing the N

residues

ak(x) = (a(x))mk(x) for k = 1,...,N (6.4)

where ak(x) E F[x]/mk(x). We denote this isomorphism by

a(x) {a(x), a2(X), ... , aN(X)}. (6.5)

The inverse mapping from a set of residues {a,(x), a2 (x), . . , aN(zx)} to a(x) e F[x]/M(x)

is computed by the Chinese Remainder Theorem (CRT) for polynomials:

N

a(x) = E (ak(x)Dk(X))mk(X) Mk(X) (6.6)
k=1

where

Mk(x) = M(x) (6.7)
mk(x)

and Dk(x) is chosen such that

(Mk(x)Dk(X))m(.) = 1. (6.8)

The isomorphism between F[x]/M(x) and its direct sum allows us to perform compu-

tation in F[x]/M(z) by operations in each of the smaller rings F[x]/m(x),..., F[x]/mN(x).

The isomorphism holds for both ring operations. Let a(x) and b(x) be elements of F[x]/M(x)

with residue representations,

a(x) {a(x),...,aN(x)} and b(x) {bl(x),...,bN(x)}). (6.9)

The residue representation of the sum (a(x) ± b(x))M(.) or product (a(x)b(x))M(x) can be

computed by N independent residue additions or multiplications:

(a(x) i b(x))M(.) {al(x) ± bl(x),...,aN(x) ± bN(x)} (6.10)

113

(6.11)

A polynomial RNS is the basis of the Winograd Convolution Algorithm (WCA). We

have already discussed the main steps involved, and we summarize them here for clarity.

To compute the linear convolution c(x) = a(x)b(x), choose an M(x) such that deg M(x)>

deg c(x). Define an RNS by factoring M(x) into N co-prime polynomials. (Both of these

steps are done off-line). Then, given the sequences a(x) and b(x), compute the two sets of

residues (6.9). Perform the residue multiplications in each of the smaller rings (6.11), and

then reconstruct using the CRT (6.6). The WCA thus computes a long convolution using

N simpler polynomial products in independent residue channels.

Convolving two sequences of length P using direct convolution (6.1) requires (p 2)

operations. If we use the WCA instead and choose the moduli polynomials carefully, then

convolution can be computed with as little as 0 (P log 2 P) operations. The savings over

direct convolution can be substantial.

6.3 Fault-Tolerant System

In this section we incorporate redundancy in the WCA to yield a robust algorithm. The

WCA is mapped onto a multiprocessor architecture and a suitable error model is derived.

We then show the connection between the system developed in this chapter and the results

of Chapter 4. Then an algorithm for detecting and correcting multiple processor failures is

presented.

We add redundancy to the WCA by adding extra residue channels and constraining the

length of the convolution. We start with a Q-point linear convolution computed using N

moduli, and add C extra moduli mN+l(x), ... , mN+C(x). These moduli must be co-prime

to each other and to the original N moduli. Since N + C residues are used, computation is

isomorphic to the larger ring F[x]/M+(x) where M+(x) = IN+c mk(x). In F[x]/M+(x) a

convolution of length Q+ = EN+C deg mk(x) could be computed. However, we restrict the

lengths of the input sequences such that the result has a length Q < E=l deg mk(x). Only

a portion of the allowable output length is used and the Q+ - Q high order coefficients of

the result should be zero.

114

(a(x)b(x))M(.) ;z_, f(ai(x)bl(x)),,,,(.),..-,(aN(x)bN(X)),,,,(x)l-

6.3.1 Multiprocessor Architecture

We distribute computation of the WCA in a multiprocessor system such that one residue is

corrupted per processor failure. We accomplish this by performing the computation needed

for each residue channel on a separate, independent processor. Thus, we assume that N + C

processors are available, and assign to the k processor the computation of the kth input

residues

ak(x) = (a(x))mk(x) (6.12)

bk(x) = (b(x))mk() (6.13)

as well as the k th residue product

Ck(x) = (ak(x)bk(x))mk(x). (6.14)

Our approach can only protect against errors in the first two steps of the WCA. To

ensure proper computation of the CRT reconstruction and error detection and correction,

we assume that Triple Modular Redundancy (TMR) is used in these steps. This hybrid

approach is practical since the bulk of computation occurs during the first two steps of the

WCA. A diagram of the overall system architecture is shown in Figure 6-1.

Our chief concern is guarding against failures in the N + C residue processors, and so we

assume that data I/O and interprocessor communication are reliable. These functions can

be protected using standard techniques such as binary error-correcting codes or triplicated

buses. We declare that a processor has failed when it does not compute the correct result

given its input. This model covers a wide range of possible processor failures including

transient single bit arithmetic errors as well as complete processor failure. We also assume

that when a processor fails, it corrupts only the computation assigned to it, and does not

affect the communication network or any other processor. With this model, one residue will

be corrupted per processor failure.

We denote the outputs of the processors by zk(x), and assume that A failures occur in

115

a(x)

b(x)

c(x)

l 11 I
Protected by Polynomial RNS Protected

by TMR

Figure 6-1: Robust multiprocessor architecture used to compute convolutions. Computation
is first divided into N + C residue operations, each of which is computed by an independent
processor. The outputs of these processors are fed to a reliable system which computes the
CRT reconstruction and performs error detection and correction.

116

processors {kl, .. , kA}. The processor outputs will have value

Zk(X) C k(X) + qk(x) for k = kl,...,kA (6.15)

ck(x) else

where qki(x) is the net effect of the failure in channel k, and deg qki(x) < degmki(x).

Using this set of residues, the output of the reliable CRT step is

N+C

z(x) = E (zk(x)D (x)) "" M1 (x) (6.16)
k=1

where now

Mk (x = r(X) (6.17)

and D + (x) is chosen such that

KD(k(x)Mk (x))m(x) = 1. (6.18)

Substituting (6.15) into (6.16) gives

z(x) = c(x) + E (Oki(x)Dt(x))mk() M (x) (6.19)

i-1

and we see that processor failures affect the result in an additive manner.

6.3.2 Relationship to Group-Theoretic Framework

The redundant polynomial residue number system code that we use is related to the group-

theoretic framework of Chapter 4, and satisfies the postulates of a partial homomorphism.

Computation occurs in a polynomial ring, F[x]/M(x), redundancy is added by embedding

computation in a larger ring, F[x]/M+(x), and an additive error model (6.19) is assumed.

The importance of using a polynomial residue number system to compute convolution

is two-fold. First, it allows convolution to be computed efficiently by decomposing compu-

tation into smaller independent convolutions. Second, the fault mechanism (6.19) generates

errors which may be protected against by the redundancy. Any convolution algorithm which

117

generates errors of the form shown in (6.19) may be used instead of the WCA.

The mapping from F[z]/M(x) to F[x]I/M+(x) which adds redundancy is very simple,

0(a(x)) = a(z). We treat the polynomial a(x) as an element of F[x]/M+(x) and perform

arithmetic modulo M+(x). The desired convolution is computed as long as the result has

length Q < =l deg mk(x). We will constrain the lengths of the input sequences such that

this is true. The subset of valid results is given by

7Xv = {c(x) E F[x]/M+(x) I degc(x) < Q}. (6.20)

Over this set of outputs, it is seen that the mapping q(a(x)) = a(z) satisfies (4.50) and is

thus a partial homomorphism.

It is assumed that errors affect the result in an additive manner as shown in (6.19). We

will assume that k,(x) is an arbitrary element of F[x]/mk,(x), and therefore the errors

are symmetric. We are thus able to measure the redundancy in this code via its minimum

distance. We will pursue this in the following section and will also present an algorithm for

detecting and correcting multiple errors.

6.3.3 Fault Detection and Correction

We now develop an algorithm that detects and corrects multiple processor failures by exam-

ining the result z(x). The algorithm is complicated by the fact that we must determine the

exact number and location of failed processors. Let D be the largest nonnegative integer

satisfying

de [M+(x) > Q for every set of D unique moduli {mz (x),.. .,mD(x)}.
ml, (X) -**mlD (X)

(6.21)

D measures the amount of redundancy present in the polynomial RNS. It serves the same

purpose as the minimum distance of a binary error-correcting code. To change a valid set

of residues into another valid set, at least D + 1 residues must be modified. The specific

value of D depends on the redundant moduli mN+l(),..., mN+C(x). If the degrees of the

118

redundant moduli are all greater than or equal to the degrees of the original N moduli,

degmN+i(x) > degmj(x) for { (6.22)
j = 1,..., N

then D = C.

The properties of a polynomial RNS with a given value of D are described in the following

two theorems which are proved in Appendix 6.A.

Theorem 1 - Fault Detection

Let D satisfy (6.21). Then

a) If no failures occur (A = 0), then degz(x) < Q and the correct convolution

is c(x) = z(x).

b) If between 1 and D failures occur (1 < A < D), then degz(x) > Q.

Theorem 2 - Fault Correction

Decompose D as D = a + for some integers a > _ > 0. Assume that no more

than a processors can fail at any time. Then:

a) We can reliably distinguish when /3 or fewer errors occur from the case when

between /3 + 1 and a failures occur.

b) If /3 or fewer failures occur, we can correct them by examining z(x).

The decomposition D = a + /3 presented in Theorem 2 is not arbitrary, but determines

the error detecting and correcting ability of the code. a is the maximum number of simul-

taneous processor failures which we will attempt to detect, while /3 is the maximum number

we will attempt to correct. Since a failure must be detected in order to be corrected, a

must be greater than or equal to . A key issue is that we must make an assumption about

the maximum number of simultaneous processor failures which can occur. Then we add

sufficient redundancy to attain a desired level of protection. For example, suppose that we

anticipate at most 2 processors failing at one time. Then we could do any of the following:

1. Detect up to 2 processor failures, but correct none of them (D = 2, a = 2, /3 = 0).

119

2. Detect up to 2 processor failures. If 1 processor failed, we can determine this and

correct the result (D = 3, a = 2, 3 = 1).

3. Detect and correct up to 2 processor failures (D = 4, a = 2, , = 2).

The minimum redundancy needed for single fault detection is D = 1, and this can be

accomplished by C = 1 extra modulus which satisfies

degmN+l(x) > degmi(x) for i= 1,...,N. (6.23)

For single fault detection and correction we need D = 2, and this can be satisfied by C = 2

extra moduli satisfying

degmN+l(x),degmN+ 2(X) > degmi(x) for i= 1,...,N. (6.24)

In general, with C extra moduli satisfying (6.22), we can simultaneously detect and correct

at most C/21 faults, where C/2J is the largest integer not greater than C/2. This result

is equivalent to the error detecting and correcting ability of a distance C + 1 binary error-

correcting code [14].

Theorem 2 ensures that errors may be corrected but does not state how to perform the

actual error correction. This is given in the following theorem which determines the exact

number and location of the faulty processors, and during this process, corrects the output.

The proof of this theorem is also given in Appendix 6.A.

Theorem 3- Fault Correction Algorithm
Suppose the moduli satisfy the conditions (6.21) and assume that A < a failures
occurred in processors {kl, ... , k.t}. Then:

1) Given the (possibly faulty) residues zk(x), use a reliably implemented CRT
to reconstruct the corresponding sequence z(x).

2) If deg z(x) < Q then no fault has occurred, so c(x) = z(x). STOP.
3) Otherwise a fault has occurred.

For p = 1,...,
For all possible sets of p processors 1 < J < 2 ... < jp < N + C

Compute r,...jp,(x) = (z(x))M+ () wh

Mt -)M+ (.) where()
1 = . mj()

120

If deg rj jp(x) < Q, then the p processors jl,... , jp}
have failed, and c(x) = rj. ... p() is the correct
convolution. STOP.

4) If all the polynomials rj.,...,jo(x) have degree > Q, then 3 + 1 to a
faults occurred, and this cannot be corrected. STOP.

This algorithm essentially does an exhaustive search of all possible combinations of failed

processors. It begins by checking if no processors failed by testing if deg z(x) < Q. If so,

then c(x) = z(x) is the correct result. Otherwise, it begins with p = 1 and checks if the

error was caused by a single processor failure. If not, then all possible two processor failures

are checked (p = 2). This continues until p = . If no set of residues which explains the

fault can be found, then by Theorem 2 we know that between + 1 and a faults occurred,

and this cannot be corrected. Testing for multiple failures in this manner guarantees that

only faulty processors will be corrected.

The algorithm can be implemented quickly if we recognize that only the high order

coefficients of the remainder (those of degree > Q) must be computed before testing if

deg rj,...,jp(x) < Q. If any of these coefficients are nonzero, then we abort the division

and test the next set of processors. Once we find {jl,...,jp} such that the high order

coefficients are all zero, we know that processors {jl,..., jp} have failed. To obtain the

correct result, we complete the division. This procedure requires roughly (Q+ - Q)/Q as

much computation as performing all divisions completely.

Even with this fast fault correction algorithm, checking for multiple processor failures

can be computationally expensive. The procedure in Theorem 3 essentially does an exhaus-

tive search of all possible combinations of failed processors. Checking for l or fewer failures

requires a total of
(N + C)! (6.25)

i!(N + C - i)!

separate polynomial divisions. This is reasonable only for small values of 3.

If exact arithmetic is used, then the above procedure is sufficient. However, if any

rounding or truncation occurs during computation, the high order coefficients of rj,.,p(x)

will never be exactly zero, and our fault test needs to be modified. This is done in Section 6.5.

The error detection and correction techniques that are described in this section are

similar to those used in integer RNS [52]. However, we perform arithmetic in polynomial

121

rings, rather than in integer rings. Encoding entire sequences with a polynomial RNS has

several advantages over low-level single sample encoding using an integer RNS. First, off-the-

shelf fixed or floating point arithmetic units may be used since computation is performed in

the complex field. Integer residue number systems, on the other hand, require nonstandard

finite ring arithmetic units. They have great difficulty with rounding operations, and have

limited dynamic range. Second, and most importantly, in polynomial rings the choice of

moduli constrains the length of convolution that can be performed, but not the dynamic

range of the sample values. Since the length is specified in advance, overflow can be avoided.

6.4 Fast FFT-Based Algorithm

In this section we present a specific set of moduli which allows each step of the algorithm to

be implemented efficiently. We show that when mapped onto a 2-D array, our algorithm is

computationally equivalent to computing convolution using a Cooley-Tukey FFT with two

additional rows.

6.4.1 FFT Moduli

Computation is reduced if we use sparse polynomials as moduli. This simplifies computing

the residues and performing the residue multiplications. Also, M + (x) will be sparse,

simplifying error detection and correction.

Suppose the samples to be convolved are elements of the field of complex numbers. Also

assume that a[n] and b[n] have lengths such that the maximum length of the convolution

is a composite Q = NR for integers N and R. Then a particularly elegant choice for the

moduli is as follows:

mk(x) = xR W C) for k = 1,...,N + C (6.26)

where W+c = e - 2 is the (N +C)root of unity. Note that k() can be written aswhere WN+c = dN+R is the (N + C)h root of unity. Note that Mk(x) can be written as

122

the product of R first order factors,

R-1
mk(X) =] (- W(k-l)-i(N+C)) (6.27)

i=o

where S = (N + C)R. From this expansion it can be seen that the mk(x) have no roots in

common, and are thus co-prime. Also note that

N+C

M+(x) = I mk(x) = Xs_ 1. (6.28)
k=l

Our method computes c(x) modulo M+(z) which corresponds to S-point circular con-

volution. Hence, to achieve fault-tolerance, we have embedded a Q = NR point linear

convolution in an S = (N + C)R point circular convolution.

We will assume that at most a single processor can fail at any one time, and add

redundancy such that this failure can be reliably detected and corrected. We thus require

P > 1 and a > Pl. To minimize redundancy, we choose a = /3 = 1 and therefore D = 2.

Since our moduli are all of the same degree, we need two extra moduli to achieve this level

of redundancy. We will assume that C = 2 throughout the rest of this section.

6.4.2 Algorithm Description

We now describe in detail the steps involved in a fault-tolerant convolution algorithm which

uses the moduli shown in (6.26). We describe the steps in terms of polynomial operations

and as operations on two dimensional arrays. The latter description reveals the relationship

between our fault-tolerant algorithm and standard convolution algorithms. This relation-

ship will be discussed in Section 6.4.3

We map the sequence a[n] onto a 2-D array as follows:

a I[n, n2] = a [n R + n2] for 0 < n < N + 1 (6.29)
0o < n2 < R-1

where nj is the row index and n2 is the column index. Note that since a[n] does not occupy

the entire array, we zero pad it to length S. We compute the residues ak[n] via operations

123

on a [nl, n2] and place the residues in the 2-D array,

1 < k < N + 2
<n<forR-1.0 < n< R -1.

