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Abstract

Chaotic systems have received much attention in the mathematics and physics communities
in the last two decades; and they are receiving increasing attention in various engineering
disciplines as well. Experimental evidence suggests that these systems may be useful models
for a wide variety of physical phenomena, including turbulence, vibrations of buckled elastic
structures, and behavior of certain feedback control devices.

This thesis deals with both the analysis and synthesis of chaotic maps and time-sampled
chaotic flows, with a focus on the problems and issues that arise with noise-corrupted orbit
segments generated by these maps and flows. Both dissipative and nondissipative systems
are considered, with both types of systems considered in the context of analysis and the
latter type also considered in the context of synthesis. With respect to dissipative systems,
three probabilistic state estimation algorithms are introduced and applied to three problem
scenarios, with the scenarios distinguished by the amount of a priori knowledge of the
dynamics of the underlying chaotic system.

Cramer-Rao, Barankin, and Weiss-Weinstein upper bounds on state estimator perfor-
mance are derived and both experimentally and qualitatively analyzed. The analysis reveals
that intrinsic properties of chaotic systems-positive Lyapunov exponents and boundedness
of attractors-have a fundamental influence on achievable state estimator performance with
these systems.

With respect to nondissipative systems, the thesis considers a class of piecewise linear
maps of the unit interval, members of which give rise to finite-state, homogeneous Markov
chains. The thesis establishes ergodic and other properties of these maps and explores the
use of these maps as generators of signals for practical applications. A close relation is
established between noise-corrupted orbit segments generated by the maps and outputs of
hidden Markov models, and this relation is exploited in practical, optimal and suboptimal
algorithms for detection, parameter estimation, and state estimation with the maps.

Thesis Supervisor: Alan V. Oppenheim
Title: Distinguished Professor of Electrical Engineering

3



4



Acknowledgments

As I look back over the last five years, many individuals come to mind who have contributed

to this thesis, and more importantly who have helped me develop as a better researcher and

as a better person, overall. I am truly grateful to all these individuals and regret that space

permits my mentioning by name only those whose help has been particularly noteworthy.

First and foremost, I'd like to thank my thesis supervisor, Professor Al Oppenheim, for

his guidance, encouragement, and support, both moral and financial, especially when they

were needed most during the final months of this thesis. I have come to respect him greatly,

in part because of his deep interest and involvement in the well-being and professional

development of his students, as exemplified by his having established a research environment

without equal in the signal processing community. I have benefited immensely from having

been a member of his research group and will always be thankful to him for allowing me to

be part of that group.

I would also like to thank Professor Udi Weinstein for his constructive feedback on a

draft of this thesis and for several enjoyable, stimulating discussions on performance bounds.

I found his intensity, insight, and enthusiasm to be truly inspirational. I would also like

to thank my two official thesis readers, Professors Al Willsky and Greg Wornell, for their

useful advice on the thesis and on potential publications evolving from the thesis.

It goes without saying that I am extremely grateful to my friends and colleagues in the

Digital Signal Processing Group (DSPG). I have found working with such an elite group of

individuals to be a rewarding, yet often humbling experience. I'd especially like to thank

Steve Isabelle and Kambiz Zangi for their friendship and moral support as well as for many

fruitful, technical discussions. The three of us struggled to complete our theses at about

the same time. Simply knowing that I alone was not undergoing the ordeal of completing

a thesis somehow made the completion task less painful for me than it would otherwise

have been. Others in the group also deserving special recognition include John Buck, Babis

Papadopoulos, Paul Beckmann, Steve Scherock, and Andy Singer, all of whom helped make

life at MIT more interesting and enjoyable. I'll never forget my "useful" discussions with

them on such diverse topics as dolphin conversations, predicting the price of pork bellies,

and methods to avoid being mistaken-for a terrorist at a foreign airport. Special thanks goes

to our system manager, Giovanni Aliberti, for his friendship and for his resolving my many

5



computer dilemmas. Special thanks also goes to our group administrative assistant Sally

Santiago for her invaluable assistance with many administrative matters involving the MIT

bureaucracy as well as for her editorial guidance in my preparation of several conference

papers and more importantly this document.

I will always be thankful to my parents for their unceasing encouragement and support

and more importantly for their faith and confidence in me, not only while I worked on

this thesis but throughout my life. Their inspiring, morale-building phone calls and letters

infused warmth and hope in many otherwise dreary, frustrating days. I would also like to

thank the rest of my family-my brothers Marc and Ray, my sisters-in-law Lisa and Diane,

my nieces Arianne and Kristina, and my nephews David and Kevin-for helping me to

maintain a proper perspective on what truly matters in life.

I am also grateful to the Air Force Office of Scientific Research which through its Lab-

oratory Graduate Fellowship Program generously funded four years of this research.

Finally, I'd be remiss if I failed to recognize the contributions of Saint Anthony, Saint

Jude, and all the other saints who have worked feverishly on my behalf during these last

few years, in response to a deluge of prayers from several of my relatives (and from me).

My only regret is that they apparently don't know how to program in C or MATLAB. How

appropriate it is that this thesis is being submitted on All Saints Day, the day set aside for

honoring saints. I thank these saints and those whose prayers they were responding to.

6



To my parents, Normand and Elaine, who have have given me so
much in life, yet have asked for so little in return, and without whose
love, prayers, guidance, and support since the day I was born, I would
never have achieved this milestone in my life.

7



8



Contents

1 Introduction

2 Overview of Chaos
2.1 Introduction. ...................................
2.2 Notational Conventions .............................
2.3 The Distinguishing Properties of Chaos ....................

2.3.1 Topological Properties . . . . . . . . . . . . . . . . . . . ......
2.3.2 Ergodic Properties ............................
2.3.3 Dissipative Chaos ............................

2.4 Examples of Dissipative, Chaotic Maps and Flows ..............

3 State Estimation Fundamentals
3.1 Introduction. ...................................
3.2 State Estimation Scenario ............................
3.3 Maximum-Likelihood (ML) and Minimum-Mean-Squared-Error (MMSE) State

Estimation ...................................
3.4 Linear State Estimation and the Kalman Filter ................
3.5 Nonlinear State Estimation ..........................
3.6 State Estimation and Chaos ..........................

4 State Estimation with Dissipative, Chaotic Maps
4.1 Introduction. ...................................
4.2 ML State Estimation ..............................

4.2.1 Properties of the Likelihood Function .................
4.2.2 An Approximate ML State Estimator .................
4.2.3 Extensions ................................

4.3 MMSE State Estimation: Local Techniques ..................
4.3.1 The Extended Kalman Filter and Smoother .............
4.3.2 Performance Results with Known System Dynamics .........
4.3.3 Performance Results with Unknown System Dynamics ........

4.4 MMSE State Estimation: Global Techniques .................
4.5 Comparison of Estimators ...........................

5 Bounds on State Estimator Performance
5.1 Introduction ... . .. ... . .. .. ... ... . .. ... .. . . . . .. .
5.2 Bounds for Nonrandom State Vectors .....................

5.2.1 Cramer-Rao Bound ..........................
5.2.2 Barankin Bound .............................

9

11

15
15
15
17
18
20
23
25

29
29
29

32
35
37
40

47
47
48
48
55
59
62
63
66
69
76
80

83
83
85
87
89



5.3 Computer Simulations .......................
5.3.1 Simulations with Dissipative, Chaotic Diffeomorphisms
5.3.2 Simulations with Unit-Interval Maps . . .

5.4 Bounds for Random State Vectors .........
5.4.1 Random Cramer-Rao Bound .......
5.4.2 Weiss-Weinstein Bound ...........

6 MC Maps and Signal Synthesis
6.1 Introduction. .....................
6.2 Markov Maps and MC Maps ............
6.3 EMC Maps and Markov Chains ...........
6.4 Markov Partitions .................
6.5 Ergodic Properties of EMC Maps .........

6.5.1 Ergodic Theory Fundamentals .......
6.5.2 EMC Maps, Markov Chains, and Stationary

6.6 Multidimensional Markov Maps .........
6.7 Practical Considerations .............

92
93

............. 102

.............. 104

............. 105

............. 109

.

. .

· .

· o.

PDF:
.. .

.. .

7 Detection and State Estimation with MC Maps
7.1 Introduction. ........................
7.2 Detection of EMC Maps .................

7.2.1 Problem Scenario .................
7.2.2 Detection with Quantized Orbit Points .....
7.2.3 Detection with Unquantized Orbit Points ....

7.3 Detection Examples ....................
7.4 Scale Factor and Noise Variance Estimation ......
7.5 Map Discriminability ....................
7.6 State Estimation with MC Maps .............

7.6.1 Problem Overview ................
7.6.2 ML State Estimation Considerations .......

7.7 Optimal/Suboptimal ML State Estimator for MC Maps
7.7.1 Theoretical Foundation .............
7.7.2 The Estimation Algorithm ............
7.7.3 Estimation Examples ...............

8 Conclusions
8.1 Summary and Contributions ................
8.2 Suggested Future Research ................

A Performance Bound Equations
A.1 Cramer-Rao Bound .....................
A.2 Barankin Bound for Vector-Valued Parameters .....
A.3 Weiss-Weinstein Bound for Vector-Valued Parameters

oo.....,.

,,o.o..,.,.

oo...,.e..... . . . . . .. . .

......... oo. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. ....... . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .. . . . . e.. . .

. o. .. o. . o . .

, .o. o o . ..o.o

, . . . o. o. . . o.

. . . o. . . o .

. . .. . . . ..

113
113
114
119
123
124
125
130
136
139

145
145
146
146
147
150
151
155
162
164
164
167
172
172
175
176

181
181
183

187
........... 187
........... 189
........... 191

B Proofs for Chapters 6 and 7 195

10



Chapter 1

Introduction

Chaotic systems have received much attention in the mathematics and physics communities

in the last two decades; and they are receiving increasing attention in various engineering

disciplines as well. Experimental evidence suggests that these systems may be useful models

for a wide variety of physical phenomena, including turbulence, vibrations of buckled elastic

structures, and behavior of certain feedback control devices. Traditionally, researchers have

focused on possible causes of, or transitions to chaos, universal properties shared by chaotic

systems, and various topological and ergodic properties of chaotic systems. As such, the

emphasis has been on the analysis of chaotic systems and real-world systems suspected of

exhibiting chaos. There has been little attention given to the synthesis of chaotic signals

and systems for practical engineering applications such as in communication systems. In

part for this reason, useful engineering applications of chaotic systems have yet to appear.

This thesis considers both the analysis and synthesis of chaotic signals and systems.

The unifying theme of this thesis is additive noise and the problems and issues involved in

dealing with chaotic signals embedded in additive noise. With respect to analysis, the thesis

focuses on estimating the state of discrete-time, chaotic systems based on noise-corrupted

observations of the state.

The problem of noise-corrupted chaotic signals arises in many applications as does the

need for effective state estimation algorithms. For example, often when measurements are

taken of a physical phenomenon suspected of being chaotic, the measuring device introduces

error in the recorded signal, with the error well-modeled as additive white noise. Alterna-

tively, the actual underlying physical phenomenon may be immersed in a noisy environment,
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as might be the case if one seeks to intercept a low-power, chaotic signal, possibly used for

secure communication, that has been transmitted over a noisy channel. In both cases,

one seeks to separate the chaotic signal from the noise and often to estimate the state of

the underlying chaotic system from the noise-corrupted observations of the transformed

state. The thesis considers three problem scenarios involving noise-corrupted observations

of chaos, with the scenarios distinguished by the level of a priori knowledge of the dynamics

of the underlying chaotic system. State estimation algorithms are introduced for each of the

scenarios, and the performance of the algorithms evaluated using Monte Carlo simulations.

When attempting to design and refine estimators for nonlinear estimation problems, one

often has no way of knowing if mediocre performance of an estimator is due to the estimator

or to a fundamental aspect of the problem itself. As such, it is often useful and desirable

to know the best performance achievable by any estimator for a given nonlinear estimation

problem, or equivalently to have upper bounds on achievable state estimator performance.

Consequently, state estimator performance bounds are derived and analyzed in the thesis.

The analysis reveals that intrinsic properties of chaotic systems-positive Lyapunov ex-

ponents and boundedness of attractors-have a fundamental influence on achievable state

estimator performance with these systems.

With respect to synthesis, the thesis introduces and analyzes a class of chaotic building

blocks having potential, practical value. The basic elements of this class are piecewise linear

maps of the unit interval which satisfy certain constraints. These simple maps are shown to

exhibit a rich set of properties, which among other things allows computationally efficient,

optimal and suboptimal detection as well as maximum-likelihood state estimation with the

maps.