The arrays b [nl, n 2], c [ni, n2], z [nl, n2] and B [k, n],

We also use the following array representation of the

error detection and correction:

Tj [n,, n2] = rj [nR + n2] for

(6.30)

C [k, n], Z [k, n] are similarly defined.

remainder r(x) which is used during

O<nl <N

0< n2 < R-1

1 <j < N+2.

(6.31)

Note that rj [nl, n2] has N + 1 rows while the other arrays have N + 2 rows.

Computation of Residues

The first step of the algorithm is to compute the residues ak(x). Since the moduli mk(x)

are sparse polynomials, each coefficient of a residue polynomial is the sum of only N + 2

terms,
R-1 N+1

ak(x) = 0x WY, j 1)la[n + IR]
n=O 1=0

for 1 < k < N + 2 (6.32)

or in array notation,

N+1

A[k, n]- N2)a[ln]
1=0

for 1 < k < N+2.

For each n, this equation is recognized as an N + 2 point DFT along the column a[-, n].

Similar operations are used to compute the residue array B[k, n].

Residue Multiplications

The second step of the algorithm is to compute the products zk(x) = (ak(x)bA(x))mk(,) for

k = 1, 2,..., N + 2. In general, it is difficult to efficiently compute convolution modulo an

arbitrary polynomial. However, the special moduli (6.26) allow the products to be computed

124

A [k, n] = ak n]

(6.33)

by circular convolutions through a simple transformation as follows. First pre-multiply ak [n]

and bk[n] by a phase shift,

aki[n] = ak[n]w;(k-)n , A[k,n] = A[k,n]W(k)

bk[n] = bk[n]Ws(k)n - B[k,n] = B[k,n]Ws (-)n.

Then convolve these new residues using an R-point circular convolution,

R-1

z(x) = k(x)k(X))(xRl) , Z[k,n] = E A[k, i]B[k, (n-i)R (6.34)
i=0

Finally post-multiply to obtain the desired product residues,

zk[n] = zk[n]W(k))=> Z[k, n] = Z[k, n]W(kl)n.

Many efficient circular convolution algorithms exist [53] and any one could be used to

compute (6.34). A logical choice would be to use an FFT-based algorithm by taking R-

point FFTs of each row, multiplying point-by-point, and then taking inverse R-point FFTs,

Z[k, .] = FFT-' [FFTR [A[k, .] FFTR [[k, .1] (6.35)

CRT Reconstruction

The next step in our algorithm is to reconstruct the polynomial z(x) using all N +2 residues.

By assumption, this operation is computed reliably. It can be shown that for moduli (6.26),

each polynomial Mk (x) is sparse, with only one out of every R coefficients being non-zero,

N+1
Mkj(X) = mk() = E WK)(+l)xiR (6.36)

M (X)= m) i=0+

Also, the D+(x) are constants,

D+()= N WN(k2) (6.37)

125

Since deg zk(x) < R, the CRT reconstruction is formed from non-overlapped, shifted, and

scaled combinations of the zk(x). We find that

N+2 N+1 N+2

Z (X) = ~~~~~~~~~~~~ E Z~~ [nnlk, n21 ,,N+(x)- = N + 2 E E Zk(X)Xw () [, : N + 2 : Z[N+2
k;1 i-

(6.38)

This is similar to (6.33) and is recognized as N + 2 point inverse DFTs along each column

Z [., n2i.

Fast Fault Detection and Correction

If deg z(x) < Q then no fault has occurred, and we are done, c(x) = z(x). This corresponds

to the last 2 rows of z [ni, n2] being zero. If there are nonzero entries in the last two

rows, then a fault q(x) has occurred in some processor q. To locate the fault we must

divide z(x) by each M(x) in turn, and check the leading R coefficients of the remainder

rj(x) = (Z(X)M +(.)-

For this special choice of moduli, there is an even faster fault detection technique. It

can be shown that an error 4q [n2] linearly perturbs each row of the output,

r ~~W(q-l)nl
c [nl, n2] + N+2 2 [n2] for n = 0,..., - 1

z[nl, n2] = (6.39)
[W(q-l)nl

"_N+2 0q [n2]N+2 -q[2] for nl=N,N+1.

This reveals an alternative, simpler method of locating the fault. Instead of computing and

testing N + C residues, we may use the correlation between non-zero samples of z [N, n2]

and z [N + 1, n2] to quickly identify q,

= round [2 ARG (z [N + 1, n2] z* [N, n2])]) +1 (6.40)

where ARG(x) refers to the principal value, or angle, of the complex quantity x. Note,

this approach is sensitive to computational noise which may corrupt the correlation and

lead to incorrect fault diagnoses. This problem becomes more severe as 10q [n211 decreases

126

since small perturbations greatly affect ARG (z [N + 1, n2] z* [N, n2]). A more intelligent

approach to estimating is to use all the samples in rows z [N,] and z [N + 1,] rather

than just 2 samples. This approach is pursued in detail in Section 6.5.

6.4.3 Algorithm Summary

The computational steps involved in the FFT-based algorithm are summarized in Figure 6-

2. Close examination reveals that this procedure is similar to computing convolution using

Cooley-Tukey FFTs [53] of length (N + 2)R. If Cooley-Tukey FFTs were used, we would

first arrange the data into rows of 2-D matrices. Then compute the FFT of each column,

multiply the array by twiddle factors, take an FFT of each row, and multiply these row

FFTs. Then inverse FFT each row, multiply by twiddle factors, and inverse FFT each

column. The only difference between a Cooley-Tukey FFT and our algorithm is that the

initial column FFTs must be replaced with DFTs which compute each sample independently.

This is necessary because the computation in each row must be done independently by a

separate processor, and column FFTs would violate this partitioning of computation. Thus

each processor must be loaded with the input sequences a[n] and bn], and will evaluate

only the single sample of each column DFT that it needs. FFTs are not efficient under

these circumstances. In the CRT, however, the distribution of computation is not critical

to the functioning of the algorithm since the CRT is computed reliably using TMR. Thus

the N + 2 residue processors output all their data to the CRT processors, which then use

column FFTs to compute z(x).

Added insight can be gained by studying two extreme cases. First, when N = 1,

operation is analogous to TMR. We compute an R-point convolution using three indepen-

dent R-point convolutions. Another interesting case occurs when R = 1. Then mk(x) =

(- W(k - 1)) and ak(z) and bk(x) ae constants equal to the value of the Fourier trans-

forms of a[n] and b[n] at frequency 2·. This is equivalent to computing convolution

by having each processor multiply a single DFT component. Adding two samples to the

length of the convolution allows an error in any DFT component to be detected and cor-

rected. This is similar to a method proposed by Wolf to protect communication channels

from impulse noise [46]. He encodes sequences using DFTs and adds extra DFT coefficients

127

Inpu
Arrai

b[n1, n2]

Output
Array

z[n1 , n2]

Figure 6-2: Computational steps involved in the fault-tolerant FFT-based algorithm. The
example shown is of an 8-point convolution computed by four 4-point convolutions.

128

for redundancy.

6.5 Generalized Likelihood Ratio Test

If infinite precision arithmetic is used with no rounding, then all computation will be exact

and the fault detection/correction procedure discussed in Section 6.4.2 would be sufficient.

Unfortunately, processors must use fixed or floating point approximations to the complex

numbers, and rounding and truncation errors occur. In this section we discuss how to dis-

tinguish between these small deviations and actual processor failures in an optimal manner.

We begin with (6.39) and add an extra term E [n,, n2] to model the net effect of compu-

tational noise on each sample of the result,

W(q-l)nl
c [ni, n2] + N+2 qq [n2] + e [nl, n2] for n = 0,...,N-1

N+2 "
z [n n2] = (6.41)

W(q-l)nl

N+2 &q [n2] + E[nl, n2] for n = N,N + 1.
N+2

Let z, c, and _ represent the arrays z [n,, n2], c[nl,n 2], and q [n2] respectively. We

choose a set of hypotheses to model the behavior of our system. Let H* represent the

hypothesis that all processors are functioning properly, and let H, represent the hypothesis

of a failure in the q processor, where q = 1, . . ., N + 2. Also define P* and Pq as the a

priori probabilities of these events and assume that they are independent of data and fault.

Our basic approach is to compute the likelihood (probability) of observing the output

z assuming that each hypothesis is true. The hypothesis with largest likelihood is most

probable, and serves as our fault diagnosis. Unfortunately, the likelihoods depend on the

correct output c and on the fault _, if any, which axe unknown. We therefore use a GLRT

to jointly estimate the likelihoods and unknown parameters.

Define L* to be the log likelihood of z and H* conditioned on c, maximized over all

possible correct outputs c,

L, =maxlogp(z,H* c) = max logp(z H*, c) + log P*. (6.42)
/I C

129

We employ log likelihoods rather than probabilities since they can be solved more easily.

Both methods are equivalent since the logarithm is a monotonically increasing function.

Similarly, define Lq as the log likelihood of z and Hq conditioned on c and q, with c and

set to their most likely values,

)
L-q~ ~~~-

L = max logp (z,Hq [c,<> = max logp (z | Hq,c,O) + logPq. (6.43)

We will compute L* and Lq for q = , . . ., N+C and pick the largest. The largest likelihood

corresponds to the most likely failure hypothesis given the observed data z. Also, the values

c and which maximize the likelihoods serve as estimates of the correct output and error.

The solution of the likelihood equations depends heavily on the probability distribution

of the computational noise and cannot be solved in general. However, since e [n1 , n2] is the

accumulated effect of many rounding operations, it is reasonable to model it as white, zero

mean Gaussian noise with variance a.. We will also assume that e [nl, n2] is independent

of signal and fault,

p (E Inl, n2 I c,A) = p (E [n,, n2]) = N (0, 2) . (6.44)

We assume that the processors are uniform and have equal probability of failure. The

GLRT is solved in Appendix 6.B and it reduces to the following simple form. First compute

the constant

L' = 4a2 log (p) . (6.45)

This serves as a threshold which decides between H* and all other hypotheses. Next,

estimate the most likely failed processor given the observed data,

= (round [N 2 ARG (pN+1,N)]) + 1 (6.46)
[~~~N2~

where Pi,j is the total correlation between the and jth rows of z [n, n2],

R-1

Pi = E z [i, n2] z* [j, n21. (6.47)
n2 =0

130

Then compute the log likelihood of a failure in processor q,

,~~~~~~~~~~~" (6 48Lq = PN,N + PN+I,N+i + 2Re (PN,N+1W(4+) . (6.48)

Compare L with the threshold L*. If L is smaller, we declare that no processor has failed

and ascribe the deviation to computational noise. The estimate of the output, [ni, n2],

then equals

[n, n2 |z[nl,n2] forn 1 =0,...,N-1 (6.49)

0 for nl = N,N+ 1.

Otherwise, if is greater than L*, we declare that processor q has failed. We correct the

output by first estimating the error

[n2] = N 2 [z [N, n2] W(1)N + z [N + 1, n2] W;(l)(N+l)] (6.50)

and then subtracting a phase shifted copy of this estimate from z [nl, n2],

14(ql)nl.
= Z[,n2n- A+2 o4 n2] for n = 0,. . ,N- 1[i, n2 { z [n, n2]= N +2 '(6.51)

0 for nl = N, N + 1.

This method improves performance over the simple method (6.40) because a total of 2R

samples are used to identify the faulty processor instead of only 2 samples. It yields a more

accurate estimate of q [n 2] by reducing computational noise through averaging. The GLRT

requires little additional computation; roughly 3R multiplications are needed to compute

the correlations and roughly 3R + NR to correct the fault.

With a GLRT, error detection depends on the value of random computational noise, and

therefore errors may not always be reliably detected. High noise levels can cause false alarms

and small errors can go undetected. In practice, however, this is not a serious problem since

all large errors are properly detected, and during a false alarm, the error estimate i [n2]

is generally quite small, and the improperly applied error correction does not corrupt the

output significantly.

The numerical value of the decision threshold L, depends on the statistics of the compu-

131

tational noise which we modeled as Gaussian random variables. In practice, the distribution

of the computational noise depends heavily on details of the implementation (arithmetic

precision, values of N and R, FFT routines used) and a Gaussian model may be inappro-

priate. Also note, if floating point arithmetic is used, then the actual computational noise

may be correlated with the data, and it may be necessary to scale the threshold according

to the magnitude of the input sequences [54]. In practice, it may be best to use computer

simulations to choose a threshold that achieves the desired false alarm probability.

When a faulty processor is detected, the fault is corrected and then several alternative

courses of action may be taken. The processor may be monitored to see if the error disap-

pears. If so, then the fault was only transient and normal operation can continue. If the

error persists, the faulty processor can be shutdown and the system reconfigured as an N + 1

processor error detecting system. Alternatively, a standby processor might be switched in

to replace the faulty processor.

6.6 Fault-Tolerance Overhead

In this section we discuss the efficiency and fault coverage of the single error-correcting

FFT-based system discussed in the previous section. We compare an unprotected NR-point

convolution computed by a standard FFT-based algorithm, with a fault-tolerant NR-point

convolution which is embedded in an (N + 2)R-point circular convolution. Our analysis

focuses on how the polynomial RNS protects the computation involved in convolution and

does not take into account the additional hardware and processing required for reliable

interprocessor communication and I/O. We examine two quantities: overhead and cover-

age. Overhead is defined as the percentage of extra computation needed for fault-tolerance

relative to the unprotected algorithm. Coverage is the percentage of total computation

protected by the polynomial RNS (the remaining computation is protected via TMR).

We divide the FFT-based algorithm into 4 steps. During step 1, we compute the residue

arrays A [k, n2] and B [k, n2]. Processor k computes row k of these arrays using DFTs as

discussed in Section 6.4.3. In step 2, the residues are convolved using R-point FFTs. Step 3

is the CRT reconstruction using N + 2 point column FFTs. During step 4, error detection

and correction are performed. Note that steps 3 and 4 are protected via TMR, and we will

132

weight the computation required for these steps accordingly.

For simplicity, when considering the computational complexity of an algorithm, we count

only the number of multiplications involved. This is a reasonable approximation, since for

most FFT algorithms, the total number of operations is proportional to the number of

multiplications. Let M1 , M 2, M 3, and M4 be the number of multiplications in each step.

Also, let Mu be the total number of multiplications in a standard unprotected NR-point

convolution computed with FFTs. Using these definitions, our performance measures may

be written as:

overhead = M + M + 3 (M 3 + M 4) _ 1 (6.52)
M.

coverage = M 1 + M 2 + M 3 + M 4 (6.53)

As part of our calculations we must compare the number of multiplications in N and

N + 2 point FFTs. This is difficult to do for arbitrary values of N and so we make a rough

approximation. We assume that an L-point FFT requires 2L log2 L multiplications [53],

even though L may not be a power of 2. The majority of multiplications occur in the FFTs,

and we ignore twiddle and transform coefficient multiplications. With these assumptions

we obtain

M1 2R(N+ 2)2 (6.54)

M2 6R(N + 2)l1og2 R (6.55)

M3 ~ 2R(N + 2) log2(N + 2) (6.56)

M4 ~ 6R + RN (6.57)

M,, ; 6RNlog2(RN). (6.58)

Using these approximations, we evaluated our measures for several values of N and R

and the results are shown in Table 6.1. A good reference to compare the calculated overheads

with is that required by a MR system offering a similar level of fault protection. A single

error-correcting MR system requires triplication, that is, 200% overhead. Our method,

133

R

4
8

N+ 2 16
32
64

195%
93%
86%

117%
192%

174%
82%
74%

100%
165%

161%
74%
65%
88%

145%

4
8

I+2 16
32
64

Table 6.1: Overhead and fault coverage of the robust FFT-based convolution algorithm.

on the other hand, achieves this level of fault tolerance with as little as 65% overhead, a

substantial savings. We find that overhead varies strongly with N and reaches a minimum

at N + 2 = 16. Two separate factors contribute to this behavior. First, if N is small, the

two additional row convolutions make up a sizable portion of the total computation, and

thus the overhead is high. Second, when N is large, the DFTs in step 1 require significant

amounts of computation since the number of operations involved grows as (N +2)2. Efficient

operation occurs between these two extremes.