The thesis is organized as follows. Chapters 2 and 3 respectively provide background

material on chaos and the general state estimation problems considered in this thesis. Specif-

ically, Chapter 2 discusses a number of topological and ergodic properties often associated

with chaos, the relations among these properties, as well as the concept of dissipative

chaos. Chapter 3 begins by defining the state estimation scenarios of interest in this the-

sis and continues by briefly reviewing the fundamentals of probabilistic state estimation

with an emphasis on the two probabilistic, state estimation approaches focused on the

thesis: Maximum-Likelihood (ML) and Minimum-Mean-Squared-Error (MMSE). Next, the

optimal MMSE state estimator for linear, dynamical systems-the Kalman filter-is dis-
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cussed as well as the practical difficulties in performing optimal MMSE state estimation

with nonlinear, dynamical systems. Finally, the chapter provides a summary of previous

state estimation research involving nonlinear dynamical systems, in general, followed by a

more focused summary of previous state estimation research involving deterministic, chaotic

systems.

Chapter 4 introduces state estimation algorithms for discrete-time chaotic systems and

time-sampled, continuous-time chaotic systems and provides performance results obtained

via Monte Carlo simulations with several chaotic systems. State estimation algorithms are

introduced for three problem scenarios-known system dynamics, unknown system dynam-

ics and availability of a noise-free reference orbit, unknown system dynamics and nonavail-

ability of a noise-free reference orbit. In particular, the extended Kalman filter is shown

to yield mediocre performance results, but a new variation of this filter is shown to be a

potentially effective state estimator for chaotic systems, even when the system dynamics are

unknown. A global, approximate MMSE state estimator is also introduced and is shown to

be a potentially effective state estimator with input SNRs as small as 0 dB. The estimator

exploits intrinsic properties of the steady-state behavior of dissipative, chaotic systems, in

particular topological transitivity and ergodicity.

Chapter 5 derives performance bounds for a general class of state estimators and in-

terprets these bounds in the context of chaos. The Cramer-Rao bound for estimators of

nonrandom state vectors of deterministic chaotic systems is derived and shown to exhibit

behavior similar to that of the corresponding bound for unstable, linear systems. In par-

ticular, for dissipative, chaotic diffeomorphisms the bound exhibits a nonzero asymptotic

limit when there are noisy observations of the state for only past or only future times. Lim-

itations of the Cramer-Rao bound are discussed, and a specialized form of a general class

of performance bounds, the Barankin bounds, is shown to overcome these limitations. The

Cramer-Rao and Weiss-Weinstein bounds for estimators of random state vectors are also

briefly considered and shown to be of little value for use with chaotic systems.

In contrast to Chapters 4 and 5 which focus on the analysis of chaotic systems and signals

produced by these systems, Chapters 6 and 7 focus on the synthesis of chaotic systems. In

particular, Chapter 6 introduces a class of piecewise linear maps of the unit interval which

give rise to finite state Markov chains. New and previously reported properties of these

maps are discussed, and a close relation established between the ergodic properties of these
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maps and the Markov chains they give rise to. In addition, these maps are shown to be

potentially useful building blocks for maps with arbitrary, invariant probability density

functions and for higher-dimensional maps which also give rise to Markov chains. Chapter

7 derives computationally efficient optimal and suboptimal detectors for a subset of these

maps and briefly discusses the potential value of these maps and associated detectors for

secure communication. The chapter concludes by introducing optimal and suboptimal ML

state estimators for use with these maps.

Finally, Chapter 8 provides concluding remarks. The chapter begins by summarizing

the highlights of the thesis as well its major contributions to the research community. The

chapter then discusses potentially fruitful topics for future research, which build on the

results presented in the thesis.
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Chapter 2

Overview of Chaos

2.1 Introduction

This chapter establishes a foundation for the state estimation algorithms introduced in

Chapter 4 and the performance bounds derived in Chapter 5, by providing a brief intro-

duction to chaos. We discuss a number of properties, both topological and ergodic, often

associated with chaos and explain such concepts as invariant measures, attractors, Lya-

punov exponents, topological transitivity, and sensitive dependence on initial conditions.

We omit discussion of several concepts relevant to chaos but not relevant to this thesis, in-

cluding dimensions and entropies of attractors. These topics are discussed at varying levels

of detail in a number of references on nonlinear dynamical systems, (e.g., [60, 69]).

The discussion of topological and ergodic properties in Section 2.3 is rather formal

and abstract, and it uses a number of theoretical concepts from mathematical analysis

and topology. Although many of the terms introduced in the section are used throughout

the thesis, a thorough understanding of the theory underlying these terms is not needed

in order to understand the information on state estimation algorithms and performance

bounds provided in Chapters 4 and 5.

2.2 Notational Conventions

We adopt the following notational conventions in this thesis. Plain lowercase and uppercase

letters such as x and f denote scalars and scalar-valued functions, whereas bold lowercase

and uppercase letters such as x and f denote vectors and vector-valued functions. Except

15



when confusion might result, functions and arguments of functions are denoted in the text

simply by the symbol representing the function or argument. For example, for the scalar

equation y = f(x), we say that z is the argument of the function f and y is the value of f

evaluated at x, or equivalently the image of x under f.

The character R denotes the real line and R n denotes Euclidean n-space. Unless stated

otherwise, all vectors have real-valued components and the domain and range of each func-

tion are subsets of R' and Rm, respectively, for positive integers m and n. The time index

for a time series of scalars or vectors is given in parentheses, so for example x(n) denotes

the element of the time series {z(i)} at time n. Given two functions g and h, g o h de-

notes the composition of g with h, so that (g o h)(x) = g(h(x)). Similarly, the shorthand

notation fn(x) = (f o ... o f)(x) denotes the composition of f with itself n times, and by

n times

definition f(x) - x. We let f-1 denote the inverse or inverse image of f, and f, the

n-fold composition of f-1. For a scalar-valued, differentiable function f, f'(x) denotes the

derivative of f evaluated at , and more generally f(n)(x) denotes the nth-derivative of f

evaluated at . Similarly, for vector-valued, differentiable functions f with vector-valued

arguments, D{f(x)} denotes the derivative of f with respect to x, and if the derivative

is not taken with respect to the innermost argument, we use a subscript on D to denote

the differentiation variable. For example, D{f(g(x))} denotes the derivative of f o g taken

with respect to x whereas Dg(x){f(g(x))1 denotes the derivative of f taken with respect

to g(z).

We let log(x) denote the natural logarithm of x and loglo(z) denote the logarithm to

the base 10 of x. Except when there might be confusion, we use a shorthand notation for

probability density functions (PDFs). Specifically, p(x) and p(y) respectively denote the

PDFs px(x) and py(y) (evaluated at their arguments), and p(ylx) denotes pylx(ylx), the

PDF of y conditioned on the random variable x. In addition, we use the shorthand notation

f fdi to represent the Lebesgue integral of the function f with respect to the measure .

The focus in this thesis is on discrete-time, deterministic, dynamical systems, also known

as deterministic maps, and time-sampled, continuous-time, deterministic, dynamical sys-

tems, also known as deterministic flows. By a deterministic map, we mean an evolution

equation specified by a function f M - M mapping some space M to itself, which gives

rise to a time series {x(i)} satisfying the relation x(n + 1) = f(x(n)) = f(x(0)) and if

f is invertible the relation (0) = fn(x(n)). The last two equalities emphasize the fact
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that for a deterministic system, the value of the time series at any time uniquely determines

the value at all future times and at all past times as well if the system is invertible. We

refer to f as a map, the time series {x(i)} as an orbit, and x(n) as either the state of f

at time n or the orbit point at time n. To maintain an absolute time reference, we reserve

the designation initial state or initial condition for x(O), the state at time 0, even if our

interest is with x(n) for times n < 0. We also define an N-point orbit segment to be a set

of N consecutive points from an orbit, and the orbit generated by x(0) to be the unique

one-sided orbit {x(i)}=0 for noninvertible maps and the unique two-sided orbit {x(i)}°=,

for invertible maps associated with a specific point x(0) at time 0. An orbit 0 is periodic

with period n if for each x E 0, (fn)i(x) = x for all nonnegative integers i and some

positive integer n. Note that a periodic orbit has only a finite number of unique points.

We refer to points on periodic orbits as periodic points. An orbit point x is asymptotically

periodic if there exists a positive integer N such that the point f N(x) is periodic.

By a deterministic flow, we mean an evolution equation specified by a function F

M - M mapping some space M to itself, which gives rise to continuous-time waveforms

x(t), t R which satisfy the differential equation

dx
dt x'(t) = F(x(t)). (2.1)

In this thesis we are primarily interested in the maps which flows give rise to by sampling

x(t) every T seconds. That is, the resulting time series {y(i)}, where y(n)- x(nT), is an

orbit of the deterministic map fT defined as

(n+1)T
x((n + 1)T) = f T((nT)) x(nT) + F(x(t)) dt. (2.2)

Note that in contrast to arbitrary maps which may or may not be invertible, the maps

which time-sampled flows give rise to are always invertible if F is continous.

2.3 The Distinguishing Properties of Chaos

Deterministic chaotic systems, referred to simply as chaotic systems in the thesis, are nonlin-

ear, deterministic, dynamical systems, either discrete-time or continuous-time, which satisfy

a certain set of properties; but, there is no universal agreement as to what these properties
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should be. As a result, there is no single definition of deterministic chaos, but instead

several, closely related definitions. In this section we discuss topological and ergodic prop-

erties often associated with or required for deterministic chaos, discuss the relation among

these properties, and cite those properties either satisfied by or believed to be satisfied by

the systems considered in this thesis. We only discuss properties relevant to discrete-time

and time-sampled continuous-time systems. Topological properties are discussed first, since

they are conceptually easier to understand than ergodic properties.

2.3.1 Topological Properties

To discuss the topological properties of chaos, one must first specify a topology [62] on the

space M on which the system is defined. For the unit-interval maps considered in Chapters

6 and 7, M is the unit interval and the topology on M is the subspace topology for the

metric topology on R'. In other words, a basis element for the topology is simply the

intersection of an open ball in 1Z' with M. For the dissipative maps considered in Chapters

4 and 5, M and its associated topology are not as easily defined, since of interest is the

steady-state dynamics of such systems and these dynamics typically evolve onto attractors

which are not simple subsets of lRn . In the discussion that follows, we implicitly assume

that an appropriately defined metric gives rise to the underlying topology.

The three topological properties often required of a dynamical system for it to be con-

sidered chaotic are sensitive dependence on initial conditions, topological transitivity, and

a dense set of periodic orbits [20]. We briefly consider each in turn.

Most definitions of chaos require that there be sensitive dependence on initial conditions,

a formal definition of which is the following [20]:

Sensitive Dependence on Initial Conditions: A discrete-time system or map f M -

M has sensitive dependence on initial conditions if there exists a constant > 0 such that

for any x E M and any neighborhood U of x, there exists a y E U and an integer n > 0

such that f'(x) - f(y) > 6.

In other words, for there to be sensitive dependence on initial conditions, there must be

a positive constant 6, such that for any point x in M and any arbitrarily small open ball

containing x, one can always find another point y in that ball such that the distance between

corresponding points on the orbits generated by x and y eventually exceeds 6. Intuitively,
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this means that there is a local separation or divergence of the two orbits. However, the

conditions of the definition are still satisfied even if these orbits converge after time n.

Also, the definition does not require that the orbits generated by all points in a given

neighborhood of x diverge from that generated by x. In fact, for many chaotic systems

such as the dissipative systems considered in Chapter 4, one can generally find points in

each neighborhood of x for which the orbits generated by these points converge to the one

generated by x.

An unstable, linear system exhibits sensitive dependence on initial conditions, but such

a system is not considered chaotic. As such, additional topological properties are generally

required of a system for it to be considered chaotic. One such property, not shared by linear

systems unless the space M consists only of the origin, is topological transitivity, which can

be defined as follows [20]:

Topological Transitivity: A map f M - M is topologically transitive if for any pair

of open sets U, V C M, there exists a positive integer k such that fk(U) n V 0 where 0

is the empty set.

A less abstract definition, applicable when f is continuous and M is compact, is the following

[87]:

Topological Transitivity: A continuous transformation f: M -- M is topologically

transitive if there is some x E M for which the orbit generated by x, Of (x) _ fk(x)lk > 0},

is dense in M. That is, for any y E M and any open set U containing y, there exists a

positive integer k such that fk(x) E U.

Intuitively, this latter definition simply means that the orbit generated by x comes arbitrar-

ily close to every point in M. (More precisely, the above definitions are those for one-sided

topological transitivity as opposed to two-sided topological transitivity, a concept applicable

only to invertible systems).

One consequence of topological transitivity is that it prevents M from being decom-

posable. That is, if f is topologically transitive on M, then one can't divide M into two

disjoint subsets M1 and M2 , such that f(M 1 ) C M1 and f(M 2) c M2. As suggested by this

indecomposability constraint and discussed in the next section, ergodicity and topological

transitivity are closely related. In addition, if f is topologically transitive on M, one can

show that if one point has a dense orbit then almost all points in M have dense orbits [87].
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In Chapter 4 we exploit this property of chaotic systems to derive simple, yet potentially

effective state estimation algorithms.

A third topological property sometimes required of a system for it to be considered

chaotic is that there be a dense set of periodic points. Although many if not all of the

systems considered in this thesis have this property, it is not a property which we either

exploit or emphasize. We do not consider it in the context of state estimation in Chapters

4 and 5 and only briefly consider in the context of signal synthesis in Chapters 6 and 7.

2.3.2 Ergodic Properties

Whereas a discussion of the topological properties associated with chaos requires that a

topology be first defined, a discussion of the ergodic properties associated with chaos requires

that a measure space (X, 3, p) be defined, where X is a set, 3 is a a-algebra of subsets of

X, and u is a measure on /3. We only consider probability spaces in this thesis, which are

those spaces satisfying u(X) = 1. One example of a probability space used extensively

in Chapters 6 and 7 consists of X being the unit interval, P being the Borel a-algebra

(which by definition is the smallest a-algebra containing all open subintervals of the unit

interval), and being Lebesgue measure (the unique measure for which the measure of any

subinterval is simply the length of the subinterval). In contrast, for the dissipative maps

considered in Chapters 4 and 5, the underlying probability space is rather nebulous, as the

steady-state system dynamics occur on a complicated (fractal) attractor, which is singular

with respect to Lebesgue measure.

A transformation or map f: X - X (i.e., a mapping from X to itself) is measurable

if f-1(B) e 3 for every B E , where f-1 denotes the inverse image of f. A measurable

transformation is nonsingular if tu(f-l(B)) = 0 for every B /3 such that (B) = 0.

A nonsingular, measurable transformation is measure-preserving if (f-l(B)) = 1u(B) for

every B E /3. If in addition to being measure-preserving, the map has the property that

the only sets B in /3 for which f-1 (B) = B have measure zero or one, then f is ergodic

(with respect to the measure u). In other words, an ergodic map is one for which the only

invariant sets are those that contain either all the probability or none of it.

For probability spaces, one consequence of ergodicity is that ensemble averages and

infinite time averages correspond, in the sense that the following relation holds for all

functions g E L(p) (where Ll(y) denotes the set of all absolutely integrable, real-valued
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functions on (X, fi, A)):

lm1 n-i
m 1 g (fi( ))J g dI (2.3)

n---oo i=0

for almost all x. This relation suggests that ergodicity and topological transitivity are

related, and indeed this is the case. As shown in [34], if f is ergodic on the measure space

(X, /, p) and there exists a topology on X with countable basis such that every open set

has nonzero measure, then f is topologically transitive with respect to this topology. Thus,

ergodicity implies topological transitivity under these conditions. However, an ergodic

system need not have sensitive dependence on initial conditions, and thus not all ergodic

systems are chaotic.

For the problems considered in this thesis, the map f: M - M is given and we seek

a a-algebra fi on M and a probability measure It on such that f is measure-preserving

and more importantly ergodic. The measure of interest in Chapters 4 and 5 is the unique,

ergodic, so-called physical measure [21] which is defined in the following, limiting sense.

Consider the noise-driven system

x(n + 1) = f(x(n)) + ew(n). (2.4)

Under certain conditions this system has a unique invariant measure , when {w(i)} is a

white-noise sequence and is a small positive constant. The physical measure is given by

lime- O .

The value of an ergodic measure for f arises from the fact that if such a measure exists,

then by the Multiplicative Ergodic Theorem of Oseledec [21], the following limit exists for

x, p-almost everywhere (i.e., for all x except on a set of p-measure zero):

I

A= lim {D{fn(aT)T} D{f'n(x)}}in (2.5)

and the eigenvalues of A. are -almost everywhere constant. The logarithms of these

eigenvalues are known as the Lyapunov exponents of f with respect to the measure . In

addition, for p-almost all E , if Al > A2 > ..-- > Ar denote the ordered Lyapunov

exponents not repeated by multiplicity, and E denotes the subspace of Z associated with
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all eigenvalues with logarithms that are less than or equal to Ai, then the following holds:

1
lim log [IDf'(x)} u = Ai (2.6)

n--*oo n

for each unit vector u E E \ Ex+1, where II denotes the Euclidean norm and E \ E+

denotes the set formed by taking E, and removing the subspace E+1.

For a linear, time-invariant, deterministic system f with no zero-valued eigenvalues for

the matrix representation of f, the Lyapunov exponents are the logarithms of the magni-

tudes of the eigenvalues. For these systems, the multiplicative ergodic theorem implies that

the 1/(2n) roots of the singular values of ffn converge to the magnitudes of the eigenvalues

of f, and the subspace spanned by the singular vectors corresponding to the m smallest

singular values of f'~ converges to the subspace spanned by the m smallest eigenvalues of

f,for m = 1, .,Ar.

The relation given by (2.6) suggests that if u E, \ E+' is a unit vector and y = x +u

where 6 is a small positive constant, then

If/n(x) - f(y)ll I D{fn(x)} ull b exp(nAi). (2.7)

If the approximation were accurate, an implication would be that f has sensitive depen-

dence on initial conditions if the largest Lyapunov exponent A is positive. However, this

approximation, frequently cited in the literature, is often a poor approximation unless the

magnitude of 6 is infinitesimally small, and it is thus a poor approximation for practical

purposes. As such, it is unclear if the existence of a positive Lyapunov exponent implies

that there is sensitive dependence on initial conditions, although at least experimentally

this appears to be the case. In addition, since Lyapunov exponents are defined only for er-

godic systems, a system with a positive Lyapunov exponent is topologically transitive (with

respect to a reasonable topology, e.g., one for which each nonempty open set has nonzero

measure).

With most, if not all, definitions of chaos which include ergodic considerations, a funda-

mental criterion for a system to be considered chaotic is that there be a a positive Lyapunov

exponent defined on a nontrivial measure space. The dissipative systems considered in

Chapter 4 and 5 satisfy this condition as do a subset of the systems considered in Chapters

6 and 7. Implicitly or explicitly inherent in all these definitions are topological considera-
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tions as well, since the definition of Lyapunov exponents assumes the existence of a metric

and thus a metric topology on the underlying measure space. As such, whereas one can

define chaos solely in terms of topological properties as is done in [20], implicit or explicit

in any definition of chaos involving ergodic considerations are topological considerations as

well.

2.3.3 Dissipative Chaos

The next two chapters deal with dissipative diffeomorphisms that are either chaotic or

suspected of being chaotic. These are perhaps the most interesting and representative of

real-world phenomena, yet least understood of all chaotic systems. In particular, the focus

is on maps or time-sampled flows, f : S - S, where f is invertible with both f and

f -1 having continuous derivatives and where S, the state space or phase space, is a simply

connected (open) subset of RXZ for some A. A dissipative map is nonrigorously defined as

one which contracts volumes in state space, in contrast to a conservative system which is

one that preserves state-space volumes [21].

We briefly discuss dissipative, chaotic maps and their properties in this section. Whereas

these maps and their properties remain poorly understand and a rigorous discussion of these

properties requires use of mathematical concepts beyond the scope of this thesis, only a

brief, nonrigorous discussion is provided here with the reader cautioned that some of the

information, much of which was extracted from [21, 33], remains the subject of debate

among theoreticians.

One interesting property of dissipative, chaotic systems is that although they are de-

terministic and contract volumes, their dynamics are nontrivial. In particular, they often

give rise to complicated attractors known as strange attractors. Intuitively, an attractor

is a bounded region of phase space, where the points on the orbits generated by initial

conditions in some attracting set accumulate as n grows large, where an attracting set can

be formally defined as follows:

Attracting Set: An attracting set A with fundamental neighborhood U is a compact set

(in phase space) which is invariant, i.e., f(A) = A and for which every open set V containing

A satisfies f(U) C V for n large enough.

In other words, an attracting set A is one for which orbits generated by points inside A
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remain in A for all time, and for which orbits generated by points in a certain open set

containing A either eventually enter and remain in A or converge to A.

A slightly more rigorous definition of an attractor is an attracting set which contains

a dense orbit, thereby implying that the system f which gives rise to the attractor is

topologically transitive when restricted to this attracting set [33, p. 36]. A strange attractor

can be nonrigorously defined as an attractor for which there is sensitive dependence on initial

conditions, with a more rigorous definition being an attractor which contains a transversal

homoclinic orbit [33]. An explanation of a transversal homoclinic orbit is beyond the scope of

this thesis; its relevance to this discussion is that its existence leads to orbits with nontrivial

behavior, with typical orbits often giving rise to complicated, fractal patterns.

The relevance of attractors and strange attractors to this thesis is threefold. First, given

an attractor, one can find an open set in IZ for which the orbit of almost every point in this

set converges to the attractor. Second, if there is sensitive dependence on initial conditions

(or a transversal homoclinic orbit), the dynamics of typical orbits generated by points on

or near the attractor are nontrivial. Third, the steady-state behavior of orbits generated

by different points on or near the attractor is similar.

Often a strange attractor has zero volume in the original state space and so-called fractal

dimension [21]. A discussion of dimensions of strange attractors is beyond the scope of this

thesis. However, as shown in Chapter 4, because of the similar steady-state behavior of

orbits generated by points on the attractor and because these orbits occupy a small region

of state space, one can derive simple, potentially effective state estimation algorithms for

these systems, which do not require full knowledge of the underlying system dynamics.

As noted earlier, a common ergodic criterion for chaos is that there be a positive Lya-

punov exponent. However, dissipativeness of a system f generally requires that the Jacobian

of f or f for some integer n have absolute value less than one. As a (nonobvious) con-

sequence of the multiplicative ergodic theorem and these constraints, a dissipative, chaotic

system must have at least one negative Lyapunov exponent, and the sum of the Lyapunov

exponents must be negative. Therefore, the state vector dimension must be at least two

for a dissipative, chaotic map. Similarly, one can show that a chaotic flow always has a

zero-valued Lyapunov exponent which corresponds to motion in the flow direction [21].

Therefore, for a chaotic flow or a map arising from time-sampling the flow, the state vector

dimension must be at least three. These conditions on the dimensions of the state vectors
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for dissipative, chaotic maps and flows makes analysis of and algorithm development (e.g.,

state estimation algorithms) for these systems difficult, since one cannot simply develop

algorithms for one-dimensional systems and then adapt the results to higher dimensions.

One practical problem that arises in computer simulation of an invertible, dissipative,

chaotic map is that the inverse system is generally unstable and the orbits generated by

most points rapidly tend to infinity. This follows from the fact that since the system is

dissipative and thus contracts volumes, the inverse system expands volumes. Because of

this, it is difficult to obtain accurate backward orbit segments for points even for those points

near the attractor, where a backward orbit segment for a point is an orbit segment for which

the point is the final condition.

2.4 Examples of Dissipative, Chaotic Maps and Flows

A number of dissipative maps and flows, which either satisfy or are believed to satisfy

fundamental topological and ergodic properties associated with chaos, have been discovered

and reported over the last three decades, perhaps the most noteworthy having been Lorenz's

seminal discovery of the chaotic flow that bears his name. In this section we discuss the three

dissipative systems, two maps and one flow, used for the experimental results presented in

Chapters 4 and 5. The three systems are representative of dissipative, chaotic systems, in

general, and are perhaps the systems most frequently used in the study of dissipative chaos.

The two dissipative maps used in this thesis are the Henon and Ikeda maps. As with most

dissipative systems suspected of being chaotic, the properties of these maps are only partially

understood. Both maps are dissipative diffeomorphisms with state vector dimension of two,

the minimum dimension for a dissipative, chaotic map. The state or system equations

x(n + 1) = f(x(n)) for the two maps, expressed componentwise are the following:

Henon Map

xl(n + 1) = 1-1.4x2(n) + x2(n) (2.8)

x 2(n + 1) = .3xl(n) (2.9)

Ikeda Map

xi (n + 1) = 1 + .9 [xl(n) cos a(n)- 2 (n) sin a(n)] (2.10)
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X2(n + 1) = .9 [xl(n) sin a(n) + x2(n) cos o(n)] (2.11)

a(n) = 4- 1 6+()+2(n) (2.12)
1 + x2(n) + X2 (n)'

where x(n) [xl(n), X2 (n)]T. Other choices for the constants in the above equations have

also been used; but, the properties of the resulting maps differ at least slightly from those of

the above maps. If the state vector x(n) is treated as a scalar, complex quantity with real

and imaginary parts xr(n) and xi(n) respectively, so that x(n) = xr(n) + j xi(n) (where

j2 = -1), then the Ikeda map can be succinctly expressed as follows:

x(n + 1) = 1+ .9 x(n) exp {j [4-1 + I(n)6 2] } (2.13)

where IIx(n)JI = x2(n) + x2(n).