We also find that the polynomial RNS protects the majority of computation, as demon-

strated by the high coverage values. In most instances, over 90% of the computation occurs

in the residue channels. Thus, the bulk of computation is covered by the low cost arithmetic

code, while only the remaining 10% need be protected by more expensive MR.

6.7 Conclusion

In this chapter we presented a new approach to protecting linear convolution which was

considerably cheaper than traditional methods based on modular redundancy. Our algo-

rithm used a polynomial residue number system (RNS), which is the underlying structure

of the Winograd Convolution Algorithm. Computation is decomposed into independent,

parallel residue channels, and redundancy incorporated by adding extra residue channels.

Analogous to integer RNS fault-tolerance schemes, single errors can be detected by adding

one extra modulus, and corrected using two extra moduli. However, we do not encounter

many of the problems associated with integer RNS.

134

64
R

64
88%
87%
88%
90%
93%

90%
90%
90%
91%
93%

92%
91%
91%
92%
94%

. .

Overhead Coverage
256 1024 256 1024

We derived conditions on the redundant moduli such that a desired level of fault-

tolerance may be achieved, and presented an algorithm for detecting and correcting multiple

processor failures. Importantly, we presented a specific set of moduli polynomials which

yielded an efficient FFT-based algorithm. The effects of computational noise were han-

dled using a generalized likelihood ratio test, and the resulting fault detection/correction

algorithm is both fast and accurate.

The parallel nature of our algorithm makes it ideal for implementation on a multipro-

cessor system. We distribute computation such that each residue channel is computed by a

separate processor. The low cost polynomial RNS coding scheme is able to protect the bulk

of computation, roughly 90%, while the remaining 10% is protected via more expensive

triple modular redundancy. This hybrid approach yields a system fully protected against

any single failure at a cost significantly lower than a fully redundant implementation. We

are able to achieve this level of reliability with only 65% overhead, compared with 200%

needed for triple modular redundancy.

Variations of our scheme ae possible which allow a wider range of operations to be

protected. Addition and subtraction of polynomials can also be protected, and we are not

limited to protecting individual ring operations, but can protect several with a single residue

encoding and a single error test. The only requirement is that the length of the final result

be constrained. Errors may be detected and corrected in the same manner.

6.A Proof of Theorems

This appendix contains proofs of the theorems which were presented in Section 6.3.3. We

assume throughout that A failures occur in processors {kj,..., kx} and that the outputs of

the residue processors have value (6.15). The result of the reliable CRT reconstruction will

then be (6.19). We also assume that the moduli satisfy (6.21) for some value of D, and that

D = a + /3 for oa > S > 0.

If no errors have occurred, A = 0, then z(x) = c(x) and thus deg z(x) < Q. This proves

Theorem la. To prove lb, we use the following lemma:

Lemma 1: Let Obk (x) $ 0,..., k, (z) 0 be any set of 1 < A < D polynomials

135

------ -

with degqk,(x) < degmk,(x). Then:

deg YZ(ki(x)D+(x))m(x)Mki(x) > Q. (6.59)

Proof of Lemma 1: Let ki(x) = (k(x)Di(x) () Since deg qk(x) <

degmki(x) and 4ki(x) 0 0, and since D+,(x) and mki(x) are co-prime, we know

that 4k(x) : 0. Then:

Zc1 W(XM(x) [M ki(x) 1k
E k() imk (x) - -mkA(x) X [... () 2 (x) (6.60)

k 2(X)mk (X)mk3 (X) . mk (X) +' + k (X)mkl (x) . mk_ (X)] -

The first term on the right hand side has degree > Q by (6.21). The second term

cannot be zero because it cannot be evenly divided by any of the polynomials

mk 1(x),..., mkA (x). Thus the degree of the right hand side is >_ Q and Lemma 1

is true.

Since Lemma 1 is true, we know that the error term in (6.19) will always have degree > Q.

Since deg c(x) < Q, z(x) must have degree > Q if between 1 and D failures occur. This

proves Theorem 1.

Theorem 2 is contained in Theorem 3, and thus proving Theorem 3 is sufficient. We

rely upon the following lemma:

Lemma 2: Assume that A < a errors occur in processors {kl,...,k)j. Let

{jl,.. . , jp} be any set of p processors with p < f. Then:

deg [(Z(x))M .. ()] < Q if and only if {kl,...,k} C {il,.--,ip}

where
M+ ()M~~~~~~ ... j.x)

Proof of Lemma 2: Let rj . .. p(x) = (Z(x))M, + . We prove this lemma in

two parts. First, we show that deg rj ,...,jp(x) > Q if {kl,...,kA} ¢ {jl, .- ,jp})-

Then, we show that degr 3j,...jp(x) < Q if {kl,... ,k,} C {jl,---,Jp)-

136

Using (6.60), write the result of the reliable CRT reconstruction in the form

z(x) = c(x) + M+(x) () (6.61)
mk () . .-mkA(X)

where (z) 0 and (x) is co-prime to the moduli mk1 (x),...,mk (x). Then,

using the division algorithm for polynomials, write this as

() = ..,M+ (x) m(x) (6.62)mj. () ... mj,(X) Q ~

where Q(x) and r,...,jp() are the quotient and remainder when z(z) is divided

by M+ (x). Suppose {jl,...,jp} n f{kl,...,k k} = {ml,...,mr} where r <

min(A,p), and suppose {jl,...,jp} U {kl,...,kx} = {nl,...,ns} where s <

A + p. Let {ji,. . ,Jp-} = {jil,...,jp} - {ml,. .. , m,} represent the indices of

{i,. ... , p} which do not appear in {k, . . ., kA}. Similarly let {kl, . .. ,kr} =

{kl, .. .,k)} - {ml,.. .,mr}. Equating (6.61) and (6.62) gives:

c(x) - rj ... ,j(X) = mn()*mn (x) [Q(X)mk (x) mk-r (x) (6.63),jp~x)M-- ,,(X) ... Mn.(X)J

$(x)m () mMpp(r)] ·

Since A < a and p < /, we know that s < D. Therefore by (6.21), the first

term on the right hand side has degree > Q. When {kl ,...,k} {Ijl,... ,ipJ},

then {kl,...,k I.} will be nonempty. Then, since (x) is co-prime to the

moduli mk (x),..., mkA(x), the second term on the right hand side cannot be

zero. Thus the right hand side has degree > Q and degrj 1 ,.... jp(x) > Q if

{kl,...,kx), {jl,...,jpI-

Now assume that {kl,...,kx} C {ji,...,jp}. Begin with (6.61) and expand

the second term,

A
z(X) = c(X) + E &k,(X)Mkj(X). (6.64)

i=1

Now take the residue when this is divided by Mj+ (x),

j,,j() = (c(x))M .. () +E (&ki(X)M (X))M (6.65)

137

Since deg M+ ...,jp(x) > degc(x), (c(x))M+ () = c(x). Also, since +(x)
d~~~ivide Mc(x) As, sincez)M~(>+(X

divides M+(x), K+ki(x)Mj(x))+ .p() = 0 for i = 1,...,A. The above

equation then reduces to

...,jp() = c(x). (6.66)

Thusr 3 ,...,,(x)= c(x)and degr% ... (x) < Q when {k,...,k} C {jl,...,,jp}.

This proves Lemma 2.

To show that the procedure in Theorem 3 works properly, we consider two cases. First

assume that no failures occurred, A = 0. Then by Theorem 1, z(x) = c(z) and deg z(z) < Q,

and the procedure would stop in step 1. Second assume that A < a errors occurred.

Lemma 2 guarantees that degrjl,...,jp(x) > Q if {kl,...,kA} ¢ {ji,...,jp}. Since we are

checking all possible combinations of p processors, starting with p = 1 and continuing until

p = , degrj,...,jp(x) will be less than Q if and only if A < 3, p = A, and {jl,.-.,Jp} =

{kl,...,kx}. Then by Lemma 2, c(x) = r,...,jp(x) is the correct solution. Otherwise, if

[3+ 1 < A < a failures occurred, then {kl,..., k} ¢ {iJ.,...,jp} and we continue to step

4. This set of faults is uncorrectable.

6.B Solution of Likelihood Equations

In this appendix we solve the likelihood equations discussed in Section 6.5. We begin

with (6.42) and (6.43) and model computational noise as a zero mean Gaussian random

process (6.44). With this assumption, the likelihoods become

N+1 R-1
L = max r/.- E E z[nl,n 2]-c[n,n 2]l 2 (6.67)

22 n =0 n2 =0[TIN, R1 (q-1)nh 2'1N2
L = Imax 1q - 2N- R -z [nl, i n 2]-c [nl, n2] " N+2 q [n2] (6.68)

Lq =0 N+ I
where r. and 77q ae constants,

= log P - Slog 2r2) (6.69)2

138

q = logPq - 1Slog (2ra2). (6.70)

We start by maximizing L* over c to obtain [nl, n2], an estimate of the output given

that H* is true. Since c [n 1, n2] is zero for rows N and N + 1, (6.67) can be rewritten as,

1 (N-1 R-1 N+1 R-1

L*=ma x 7 - E E z[n, n2]-c[ni,n2l2+ E Iz[n, n2] . (6.71)
eL2' nl =0 n2 =0 n =Nn 2 =I

Maximizing over c we obtain

[i (z[n 1 ,n 2] for n = 0,...,N-1 (6.72)

0 for n = N,N + 1.

Substituting [n 1, n 2] into (6.71) yields the likelihood that hypothesis H* is true,

1 N+1 R-1
.* =7* I 2 z [n, n2] 2 . (6.73)

nl =N n2 =0

Computing Lq is more difficult since we must estimate both c and . Maximizing (6.68)

over c we obtain

T~(q-1)ni

[h, 2 { z[n 1 ,n2]- N+2 Oq [n2] for n = ,...,N-1 (6.74)

0 for n =N, N + 1.

(Note, we call this C [i, n 2] to emphasize that it is an intermediate step in the maximization

process, and not the final estimate of the correct output.) Substituting CI [n1 , n2] into (6.68),

the log likelihood function becomes

1 N+1 R-1 W(q-l)nl 1
Lq = max N+1 R-E W) [q n2] N+2 q [2 (6.75)

nl =N n2=0N 2

Maximizing over and keeping in mind that complex quantities are involved, we obtain

[2] = 2 [[N,2] W) + z[N + ,2]W)(N+l)] (6.76)

139

The error estimate q [n2] is formed by averaging the last two rows of z [ni, n2] with ap-

propriate phase shifts and a scale factor of N + 2. Substituting q [n2] for Oq [n2] in (6.74)

gives the estimate of the correct output,

{ ~w(q_) ml

ni { nl = z[ni,n2]- +2 Qq [n2] for nl = 1, (6.77)

0 for n = N, N + 1.

Finally, substituting (6.77) and (6.76) into (6.68), and after some algebra, we obtain the

likelihood of hypothesis Hq,

N+i R-1 2 R-1

Lq = 2j Iz[nn 2]12 + 2 (N + 2)2 0 2 q [n2] (6.78)
ni -'VN 2 0,()2 2=0I-0

The likelihood equations can be further simplified by assuming that the failure prob-

abilities Pq are the same for q = 1,..., N + 2, and by using relative likelihoods defined

by
N+1 R-1

L =4o 2 Lk- + E E Iz[n l,n2] l . (679)k C "2 nj =N n2 =0 ~ ~~~~~~(6.79)
nlN n2=O

The likelihoods then reduce to

L* = 4a2 log P * (6.80)
q

and

L = PN,N + PN+I,N+I + 2Re (PN,N+lW()) (6.81)

where Pij is the total correlation between the it and jth rows of z [nl, n2] and is defined

in (6.47).

We can simplify the hypothesis testing procedure by solving directly for the value of q

which maximizes (6.81) rather than computing each L'q. This yields

= (round [N 2 ARG (pN+l,N)])N+2 + 1.(6.82)

Our fault test then proceeds as follows. First, compute the constant LI. Then compute

and L' using (6.82) and (6.81). If LI > L~, we declare that no processor has failed and as-

140

cribe the nonzero samples in rows z [N, -] and z [N + 1, -] to computational noise. Otherwise,

we declare that processor q has failed and correct the fault using (6.76) and (6.77).

141

Chapter 7

Fault-Tolerant A/D Conversion

This chapter examines an A/D converter system that provides a high sampling rate and that

can tolerate converter failures. Such a system could be used in high stress environments

where continuous operation is needed or in remote sensing applications where servicing

faulty units is impractical or even impossible.

Unlike previous chapters, this chapter does not deal with computational fault-tolerance.

Rather, redundancy is used to protect the conversion of continuous-time to discrete-time

signals. Although a different application of fault-tolerance, we will show that the robust

A/D converter system may be easily placed in the group-theoretic framework of Chapter 4.

We describe the basic round-robin architecture used by the A/D converter system in

Section 7.1 and introduce linear redundancy through oversampling. Then, by examining the

redundancy, we show in Section 7.2 how this system is related to the framework of Chap-

ter 4. Section 7.3 develops the optimal error detection and correction algorithm utilizing a

generalized likelihood ratio test. The algorithm reduces to a simple form, with a complexity

comparable to that of an FIR filter. Section 7.4 considers an ideal unrealizable system, while

Section 7.5 addresses problems encountered in a practical implementation. Both sections

contain results from detailed computer simulations. We conclude in Section 7.6.

7.1 Round-Robin A/D Converter

A round-robin A/D converter system is shown in Figure 7-1. It contains N slow A/D

142

s' (t)

Slow A/D Error-Free
with Fast S/H Digital Circuitry

Figure 7-1: Round-robin A/D converter system.

converters each with fast sample and hold circuitry. The first converter samples and holds

the analog input signal s(t) and then begins a conversion. After a fixed delay, the second

converter samples the signal and begins a conversion. This repeats for all N converters, and

by the time the N th converter starts, the first converter has finished and is ready to accept

another sample. Operation continues in this circular fashion. If a conversion requires T

seconds for a single converter, then the overall sampling rate for the round-robin system

would be NIT samples/sec., and the input can contain frequencies up to fmax = N/2T Hz.

To decorrelate the quantization noise from the signal, we use a small amount of dither.

Dither circuitry adds a random analog voltage uniformly distributed between ±1/2 sb (least

significant bit) to the sample. After conversion, it subtracts this same quantity from the

digital signal. As a result of dither, each output sample contains white quantization noise

uniformly distributed between +l/21sb, and which is uncorrelated with the signal.

We assume that the converters must operate in a stressed environment and that they

are the only components subject to failure. We model converter failures as being indepen-

dent and assume that when a converter fails, it corrupts only the samples assigned to it.

143

s[n]

We assume that the dither circuitry, digital processing, and output buses always function

properly. If necessary, these components could be protected against failure by modular

redundancy or the digital processing may be performed remotely in a less stressful envi-

ronment. Failures in the dither circuitry can be restricted to cause no more than a ±2 lsb

error in the samples.

This system is made robust by introducing redundant information. Keep the analog

input signal bandlimited to +fmax Hz, and add C extra converters to increase the sampling

rate to N-+C samples/sec. The input signal is now somewhat oversampled.

7.2 Relationship to Framework

We now describe how the results of this chapter are related to the group-theoretic framework

presented in Chapter 4. Let s(t) and z[n] denote the continuous-time input and discrete-time

output of the A/D converter system. s(t) is a real continuous-time signal that is bandlimited

to ±fm,a Hz. Let g denote the set of all continuous-time real signals that are bandlimited

to ±fraz Hz. The set g together with the field R forms a vector space G. The group

product in G is defined as the addition of functions and scalar multiplication corresponds

to multiplying a function by a constant. Similarly, the set of all possible discrete-time

sequences z[n] forms a vector space H over the field of real numbers. Operations in H

consist of the addition of sequences and scalar multiplication.

We can model the sampling process as a mapping from s(t) G to z[n] H. We

begin by ignoring quantization noise and assume that the converters have infinite precision.