Figures 2-1 and 2-2 depict a typical orbit segment for each of the two maps, with a

point near the attractor used as the initial condition for each segment. Note that the time

ordering of the orbit points in each orbit segment is not discernible from the figures. The

n4 .
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Figure 2-1: Orbit Segment for the Henon Map

orbit segment for each map traces out the complicated attractor associated with that map.

Because of the ergodic nature of the maps, orbit segments generated by most other initial

conditions near the attractor trace out the same patterns.

The chaotic flow used in this thesis is the Lorenz flow, perhaps the most widely inves-

tigated of all chaotic systems. The state dimension for this flow is three, the minimum
da(t)dimension for a dissipative, chaotic flow. The state or system equations d±S - F(x(t))dt -
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Figure 2-2: Orbit Segment for the Ikeda Map

for the flow, expressed componentwise, are given by

dxl(t)

dt
dx 2(t)

dt
dx3 (t)

dt

= 10[x2 (t)- X 1l(t)] (2.14)

= 28 (t)- X2 (t)- X1(t) 3 (t)

8
= - X3 (t) + X(t) X2 (t).3

(2.15)

(2.16)

where x(t) = [(t),x 2 (t),x 3 (t)]T. Figure 2-3 depicts a typical trajectory projected onto

the (xl, x3) plane for the Lorenz flow. The trajectory shown in the figure and the Lorenz

0

Figure 2-3: Projection of Lorenz Trajectory onto (x 1, X3 ) Plane

trajectories used throughout the thesis were obtained by numerically integrating the state
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equation using the fourth-order Runge Kutta method with a step size of .005.
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Chapter 3

State Estimation Fundamentals

3.1 Introduction

In this chapter we establish a foundation for the estimation problems, algorithms, and per-

formance bounds presented in Chapters 4 and 5. The chapter begins by introducing the

state estimation scenario of interest in this thesis and then briefly reviews the two probabilis-

tic estimation techniques-Maximum-Likelihood (ML) and Minimum-Mean-Squared-Error

(MMSE)-which underlie the state estimation algorithms discussed in Chapter 4. The chap-

ter continues by briefly discussing the Kalman filter, the optimal, MMSE state estimator

for linear, state estimation problems. Next, the chapter provides a historical summary of

nonlinear, state estimation research in general and concludes with a more focused summary

of state estimation research involving chaotic systems.

3.2 State Estimation Scenario

Of the three general, nonlinear, state estimation scenarios traditionally considered in the

estimation and control literature, two are relevant to this thesis. The first, referred to as the

DTS/DTO scenario in the thesis, consists of discrete-time state and observation equations

with commonly used but not the most general forms of the equations given by the following:

Discrete-Time System, Discrete-Time Observation (DTS/DTO)

,(n + 1) = fn(X(n)) + gn(x(n)) w(n) (3.1)

y(n) = h.(x(n)) + v(n). (3.2)
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In the first equation, the state equation, (n) is the N-dimensional state vector we seek to

estimate; f and gn are nonlinear, possibly time-varying functions of the state which are

usually required to satisfy certain smoothness constraints; and w(n), the driving noise, is

an N-dimensional, zero-mean, Gaussian, white-noise process. In the second equation, the

observation equation, y(n) is the P-dimensional observation vector used for estimating x(n);

hn is a nonlinear, possibly time-varying function of the state which is usually required to

satisfy certain smoothness constraints; and v(n), the observation noise, is a P-dimensional,

zero-mean, Gaussian, white-noise process. Generally, w(n) and v(n) are assumed to be

uncorrelated with each other and with the initial condition xr(0).

The second scenario, referred to as the CTS/DTO scenario in the thesis, consists of a

continuous-time state equation and a discrete-time observation equation with commonly

used, but not the most general, forms of the equations given by the following:

Continuous-Time System, Discrete-Time Observation (CTS/DTO)

dx(t) = Ft(x(t))dt + Gt(x(t))dW(t) (3.3)

y(n) = hn(x(nT)) + v(n). (3.4)

For this scenario, the state equation is a stochastic differential equation [42, 54] in which x(t)

is the Nf-dimensional state vector we seek to estimate; Ft and Gt are nonlinear, possibly

time-varying functions of the state which are required to satisfy a set of both smoothness and

growth-rate constraints; and W(t) is an N-dimensional standard Brownian motion. The

observation equation for this scenario has the same interpretation as for the DTS/DTO

scenario.

Whereas the focus of this thesis is on chaos, only restricted forms of the DTS/DTO

and CTS/DTO scenarios are of interest. In particular, we require the functions fn, Ft, g9,

Gt and hn in (3.1-3.4) to be time-invariant and thus expressible as f, F, g, G and h. In

addition, we require f in (3.1) to be a chaotic map and F in (3.3) to be a chaotic flow;

and in Chapters 4 and 5 we further require that f and F be dissipative diffeomorphisms.

Finally, whereas our interest is in deterministic systems and the properties exhibited by

a class of these systems, we consider the restricted form of the state equations in which

driving noise is absent. With these restrictions, the equations for the DTS/DTO model
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reduce to the following:

x(n + 1) = f(x(n)) (3.5)

y(n) = h(x(n)) + v(n) (3.6)

and the equations for the CTS/DTO scenario reduce to the following:

dx(t)
dt = F(x(t)) (3.7)di
y(n) = h(x(nT)) + v(n) (3.8)

where f is a dissipative, chaotic diffeomorphism and F is a dissipative, chaotic flow.

The omission of driving noise in (3.5) and (3.7) renders these state equations fundamen-

tally different from the more general equations (3.1) and (3.3) respectively, from which they

came. In particular, the stochastic nature of the processes x(n) and 2(t) which (3.1) and

(3.3) respectively give rise to is due both to uncertainty in the initial condition x(0) and to

the driving noise terms w(n) and W(t). In contrast, the stochastic nature of the processes

which (3.5) and (3.7) give rise to is due solely to uncertainty in the initial condition. That

is, if the initial condition is known with certainty, the state at all future times, and at

all past times if the system is invertible, is known with certainty as well regardless of the

observation noise v(n). Consequently, the deterministic problem considered in this thesis is

a simpler problem than the one involving a noise-driven state equation and facilitates the

derivation of potentially effective, albeit heuristic, state estimation algorithms. In addition,

the derivation and interpretation of performance bounds for the deterministic problem, as

is done in Chapter 5, is a far simpler task than the derivation and interpretation of bounds

for the problem involving a noise-driven state equation.

Nonetheless, state estimation involving a deterministic, chaotic system has many sim-

ilarities to state estimation involving a noise-driven system, as one deals with nontrivial,

invariant measures and positive entropy rates for both systems. In addition, because chaotic

systems exhibit sensitive dependence on initial conditions and because round-off error is in-

evitable in computer simulations involving chaos, a state equation with a small driving

noise term is sometimes a more representative model of the underlying system dynamics

when computer-generated chaos is being dealt with. Although we do not adopt such a
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model in this thesis, in the next chapter we address the problems that arise from computer

round-off error when designing practical, state estimation algorithms and offer simple, albeit

suboptimal remedies for these problems.

As suggested in Chapter 2, we can express the restricted CTS/DTO scenario given

by (3.7) and (3.8) as a DTS/DTO scenario. In particular, since it is deterministic, the

time-sampled state equation (3.7) is given by the following discrete-time state equation:

z(n+ 1) = fT(z(n)) (3.9)

where z(n) x(nT) (3.10)
r(n+l)T

fT(z(n)) z(n) + F(x(t)) dt. (3.11)
JuT

However, as mentioned in Chapter 2, chaotic maps arising from time-sampled chaotic flows

have certain properties not shared by all chaotic maps. In particular, since a differentiable

flow is always invertible, the same holds for any map that arises by time-sampling the flow.

Also, as discussed earlier, there is a minimum state vector dimension of three for a chaotic

flow, and the flow must have at least one zero-valued Lyapunov exponent. The same applies

to maps that arise by time-sampling the flow.

3.3 Maximum-Likelihood (ML) and Minimum-Mean-Squared-

Error (MMSE) State Estimation

The focus in this thesis is on estimating the state x(no) at either a fixed time no or a sequen-

tial set of times for the restricted DTS/DTO and CTS/DTO problem scenarios introduced

in the previous section, using a given set of observations Y = {y(i)} which generally will

be sequential in time and thus expressible as Y(M, N) -{y(i)}i=M where M and N are

integers with M < N. Both filtering and smoothing are considered, where filtering in-

volves estimating x(no), the state at time no, using observations y(i) only for times i < no,

whereas smoothing involves estimating x(no) using observations for times i > no as well.

Two probabilistic, state estimation approaches that have proven useful in many ap-

plications [52, 72, 86] are emphasized-Maximum-Likelihood (ML) and Minimum-Mean-

Squared-Error (MMSE). Recall that with ML parameter estimation, the unknown param-

eter one seeks to estimate is treated as a nonrandom quantity and the ML estimate is

32



that value of the parameter which maximizes an appropriately defined likelihood function

or equivalently the logarithm of the likelihood function. For the problem of interest here,

the unknown, nonrandom parameter is x(no), a set of observations Y is given, and the ML

estimate of x(no), hereafter denoted &ML(no), is that value of x(no) which maximizes the

likelihood function p(Y; x(no)), where p(Y; x(no)) denotes the probability density function

(PDF) of the observation set Y for a given (no), with an underlying assumption being

that the PDF exists. For the restricted DTS/DTO scenario, it follows from (3.6) and the

assumptions on the observation noise sequence {v(n)} that logp(y(i); x(i)) is given by

logp(y(i); z(i)) = log(2 r IRI) -2
1

-I [y(i)- h(x(i))]T R1 [y(i)- h(x(i))] (3.12)2~~~~~~~~~~~~~~(.2

where P is the dimension of the observation vector and R is the covariance matrix of v(n).

In light of the determinism of the state equation (3.5) and the assumed invertibility of f,

we also have

logp(y(i); x(no)) = log(2 r RI) 2

-1 [y(i)- h(fi-n°(x(no)))]T R - 1 [y(i)- h(fi-'o°(x(no)))] (3.13)
2

Using this equality and exploiting the whiteness of the observation noise leads to the fol-

lowing expression for the log-likelihood function logp(Y(M,N);x(no)) for the restricted

DTS/DTO scenario:

-(N-M+p
logp(Y(M, N); x(no)) = log(2 7r IRI) 2

I N

-1 [y(i) - h(fino(x(no)))] R [y(i) - h(fin°((no)))]. (3.14)2 _i=M

The log-likelihood function for the CTS/DTO scenario has a similar form.

Also recall that with MMSE estimation, in contrast to ML estimation, the unknown

parameter one seeks to estimate is treated as a random quantity. For the problem of

interest here with x(no) the unknown parameter to be estimated and Y a given observation
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set, the mean-squared estimation error is given by

J f li(no) - x(no)112 p(x(no), Y) dx(no) dY (3.15)

where I11 denotes the Euclidean norm, ,i(no) denotes an arbitrary estimator for x(no),

p(x(no),Y) denotes the joint PDF of the state vector x(no) and observation set Y, and

where the integration is over the state vector (no) and the entire observation set Y. A

fundamental result in estimation theory is that the MMSE estimator results by choosing

the conditional mean E(x(no)IY) as the estimate of x(no) for each observation set Y, where

E(x(no)lY) is given by

E(x(no)lY) = x(no)p(z(no)lY) dx(no), (3.16)

and where p(x(no)IY), the a posteriori state density, is the PDF of x(no) conditioned on

the observation set Y. Use of Bayes rule allows E(x(no)IY) also to be expressed as

E(x(no)lY) f x(no)p(Yl x(no)) p(x(no)) dx(no) (3.17)
f p(Ylx(no))p(x(no)) dx(no) '

where p(x(no)) denotes the unconditional or a priori PDF of x(no) and p(Ylz(no)) denotes

the PDF of Y conditioned on x(no). Note that p(Ylx(no)) has the same form as the PDF

p(Y; x(no)) defined earlier, with the difference between the two PDFs being that x(no) is

a random vector in the former and a nonrandom vector in the latter.