(Quantization noise does not play a role at this point, it only becomes important when we

consider the optimal solution based on a generalized likelihood ratio test.) If no faults occur

within the system, then the output may be written as

z[n] = s(nT). (7.1)

It is easily shown that the sampling process satisfies the requirements of a vector space

homomorphism (4.56). Since we are oversampling, z[n] contains redundant information.

The subset of valid error-free sequences in H corresponds to the subspace G of low-pass

144

discrete-time signals that are bandlimited to :1N radians.

Now assume that A failures occur in converters k,k 2 ,..., kx. The output will then

equal

z[n] = s(nT) + k [n] + k2 [n] + .. + /k [] (7.2)

where •bk[n] denotes the net effect of a failure in the kh converter on the result. k[n] is

zero except for samples that came from the k~h converter. The output may equivalently be

written as

z[n] = s(nT) + e[n] (7.3)

where e[n]= O= k k[n] equals the net error. Comparing (7.3) and (4.21), we see that the

redundancy present in the output is of the same form as that studied in Chapter 4. Valid

results lie in a subspace G of H, and an additive error model is assumed. Thus we may use

the results of Section 4.3 to analyze this system.

We assume that when converter k fails, it corrupts its output samples in an arbitrary

manner, ,k[n] e R. This constitutes a symmetric error model, and we may therefore analyze

the redundancy present in the system via its minimum distance. The minimum distance is

most easily computed by application of (4.48). We must determine the minimum number

of errors such that the net effect of all errors is a low-pass signal bandlimited to N+CN+C

radians. This analysis is most easily performed in the frequency domain. Let

00

k(w) = E qk[n]e- i n (7.4)
n=-oo

denote the discrete-time Fourier transform of a single error Ok[n]. Because k [n] equals zero

except for samples that came from the kk converter, 4k(w) has a periodic structure,

w ~~~~~~~~~~2irl k4bk (+ N + C)= Pk (w) e N+C* (7.5)

· k(w) contains N + C complete copies of the fault spectrum in an interval of width 2r. N

copies are contained in the low frequency region, and C copies are contained in the high

frequency region where there is no energy from the low-pass input signal. This is illustrated

in Figure 7-2.

145

Low Pass
Signal

Quai
b

I1

O3
itN 0 LN I

N+C N+C

Figure 7-2: Output frequency spectrum of round-robin A/D converter system.

Using the linearity of the Fourier transform, we may write the transform of the net error

e4n] as

E(w) = ,kj(w). (7.6)
j=l

In order to determine the minimum distance of this code, we must determine the smallest

value of A such that E(w) = 0 in the interval N < w < (N+2C) for some nonzero errorsW_+C N+C

kj (w). Since E(w) is composed of a sum of errors 'Ik(w) which have a periodic spectrum,
.N r(N+2) esm rqecwe may evaluate this on a point-by-point basis. Let <o < (N+ be some frequency

in the interval spanned by the first high frequency copy of the fault spectrum. C values of

the high frequency portion of ~k(w) ae linearly related to bk(WO),

k (o)

· k(+ N Co+ N+C

'k + 2(- 1)· ~(N+C~b

= $k(Wo)

- k(Wo)Wk

= k(WO)Wk(C-1)

146

(7.7)

(7.8)

(7.9)

m

j 2,r
where W = e N+c. Combining this with (7.6), we may write

A

E (o) - E k (o) (7.10)
j=l

E o+ +C = ' kC)j (go) W kA (7.11)

(7.12)

2/C- 1)\ A

E (o + 2N+(C = kj (wo)Wk (c).
j=1

We must determine the minimum value of A such that the above equations all equal 0 for

some set of nonzero errors. Express these equations in matrix form as E = We where

E(wo) 1 1 ... 1

E (wo +) =Wk Wk2 .Wkx

E (wo + 2(C-1) Wki(C-1) Wk2(C-I) ... Wk(C-1)

ek (o)

k2 (wo)

Sk (o 0)

If O 5 0, then E will be zero only if W is not full rank. We must therefore determine the

smallest value of A such that the columns of W are linearly dependent. The i t and jh

columns of W are linearly independent if ki kj. Thus the columns of W become linearly

dependent only when A = C + 1. Therefore, this oversampling technique generates a code

with a minimum distance of C + 1.

With C = 1 extra converter, we can detect single failures. With C = 2 extra converters,

we can detect and correct single failures. (We will show that due to the nonidealness of

realizable filters, at least C = 3 extra converters are needed to correct single errors.)

We can detect and correct errors using a syndrome homomorphism b. Since equals

147

the subspace of low-pass signals bandlimited to iN- radians, the quotient space H/G

can be shown to be isomorphic to the vector space of discrete-time high-pass signals con-

taining frequencies above radians. Denote this quotient space by T. The syndrome

homomorphism from H onto T contains G in its kernel. An obvious homomorphism which

satisfies this constraint is a high-pass filter with cutoff frequency i N radians,

Ob(z[n]) = z[n] * hhp[n] (7.13)

where hhp[n] denotes the impulse response of the ideal high-pass filter. If the output of

the filter equals zero, then z[n] E G. Otherwise, if the output is nonzero, then an error

has occurred. The broken converter is identified from the phase difference between high

frequency copies of the fault spectrum. Then the fault is reconstructed by averaging the C

copies in the high frequency region, and it is subtracted from the observations to estimate

the fault-free signal.

The coding scheme we use is similar to one developed by Wolf [46]. He shows that

under certain conditions, discrete-time sequences carry redundant information which allows

detection and correction of errors. Specifically, sequences whose discrete Fourier transforms

contain zeros can be protected against impulse noise. Wolf's error detection and correction

scheme is based on coding theory, while ours utilizes a generalized likelihood ratio test.

Both methods use out-of-band energy to detect errors.

A/D converters inherently quantize the input signal and, together with the dither cir-

cuitry, introduce additive white noise in z[n]. This radically alters the manner in which

error detection and correction must be performed. Errors can no longer be detected by

testing if z[n] e since error-free signals ae not strictly bandlimited. We will instead

pursue an error detection and correction strategy that specifically takes into account the

effects of quantization noise.

7.3 Algorithm Development

This section develops the optimal fault detection/correction algorithm using a generalized

likelihood ratio test. We include the effects of quantization noise in our model and write

148

the output of the round-robin system as

z[n] = s[n] + c[n] + ¢)k[n] (7.14)

where s[n] is the desired low-pass signal and [n] is white quantization noise which is un-

correlated with s[n]. Let s be a vector of all samples s[n], and define Z, 0, and e similarly.

7.3.1 Generalized Likelihood Ratio Test

We will use a generalized likelihood ratio test to determine the most likely fault hypothesis

and to correct the fault if necessary. Let H* represent the hypothesis that no converter

has failed, and let Hk represent a failure in the k converter where 0 < k < N + C - 1.

Define p (H*) and p (Hk) as the a priori probabilities of these events, which we assume are

independent of the signal or fault,

p(Hk) = p (Hkl s, k). (7.15)

We must compute the likelihood Lk of each hypothesis Hk given the observed data z. For

hypothesis H*, the likelihood unfortunately depends on the unknown signal s. Therefore,

we will maximize the likelihood over s to determine the likelihood L* of hypothesis H*,

L* = max log[p(z I H*,,s) p (H*)]. (7.16)
3

For hypotheses Hk, k = 0, . . ., N + C - 1, the likelihoods depend on both the unknown

signal s and the unknown fault /. We therefore maximize over both s and to determine

the likelihood Lk of Hk,

Lk = max log [(I Hknot) p(Hk)] (7.17)

The most likely failure hypothesis is chosen by finding the largest likelihood. The failure

estimate k (if any) and a clean signal estimate s are the values at which the likelihood is

maximized.

The bulk of our derivation will be performed in the frequency domain where the distri-

149

bution of samples of the noise transform is approximately white Gaussian noise. We will

exploit this by approximating the noise as being zero mean Gaussian in both time and

frequency:

p(c[n]) = N (0, a) . (7.18)

where the variance a2 = Isb2 /12.

We begin by solving for L*. Using the distribution of the quantization noise, (7.16) can

be written as

1 M-1
L = max ogp(H*)- 2 E log (27r E -z2f E-(s[n] = (7.19)

where M is the number of samples available. The first two terms are constants and will

be denoted as g*. Define Z(wr), S(w), and Ik(W) to be the M point DFTs of z[n], s[n],

and Ok[n]. For long time intervals, Parseval's theorem can be applied to the third term

in (7.19), giving
M11

L = max M 1 IZ()- S)] (7.20)s 2oa2 M

where w, is a frequency index with value wr = 2trr/M.

We will work with frequencies in the range of 0 to 2ir, and divide the frequency samples

into a low frequency region, 91L, which contains signal energy, and a high frequency region,

fH, which does not. The regions will be divided as follows:

QL = {w r=O,...,ML-landr=MH,...,M-1} (7.21)

IH = {WrIT= ML,...,MH-1}

where

ML= (MC and MH=M_(h)N (7.22)

Assume that M/2 is a multiple of N + C so that the frequency samples can be easily divided

into the two regions.

150

Since S(w,) is bandlimited, (7.20) can be rewritten as

= = max 2 M - IZ(_)-S(Wr)l + E IZ(Wr)12}]

Now maximize with respect to S(Wr) to obtain,
Now maximize with respect to S(w,) to obtain,

(r{) = Z(r)
0

for wr E QL

else.

This can also be written as,

S(w7) = HLP(wr)Z(wr)

where HLP(wr) is an ideal low pass filter with frequency response

HLP(Wr) = { for Wr E QL

else.

If there are no faults, so that hypothesis H* is true, then this optimally "clean" signal

estimate S(wr) is found by low pass filtering Z(wr) to remove high frequency quantization

noise. Substituting (7.24) into (7.23), the likelihood of H* becomes,

11
L = 7 r I E [: Z(Wr)12'

C WrEfOH

(7.27)

It is convenient to define ZH(w,) as a high pass version of Z(wr),

where HHP(wr) is an ideal high pass filter with,

HHP(Wr) = { 1
0

for wr E PH

else.

151

(7.23)

(7.24)

(7.25)

(7.26)

ZH(W,) = HHP(W,)Z(W,) (7.28)

(7.29)

Then since (7.27) only depends on the high frequency samples of Z(w), we can write

1 1 M-1
L* = A*-2 M IZH(W))l= (7.30)

r-0

Applying Parseval's theorem and returning to the time domain results in,

1 M-1
L*= *- 2 E ZH[n]. (7.31)

Now consider the case of a failure in the kth converter. As before, we apply Parseval's

theorem to the time domain likelihood expression for Lk and obtain

1M1 1 1 M-1 i
Lk = max ogp (Hk) -log 2(W -(2k), -22 M k()I- s(])- 4(7)lW .

s-'~k ~~n=0 =

(7.32)

The first two terms of this expression are constants and we will denote them as 7k. Divide

the summation into low and high frequency regions and maximize with respect to S(Wr) to

obtain

S(wr) = HLP(w) [Z(w7) - "(Wr)]. (7.33)

Substituting this back into (7.32), the log likelihood function becomes

Lk = max k - M W IZ(W r) . k(Wr))l2] (7.34)27,2 M
Elk ~~~wrEflH

Since the summation is only over high frequencies, substitute ZH(w,) for Z(Wr). Next,

extend the summation over all frequencies and subtract any newly introduced terms,

Lk = max 2 JM_4r2 2')] (735
jjk IZH(2o)- 'k(Wr)l - Z I<k(W)lI' 72~ M !, r=0 WrEQL

In order to reduce this expression further, we must exploit the structure of k(wr). 4k[n]

only contains samples from the faulty converter, and it is zero except for one out of every

N + C samples. Its transform k(wr) consists of N + C copies of the fault spectrum, each

152

with a phase shift that depends on which converter failed,

2~rl)2'r
ok (W + N +C) = ~k(w)e N+C ' (7.36)

Therefore we may write

k ((,. + N2-C) | = , k(Wr) (7.37)

for all wr and all integers 1. We use this to extend the second summation in (7.35) to include

all frequencies,

1 1 2 N M-1
Lk = max k- 2 M {E IZH(Wr) -_k(Wr)l2 N + C Ik(r)2 (7-38)

2a~,kf r= N C O

Applying Parseval's theorem and combining terms we obtain,

Lk = max -k z[n]- 2k[nzH[n] + N C c [n] (7.39)
'Ok f-n-O

We can now maximize this expression and solve for the fault estimate. For a failure in the

kt converter, the only nonzero samples of 4hk[n] are those for which n k (we will use this

notation as shorthand for n mod (N + C) = k.) Therefore maximizing (7.39) yields,

k [n] (= N+C zH[n] for n k
0 else

as the optimal fault estimate.

Now, to obtain the likelihood of Hk, substitute (7.40) back into (7.39). After some

algebra we are left with,

1 M-1 1 N+C
L= 2k a E H2[] + 2J C EzH[n] (7.41)

Assume that all a priori failure probabilities p(Hk) ae the same for k = 0, . . ., N + C - 1,

so that the constants 7k are all equal,

tk= for k = 0,..., N + C-1. (7.42)

153

Erro

z[n]

LN+C-i

N+C.-1 tJ

Error Correction z[n] +{ H (}) I : n]if .*

z[n] t[nlif --*

[an]
k

Figure 7-3: Ideal error detection and correction system.

Then it is convenient to use scaled relative likelihoods defined by,

[Lk - L* - + q*] fork=*and 0,...,N+ C - 1. (7.43)

The scaled relative likelihoods reduce to,

(7.44)

L= (N+C) 2
k C nEkn=_k

where

= 2 o'(N+C)

2[n] = E [n]

n[k

1op (H/)1
[lgp (Hk)j

is a constant. For hypothesis k = ,..., N + C - 1, the best estimate of the original signal

is then,

S(W') = HLP(W) [Z(Wr) - 'k(Wr)] - (7.47)

The complete generalized likelihood ratio test fault correction system is shown in Fig-

154

(7.45)

(7.46)

L' =2a 2 N+C
k f C

ure 7-3. The dithered sampled signal z[n] is first scaled by NYC and filtered by HHP(Wr).

The output of this filter, N-C zH[n], is sorted into N + C interleaved streams, with the kth

stream receiving every (N + C)th sample starting with sample k. Each of these streams

is simply qk[n], the best least squares estimate of the fault in the kh converter, assuming

that converter k is faulty. We measure the energy in each of these fault estimates, and if

any energy is greater than the threshold y, we declare that a converter has failed. The

largest energy indicates the best guess k of which converter has failed. The signal is then

reconstructed by fixing the incorrect samples (if any) and low pass filtering.

7.3.2 Required Number of Extra Converters

Insight into choosing an appropriate number of extra converters C can be gained by writ-

ing (7.40) in the frequency domain,

1N+C-1 (2-)(
- s +Z v+¢ .~ (7.48)

I-=0 l

The magnitude of this function is periodic in wa with period f.r Since ZH(Wr) is high

pass, for a given wr only C terms in this sum ae nonzero. Each N point "period" of

k(Wr) is thus formed by averaging C sections of ZH(w,) with appropriate phase shifts.

If C = 1, no averaging takes place. The fault estimates, k(wr) for k = 0,. . ., N + C - 1

will differ only by a phase shift, and the energy in each will be the same. The system will

only be able to decide if a fault has occurred, but will not be able to determine the specific

faulty converter. If C > 2, then the energy in ik (r) is maximized when the proper phase

shift is applied so that all C non-zero terms add coherently. Thus, with C > 2 we can

achieve single fault correction.

7.3.3 Probability of False Alarm

The hypothesis testing procedure can make several errors. A "false alarm" occurs when H1*

is true but the algorithm selects Hk as most likely, for some k # *. "Detection" occurs if

converter q has failed and the method chooses any hypothesis except H*. "Misdiagnosis"

occurs when converter q has failed, hypothesis Hk is diagnosed, and k 0 q. Let PF, PD,

155

and PM represent the probabilities of these events.

We can develop a Neyman-Pearson test which adjusts the threshold 7- to achieve a given

probability of false alarm, PF. Suppose H* is true and that the quantization noise E[n] is

white zero mean Gaussian with variance c 2. Now

M-1
ZH[n] = E hHP[n -]fE[]. (7.49)

l=0

Since the samples [n] ae Gaussian, so are the samples zH[n] with mean and covariance

given by,

E[zH[n]IH*] = 0 (7.50)
M-1

Cov[zH[n],zH[m]JH*] = E hHp[n -I]hHp[m -]o
1=0

= hHp[n-maf (7.51)

where the last line follows because hHp[u] * hHp[n] = hHp[n], where '*' represents cir-

cular convolution with period N + C. Since hHp[n - m] has zeroes spaced (N + C)/C

apart, samples of zH[n] spaced by multiples of (N + C)/C are statistically independent.