An inherent assumption in (3.15) is the existence of the joint PDF p(x(no),Y) with

respect to the product measure dx(no) dY; an inherent assumption in (3.16) is the existence

of the conditional PDF p(x(no)IY) with respect to the measure dx(no) (i.e., Lebesgue

measure on IZx where A" is the dimension of x(no)); and an inherent assumption in (3.17)

is the existence of the PDF p(x(no)) with respect to the measure dx(no) and the conditional

PDF p(YIx(no)) with respect to the measure dY (i.e., Lebesgue measure on R(N - M + 1)P

where N - M + 1 is the number of observations and P is the dimension of each observation

vector). For dissipative, chaotic systems, these assumptions are not necessarily valid. For

example, if the only a priori knowledge about x(no) is that it lies on the attractor, then an

appropriate a priori distribution for x(no) is given by the physical measure on the attractor.

Intuitively, this a priori distribution corresponds to (no) having the same likelihood of
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being at each point on an (infinitely long) orbit on the attractor. However, as mentioned

earlier, for dissipative, chaotic systems the physical measure is often singular with respect

to Lebesgue measure on R and thus has no corresponding PDF with respect to Lebesgue

measure. Consequently, the PDFs p(x(no)), p(x(no),Y), and p(x(no)IY) are generally not

defined for dissipative systems if the a priori distribution of x(no) is given by the physical

measure on the attractor. In contrast, the likelihood function p(Ylx(no)) is well-defined in

these situations because of our assumptions on the observation noise.

When the joint density p(x(no), Y) is not defined, we can express the MSE with respect

to the joint probability measure on x(no) and Y, or alternatively as follows:

J J I (no) - x(no)II2 p(YIx(no)) dL(no) dY (3.18)

where Pz(no) denotes the a priori distribution of x(no), and the integration over x(no) is

defined as a Lebesgue integral. Similarly, we can express the conditional mean as

E(x(no)lY) f (no)p(YIx(no)) dp.(no) (3.19)

As we show in Chapter 4, although the above definition for the conditional mean is abstract

and not computable in practice, it can be cast in a revealing form that gives rise to a

converging sequence of simple, approximate MMSE state estimators.

3.4 Linear State Estimation and the Kalman Filter

The Kalman filter is a computationally efficient, recursive MMSE state estimator for both

continuous-time and discrete-time, linear, state-space models with certain restrictions on

the driving noise, observation noise, and distribution of the initial state [5, 30, 38, 57]. Of

relevance to this thesis is the form of the Kalman filter applicable to the following, linear,

DTS/DTO scenario:

a(n + 1) = Fna(n) + Gnw(n) (3.20)

y(n) = Hnx:(n) + v(n), (3.21)
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where Fn, Gn, and H,, are matrices, w(n) (0, Q,), v(n) , (0, Rn), x(0) (mo, Po)

(where (m, P) denotes the normal distribution with mean vector m and covariance ma-

trix P), and where the driving noise w(n) and observation noise v(n) are independent of

each other and the initial state.

The Kalman filter exploits the fact that for linear state estimation, the a posteri-

ori density p(x(n)lY(O,n)) is Gaussian and that the mean of the density is the MMSE

state estimate. The Kalman filter uses a two-step procedure for recursively computing two

quantities-the state estimate i(n) and the error covariance matrix P(n) given by

P(n) E [(x(n) - i(n))(x(n) - x(n))T )jY(O, n)]- (3.22)

In the first step, the prediction step, the state estimate and covariance matrix for time

n + 1 are computed from the final state estimate and covariance matrix for time n. In

the second step, the measurement (or observation) update step, the quantities calculated in

the first step are updated using the new observation y(n + 1). As is the usual convention,

we let ci(n + lln) and P(n + lln) denote the state estimate and error covariance matrix,

respectively, computed in the prediction step, with the notation chosen to emphasize the fact

that these quantities are for time n + 1 based on observations through time n. Similarly,

we let x(n + n + 1) and P(n + 11n + 1) denote the updated estimates calculated in

the measurement update step, with the notation chosen to emphasize the fact that these

quantities are for time n + 1 based on observations through time n + 1. These definitions

are used in Table 3.1, which provides the equations for the two-step estimation procedure

constituting the DTS/DTO Kalman filter.

For many applications, there is an improvement in state estimation performance over

filtering if smoothing is used. As shown in the next chapter, this is especially true with

chaotic systems. Historically, research has focused on three classes of smoothing problems.

The first, fixed-point smoothing, involves estimating the state vector x(n) based on the

observation set Y(O, m) = {y(i)}%=o for a fixed time n and increasing m, where m > n.

The second, fixed-lag smoothing, involves estimating the state vector x(n - L) based on the

observation set Y(O, n) = {(i)}L=0 for each time n and a fixed lag L. The third, fixed-

interval smoothing, involves estimating the state vector x(n) based on the observation set

Y(O, N) = {y(i)}N=o0 for all times n satisfying 0 < n < N.
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Prediction Step

x(n + 11n) = Fn,(nln) (3.23)
P(n + lln) = FnP(nln)FT + GnQG T (3.24)

Measurement Update Step

i(n+ ln + 1) = ~(n + ln) + K(n + l)[y(n + 1)- Hn+li(n + ln)] (3.25)

K(n + 1) = P(n + 1In) H+ 1 [Hn+l P(n + 1In) HT+1 + R(n + 1)] (3.26)

P(n + in + 1) = [IV- K(n + l)Hn+l]P(n + lln) (3.27)

Initialization
x(0 - 1) = mO (3.28)

P(0 - 1) = P0 . (3.29)

Table 3.1: The Kalman Filter Equations for the DTS/DTO Model

In an earlier report [76], we considered fixed-interval smoothing in the context of chaos.

In this thesis, we consider fixed-lag smoothing which we have found to offer comparable if not

superior performance results with chaotic systems. There are various methods, all equiva-

lent, for recursively computing the fixed lag estimate i(n - LIn). The most straightforward

[5] involves first forming an extended state vector X(n)- [(n)T,x(n- )T, --. ,x(n-

L)T]T, applying the Kalman filter equations to the system obtained with this state vector,

and noting that various submatrices of the error covariance matrix for the extended system

can be updated separately with only some of these needed for recursively estimating X(n).

With this approach, one not only obtains the desired, fixed-lag estimate i(n - LIn), but

the estimates (n- iln) for i = 1,2,- -L - 1. The resulting fixed-lag smoothing equations

for the estimates Sc(n- in) for i = 1,2,--.-L are provided in Table 3.2. These equations

supplement the Kalman filtering equations provided in Table 3.1

3.5 Nonlinear State Estimation

There has been much research in the past on nonlinear state estimation, most notably

a flurry of activity in the early 1970's involving both discrete-time and continuous-time

systems and a second wave of activity focusing on continuous-time systems in the early

1980's. Until recently, nearly all the research has dealt with noise-driven state equations
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Definitions

= (n- in) i = 1,-- -,L
- P(nin) (from Kalman filter equations)
= P(nln) (from Kalman filter equations)

Pi(n + 11n)

Pi,i(n + lln)

Pi,o(n + lln)

xi~(n + ln + 1)

Ki(n + 1)

Pi,i(n + n + 1)

Pi,o(n + ljn + 1)

i(Ol - 1)
Pi,i(OI - 1)

P i ,o(0O - 1)

Prediction Step

= ii-l(nln)

= Pi-l,i-l(nn)

= pi-lo(nln)FT

Measurement Update Step

= -i(nln) + Ki(n + 1)[y(n + 1) - Hn+lj(n + n)]

= Pi,o(n + n) HT+1 [Hn+l Po,o(n + lln) HT+l + R(n +

xHn+l PTo(n + lln)
= Pi,i(n + 11n)-Ki(n + 1)

= Pi,o(n + ln)- Ki(n + 1)

Initialization

0

[o]

[0]

Table 3.2: The Fixed-Lag Smoothing Equations for the DTS/DTO Model
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with nonchaotic systems. Also, the emphasis has been on the classical, recursive, filtering

problem in which all parameters in the system model are known, and the objective is to

estimate the state at time n using only the estimate at time n - 1 and the observation

at time n. With few exceptions, the focus has been on recursive computation of the a

posteriori PDF p(x(no)JY) used for MMSE state estimation.

The fundamental problem encountered with most nonlinear systems is that this density

requires an infinite number of parameters (e.g., moments) for its specification at each time

instant. As a result, optimal, recursive, MMSE state estimation with these systems entails

propagating an infinite set of parameters through time. Although it is straightforward to

derive a recursive equation, known as the forward-Kolmogorov or Wiener-Hopf equation,

for updating the a posteriori PDF, simplifying approximations are needed for implementing

the equation in practical applications. Consequently, the challenge for nonlinear, state

estimation researchers has been and remains the development of practical algorithms for

approximating and recursively updating the a posteriori PDF, ideally in some optimal sense.

The situation of an infinite dimensional a posteriori PDF, encountered in many non-

linear, state estimation problems, contrasts markedly with that for linear, state estimation

problems. As discussed in the previous section, under certain conditions the a posteriori

PDF for linear, state estimation problems is Gaussian and thus completely characterized

by two finite sets of parameters-a mean vector and a covariance matrix-with the mean

vector being the MMSE state estimate.

Historically, two broad classes of techniques for nonlinear state estimation have been pur-

sued: local and global. Local techniques share the property of using a single, time-varying

reference point to calculate quantities, e.g., derivatives, moments, or series coefficients at

each time instant. These techniques generally work best when the a posteriori PDF is

nearly Gaussian or at least unimodal. Included among these techniques are those which

approximate and propagate a finite set of low-order moments of the a posteriori PDF, as

well as series expansion techniques in which the a posteriori PDF is represented by a series

expansion and a finite number of coefficients propagated through time [57, 83, 84].

The most popular local technique and indeed the most popular of all techniques for

nonlinear state estimation has been the extended Kalman filter (EKF). Its popularity is

primarily due to its simplicity, ease of implementation, and surprisingly good performance

with many nonlinear systems. In the next chapter, we show that the EKF can be incorpo-
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rated in a state estimation algorithm for chaotic systems, which is potentially effective even

when the system dynamics are unknown.

The unifying element of global techniques is the numerical evaluation of the a posteriori

PDF with the use of a possibly time-varying, finite grid of points or regions at which

calculations and approximations are made [83, 84]. Many global techniques emerged during

the early 1970's. Among the most popular was the Gaussian sum approach of Allspach

and Sorenson [4], which essentially consisted of a combination of extended Kalman filters

operating in parallel. In addition, Bucy and Senne [15] developed and refined a point-

mass approach which entailed approximating the a posteriori density with a finite set of

impulses or point masses defined on a time-varying, finite grid. Other global techniques

involved the use of Hermite expansions and Gauss-Hermite integration [36]. The first use

of dynamic programming for nonlinear state estimation, an intrinsic element of hidden

Markov modeling approaches, occurred in 1966 with Larson's modal trajectory approach

[51]. The use of approximation techniques for nonlinear state estimation with continuous-

time systems has been a more recent development. Kushner [47, 48] pioneered notable work

on the continuous-time problem with his use of interpolated, finite-state Markov chains for

approximating the continuous-time Wiener-Hopf equation, a nonlinear, partial differential

equation, to propagate the a posteriori PDF through time.

3.6 State Estimation and Chaos

Several state estimation algorithms for chaotic systems have emerged in the past few years,

primarily from the physics community. All of the algorithms are heuristic, with most

exploiting known topological or ergodic properties of chaotic systems. One limitation of

most of these algorithms, particularly those which exploit topological properties, is that

they are effective only with large input signal-to-noise ratios (SNRs), typically those well

in excess of 20 dB. In this section, we highlight those techniques of particular relevance to

this thesis because of either their probabilistic or signal processing foundations.

In contrast to most other research on nonlinear state estimation, the research involving

chaotic systems has focused on deterministic state equations, i.e., the absence of driving

noise, fixed-interval smoothing, and scenarios involving unknown system dynamics. In

particular, three, general problem scenarios have been investigated:
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1. State estimation when the system dynamics are known, i.e., the chaotic map f in

(3.5) or chaotic flow F in (3.7) is known.

2. State estimation when the system dynamics are unknown but a clean reference orbit

is available. That is, in addition to an observation set Y = {y(i)}, one is given an

orbit segment, to which no noise has been added, which has been generated by the

same chaotic system but with a different initial condition.

3. State estimation when the system dynamics are unknown and only the observation

set is available for performing state estimation.

In addition, much of the state estimation work involving the second and third sce-

narios above has dealt with the use of embedding techniques [21] for reconstructing the

system dynamics. With the most popular of these techniques, one assumes that only

a single component xi(t) of the N-dimensional state vector x(t) is available. With the

scalar observations xi(t), one creates vectors z(t) which consist of time delayed samples

of {xi(t)}. Specifically, one chooses constants T1,T 2, ...- ,TM-, and defines the vectors

z(t) - [xi(t),xi(t - T 1 ),.., xi(t- TM1l)]T. Usually, the Ti are chosen to be equally

spaced, so that Ti = i for some constant r. If r and M are properly chosen, the attractor

of the new system implicitly determined by z(t) will be an embedding of the original at-

tractor. Equivalently, if g denotes the system implicitly defined by z(t), then there will be

a diffeomorphism h such that g = h o f.

Although embedding techniques have received much attention in recent years, they are

still poorly understood. More importantly, common rules of thumb for choosing delays and

dimensions of the new state vectors may not hold in the context of state estimation. The

problem of state estimation with chaotic systems involving the original state vectors is a

challenging problem unto itself, and some of the fundamental, poorly understood aspects

of this problem may be obscured if embedding considerations are incorporated into the

problem. In light of this, although the state estimation algorithms introduced in the next

chapter are applicable to systems derived by embedding, we do not deal with embedded

systems in this thesis.

One of the earliest reported state estimation algorithms for chaos is an iterative, approx-

imate ML approach [22]. As noted in Section 3.3, if Y = Y(M, N) = {Y((i)}NM, each noise

term v(n) has zero mean and covariance matrix R, and f is invertible, the log-likelihood
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function, logp(Y(M, N); x(nO)) for the restricted DTS/DTO scenario is given by

logp(Y(M,N);x(no)) = C(M,N)

1 N f -n1 Z [y(i) - h(fino (x(no)))] R'1 [y(i) - h(fno(x(no)))] , (3.43)
2 _M

where C(M, N) is a normalizing constant. When h is the identity operator and R = a2 IX,

where o is a real-valued constant and Ig is the (f x Ar)-identity matrix, this reduces to

log p(Y(M, N); x(no)) = C(M, N) - ' E |1y(i) - f i-n(x(no))|. (3.44)
2ai=M

In [22], each difference y(i) - fi-no (x(no)) in the above expression is approximated by the

first term in a Taylor series expansion

y(i)- fi-'o(x(no)) = fi-nO(f- (i- nO)(y(i)))- fi-no(x(no)) (3.45)

D{fi-no(x(no))}(f-(i - ()(y(i))- (no)) (3.46)

where D{fi-n°(x(no))} is the derviative of fi-no evaluated at x(no). With these approx-

imations logp(Y(M,N); x(no)) reduces to

logp(Y(M,N); x(no)) = C(M,N)
N

- 2E II[D{fi-no(x(no))}(f-(i-no)(y(i))- x(no))112 (3.47)
i=M

which is linear in the unknown state x(no) if D{fi-n°(x(no))} is independent of x(no),

which in general it is not. By assuming D{fi-'°(x(no))} is in fact independent of x(no),

one can obtain a closed-form expression for the ML estimate of x(no) by differentiating

(3.47) and solving for x(no). Doing so yields

x(nO) = D T {fi-no (x (no))}D} i-no (x(no))]
i=M

N

x E [DT{fi-no (x(no))ID{fi-no (x(no))}f-(i-nO)(y())] (3.48)
i=M

where DT{fi-no (x(no))} denotes the transpose of D{fino°(x:(no))}. The iterative ap-
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proach used in [22] consists of using the current estimate of x(no) to calculate the deriva-

tive matrices Dfino(x(no))} and then evaluating the above expression to obtain the next

estimate of x:(no). As suggested in [22], this approximate ML state estimation approach

is only effective if the approximated differences are small, or equivalently if the SNR is

large. In Chapter 7, we introduce an estimator for a special class of piecewise linear maps

for which an expression similar to (3.48) provides the exact ML state estimate. For this

estimator, the appropriate derivatives D{fi-o°(x(no))} are separately determined with a

technique that uses hidden Markov modeling and Viterbi decoding.

Because of the form of the log-likelihood function given by (3.43), one can treat this

function as an energy function and pose the problem of ML state estimation as a constrained

optimization problem. Note that this form arises because of the additive, white, Gaussian

assumption on the observation noise and the assumption of zero driving noise. In particular,

(3.43) can be expressed

log p(Y(M, N); x(nO)) = C(M,N)

N N

-~ Z [(i) - h(z(i))]T R - 1 [y(i) - h(z(i))] + Z al [z(i) - f(z(i - 1))](3.49)
i=M i=M+l

where the {z(i)} are the unknowns and the {ai} are Lagrange multipliers. For many chaotic

maps, the chaotic nature of the dynamics precludes straightforward minimization of this

cost function using standard optimization techniques.

A cost function similar in appearance to the one above, but fundamentally different

and easier to minimize, is considered by Kostelich and Yorke in [45]. In the Kostelich

and Yorke cost function, the {al} are treated as known, weighting constants rather than

Lagrange multipliers. Treating the ai in this way transforms the problem from a constrained

minimization problem to a regularization problem with some similarity to those that arise

in many image understanding applications [8]. In [45], an iterative, least squares approach

is used to minimize the resulting cost function and simultaneously estimate the system

dynamics.

An alternative approach to fixed-interval smoothing with chaotic maps is considered

in [23, 35]. The technique discussed in [35] is applicable to two-dimensional, invertible

chaotic maps with known system dynamics. The technique in [23] is similar but does not

require knowledge of the system dynamics and instead uses a locally linear estimate of the
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dynamics. The purported motivation of both approaches is the Shadowing Lemma [10, 11],

a lemma which applies to a certain class of well-understood, nondissipative, chaotic systems

known as Anosov diffeomorphisms.

The state estimation algorithms presented in [23, 35] are iterative algorithms in which

one starts with a set of noise-corrupted observations Y(0, N) for the restricted DTS/DTO

scenario, with the observation function h in (3.6) given by the identity operator. For each

iteration, one first estimates the stable and unstable manifolds [21] of the undriven system

associated with the state x(no) at each time no using the current state estimates. Next,

two stable autoregressive processes, one running forward in time along the estimated stable

manifold, the other running backward in time along the estimated unstable manifold, are

used to propagate correction terms, with a pair of correction terms associated with the

state at each time no. The pair of correction terms associated with the state at a given time

are then added to the current estimate of the state yielding a new estimate. The overall

objective of updating the states estimates is not to reduce the estimation error but to ensure

that the new estimates more closely obey the system dynamics than the previous estimates.

That is, if f denotes the system, new(no) the new state estimate at time no, and iCold(no)

the previous estimate, then the correction terms for time no are chosen with the goal that

Inew(no0) - f(new(no - 1))|| be less than 1:iold(no) - f(oid(no- 1))1. Although not

discussed in [23, 35], an inherent assumption in the algorithms is that the initial noise term

v(0) has no component in the direction of the stable manifold of x(0) and the final noise

term v(N) has no component in the direction of the unstable manifold of X(N).

Because the local stable and unstable manifolds of a chaotic orbit and the expansion rates

associated with these manifolds are only applicable to infinitesimally small perturbations,

the algorithms are potentially useful only when the initial SNR is large. In fact, experimental

results suggest that the algorithms perform poorly below 20 dB, and even with large SNRs

the algorithms often behave erratically.

As is shown in Chapters 4 and 5, the existence of both positive and negative Lyapunov

exponents for dissipative, chaotic diffeomorphisms has a profound impact on achievable state

estimator performance with these systems. In addition, the existence of these exponents

and the associated stable and unstable manifolds is necessarily a fundamental consideration

when developing practical, effective, probabilistic state estimators for dissipative chaotic

systems.
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Hidden Markov modeling approaches to state estimation with chaotic maps are presented

in [56, 64]. With both approaches, the dynamics of the underlying, deterministic, chaotic

system are approximated with a finite state hidden Markov model [74, 75] with the output of

each state a constant vector in [56] and a Gaussian random vector in [64]. Neither approach

requires knowledge of the actual system dynamics; but, both require availability of a noise-

free reference orbit for estimating transition probabilities and output distributions.

The approach discussed in [56] is an iterative, fixed-interval, smoothing approach and

applicable only with bounded, uniformly distributed observation noise. At each iteration, a

local partitioning of state space is first performed around the current estimate of each orbit

point. Each partition element corresponds to a state of the assumed underlying Markov

chain. Next, a noise-free reference orbit is used to estimate transition probabilities between

the states associated with one orbit point and those associated with the next. Finally,

the Viterbi algorithm is used to determine the most likely state sequence (actually the

centroids of the states) as determined by the noisy observations, transition probabilities,

and assumption on the observation noise.

The approach in [64] uses a single set of states for all noisy orbit points. These states do

not correspond to a partioning of the phase space. Instead, they correspond to a modeling

of the dynamics of the chaotic system as a finite-state, first-order hidden Markov model,

in which the noise-free output corresponding to each state is a Gaussian random vector.

The state transition probabilities as well as the mean vectors and covariance matrices of

the states are estimated from the clean reference orbit using the Baum-Welch re-estimation

formula. Each observed, noisy, orbit point is modeled as the sum of the output of a state of

the underlying hidden Markov model and an independent, random vector which represents

the contribution of the observation noise. Heuristic ML and MMSE state estimators based

on this model are introduced in [64]. The estimators perform reasonably well with small

to moderate input SNRs, with performance for larger input SNRs strongly dependent on

the number of states. The MMSE state estimator would be labeled a global technique with

the taxonomy of nonlinear, suboptimal, MMSE state estimators discussed earlier in the

chapter.

In Chapter 6, optimal and suboptimal detection and estimation algorithms based on

hidden Markov modeling are introduced for a special class of one-dimensional, chaotic maps.

The appropriateness and value of using HMMs in conjunction with these maps arises from
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the fact that these maps give rise to homogeneous, finite-state Markov chains.
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Chapter 4

State Estimation with Dissipative,

Chaotic Maps

4.1 Introduction

In this chapter, we consider probabilistic state estimation with chaotic maps and intro-

duce practical, suboptimal Maximum-Likelihood (ML) and Minimum-Mean-Squared-Error

(MMSE) state estimators. We begin by discussing the experimentally observed properties

of the likelihood function for the restricted DTS/DTO scenario given by (3.5) and (3.6) for

the special case in which h is the identity operator and f is a two-dimensional, dissipative,

chaotic map. We offer a nonrigorous explanation of these properties which is supported by

the performance bound analysis in Chapter 5. We also introduce a simple, grid-based, ML

estimator, elements of which are incorporated in the MMSE estimators introduced later in

the chapter.

The chapter then focuses on MMSE state estimation and introduces two heuristic MMSE

state estimators-one, a local estimator based on extended Kalman filtering, and the other,

a global estimator that approximates the conditional mean integral given by (3.19) with

a recursively calculable, finite summation. Performance results for both estimators are

presented and compared. The results suggest that the local approach is more effective with

larger input SNRs and the global approach more effective with smaller input SNRs.

In this chapter, our focus is on problem scenarios in which the input signal-to-noise ratio

(SNR) is smaller than 20 dB, a heretofore relatively unexplored problem in the context of
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chaos, but one that arises in real-world applications such as secure communication, poten-

tially involving chaotic systems. All three problem scenarios listed in Section 3.6-known

system dynamics, unknown system dynamics and availability of a noise-free reference orbit,

unknown system dynamics and no availability of a noise-free reference orbit-are dealt with

in this chapter, with emphasis placed on the second scenario. Whereas there are presently

few practical applications involving chaos, it is unclear which of these scenarios has the

most practical relevance.

4.2 ML State Estimation

In this section, we consider ML state estimation with dissipative, chaotic diffeomorphisms.

Although two specific maps-the Henon and Ikeda maps-are emphasized, many of the

results apply to other dissipative, chaotic maps as well, even those with state vector di-

mensions greater than two. The section first qualitatively analyzes the properties of the

likelihood function that arises with the DTS/DTO scenario, in part to motivate the approx-

imate ML state estimator introduced later in the section. The specific problem considered

is that of estimating z(no), the state of the dissipative, chaotic map f at time no, given

the observation set Y Y(M,N) = {y(i)}NyM for the restricted DTS/DTO scenario with

state and observation equations (3.5) and (3.6), respectively.