Equation (7.40) thus implies that the non-zero samples of Ok[n] are independent Gaussian

random variables with zero mean and variance (+C) a2. Equation (7.45) implies that un-

der hypothesis H*, each L' is the sum of the squares of M/(N + C) independent Gaussian

random variables, k[n]. Each L' is thus Chi-square distributed with D = M degrees of

freedom, and
'00I 1 ~~D/2_1e-t tP (> y1 *) = tD/2 le dt (7.52)

where r(x) = (x - 1)! is the normalization factor.

A false alarm occurs when H* is true, but one or more likelihoods ae greater than 7.

Thus

PF 1-P(LO ,- < - -, N+L- < /*). (7.53)

Since ZH[n] is a bandpass signal with bandwidth +rC/(N+C), the L ae highly correlated

with each other. Samples of zH[n] spaced by (N + C)/C will be independent of each other,

156

and the others are determined by linear interpolation. This implies that likelihoods spaced

by (N + C)/C are independent of each other. Since there are C of these,

PF : 1- (lo < L+c < ,2('_) 5 ,..,L(C)(N_) i 71H,C I)C
= 1- P(L < lH*)c

= 1-l1-P(L4> -y1 *)]C

CP (> I H*) (7.54)

where the approximation in the last line is valid for small PF. We can thus use the chi-

squared formula in (7.52) to set 7 to achieve any desired level for PF.

If the integration interval M is much larger than the number of converters N + C,

then the number of degrees of freedom D will be large, and the distribution of L£ can be

approximated as Gaussian. In this case, a good approximation for PF is in terms of an

error function:

C (, -E [Lo' iH] A (755)PF ~ ~erfc - 0[*(7.55)
22 aT a[Lol H *]}

where:

erfc(x) = 2 f e-t2dt (7.56)

and where the mean and variance of the likelihoods are given in Appendix 7.B:

E [LoI *] (= M N+C) a2 (7.57)
0 ~N+C)

Var [4l H*] = 2NMC(N C)c . (7.58)0 N+C C

In other words, y should be set to:

y = E [Lo IH*] +3 Va [L0, H*] (7.59)

where:

/3 = V2erf-1 (2PF) (7.60)

157

A reasonable approximation to erfc(x) is +xe Therefore PF falls rapidly as a

increases. It is usually better to set -y somewhat too high, rather than too low.

7.3.4 Probability of Detection

The probability of detection PD is defined as the probability that a fault is declared on some

converter given that a fault has occurred on converter q. In practice, this is approximately

equal to the probability that likelihood Lq > y:

PD = 1-P (L <

'P P (L > II Hl,g (7.61)

If the number of terms summed in the likelihoods is large, M

approximate Lq as Gaussian. Appendix 7.B shows that:

/(N + C) > 1, then we can

1
PD 1 - -erfc

2

where:

(7.62)

E [L'4Hq,0q]

Var [LQ Hq,]

MN+C 2C c]=M (N+CC 2 [1 + FNR+ (+C

= 2N +C (C [N N+C)

and where FNRq is the fault-to-noise ratio on converter q:

FNRq = M E ,2
M =o0a

(7.63)

(7.64)

(7.65)

Since erfc(z) decays faster than rate e- ' 2, we expect PD to approach 1 exponentially as

FNRq increases or as the integration length M/(N + C) increases.

158

7.3.5 Probability of Misdiagnosis

A misdiagnosis occurs when a fault occurs on converter q, a fault is declared, but the wrong

converter is identified. This will cause the algorithm to "correct" the wrong converter. The

probability of converter misdiagnosis is difficult to compute analytically, but it is possible to

gain some insight by examining a simpler measure. We can compute instead the probability

that some likelihood L' is greater than L/ given that Hq is true and that the fault is q.

Assuming that the number of terms summed in the likelihoods is large, M/(N+C) > 1, then

the likelihoods L and L can be approximated as jointly Gaussian. Then Appendix 7.B

shows that:

P 2 > L4Hq,2 -erfc k (7.66)

where

E [- L Hqq] = NM c (-S 2(k - q)) FNRq (7.67)

Var [L- I Hq, =

4 M (N+C) (1-S2(k-q)) (1 + FNRq (C)) (7.68)C C)2oC

where

S() = () (7.69)
C sin (i)

is a circular sinc function with S(O) = 1, and FNRq is defined in (7.65).

For fixed N, C, and M, and for k # q, S(k - q) is maximized for k = q 1. Thus,

the most common misdiagnosis declares an adjacent neighbor of the faulty converter to

be faulty. Also note that increasing the number of samples contributing to the likelihood,

M/(N + C), increasing the fraction of extra converters C/(N + C), or increasing the size

of the fault, FNRI, all decrease the misdiagnosis probability.

159

7.3.6 Variance of Low Pass Signal Estimate

In this section we consider the accuracy of our system in estimating the original low pass

signal. The equations presented are derived in Appendix 7.A. First, consider the case when

all converters are functioning properly and hypothesis H* is chosen. We can show that the

expected value and variance of our estimator equals:

E[S[n]IH*] = s[n] (7.70)
N 2

Var[9[n]H*] = N + 2
car . (7.71)

Now suppose that the q converter is broken with actual fault 0q[n], and that hypothesis

q is correctly chosen as the most likely. Under these conditions, we can show that:

E[H[nI,,] = s[n] (7.72)

Var[9[n]JH 9,] = J [NC f q (7.73)
_i [N +CS (k - q)] else
N+C

Thus we see that our estimator S[n] is unbiased. Signal estimate samples for the faulty

converter have variance N/C times larger than the quantization noise of a working converter,

a2. All the other signal estimate samples, however, have variance below a2. The average

signal estimate variance is given by

EVa [sn1 ~q,]= MN + C
n=O -- +

7.4 Simulation of Ideal System

In this section we present computer simulation results for the ideal generalized likelihood

ratio test. The system studied had N = 5, C = 3, and M = 1024. The A/D converters were

modeled as having a dynamic range of 1 volt and B = 12 bit resolution. Quantization

noise was modeled as uniformly distributed between ±l1sb, with variance 2 = sb2/12.

Despite this non-Gaussian noise, the likelihoods are formed from so many independent

terms, M/(N + C) = 128, that they can be accurately modeled as having a Gaussian

160

1 .U

10- 1

10 - 2

10 -3

10 4

Analytic P F
using Chi-square
approximation

.................. PF observed
in simulations

PD for I bit faults
observed in
simulations

0 2 x 1 6 ' 4 x106 6x10

Threshold (gamma)

Figure 7-4: Comparison of analytic and measured likelihoods for the ideal system.

distribution.

Substituting into our formula for PF in (7.55) gives:

PF 1.5erfc 60 341o) (7.75)

For example, a value of i = 3.85 in (7.59) yields 7 = 505o4 and PF = 10 - 4. To test

this formula, we performed 10,000 simulations without faults and recorded the likelihoods.

A graph of PF vs. as predicted by (7.54) is compared with these computer simulation

results in Figure 7-4. As expected, the simulation and analytic results ae very close, and

thus either our chi-squared formula (7.54) or Gaussian approximation formula (7.55) can

be used to set 7y.

Next, in order to measure PD, we simulated the system with a faulty converter. A fault

of F bits corresponds to adding random noise uniformly distributed over a range ± 2 F- B - 1

to the input before quantizing. When F = B the A/D converter has completely failed; when

F = 1 only the lsb is broken. Approximating the likelihoods as Gaussian, formula (7.62),

161

,,m A

and recognizing that a 1 bit fault corresponds to FNRq = 4, we find that

PD Pz 1 - 0.5erfc(55 2 2) 2(7.76)

for a 1 bit fault. We performed 10,000 simulations with 1 bit faults and a graph of the

ideal versus the experimental PD vs. y is shown in Figure 7-4. Fault detection is highly

reliable. For example, the same value of y which gives PF = 10- 4 in our example yields

PD = 1 - 10- 5 . In fact, with this -y, every fault was detected in our 10,000 tests.

The probability of misdiagnosis is also low. During 10,000 simulations with 1 bit faults,

we found that converter misdiagnosis occurred only 5 times, giving PM 5 x 10- 4. When a

mistake did occur, one of the faulty converters' immediate neighbors was always identified as

being broken. These results are consistent with formula (7.66), which gives for our example:

P (L+ 1 > L' H,) 4 x 10-4 (7.77)

The simulation results also matched the predictions of signal variance made in sec-

tion 7.3.6. When H* is true, the average variance of S[n] was found to be 0.62a2, and this

agrees well with (7.71). When any size fault occurred, the variance of S[n] was found to be

0.832a2, which agrees with (7.74).

7.5 Realistic Systems

In practice, the data stream to be processed is infinite in length, M = oo, and so our batch

oriented ideal system is unrealizable. In this section we consider several modifications to

the ideal scheme in order to make it practical. First, we remove the low pass filter on

the signal estimate, since it reduces the error by less than 1 bit. Second, we remove the

dither system. Third, we replace the unrealizable ideal high pass filter with an FIR filter

designed to minimize the variance of the signal estimate in case of failure. Fourth, we replace

the infinite length integration to compute the likelihoods with finite length boxcar or IIR

filters. Finally, we attempt to develop a robust real-time, causal strategy for declaring and

correcting faults which works well for both continuous and transient faults.

162

7.5.1 Eliminate the Low Pass Filter

We can substantially reduce the computational complexity of estimating the signal in (7.25)

or (7.47) by omitting the low pass filter on the final signal estimate, and instead using the

approximate signal estimate .SA[n] defined by:

SA[n] = z[n]

z[n] - +k~n]

Appendix 7.A shows

the faulty converter

working converters.

assuming the fault is

if H* appears to be true

if Hk appears to be true.
(7.78)

that the low pass filtering operation leaves the sample estimates from

unchanged, .S[n] = A[n] for n q, and only affects samples from

It also derives the mean and variance of this unfiltered estimator,

correctly diagnosed:

E [A[n] H, q,] = s[n]

Var [A[n q,] ~{ N2

(7.79)

(7.80)
if n -q

else.

The estimator is unbiased, and for typical values of N and C, the average variance is only

slightly greater than that of the low pass filtered estimator. Thus, eliminating the low pass

filter cuts the computational load by almost half, with little loss in accuracy.

We repeated our previous simulation and estimated the variance of the unfiltered signal

estimate. We found that regardless of the size of the fault, the average variance was 1.086or

without the low pass filter, compared to 0.832a0 with the low pass. This matches our

theoretical predictions, and is a strong argument for eliminating the low pass.

7.5.2 Eliminate the Dither System

The dither system at the front end of the A/D system was used to ensure that the quantiza-

tion noise was white and uncorrelated with the signal. In practice, if the signal is sufficiently

random, without long slow ramps or constant portions, then the noise will be nearly white

even without dither. In our simulations with quantized Gaussian signals, we could detect

163

little difference between systems using dither and those without. We can thus eliminate the

dither system, simplifying the hardware and eliminating a potential failure without severely

degrading performance.

7.5.3 Finite Length Filter

In a practical system with an infinite data stream it is convenient to replace the ideal high

pass filter HHP(w,) in (7.29) with a finite order FIR filter. This has an important impact on

the choice of C. Unlike the ideal high pass, an FIR filter will have a finite width transition

region. To avoid signal leakage, the filter's stopband will have to fill the low frequency

region QL. The transition band will have to be inside the high frequency region QH, which

leaves only a portion of the high frequency region for the passband. At least two complete

copies of the fault spectrum are needed in the filter's passband in order to be able to correct

any faulty converter. To achieve this with an FIR filter will require at least C = 3 extra

converters.

There are many possible ways to design the FIR high pass filter; we could window the

ideal high pass, we could use Parks-McClellan, and so forth. In the following, we consider

an alternative design strategy based on minimizing the variance of the fault estimate.

Let h[n] be the impulse response of a high pass filter. Let us assume it has odd length

2K + 1, and that it is centered about the origin, h[n] = 0 for InI > K. Let us assume that

a fault occurred on the q converter, Hq, with unknown value q[n], and that the faulty

converter has been properly identified. As before, let us assume the quantization noise

e[n] is zero mean and white, with sample variance a2. Unlike the previous sections, let us

also assume that the signal is described as a wide sense stationary stochastic process with

zero mean and covariance R[n] = E [sj]s[n + j]]. We assume that the signal and noise are

uncorrelated, and that the signal power spectrum P(w) (the Fourier transform of R[n]) is

low pass, P(w) = 0 for w E fH. Now suppose we generate a fault estimate qq[n] by high

pass filtering the observations,

L

h[l]z[n - 1] for n= q
Oq[n] = f=-L

0 else

164

K

a h[l] (s[n -] + [q[n -] + ~[n -]) for n = q

0 else

(Note that we have absorbed the scaling factor - shown in (7.40) into h[n].) Now for

samples n - q,

E [>Jn] Hp O] = E h[l]Oq[n - 1]. (7.82)

KK1=-KTo eliminate any bias, design h[n] so that

1rp=- 0 =-h [p(N +)] = forp=o (7.83)
0 for p= ±1,+2...

Note that this implies that a filter of length (N + C) - 1 will do just as well as a filter of

length I(N+C)+ 1. A "natural" length for the FIR filter, therefore, is 2K+ 1 = I(N+C) - 1

for some 1.

Subject to the above constraint, let us now choose the remaining coefficients of h[n] in

order to minimize the variance of the fault estimate. For n q:

Var [q[n]JH¢, ,s]J Var E h[l~s[n - 1] + E h[l]c[n - 1 Hq,]
l=-K l=-K

K K K

= E E h[l]hp]R[p-I] + E h~[l]f
I=-K p=-K l=-K

= hT (R + a2I) h (7.84)

where h = (h[-K] .. h[K])T and R is a (2K + 1) x (2K + 1) Toeplitz correlation matrix

with entries R,, = Rm- n]. For convenience, number the rows and columns of h and

R from -K through +K. We now optimize this vaxiance over all possible sets of filter

coefficients h subject to the constraints in (7.83). Since the samples of h[n] for n = 0 are

already specified, we will remove them from h and include them explicitly in the equation.

Form the reduced vector h from h by removing rows 0, ±(N + C), ±2(N + C),.... Similarly,

form the reduced matrix R from R by removing rows 0, +(N + C), ±2(N + C),... and

165

columns 0, ±(N + C), ±2(N + C),.... The variance then becomes,

R[O] + a + 2h+ _ _(R +aI) h (7.85)

where i = (R[-K] ... R[K])T is column 0 of matrix R with rows 0, ±(N+C), ±2(N +C),...

removed. Set the derivative with respect to h to zero to find the minimum variance filter:

h = -i (7.86)

To obtain the optimal FIR high pass filter h, reinsert the samples specified by (7.83). This

method is guaranteed to have a unique minimum solution since R+ a2I is positive definite.

Also, the optimal filter h[n] will have even symmetry because of the symmetry of R + a2I

and .

A different y threshold is needed for the FIR high pass than for the ideal high pass.

Including contributions from both signal leakage and quantization error, equation (7.84)

gives the variance of q[n], with the optimal filter h substituted for h. If we approximate

samples q[n] and Oq[n + I(N + C)] as being uncorrelated for any # 0 (this is strictly true

only for an ideal high pass), then formula (7.55) for PF continues to apply, but with:

E[[LjIH*] = N+ C+ a

Var[LIH *] = 2 N +C[R + a2I)] (7.87)

We reconstruct the signal as in (7.78), without using a low pass filter. We can then

show that:

E[sA[n]-s[n]jHqO] 0
0,2 -1

Var [A[n] - s[n] Hq, -] = T(A + 'I) r for n-q (7.88)
else.