4.2.1 Properties of the Likelihood Function

As shown in Chapter 3, the log-likelihood function, log p(Y; x(no)), has the following form

for the restricted DTS/DTO scenario:

logp(Y; (no)) = C(M, N)
1 N

-2 E [y(i) - h(fi-no°(x(no)))] R-1 [y(i) - h(fi-'n°(x(no)))] (4.1)
2Z=M

where C(M, N) is a normalizing constant and R is the covariance matrix of the observation

noise. Note that (4.1) is a sum of weighted, squared-error terms in which each error is

the difference between an observation vector y(i) and the corresponding transformed state

vector x(no), and the weighting matrix is the inverse of the covariance matrix of the ob-

servation noise. Whereas the likelihood function has a fundamental role in probabilistic
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state estimation, an understanding of the basic properties of this function for a given state

estimation problem is useful when developing practical state estimators for that problem.

With this in mind, we now provide a nonrigorous analysis supported by experimental results

of the properties of p(Y; x(no)) for the special case in which h is the identity operator and

R is a diagonal, positive definite matrix with diagonal elements {?}-f/1 , where A is the

dimension of x(no). Although the simulations involve only two-dimensional maps, the prop-

erties apply to higher-dimensional maps as well. Both the nonrigorous analysis presented

here and the performance bound analysis presented in Chapter 5 suggest a fundamental

influence of the system Lyapunov exponents on the likelihood function for chaotic systems.

We first consider the case in which M = no - m and N = no in (4.1) for some positive in-

teger m, which corresponds to all observations occurring before or at the time of interest no.

Figures 4-1 (a) and (b) are contour plots of the likelihood function p(Y(no- 10, no); x(no))

for a fixed time no for the Henon and Ikeda maps with an input SNR of 6 dB. The figures

0
C'

(a) x1 (no) (b)

Figure 4-1: Contour plot of p(Y(no - 10, no);x(no)) as a function of x(no) =
[xl(no), x 2(no)]T. (a) Henon map; (b) Ikeda map.

depict the relative values of the likelihood function p(Y(no - 10, no); x(no)) as a function of

x(no) for a fixed set of observations. In other words, a set of observations Y(no - 10, no) was

generated using the orbit segment {X(i)}=nO_1o with x(no) = xn,. The likelihood function

was then evaluated for various values of x(no) using this set of observations, and the rel-

ative likelihood values shown in the figures. The center point in each figure is the relative

likelihood value corresponding to x,O and the other values are those for a rectangular grid

of points (i.e., values of x(no)) centered at xno with a grid spacing of .002. In the figures,

the nesting of contours indicates increasing values of the likelihood function. Alternative

graphical representations of the data are provided in Figures 4-2 (a) and (b) which are mesh
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plots of the same data used for Figures 4-1 (a) and (b), respectively. Whereas ML state

ta)
'-I

Figure 4-2: Mesh plot of p(Y(no
(a) Henon map; (b) Ikeda map.

- 10, no); x(no)) as a function of x(no) + [xl(no), x 2(no)]T.

estimation would entail choosing the value of x(no) for which p(Y(no- 10, no); x(no)) is

largest, the ridge-like property of the likelihood function in the figures suggest that the ML

estimate of Xno, the actual value of x(no), may be a very poor estimate for both maps. The

results are similar with observations for times at or after no. Figures 4-3 (a) and (b) are

contour plots of p(Y(no, no + 15); x(no)) as a function of x(no) for the Henon and Ikeda

maps.

0
C

c.'

(a) X1 (no) (b)
Xl(o

Figure 4-3: Contour plot of
(b) Ikeda map.

p(Y(no, no + 15); x(no)) as a function of x(no): (a) Henon map;

A nonrigorous, first-order analysis helps explain this interesting property of the likeli-

hood function. Consider a single term of the sum in (4.1):

S(x(n)) = [y(i) _ fi-no (x(no))] R-' [y(i)_ fi-no(X(no))] (4.2)
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For a small deviation 6 from the actual value of x(no), the following relation holds to

first-order:

f-nO (x(no) + 6) fi-nO(x(no)) + D {fi-no (x(no))} 6, (4.3)

where D{fi-'° (x(no))} denotes the derivative of fi-o with respect to x(no). Substituting

x(no) + 6 for x(no) in (4.2) and also substituting (4.3) in (4.2) yields

Si(x(no) + 6) , [Y(i)- f i-°(z(no)) - D{f i-no ( z (no))}6]

xR-1 [y(i) _ fi-O(x(no)) - D{fi-'o(x(no))}6] (4.4)

which because of the diagonal assumption on R reduces to

r {Vk() - D{fi-no (x(no))} 6] k}

Si(x(no) +6) Z E a (4.5)

k=1 k

where vk(i) denotes the kth element of the noise vector v(i) and [D{fi'-'°(x(no))}6]k

denotes the kth element of the vector D{fi-n° (x(no))} 6.

Since v(i) is zero-mean, the expected value of Si(x(no) + 6) is given by

Ar + [Df(i-no(x(n0))}:2
E {S(x(no) + )6) E 2 (4.6)

k=1 'k

where E is the expectation operator. The log-likelihood function and consequently the

likelihood function is large if each term in the sum is small. As such, the value of the

likelihood function for the perturbed state x(nO) + 6 depends on the magnitudes of the

vectors

D{fi-no(x(no))}6, i= M,.. .,N. (4.7)

As discussed in Chapter 2, an Ar-dimensional chaotic map has Ar Lyapunov exponents,

and associated with each exponent and point on the attractor is a linear subspace of Rr for

which the logarithm of the long-term, averaged growth rate of infinitesimal perturbations

along most of that subspace is given by the Lyapunov exponent. More precisely, if ,A1 >

A2 > '" > Ar denote the ordered Lyapunov exponents not repeated by multiplicity and

E.(n, ) denotes the subspace of Rr associated with x(no) and all Lyapunov exponents less
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than or equal to Aj, then the following holds [21]:

lim I log IID{f'(x(n0 ))} 611 = Ai (4.8)
n-oo n

for any unit vector 6 E E j(no) \ E j +, l ), where 1 denotes the Euclidean norm and En)

(n) denotes the set formed by taking E~(,) and removing the subspace E3 + l
E~~~j~~~no) Ex3 (no) (n~~~~~~~~~z(o)'

As mentioned in Chapter 2, a frequently used but often poor approximation is that if 6

is a small perturbation, not necessarily infinitesimally small, and 6 E E3(lt) \ E( then
y ' Ex3(no) \ 'Ex(no)

IID{fk(x(no))} 6I t IJfII exp(kAj). Although this approximation is often poor, its implica-

tions often are nonetheless valid because of the close relation between each linear subspace

E1 (no) and a nonlinear counterpart known as a differentiable manifold. In particular, tan-

gent to each of the linear subspaces E3(n) corresponding to a negative Lyapunov exponent is

a nonlinear differentiable manifold, with the orbits of points along the manifold exhibiting

the expected, scaling behavior. That is, if W(n) is the nonlinear manifold associated withZ(no)

the linear manifold E(no, then for any point x(no) + 6 E W(,(n) the following is true [21]::(no)'

lfk(x(n)) - fk(x(no) + 6)1 < C exp(k Aj). (4.9)

(These nonlinear manifolds are defined only for negative Lyapunov exponents).

One implication of this scaling behavior along these nonlinear manifolds is that the

magnitudes of the vectors given by (4.7) are smallest for perturbations 6 along the nonlinear

manifold associated with xno corresponding to the smallest Lyapunov exponent of f if

i - no > 0 and the smallest Lyapunov exponent of f-1 if i - no < 0. Note that the

Lyapunov exponents of f -1 are the negatives of the Lyapunov exponents of f.

This implication suggests that the ridge-like regions of large likelihood values in Figures

4-1 (a) and (b) correspond to the nonlinear manifold associated with the smallest Lyapunov

exponent of f-1, and the ridge-like regions of large likelihood values in Figures 4-3 (a) and

(b) correspond to the nonlinear manifold associated with the smallest Lyapunov exponent

of f. The reasoning behind this conclusion is the following. The results depicted in Figures

4-1 (a) and (b) are those for the case in which all observations occur before or at the time of

interest so that i - n o < 0 in (4.6). Thus, the magnitudes of the vectors given by (4.7) are

smallest for perturbed state vectors xn, +6 along the nonlinear manifold associated with xno

corresponding to the smallest Lyapunov exponent of f -1. Similarly, the results depicted in
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Figures 4-3 (a) and (b) are those for the case in which all observations occur at or after the

time of interest so that i - no > 0 in (4.6). Thus, the magnitudes of the vectors given by

(4.7) are smallest for perturbed state vectors along the nonlinear manifold associated with

x, 0 corresponding to the smallest Lyapunov exponent of f. Since the likelihood function

is largest at points (no) for which the vectors in (4.7) have the smallest magnitudes, the

implication is that the ridge-like regions in the figures correspond to the nonlinear manifolds

associated with xn0 corresponding to these smallest Lyapunov exponents.

If correct, this conclusion applies to higher-dimensional chaotic systems as well. How-

ever, in contrast to two-dimensional, dissipative, chaotic diffeomorphisms which always have

one positive and one negative Lyapunov exponent, higher-dimensional, dissipative, chaotic

diffeomorphisms may have several negative and/or several positive Lyapunov exponents.

As a result, for higher-dimensional systems if other Lyapunov exponents are comparable in

size to the smallest exponent, then the likelihood function corresponding to observations at

times before or at no might be large for values of x(no) for a higher-dimensional manifold

associated with x, 0. A similar result applies if other Lyapunov exponents are comparable

in size to the largest Lyapunov exponent and all observations are at times at or after no.

The question arises as to the behavior of the likelihood function which includes obser-

vations at times both before and after n 0. Figures 4-4 (a) and (b) are contour plots of this

likelihood function p(Y(M,N); x(no)) for the Henon map with two sets of values for M

and N, satisfying M < n < N and Figures 4-5 (a) and (b) are analogous contour plots for

the Ikeda map. As with the earlier contour plots, the figures depict the likelihood function

0~~~~~~~~~~~~~~

(-)
(a) (n) (b)

Xl~ (no)

Figure 4-4: Contour plot of p(Y(M, N); x(no)) as a function of x(no) for the Henon map.
(a) M = no - 3 and N = no +12; (b) M = no - 5 and N = no + 20.

evaluated at a a rectangular grid of values for x(no) centered at xo with a fixed observation
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i' J . 47' N 

(a) x1 (no) (b)

Figure 4-5: Contour plot of p(Y(M, N); x(no)) as a function of x(no) for the Ikeda map.
(a) M = no - 3 and N = no + 15; (b) M = no - 6 and N = no + 25.

set Y generated with xn0 . As indicated by the figures, the likelihood function is multimodal

with only a few observations, but rapidly becomes impulse-like as the number of past and

future observations increases.

Figures 4-6 (a) and (b) depict analogous results for a slightly shifted rectangular grid of

values for x(no). In particular, the grid used for the figures was centered at the perturbed

state x(n) + [1.5 x 10- 4, 1.5 x 10-4]T and xno was not a grid point. The grid spacing in both

figures as in the earlier figures is .002. A comparison of Figures 4-4 (b) and 4-6 (a) and a

O

c-

(a) X1 (no) (b)

Figure 4-6: Contour plot of p(Y(M, N); x(no)) as a function of x(no) with value for xno not
shown. (a) Henon map with M = no - 5 and N = no + 20; (b) Ikeda map with M = no -6
and N = no + 25

comparison of Figures 4-5 (b) and 4-6 (b) reveals an extreme sensitivity of the likelihood

function to the grid spacing when the numbers of past and future observations are not

small. This sensitivity is shown to have an important influence on the performance of an

approximate ML state estimator introduced in the next section.
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The impulse-like nature of the likelihood function p(Y(M, N); x(no)) for invertible, dis-

sipative, chaotic systems with observations at both past and future times suggests that the

ML estimate of :,O becomes increasingly accurate as the numbers of observations for both

past and future times increases. However, several practical considerations thwart maximiza-

tion of the likelihood function. First, the likelihood function for a dissipative, chaotic map

is highly nonlinear and as a consequence there is generally no closed-form expression for the

ML estimate of x,, . Second, the likelihood function generally has multiple local minima

for small numbers of observations; this property coupled with the the impulse-like nature of

the likelihood function for larger numbers of observations precludes the straightforward use

of standard, nonlinear, optimization techniques for numerically maximizing the likelihood

function. Third, the inverse of an attractor is a repeller. That is, whereas a dissipative,

chaotic system f shrinks volumes in the basin of attraction of an attractor, the inverse

system f-1 expands volumes and is thus inherently unstable. Because of this instability,

the orbits of f -1 generated by most initial conditions on the attractor are unbounded. As

a result, it is generally difficult to obtain accurate estimates of the backward orbit of a

point, i.e., the orbit with the given point as the final condition. Finally; the use of standard

optimization techniques requires knowledge of the system dynamics which may not always

be available.