A particularly useful case is where the signal power spectrum is low pass and flat in the

pass band, P(w) = c2 for w E QL and P(w) = 0 for w E QH. (This is the signal model used

166

Filter
A i B C Ideal

23 points 31 points 63 points oo points

Var [.§A[n]] 1.39cr2 1.2202 1.1502 1.08a2
Calculated ? 968o 2 716a 612 505~2
Measured PF 2.5 x 10- 4 2.2 x 10 - 4 9.6 X 10- 5 1 X 10 - 4

1 bit 1 - PD 5.89 x 10-2 2.80 x o10- 3 3.8 x 10-4

faults PM 1.58 x 10-1 5.42 x 10- 2 6.39 x 10- 3 5 x o10- 4

2 bit 1 - PD < 10 - 5 < 10-5 < 10-5 < 10-
faults PM 4.3 x 10- 4 < 10- 5 < 10 - 5 < 10 - 5

3 bit 1 - PD < 10- 5 < 10- < 10- < 10o- 5

faults PM < 10- 5 < 10- 5 < 10 - 5 < 10- -

Table 7.1: Results for the three optimal filters tested.

in all our simulations.) The covariance of s[n] is then

R[n] = 2 n (7.89)R[n] = o,

where a: = 22B0.2 is the variance of a signal filling the available dynamic range of B bits.

Using the same system arrangement described earlier with N = 5, C = 3, and B = 12, we

computed the optimal filter solution (7.86) for lengths 23, 31, and 63 samples respectively.

Graphs of the frequency responses for the filters ae shown in Figure 7-5.

Once again, we collected M = 1024 samples so that each likelihood was formed from

M/(N + C) = 128 terms. 105 independent trials were performed, and we used (7.55)

with (7.59) and (7.87) to set the threshold 7. We found that a value of iB = 3.85 in (7.59)

gave a false alarm probability of PF 10 - 4 . Results for the three filters tested are shown

in Table 7.1.

All filters tested were able to accurately detect and diagnosis a faulty converter. The

longer the filter, the more accurate its estimate k[n], and thus the better its performance.

Although none of the FIR filters were as sensitive as the ideal filter in detecting errors

in -the least significant bit, larger faults could be detected and diagnosed accurately. The

variances of the signal estimates are also shown in Table 7.1. The variances are quite low,

167

20

0

-20

-40

%O -60
._C

- 80

U.

-100

-120

-140

_1 n
0 0.25 0.5 0.75 1.0

0.125 0.375 0.625 0.875

Normalized Frequency

Figure 7-5: Graphs of the frequency responses of filters tested. A:23 pt., B:31 pt., C:63 pt.,
optimal filters. D:ideal filter.

168

and their values match match those predicted earlier. The false alarms which occur do not

significantly raise the average signal estimate variance for these filter lengths.

7.5.4 Finite Order Integrators

The exact likelihood algorithm computes the likelihoods by integrating the energy in the

fault estimates over all time, and then makes a single fault diagnosis for the entire batch

of data. It would be useful to develop a real-time scheme which makes fault diagnoses

and corrections based only on the most recently received data. One change needed is to

compute the likelihoods using finite order integrators: we consider rectangular windows and

single pole IIR filters. At time n, we use the high pass filter output k[n] to update the kth

converter's likelihood L'[n] where n k:

Kint-1

Rectangular: L'[n] = E [n - (N + C)]
1=0 (7.90)

IIR update: L'[n] = aL'[n - (N + C)] + 2[n] = E alk[n - I(N + C)]
1=0

where Kint is the length of the rectangular window integrator, and 0 < a < 1 is the decay

rate of the IIR integrator. The IIR approach has the advantage of requiring only O(1)

storage, while the rectangular filter requires O(Kint) storage. Appendix 7.C shows that

for long integration windows (i.e. large Kint or a ~ 1), our formulas for PF, PD, and PM

are still valid, but the likelihood means and variances are different. The expected values

of the likelihoods have the same forms as in (7.58), (7.64), (7.67), and (7.87), except that

the factor M/(N + C) is replaced by Kint for the rectangular window likelihood, and by

1/(1 - a) for the IIR likelihood. Similarly, the variances of the likelihoods have the same

forms as in (7.58), (7.64), (7.68), and (7.87), except that the factor M/(N + C) is replaced

by Kint for the rectangular window likelihood, and by 1/(1 - cea2) for the IIR likelihood.

Careful study of the formulas suggests that similar performance for these two integrators

should result if we choose Kit = (1 + a)/(1 - a), and pick thresholds rect = 7IR(1 + a).

We ran the same simulation as in the previous section to compare the performance of

several rectangular integrators and HIIR integrators, using the 31 point FIR high pass filter

B described earlier. The thresholds y were chosen using (7.55), (7.59), and (7.87) to achieve

169

_________ Integration Length Ki.t (samples)
128 l 64 I 32

Calculated y 716a 406a2 237a 2
Measured PF 2.2 x 10 - 4 1.21 x 10- 3 1.89 x 10- 3
1 bit 1 - PD 2.80 X 10-3 1.00 x 10-1 3.96 x 10-

faults PM 5.40 x 10-2 1.82 X 10-1 3.48 X 10-1
2 bit 1 - PD < 10- 5 < 1 - 5 2 X 10-5

faults PM < 10- 5 1.58 x 10- 3 2.25 x 10 - 2

3bit 1 - PD < 10- 5 <lo - 10- 5

faults PM < 10- 5 < 10 - 5 2 x 10- 5

4bit 1 - PD < 10 5 <10- 5 < 10- 5

faults PM < 10- 5 < 10 - 5 < 10 - 5

Table 7.2: Results for filter B using rectangular windows.

PF ~ 10- 4 . The decays a and thresholds IR of the IIR integrators were chosen to match

the performance of the rectangular integrators. The results for rectangular windows are

shown in Table 7.2, and those for IIR integrators are shown in Table 7.3. As expected,

the rectangular and IIR integrators have similar performance, and the results shown in

the tables behave in the expected way. Although the observed PF is much larger than

predicted, especially for short integration lengths and IIR integrators, raising y by 10-20%

would drop the observed PF down to about 10- 4 . Performance is much worse than expected

for integration lengths shorter than those shown in the tables; the reason for this is discussed

in the next section.

7.5.5 Real-Time Fault Detection Algorithm

The system sketched earlier is batch oriented; it collects all the outputs of the high pass

filter, sums up the likelihoods for the entire batch, then makes one fault decision for all

the data. Several modifications are necessary to achieve a causal, real-time fault tolerant

A/D system capable of responding correctly to both transient and continuous faults. The

simplest approach would update one likelihood with each new high pass filter output, then

if this likelihood is greater than y and also greater than all the other likelihoods, a fault

would be declared in the corresponding converter. Unfortunately, this strategy doesn't work

170

Effective Integration Length (samples)
128 64 32

ca 0.9845 0.9692 0.9394
Calculated 361o2 206ur 122a2
Measured PF 2.13 x 10- 3 2.13 x 10- 3 4.07 x 10 - 3

1 bit 1 - PD 1.95 X 10-3 9.88 x 10-2 3.97 x 10- 1

faults PM 6.63 x 10-2 2.06 x 10-1 3.66 x 10-1
2 bit 1 - PD < 10o- 5 < 10 - 5 < 10-5

faults PM < 10- 5 2.18 x 10- 3 2.75 x 10- 2

3 bit 1 - PD < 10-5 < 10-, < 10 - 5

faults PM < o10-5 < 10- , 3 x 10-5
4 bit 1-PD < 10- 5 < 10- 5 < 10- 5

faults PM < 10- 5 < 10- 5 < 10 - 5

Table 7.3: Simulation results for filter B using IIR integrators.

properly for transient failures. Figure 7-6 illustrates the problem, showing various failures

qOo[n] on converter 0, together with the sequence of likelihoods L'[n] generated by the IIR

update formula (7.90). The dotted lines on the graph identify the samples corresponding

to converter 0.

For a continuous failure, the correct likelihood L'[n] for n = 0 is always larger than any

of the other likelihoods. For a single sample failure on converter 0 at time no, however, the

output of the high pass filter starts rising at time no -K and continues oscillating until

time no + K. In fact, because h[n] = 0 for n equal to multiples of N + C, the likelihoods

corresponding to converter 0 are unaffected by the failure until time no. Thus for K samples

before the failure, all the likelihoods except the correct one start building in energy and

may cross the threshold 7. This implies that a fault decision algorithm may have to wait

up to K samples from the time the first likelihood rises above threshold before it decides

which converter is at fault.

Another problem shows up with faults whose amplitude increases rapidly over time.

The figure illustrates a fault whose amplitude rises at an exponential rate. Notice that the

correct likelihood is consistently smaller than some of the other likelihoods. Eventually,

when the fault amplitude stops growing, the correct likelihood will become largest, but this

may take much more than K samples from the time the first likelihood crosses threshold.

171

L'[n]

:Po[n]

L'[n]

log L'[n]

0 8 16 24 32 40

Sample

Figure 7-6: IIHR Likelihoods
(c) exponential ramp fault.

48 56 64 72 80

L'[n] versus fault ko[n]: (a) Continuous fault (b) impulse fault

172

- .

! I

-

It seems difficult to design a single decision algorithm which produces the correct fault

diagnoses in all these cases. One possible procedure might use a three state approach. At

time n, the incoming sample z[n] is processed through the high pass filter, and the output

of the filter 4k[n- K] is used to update likelihood L'[n- K]. Initially the detector starts in

state "OK", and it remains there as long as all likelihood values are below the threshold 7.

If one goes above threshold, go to state "detected" and wait for at least K more samples.

Then pick the largest likelihood from the last N + C, and if it is greater than threshold

go to state "corrected" and declare that the corresponding converter has failed. Also start

correcting the samples from that converter. Note that because we do not identify a failure

until at least 2K samples after it has occurred, we will need to save at least the most

recent 2K converter samples in a buffer so that these can be corrected in case we enter the

"correction" state. This imposes a minimum latency of 2K in our fault correction system.

Further work is needed to refine this algorithm to incorporate realistic fault scenarios.

If a small continuous fault starts, it may take awhile for the likelihood energies to build up

enough to cross threshold, thus delaying the correction. If exponential ramp failures can

occur, then it may be necessary to change which converter is identified as faulty while in the

"correction" state. Rules on when to exit the "correction" state must be developed. It will

also be necessary to compute the probabilities of false alarm, detection, and misdiagnosis

for whatever algorithm is eventually chosen.

Choice of the threshold y is complicated by the fact that PD depends on the total energy

in the fault, as reflected by the fault-to-noise ratio FNR. A continuous fault of low amplitude

can give rise to a large FNR, since the likelihood integrates the fault energy over a large

number of samples. A transient fault which affects only one sample, however, must be quite

large to result in a comparable FNR. Setting a low threshold a and using short integration

lengths allows smaller transient errors to be detected and corrected. However, low Y leads to

high probability of false alarm, and short integration lengths causes the likelihoods to have

high variance, which causes high probability of misdiagnosis. Choosing the best parameters

in the algorithm, therefore, involves some delicate performance tradeoffs.

173

7.6 Conclusion

In this chapter we described a robust oversampling round-robin A/D converter system which

uses the redundancy inherent to low-pass signals to provide fault tolerance. The system

was able to identify converter failures reliably and to correct the output accurately. The

hardware needed to add robustness is minimal: a few extra converters and an amount of

computation comparable to an FIR filter. A disadvantage of our approach is that we rely

on a statistical test to detect and correct faults, and therefore have certain probabilities of

missing or misdiagnosing a fault, or of declaring a fault where none exists. More fundamental

concerns relate to our use of round-robin scheduling of multiple slow A/D converters, a

technique which requires careful attention to calibration, sample/holds, and timing issues.

Despite these potential problems, our approach is considerably cheaper than traditional

approaches to fault tolerance such as modular redundancy, yet can achieve comparable

protection against single faults.

This chapter explored A/D conversion, but it can be easily seen that the results may be

extended to the design of fault-tolerant D/A converter systems. A/D and D/A converter

systems ae conceptually isomorphic mappings, and since we are able to protect A/D con-

version, we must be able to protect D/A conversion as well. In fact, the same redundancy

requirements would hold: we would need 1 extra converter to detect errors, and at least 2

extra converters to correct errors. Also, error detection and correction would be based on

a syndrome computed using an ideal analog high-pass filter. The only remaining work is

to derive the exact form of the error detection and correction procedures, and to determine

an efficient implementation. The proper approach would be to explicitly take into account

the effects of quantization noise and use a generalized likelihood ratio test to determine the

optimal solution.

7.A Signal Estimates: Mean and Variance

Assume that fault Hq has occurred with value q[n]. From (7.40) we know that k[n]

is formed from a high pass version of z[n]. We can expand this filtering operation as a

174

convolution sum,

where we define

and where

hHp[nl = (-)s (N+Cn)
M sin (M)

is the impulse response of HHp(wr). Substitute (7.14) into

pass signal, we are left with

(7.93)

(7.91), and since s[n] is a low

Ak[n] = ([n] +][n)) uk[n] (7.94)

where q[n] and [n] are high pass versions of q[n] and E[n]:

q[n] = N+CM-1 hHP[l]q[n-]C 1=-

N+CMl
[n = C > hHp[l]e[n-]

1=0
(7.95)

It is important to recognize that hHp[n] contains zeros at all nonzero multiples of N + C

samples. Therefore, Oq[n] = Oq[n] for n- q. Also, [n] is white Gaussian noise with mean

and variance

E [E[1]]

E [c[l]E[r]]

= (7.96)

(7.97)- f2b6[l-r]

Thus:

E [[n]]

Coy [F[n], [m]]

=

(N+ C) E hHp[n-1]hHp[m-1Iue
1=0

175

M-1 C

~k~l = c E hHP[I]zOn-] k[n]
/=0

Uk[nf= I 1
O

(7.91)

for n k

else
(7.92)

= (C 2 hHP[n- m2 (7.98)
C

where the last line follows because hHp[n] = hHp[-n] and hHp[n]*hHp[n] = hHp[n], where

'*' denotes circular convolution with period M. These equations imply that

[+k[n],~ , : =qtl,,,,[,,.l (7-99)

and

Cov [4[n], k2[m] 1 , s] = Cov [-[n],-m]I Hq,.] Uk, [n]uk2[m]

= (N+) hHp[n- mla2uk[n]uk2[m] (7.100)

Now for the mean and variance of the approximate, unfiltered signal estimate, which is

formed by subtracting the fault estimate from the observations, (7.78). Assume that the

fault Hq has been diagnosed properly. Then

A[In] = z[n]- [n]

= s[n] + q[n] + [n] - ([n] + [n]) uq[n]

= s[n] + c[n] - T[n]Uq[n] (7.101)

Thus:

E [SA [n] Hq,] = s[n] (7.102)

and

Co [A[n, SA[ml Hq,,,] = E [(E[n] - [n]uq[n])(4,m] - tm]uq[m])l Hq,q]

= {6[n- - (C hip -m]u[n] -(hHP[nM - n]uq[m]

+(N + C) hHp[ln - m]u[n)u,[m]} (7.103)

176

In particular, since hHp[O] = C/(N + C),

r[~ 1N] a { for nqWar s[-[] ,,, = U C
c, de

(7.104)

From this we see that all samples of SA[n] have the proper average value and that the cor-

rected samples have N times as much variance as the samples from the working converters.

Also, the average variance in A[n] is,

1 M-1

jw EZVar [&A[n]IHk,] = -F
n=o

(7.105)
N-C 2

C(N + C) - '

The ideal estimate under hypothesis Eq is formed by low pass filtering A[n],

M-1

s[n] = E hLp[n- r]SA[r]
r=O

Substituting (7.101) into this equation and recalling that s[n] is low pass, yields,

M-1
S[n] = s[n] + E hLp[n - r] ([r] - [r]uq[r]).

r=O

Thus,

E [[n] qH, 0] = s[n]

and we can compute the variance as follows,

M-1 M-1

Va [[n] Hq, q] = E h.,Lp[n - r]hLp[n - t]Cov [A[r],A[t]1 Hq, q]
r=O t=O

M-1
= hp[n

r=O

- 2 + C) E E hLp[n- r]hLP[n - t]hHP[r t]
r-q t=0

+ C) EhLpn-]hLP[n-
rq tq

t]hHp[r - t]aO.

177

(7.106)

(7.107)

(7.108)

(7.109)

This can be simplified in a few steps. Note that hLp[n] * hHp[n] = 0, and also:

Nc for n =0
hHp[n(N + C)] = (7.110)

0 else.

Thus,

Var [[n] I H,j] M= -1 h r[-] + C hp[nr]2 (7.111)
r=O r=q

After a little more algebra, we find that

Vat [{[n] N Hlp fi] 27a! for n =-,2(q g es(7.112)
N 2 CUS2(n- U2esVar [[n]Hq,] = { e 2 else

where S(l) is the circular sinc function with period N + C in (7.69). The variance is

thus highest for those signal samples, n q, from the faulty converter which have been

interpolated from the other converter samples, N2. All other signal samples have vari-

ance below oJ, with lowest variance occurring for signal samples from converters far from
No,2

the faulty one, about NC. In fact, we can show that signal estimate samples for the

faulty converter ae unaffected by the low pass filtering operation. To see this, note that

HLp(w) = 1- HHp(w), and thus hLp[n] = 6[n] - hHp[n]. Substituting gives:

M-1

S[n] = SA[n] - E hHP~n - I]SA[1]
1=0

M-1

= SA[n]- E hHP[n -] ([l]- q[1]) (7.113)
1=0

For n q:

s[n] = sA[n]- (ZH[n-EhHP[n-l]-q[I])
l=q

= sA[] - H[n] - hHp[0] (C) ZH[n])

= SA [n] (7.114)

178

The average variance of the ideal estimator is,

1M-1

1- Var [n] I Hq]
n=O

N 2 N+C
= N+C cr + C

N(C + 1) 2

(N + C)C e

1 M-1
E M E hp[n - red,E hL Ir=q n=O

(7.115)

The statistics for A[n] and i[n] can also be derived for the case when all converters are

working properly and hypothesis H* is chosen. The mean and variance of the unfiltered

signal estimator are:

E [gA[n]I H*]

Var [sA[n]l H*]

= s[n]

= d.

(7.116)

(7.117)

The mean and variance of the filtered signal estimator are:

E[s[n]l H*]

Var [S[n] I H*]

= s[n]

M-1 2 2 N 2
= E hp[n -la = N 2

1=o0 + C'

7.B Ideal Likelihoods: Mean and Covariance

In this section we derive the formulas of section 7.3.5. First, define rl[n] as a shifted

version of hHp[n] with all but every (N + C)h sample set to zero:

'rl[n] = { hHp[n + l]
0

for n = 0

else.

Then
1 N+C-1 E - n

r-[n] = hHP[n +]NC + e N+
NCr=O

179

(7.118)

(7.119)

(7.120)

(7.121)

and Fourier transforming we obtain:

M-1
T (Wm) = ME lri[n]e-iwmn (7.122)

n=O

1 +-1 · 2r j,, 2-
1 N+-1 m +) (Wm++C) (7.123)

N +C Z = HP

Now ri(wm) is periodic with period 2r/(N +C). For frequencies in the range 7rN/(N+C) <

Wm < (N + 2)/(N + C) we can calculate:

I C-1
1(m) = N C E1* ei(wm+)L

NC S(l)ej(-m b (7.124)N+C

where S(l) is the circular sinc function defined in (7.69). A formula valid for all wm can

then be derived by exploiting the periodicity of r(wm):

C (+ -(C-1 2pm)\
Tl(wm) = N + CS(l)ej ~ N+C (7.125)

where Pm is the integer:

Pm = m(M) N/2 (7.126)

and where Lxj represents the largest integer no greater than x. Note that the phase of rl (Win)

is a sawtooth ranging ± about rl in steps of ~, while the magnitude is constant.

Now to compute the statistics of the L'. Assume that fault Hq has occurred with value

qjn]. Combining (7.45) with (7.94), and using (7.98):

E[k| Hq J]= E [n[] q H,,]
nak

= Z [n) + E E [2[n] |Hq,4+]
n k nek

n nk] (N C) (NC) (7.127)

The first term above can be evaluated by using (7.95), recognizing that hHp[n] hHp-n],

180

and substituting k-l[n] for hHp[n + k -] and rip [-n] for hHp[l - p -n]:

¢q,[n] (= C) E E E hHP[n -]hHP[n - p-qq[l]qq[p]n-k n=k l-q p-q

____ 2 4-q ----0(N C) Ep~q[h[P] hHp[k + n -]hHP[k
I 1=q p=q _

N+C)
2

-q pq[l p]l~q p~q

+ n - p]

(7.128)

Apply Parseval's theorem and work in the frequency domain:

(C 2 _
l-q p-q

= z E qq[l]•bq[p]S(k - I)S(p
l-q p-=q

(7.129)

- k) [E eJ(wm+ (%+F))(p -)
M=OJ

Recall that the phase of the exponential in (7.129) is a sawtooth with range ±ir(p- I)/(N+
C). Therefore:

M-1 W .Cn) (¢-1-)r

m=o

if p=l

if p- = ±(N + C), 2(N+ C) ...

Also recognizing that S(l) is symmetric and periodic with period N + C, equation
reduces to,

2 [n] = S 2 (q- k)Z 42[l]
n-k l-q

(7.130)

(7.129)

(7.131)

Combining (7.131) and (7.127) and using some algebra gives (7.64). For the no fault case,
H*, set FNRq = 0 to get (7.58).

We now turn our attention to the covariance of two likelihoods, L and L 2, under
hypothesis Hq and fault k2q[n]. Substituting (7.45) gives:hypothesis Hq and fault q[n]. Substituting (7.45) gives:

Coy [L , L 2 I Hq, qIi A2 -q = E Cov
nl- k n2--k

m =-k n2- Cv+-k__ n+

181

(7.132)

I M-1

- E 'rk-1(W-)7-p-k(W,.)
M M=0

1: �;,2[n]

n=-k

M-1
E 7-k-l[n]7p-k[-nj

n=O

K [nij, �k22 [n211 Hq, Oj

Now suppose a, b, c, and d are zero mean Gaussian random variables. Then it is well-known

that E [abc] = 0 and

E [abcd] = E [ab] E [cd] + E [ac] E [bd] + E [ad] E [bc] (7.133)

Using this in (7.132), plus the fact that Cov [a, b] = E [ab]- E[a]E[b], expanding terms and

applying a lot of algebra gives:

Cov [, I Hq,q]I ki ,a] n= k nE
nl=-k n2- k

2(C-) hjp[n - n21a4

hHP[n - n2]C} (7134)hHp[nl -- n2]af2 (7.134)

Substituting (7.95) gives:

=(N + 4 E E ~{h2p [ni- n2]2of

nl-kl n2 _k2

+ Z hHp [nl -] hHp [n 2 - 12] hHp [nl - n2] 4oae q [Il] 4 q [12] }
1l-q 12-q

Now substitute (7.120) for hHp[n] and adjust the summations,

N+C
C

4

) n E Tk21 [n-n2] 24Z l-0 Tk k2 E °
ni =O n2=-O

+ (NC) E E [Tq-kl [1l - n] rk -1 k2 [n 1 - n2] Tk2 -q [n 2 -
11-012-O n1=-on2 2O

12]]

· ~~~~~~~~qOq [11 + q] Oq [12 + q] 4oe.

(7.136)

Because rl[n] is periodic with period M, we can further reduce the first term of the above

182

(7.135)

N+C 2
+470,[n,]�Jn2l C

equation,

(N+C4 M

C JW+CJ

+(NC)4E E
1+ 0l-12=-O

E rkl -k2[n]2 .
n_O

[E q-kn [1 - nl] Trk-k 2 [nl -n2] Tk 2 -q [n2 - 2]]

n =0 n2 =0

*•q [11l + q] q [12 + q] 4ae

(7.137)

_ N+C 4 M I M-1 (12 4

C N+CJ M E rkI','-k2 (Wm) 2a
m--0

+ (C) [M E rq-ki (Wm)Trk...k 2 (Wm)Tk2 _q (m) eiwm(1 12)]

1 k +q 12-- 0 m=0

¢Oq [11 + q] q [12 + q] 48
(7.138)

Cov [L 1 J' 2IHq, Q] (7.139)

= C }4 2 (C S2 (k -k2) + 4S (q -k) S (k -k2) S (k2-q) FNRqC

where S(I) is the circular sinc function defined in (7.69), and FNRq is the fault-to-quantization

noise ratio defined in (7.65). Formula (7.64) results by substituting k = k2 = q and noting

that S(0) = 1. For the no fault case, H*, formula (7.58) results by setting FNRq = 0.

The probabilities PF, PD, and PM follow from Gaussian statistics. For any Gaussian

variable p(x) = N(m, 2),

P~~~x,~ 00 x 1 ()2 dxP(x>-Y) = ~ exa - 2 a2

- 1 [2 J exp(_x2) dx

= 2erfc (7) (7.140)

Now if the number of terms M/(N + C) summed to form each Lk is large, then L is

approximately Gaussian. Formulas (7.55) and (7.62) follow directly from (7.140). For-

183

mula (7.66) follows from the observation that L - L' is Gaussian, while the mean (7.67)

and variance (7.68) come from:

E [L; - L' IHq,]

Var [Lq - 1.4 Hq, q]

= E [; Hq,] - E [k IHq,kq] (7.141)

= Var [L; |Hq,] -2Cov [L,L IHq,] +Var [L [Hq,q]

7.C Finite Order Likelihoods

Suppose we replace the "correct" likelihood formulas with the windowed formula:

L'[n] = " w[l]3k[n - (N + C)]
I

(7.142)

where n - k. If we assume that the fault is continuous, the window is long, and the average

energy in the fault is independent of time, then:

E[L[n]IHq,q] = w[l]E k[n - (N + C)] Hq, 0]

1: (w[l) M EE [2 [r] Hq,0]

(w [I] N + CE [L IH ¢]
M k

(7.143)

This implies that the expected value of the windowed likelihood is the same as that for

the ideal likelihood, except that the factor M/(N + C) is replaced by l wl1]. For our

rectangular window, w[l] = 1 for I = 0,..., Kint - 1 and = 0 otherwise. For the IIR update,

w[l] = a t for > 0 and = 0 otherwise. Therefore the integration factor M/(N+C) in (7.58),

(7.64), (7.67), and (7.87) is replaced by Kint for the rectangular window and by 1/(1 - a)

for the IIR window.

Similarly, under the same assumptions

Var [L' [n] j,,Hq,] = Ew[]w]Cov [,[n - I(N + C)], ,[n - p(N + C)] Hq,]
I p

= Z2tW[]Var [k,[n - (N + C)] Hq,]
I

184

w 2[]) M Var [+ [r] Hq])~~~~~~r--0

= (m)N~W2[]) Var [Lk HUqq] (7.144): ~~~~M IVkr

where the second line follows because equation (7.100) implies that samples k[n] separated

by multiples of N + C are statistically independent. Formula (7.144) implies that the

integration factor M/(N + C) in (7.58), (7.64), (7.68), and (7.87) is replaced by Kit for

the rectangular window and by 1/(1 - a 2) for the IIR window.

For short windows, the fault energy can no longer be modeled as independent of time.

Furthermore, the oscillations in the tails of the high pass filter cause energy from one

converter to contribute to all the likelihoods. The combination of these effects causes PF,

PD, and especially PM to degrade rapidly as the integration length decreases.

185

Chapter 8

Conclusion and Suggestions for

Future Research

This thesis dealt with the problem of designing an arithmetic code to protect a given com-

putation. We applied group theory, and considered computation which could be modeled

as operations in an algebraic group, ring, field, or vector space. We showed that arithmetic

codes belong to a class of mappings known as algebraic homomorphisms, and this led to a

procedure for constructing codes based on identifying suitable homomorphisms. Our results

are important because they are a mathematically rigorous formulation of the problem of

designing arithmetic codes. They unify the existing literature on arithmetic codes, and offer

the first general procedure for determining arithmetic codes for a wide class of systems.

8.1 Summary and Contributions

This thesis progressed from a general study of fault-tolerance to an examination of a specific

class of operations. As more assumptions were made about the underlying structure of

computation, we lost much of the generality of our approach. This, however, was balanced

by the fact that the additional structure allowed us to more accurately identify the form of

the arithmetic codes. The end result of our study was a full characterization of systematic-

separate arithmetic codes for protecting computation in a wide variety of algebraic systems.

We began very abstractly and used set-theory to model an abitrary multiple-input

186

multiple-output system. We presented a decomposition of a fault-tolerant system into a

cascade of three subsystems: a redundant computation unit, an error corrector, and a

result decoder. Though not a rigorous canonical decomposition, it was arrived at from a

careful study of existing fault-tolerant systems, and embodied all of the pertinent features

shared by these systems. Conditions on redundancy were derived such that errors could

be detected and corrected. This was done in a comprehensive manner. We considered the

effects of multiple simultaneous errors and allowed a tradeoff between the abilities to detect

and correct errors. We then identified an important and often-encountered class of errors

that allows the inherent redundancy of a system to be more easily quantified by a single

integer. We referred to these as symmetric errors, and they are analogous to the minimum

distance of an error-correcting code.

This set-theoretic framework is an important contribution to the study of fault-tolerant

systems. It is a general description of fault-tolerance, and makes few assumptions about

the underlying system being protected or of the computation performed. It has a strong

theoretical basis and encompasses all known fault-tolerant systems. Although specifically

constructed for the study of fault-tolerant computation, the framework is applicable to any

system utilizing redundancy. It could be used as a starting point for any future study in

the areas of fault-tolerant computation or error-correcting codes.

Upon this set-theoretic framework, we built a description of arithmetic codes for pro-

tecting computation in algebraic groups. We modeled a code as adding redundancy by

mapping computation to a group of higher order. By making a few elementary assump-

tions, we showed that the structure of a group restricted arithmetic codes to the class

of mappings known as algebraic homomorphisms. This key insight opened the door to

an examination of arithmetic codes through the study of homomorphisms. We restated

redundancy conditions and developed general error detection and correction procedures.

We showed that these procedures could be reduced to functions of a syndrome, and then

extended the results for groups to rings, fields, and vector spaces.

This group-theoretic framework is noteworthy because it links the practical aspects of

an arithmetic code to the theoretical definition of an algebraic homomorphism. Homomor-

phisms are a well-understood and deeply studied mathematical construct possessing a rich

187

structure, and we drew heavily upon group theory to determine the possible form of homo-

morphisms. Our results for groups are also general enough to encompass the vast majority

of existing arithmetic codes.

We then narrowed our focus from arbitrary algebraic homomorphisms to those yielding

systematic-separate codes. These codes are preferable because they protect computation

using a parallel independent parity channel. We first identified the general form of these

codes and then gave a constructive procedure, based on a quotient group isomorphism,

for determining possible codes. We proved that by finding all possible subgroups, our

approach is guaranteed to find, up to isomorphisms, all possible systematic-separate codes.

This code construction technique is the first procedure, outside of modular redundancy, for

constructing a large class of arithmetic codes. It is probably the most useful aspect of this

thesis, and has immediate, practical application.

Many examples of codes for protecting computation were given. Several were unique to

our thesis, and were briefly mentioned. These included the matrix ring codes of Section 4.7.3

and the codes for linear convolution presented in Section 5.6.5. In addition, we presented de-

tailed analyses of two practical fault-tolerant systems. In the first, we applied a polynomial

residue number system to protect the convolution of discrete-time sequences. This yielded

an efficient FFT-based algorithm which was suitable for multiprocessor implementations.

Although not the first fault-tolerant convolution algorithm proposed (Section 5.6.5 gives an

alternative method), it is better able to protect against the types of errors observed in real

systems. We showed that single failures may be concurrently detected and corrected with

as little as 65% overhead.

Our second major application dealt with reliable A/D conversion. We used a round-

robin system architecture and added redundancy by oversampling the input signal. This

oversampling process was, in fact, an algebraic homomorphism, and this enabled us to

examine this system using the group-theoretic framework. We studied single converter

failure, and the redundancy present in the code was well-suited to the errors introduced by

a converter failure. We optimally handled the effects of quantization noise via a generalized

likelihood ratio test. The error detection and correction algorithms reduced to a simple

form, requiring about as much additional computation as an FIR filter.

188

8.2 Future Research Directions

This thesis laid a theoretical foundation for the study of arithmetic codes, and we foresee

three immediate branches down which this work may continue. The first deals with explor-

ing more fully some of the techniques and examples that were uncovered. The second has

to do with applying our results to a wider range of systems. The third branch considers

other possible uses for algebraic homomorphisms.

8.2.1 Further Exploration

This thesis approached the problem of designing an arithmetic code by focusing on the

constraint that redundancy be preserved throughout computation. This led to the char-

acterization of arithmetic codes as algebraic homomorphisms. In order to be useful, an

arithmetic code must in addition be easily encoded and decoded, and must protect against

the expected set of errors. These issues were only cursorily examined and not fully explored

in this thesis. We feel, however, that these issues are very important and that it is impos-

sible to design a practical arithmetic codes without taking them into consideration. It is

doubtful, though, that a general solution to this problem can be found. The set of expected

errors is too closely linked to the architecture used to perform the processing, and varies

greatly across systems. Also, in some cases, the application of our framework reduces to a

class of error-correcting codes for which these issues have not yet been fully resolved.

An efficient method of performing error correction is also lacking in our framework. We

showed that the syndrome is a condensation of all information relevant to fault correction,

and used this as an index into a lookup table in order to identify the error. This approach

is practical only when there is a small number of expected errors. In practice, one may

encounter a large or even an infinite number of possible errors, and in these instances a

different approach to error correction is needed. One possible solution is to perform error

correction in stages by classifying the set of errors. First, determine if an error has occurred

within the system. If so, then determine which class the error falls in. Finally, identify the

specific error within the determined class and correct its effect on the result.

An efficient method of correcting multiple errors is also needed. Presently, the complex-

ity of the error corrector increases exponentially with the number of simultaneous errors,

189

and so only single errors can usually be protected against. It is likely that an efficient

method of correcting multiple errors exists. The syndrome mapping is a homomorphism,

and this preserves the additive structure of multiple errors within the syndrome. A reason-

able idea is to try combining this approach with the error classification scheme mentioned

above.

Another drawback to our framework is that certain parts of the system, not covered by

the arithmetic code, are assumed to be inherently robust. These include the error corrector

and result decoder, and we assumed that they were protected by modular redundancy.

This reliability was needed because of the manner in which we partitioned the operation

of a robust system. It would be preferable to have an arithmetic code that could protect

the entire operation of the system, not just limited portions. Alternatively, the design of

self-checking systems for performing error correction and result decoding could be studied.

Chapters 4 and 5 each contain a wide variety of examples of operations protected by

arithmetic codes. Our emphasis was on determining the form of the redundancy, and we

were not greatly concerned with specific implementations. Although many of the examples

reduced to systems examined by others, some were unique to this thesis. These include

the matrix ring codes of Section 4.7.3 and the codes for linear convolution presented in

Section 5.6.5. We feel that most of these examples, if explored more deeply, will lead

to practical fault-tolerant implementations. Analyses in the same spirit as the studies of

fault-tolerant convolution and A/D conversion in Chapters 6 and 7 are needed.

8.2.2 Arithmetic Codes for Other Operations

This thesis dealt exclusively with protecting computation that can be modeled as operations

in algebraic groups, rings, fields, and vector spaces. These systems have a well-understood

structure and include many important and computationally intensive operations. Their

universality is, in fact, one of the driving forces behind the study of group theory. Still, there

are a great many operations that cannot be placed in our framework. The ultimate goal of

any general approach to fault-tolerance is to be able to protect an arbitrary computational

unit, such as a CPU, in an efficient manner. The solution to this problem lies very far in

the future, and it is arguable if any code, besides modular redundancy, would be able to

190

protect it.

A step towards expanding the scope of this thesis is to apply our framework to other

algebraic systems such as monoids or associate groups, or to the more general case of a

set with operators. Homomorphisms are a constantly recurring theme in group theory, and

they exist in other algebraic systems as well. Most likely they can be used, as in this thesis,

to identify possible arithmetic codes.

The tools for detecting and correcting errors developed in Chapter 4 were based on only

a few basic premises: that the set of outputs forms an Abelian group, that an additive error

model applies, and that valid results lie in a subgroup. These constraints were automatically

satisfied by our assumptions of computation in algebraic groups and in the manner in which

redundancy was added. Instead of focusing on binary operations to begin with (this is a

major assumption), it might be possible to design robust systems by focusing on the three

premises just mentioned. The main problem to overcome would be to develop a constructive

approach for adding redundancy such that valid results lie in a subgroup of the output set.

8.2.3 Other Possible Uses of Homomorphisms

This thesis examined the use of algebraic homomorphisms as arithmetic codes. Other uses

for homomorphisms exist as well.

The interaction between codewords and errors in an error-correcting code may be mod-

eled as an additive operation in an algebraic group. When viewed in this light, an error-

correcting code satisfies the postulates of an algebraic homomorphism, and when dealing

with binary vector spaces, leads to the standard class of linear error-correcting codes. The

additive error model is a good description of the interaction between codewords and additive

noise in a communication channel.

A promising departure from this additive model is to consider designing codes which

protect against convolutional interference. This type of interference models the distor-

tion introduced by a nonuniform transfer characteristic in a communication channel. The

traditional approach to solving this problem is to use an adaptive equalizer to correct the

distortion. This is an expensive solution that often has difficulty correcting rapidly changing

channels such as those encountered in mobile communication systems.

191

Codes that protect against this form of interference may be designed by beginning

with a binary polynomial field rather than a vector space. The nonzero elements of the

field form a group under the multiplicative operation, and this operation may be used to

model the effects of errors. In this case, an error polynomial would be multiplied with

the codewords. These codes may be placed in our framework because of the generality of

group theory. We only require an additive model in some group, and this additive operation

need not correspond to vector addition. Valid codewords would consist of the set of prime

polynomials, and error detection and correction would reduce to polynomial factorization.

A radically different application of algebraic homomorphisms is in the processing of en-

crypted information [55]. In many applications processing is done on sensitive information.

The current practice is to store data in encrypted form, and then to decrypt it prior to

processing. This decryption step is undesirable since it increases the likelihood of unau-

thorized access. It may be possible, however, to process data in an encrypted form using

an algebraic homomorphism. In this case, a nonsystematic homomorphism is desired that

satisfies different design goals. The main constraint is that the codes be easily encrypted

and decrypted if the proper key is known, and virtually impossible to decrypt without it.

Number theory, a branch of group theory, is at the heart of many encrypting schemes, and

thus it seems reasonable that many of our group-theoretic results may be used to process

encrypted data.

192

Bibliography

[1] J. A. Abraham, "Fault-tolerance techniques for highly parallel signal processing archi-
tectures," SPIE Highly Parallel Signal Processing Architectures, vol. 614, pp. 49-65,
1986.

[2] G. R. Redinbo, "Signal processing architectures containing distributed fault-tolerance,"
in Conference Record - Twentieth Asilomar Conference on Signals, Systems & Com-
puters, pp. 711-716, IEEE, November 1987.

[3] K. Fitzgerald, "As chip geometries continue to shrink, IC reliability grows ever more
critical," LE.E.E. The Institute, p. 10, June 1988.

[4] D. A. Rennels, "Fault-tolerant computing - concepts ad examples," IEEE Transac-
tions on Computers, vol. C-33, pp. 1116-1129, December 1984.

[5] J. von Neuman, Probabilistic Logics and the Synthesis of Reliable Organisms from
Unreliable Components, pp. 43-98. Princeton University Press, 1956.

[6] T. R. N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems. Englewood
Cliffs, N.J.: Prentice-Hall, 1989.

[7] J. G. Tryon, Redundancy Techniques for Computing Systems, ch. Quadded-Logic,
pp. 205-208. Washington, D.C.: Spartan Books, 1962.

[8] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, and D. K. Rubin,
"The STAR (self-testing and repairing) computer: An investigation of the theory and
practice of fault-tolerant computer design," in Proceedings, 1st International Confer-
ence on Fault-Tolerant Computing, pp. 1312-1321, November 1971.

[9] R. E. Harper, J. H. Lala, and J. J. Deyst, "Fault-tolerant parallel processor architec-
ture overview," in Eighteenth International Symposium on Fault-Tolerant Computing,
Digest of Papers, pp. 252-257, IEEE, June 1988.

[10] J. A. Katzman, "A fault-tolerant computing system," in Proceedings 11th Hawaii In-
ternational Conference on System Sciences, Pt. III, pp. 85-102, 1978.

[11] R. Freiburghoue, "Making processing fail-safe," Mini-Micro Systems, pp. 255-264, May
1982.

193

[12] J. H. Patel and L. Y. Fung, "Concurrent error detection in ALU's by recomputing
with shifted operands," IEEE Transactions on Computers, vol. C-31, pp. 589-595,
July 1982.

[13] M. Namjoo and E. J. McCluskey, "Watchdog processors and capabililty checking," in
Proceedings, 12th International Symposium on Fault-Computing, pp. 245-248, 1982.

[14] R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA.: Addison-
Wesley Publishing Company, 1984.

[15] N. S. Szabo, Residue Arithmetic and its Applications to Computer Technology. New
York, N.Y.: McGraw-Hill, 1967.

[16] M. H. Etzel and W. K. Jenkins, "Redundant residue number systems for error detection
and correction in digital filters," IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-28, pp. 538-544, October 1980.

[17] S. S.-S. Yau and Y.-C. Liu, "Error correction in redundant residue number systems,"
IEEE Transactions on Computers, vol. C-22, pp. 5-11, January 1973.

[18] W. K. Jenkins, Residue number system error checking using expanded projection,"
Electronic Letters, vol. 18, pp. 927-928, October 1982.

[19] C.-C. Su and H.-Y. Lo, "An algorithm for scaling and single residue error correction in
residue number systems," IEEE Transactions on Computers, vol. 39, pp. 1053-1064,
August 1990.

[20] H. Krishna and K. Y. Lin, "A coding theory approach to error control in redundant
residue number systems - Part I: Theory and single error correction." Received for
review, October 1990.

[21] W. K. Jenkins and E. J. Altman, Self-checking properties of residue number error
checkers based on mixed radix conversions," IEEE Transactions on Circuits and Sys-
tem, vol. 35, pp. 159-167, February 1988.

[22] Marshall, Jr., Thomas G., "Coding of real number sequences for error correction: A
digital signal processing problem," IEEE Journal on Selected Areas in Communica-
tions, vol. SAC-2, pp. 381-392, March 1984.

[23] K.-H. Huang, Fault-Tolerant Algorithms for Multiple Processor Systems. PhD thesis,
University of Illinois, Urbana-Champaign, November 1983.

[24] K.-H. Huang and J. A. Abraham, "Algorithm-based fault-tolerance for matrix opera-
tions," IEEE Transactions on Computers, vol. C-33, pp. 518-528, June 1984.

[25] J.-Y. Jou, Fault-Tolerant Matrix Arithmetic and Signal Processing on Highly Concur-
rent VLSI Systems. PhD thesis, University of Illinois, Urbana-Champaign, IL., 1985.

[26] J.-Y. Jou and J. A. Abraham, "Fault-tolerant matrix arithmetic and signal processing
on highly concurrent computing structures," Proceedings of the IEEE, vol. 74, pp. 732-
741, May 1986.

194

[27] J.-Y. Jou and J. A. Abraham, "Fault-tolerant algorithms and architectures for real time
signal processing," in Proceedings - International Conference on Parallel Processing,
pp. 359-362, IEEE, August 1988.

[28] V. S. S. Nair, "General linear codes for fault-tolerant matrix operations on processor
arrays," Master's thesis, University of Illinois, Urbana, IL., August 1988.

[29] V. S. S. Nair and J. A. Abraham, "General linear codes for fault-tolerant matrix
operations on processor arrays," in Proceedings - International Symposium on Fault-
Tolerant Computing, pp. 180-185, IEEE, June 1988.

[30] V. S. S. Nair and J. A. Abraham, "Real-number codes for fault-tolerant matrix oper-
ations on processor arrays," IEEE Transactions on Computers, vol. 39, pp. 426-435,
April 1990.

[31] C. J. Anfinson and F. T. Luk, "Linear algebraic model of algorithm-based fault-
tolerance," IEEE Transactions on Computers, vol. 37, pp. 1599-1604, December 1988.

[32] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. Nair, K. Roy, V. Balasubramanian,
and J. A. Abraham, "Algorithm-based fault-tolerance on a hypercube multiprocessor,"
IEEE Transactions on Computers, vol. 39, pp. 1132-1145, September 1990.

[33] G. M. Megson and E. D. J., "Algorithmic fault-tolerance for matrix operations on
triangular arays," Parallel Computing, vol. 10, pp. 207-219, April 1989.

[34] C. J. Anfinson, A. W. Bojanczyk, F. T. Luk, and E. K. Torng, "Algorithm-based fault-
tolerant techniques for MVDR beamforming," in Proceedings - International Confer-
ence on Acoustics, Speech, and Signal Processing, pp. 2417-2420, IEEE, May 1989.

[35] F. T. Luk and H. Park, "Analysis of algorithm-based fault-tolerance techniques," Jour-
nal of Parallel and Distributed Computing, vol. 5, pp. 172-184, April 1988.

[36] W. G. Bliss and A. W. Jullien, "Efficient and reliable VLSI algorithms and architec-
tures for the discrete Fourier transform," in Proceedings - International Conference on
Acoustics, Speech, and Signal Processing, pp. 901-904, IEEE, 1990.

[37] W. G. Bliss and M. R. Lightner, "The reliability of large arrays for matrix multipli-
cation with algorithm-based fault-tolerance," in Wafer Scale Integration III (M. Sni
and F. Distante, eds.), pp. 305-316, Elsevier Science Publishers B. V. (North-Holland),
1990.

[38] W. S. Song and B. R. Musicus, Fault-tolerant architecture for a parallel digital signal
processing machine," in Proceedings - 1987 IEEE International Conference on Com-
puter Design: VLSI in Computers & Processors, pp. 385-390, IEEE, October 1987.

[39] W. S. Song, A Fault-Tolerant Multiprocessor Architecture for Digital Signal Processing
Applications. PhD thesis, M.I.T., January 1989.

[40] B. R. Musicus and W. S. Song, "Fault-tolerant digital signal processing via generalized
likelihood ratio tests." To appear in IEEE Transactions on Signal Processing.

195

[41] Y.-H. Choi and M. Malek, Fault-tolerant FFT processor," IEEE Transactions on
Computers, vol. 37, pp. 617-621, May 1988.

[42] J.-Y. Jou and J. A. Abraham, "Fault-tolerant FFT networks," IEEE Transactions on
Computers, vol. 37, pp. 548-561, May 1988.

[43] G. R. Redinbo, "Data protection in convolution computations," in Proceedings - In-
ternational Conference on Acoustics, Speech, and Signal Processing, pp. 1095-1098,
IEEE, May 1989.

[44] G. R. Redinbo, "System level reliability in convolution computations," IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 37, pp. 1241-1252, August
1989.

[45] I. N. Herstein, Topics in Algebra. New York, NY: John Wiley and Sons, 1975.

[46] J. K. Wolf, "Redundancy, the discrete Fourier transform, and impulse noise cancel-
lation," IEEE Transactions on Communications, vol. COM-31, pp. 458-461, March
1983.

[47] W. W. Peterson, "On checking an adder," IBM Journal, pp. 166-168, April 1958.

[48] G. Strang, Linear Algebra and its Applications. Orlando, FL: Academic Press, Inc.,
1980.

[49] D. Chin, J. Passe, F. Bernard, H. Taylor, and S. Knight, "The Princeton engine: A real-
time video system simulator," IEEE Transactions on Consumer Electronics, vol. 34,
pp. 285-297, May 1988.

[50] J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing.
Englewood- Cliffs, N.J.: Prentice-Hall, 1979.

[51] R. E. Blahut, Fast Algorithms for Digital Signal Processing. Reading MA.: Addison-
Wesley Publishing Company, 1985.

[52] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J. Taylor, Residue Number
System Arithmetic: Modern Applications in Digital Signal Processing. New York, N.Y.:
IEEE Press, 1986.

[53] C. S. Burrus, DFT/FFT and Convolution Algorithms. New York, N.Y.: Wiley Inter-
science, 1985.

[54] A. V. Oppenheim and C. J. Weinstein, "Effects of finite register length in digital
filtering and the fast Fourier transform," Proceedings of the IEEE, vol. 8, pp. 957-976,
August 1972.

[55] R. L. Rivest, L. Adleman, and M. L. Dertouzos, Foundations of Secure Computation,
ch. On Data Banks and Privacy Homomorphisms, pp. 169-180. New York, N.Y.:
Academic Press, 1978.

196