Nonetheless, potentially effective, approximate, ML state estimation is possible with

dissipative, chaotic diffeomorphisms even when the system dynamics are unknown. The

next section introduces a simple state estimator which circumvents the above-mentioned

problems by exploiting the topological transitivity property of chaotic systems.

4.2.2 An Approximate ML State Estimator

In this section, we introduce an approach for practical, suboptimal, ML state estimation

with dissipative, chaotic maps. We consider a more general problem than that of estimating

x(no), the state at time no. In particular, we consider the problem of estimating the (N + 1)-

point orbit segment fi(x())}ffN=o0 given the observation set Y(O, N). In theory, the two

problems are equivalent since the system dynamics are deterministic. That is, if ~iML(no)

denotes the ML estimate of x(no) for a given observation set Y(O, N), then fnno (iML(no))

denotes the ML estimate of x(n) for arbitrary time n for the same observation set. However,

for the approximate ML approach considered in this section, experimental performance re-
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sults are generally superior when the state is estimated separately at each time n. This

appears to be a consequence of the simultaneous presence of both positive and negative

Lyapunov exponents with a dissipative, chaotic map f which leads to amplification of es-

timation errors in state estimates when acted upon by f or f-1. In other words, if i(n)

denotes an estimate of x(n) with nonzero, squared estimation error e2 , then the squared

estimation errors for the estimates f(x(n)) and fl((n)) of x(n + 1) and x(n - 1), re-

spectively, are generally larger than 2 . This difference between theory and practice results

both from nonoptimality of the estimator and computer round-off error. In Chapter 7, we

introduce an optimal ML state estimator for a class of expanding, one-dimensional maps

with a similar difference between theory and practice, but with the difference attributable

in this case solely to computer round-off error.

An underlying requirement of the estimation approach introduced here is that the or-

bit segment {fi(x(0))}No to be estimated lies on a chaotic attractor. This requirement is

assumed to hold in the following discussion. Also, unless stated otherwise, the distance be-

tween two orbit points refers to the Euclidean distance between the points and the distance

between orbit segments refers to the sum of the Euclidean distances between corresponding

points on the orbits divided by the number of segment points.

One numerical method for ML parameter estimation, the method we use here, is that

of grid search. With this method, one evaluates the likelihood function at a finite set of

parameter values and uses the parameter value for which likelihood function is largest as the

parameter estimate. With respect to the ML state estimation problem of interest here, the

parameter corresponds to xn0, the actual unknown state at time no where no E [0, N]. An

important consideration with this estimation method is the selection of an appropriate set of

possible parameter values, which for the state estimation problem correspond to trial values

for x,0. Complicating the task of choosing an appropriate set of trial values for the state

estimation problem are two practical problems noted earlier which arise with dissipative,

chaotic systems-the difficulty in generating accurate backward orbits for points and the

impulse-like nature of the likelihood function with large numbers of observations at past

and future times. The first problem is relevant because backward orbit segments for the

trial state values are used in the likelihood function if no # 0, as indicated by (4.1). The

second problem is relevant if N is large. One simple, albeit suboptimal way to circumvent

this second problem is to only use observations for times near no in the likelihood function.
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However, the first problem remains since observations for times both before and after no are

needed in the likelihood function for it to avoid the undesirable ridge-like behavior which

occurs when all observations are for times at or after no. A desirable situation would be

one in which an appropriate set of trial values was available for which the orbit, or at least

an adequately sized orbit segment, containing each of the values was known as well.

Since a chaotic system is topologically transitive, most orbits on an attractor have points

which come arbitrarily close to all other points on the attractor. In light of this and the

underlying requirement that the unknown orbit segment lies on the attractor, the points

on almost any sufficiently long orbit segment on the attractor are useful trial values for

grid-based ML state estimation, since the orbit corresponding to these points is known and

a subset of them pass arbitrarily close to X7O.

Combining these related ideas leads to the following grid-based, approximate, ML state

estimator for estimating the state at each time no E [0, N]:

Approximate ML State Estimator

1. Generate a reference orbit with arbitrary initial condition (with the possible exception

of a set of measure zero) in the basin of attraction of the attractor. Let {oi} denote

the set of orbit points.

2. Evaluate the likelihood function p(Y(no - m, no + r); oi) for the given observation set

and each reference orbit point oi.

3. Choose as the ML state estimate at time no, the reference orbit point which maximizes

the likelihood function.

The algorithm requires specification of the reference orbit length as well as the constants

m and r, which determine the number of observations at past and future times to use in the

likelihood function. Although discovering an optimal technique for selecting these values

remains an elusive goal, there are several practical rules-of-thumb that are appropriate. In

particular, for a given, desired performance level (e.g., mean-squared error), the orbit length

must be such that at least one orbit point passes sufficiently close to the actual state xno

for each no [0, N] so that the desired performance level is achievable. Also, the constants

m and r define a window of observation times and should be chosen so that orbit segments

passing through two neighboring points remain close, on a point by point basis, over the
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observation window. In other words, because the system dynamics are deterministic and

invertible by assumption, the orbits passing through two neighboring points on the attractor

remain close for at least a few time steps into the future and a few time steps into the past

as well. A fundamental aspect of the algorithm is that its use does not actually require

knowledge of the system dynamics, but only the availability of a reference orbit on the

attractor.

As implicitly suggested by the expression for log p(Y(M, N); xr(no)) given by (4.1), in

the special case that h is the identity operator, the estimator is simply an orbit matcher

which chooses as the state estimate at time no, the reference orbit point for which the

corresponding orbit segment as determined by m and r most closely matches in a weighted

least squares sense the set of observations Y(no - m, no + r), with the weights determined

by R - '. Equivalently, noise-free reference orbit segments are matched to noise-corrupted

orbit segments. When h is not the identity operator, the estimator is a transformed orbit

matcher in which noise-free orbit segments, with each point transformed by h, are matched

to noise-corrupted orbit segments, also with each point transformed by h, prior to the noise

corruption.

This approximate ML state estimator was tested on the Henon and Ikeda maps with

the identity operator used for h in (3.6) and a diagonal matrix used for the noise covariance

matrix R. Figures 4-7 (a) and (b) depict the SNR gain as function of input SNR, with

the curves parameterized by the number of points in the reference orbit segment. Each

of the plotted points represents the average improvement in SNR for the two components

of the state vector, obtained by estimating 2000 consecutive orbit points. As indicated

in

z

cr
z
Cl)

(a) INPUT SNR (dB) (b)

Figure 4-7: Performance results for approximate ML estimator with differently sized refer-
ence orbits and (, r) = (4,4) . (a) Henon map; (b) Ikeda map.
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by the figures, for input SNRs of 10 dB and above performance improves as the size of

the reference orbit increases, whereas for input SNRs smaller than 10 dB the size of the

reference orbit has little influence on performance (for reference orbit sizes in excess of 500

points). In addition, as is typical of ML-type estimators for nonlinear estimation problems,

the estimator is most effective with larger input SNRs. The decrease in performance as the

input SNR increases from 15 to 25 dB is attributable to the reference orbit size. Figures 4-8

(a) and (b) depict similar results, but with the curves now parameterized by the number

of past and future observations (m, r) used in the likelihood function. The figures suggest

VIm
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(a) INPUT SNR (dB) (b)

Figure 4-8: Performance results for approximate ML estimator with different numbers of
observations (m,r) used in the likelihood function and a 4000-point reference orbit. (a)
Henon map; (b) Ikeda map.

that performance improves initially as the values of m and r increase from zero, but then

deteriorates as m and r exceed certain values. The figures also suggest that for both maps,

no single parameter pair (m, r) achieves the best performance with all input SNRs.

4.2.3 Extensions

A straightforward extension to the approximate ML estimator yields performance results

comparable to those of the original algorithm, but more importantly renders the algorithm

potentially useful even when no reference orbit is available. When a reference orbit is

available, the extension consists of using the average, possibly weighted, of the P reference

orbit points for which the likelihood function is largest as the state estimate at a given time.

(An alternative extension not pursued here would be to use the average of all reference

orbit points for which the likelihood function exceeds a suitably chosen threshold as the

state estimate). The original algorithm corresponds to the special case of the extension for
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which P equals 1. As shown later in this section, when no reference orbit is available, the

output transformation h is the identity operator, and the number of observations N + 1 is

sufficiently large, one obtains a nonnegligible improvement in SNR with this extension to

the approximate ML estimator.

Figures 4-9 and 4-10 depict the performance results obtained with this averaging esti-

mator for P = 5 and simple averaging used for the state estimate at each time no E [0, N].

The parameterization of the curves in Figures 4-9 and 4-10 is the same as in Figures 4-7

and 4-8, respectively. A comparison of the plotted results with those shown in Figures 4-7

m

z

zCoCrz
oo

(a) INPUT SNR (dB) (b)

Figure 4-9: Performance results for averaging estimator with differently sized reference
orbits, (, r) = (4,4), and averaging over 5 reference orbit points. (a) Henon map; (b)
Ikeda map.
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Figure 4-10: Performance results for averaging estimator with different numbers of obser-
vations (m, r) used in the likelihood function, a 4000-point reference orbit, and averaging
over 5 reference orbit points. (a) Henon map; (b) Ikeda map.

and 4-8 indicate that averaging over 5 reference orbit points offers no additional SNR gain

over the use of a single reference orbit point as the state estimate. Computer experiments

involving averaging over other numbers of reference orbit points also yielded no additional
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SNR gain.

However, averaging has a useful role in the so-called "self-cleaning" problem, the problem

in which no reference orbit is available, the system dynamics are unknown, and the output

transformation h is the identity operator, so that each observation y(no) is simply a noise-

corrupted version of x(no), the state at that time. We assume with some loss of generality

that the observation noise covariance matrix R is known as well. By using the observation

set as a reference orbit, we can apply the averaging estimator to this problem. In other

words, we let the observation set Y(O, N) have two roles-one, the original role in the

likelihood function p(Y(no - m, no + r); oi) as the fixed observation subset Y(no - m, no + r),

and the other as the set of reference orbit points {oi} over which the likelihood function is

maximized, where log p(Y(no - m, no + r); oi) is now formally defined as

logp(Y(no - m, no + r); oi) =
1 _ r+ ]

C(m, r) - [y(no + j) -oi+] T R - 1 [y(no + j) - oi+j](4.10)
2.

-7=-M

1 'r
= C(m, r) - [y(no + j)- y(i + j)]T R-1 [y(no + j) - y(i + j)] (4.11)

m=-M

where C(m, r) is a normalizing constant. Strictly speaking, p(Y(no - m, no + r); oi) is not a

likelihood function for the underlying system model when oi = y(i) because Y(0, N) is not

an orbit segment. As such, referring to this estimation approach as ML state estimation is

inappropriate.

It follows from (4.11) that logp(Y(no - m, no + r); y(no)) = 0 so that the likelihood

function is maximized at time no by y(no). Thus, choosing the observation which maximizes

the likelihood function at each time no as the state estimate would yield no improvement

in SNR.

Figures 4-11 (a) and (b) depict the performance results obtained by applying this self-

cleaning, averaging estimator to the Henon and Ikeda maps. Each plotted point is the

average improvement in SNR for a 2000 point observation set and (m,r) = (4,4). In

contrast to the curves in Figures 4-9 and 4-10, the curves in Figures 4-11 (a) and (b) are

parameterized by the number of neighboring observations, as determined by orbit matching,

which were used for averaging in order to estimate the state at each time no. The actual

observation at each time was not included in the average for that time. As suggested by the
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figures, averaging over neighboring points has a beneficial role in this situation and there

is a nonnegligible SNR improvement for each input SNR for both maps. The performance

Z
z

a:
z
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(a) INPUT SNR (dB) (b)

Figure 4-11: Performance results for self-cleaning, averaging estimator with averaging over
neighboring observations determined by orbit matching, a 2000-point observation set, and
(m,r) = (4,4). (a) Henon map; (b) Ikeda map.

improvement even at small input SNRs is surprising in light of the fact that no knowledge

of the underlying system dynamics is used1.

We conclude by mentioning one possible extension of this approach, the use of Wiener-

type filtering. For example, given a set of suitably chosen neighboring orbit points, a

Wiener-type state estimator for x(n 0 ), the estimate of the state at time no, is given by

x(no) = avg(no) + Aavg(no) [Aavg(no) + R]- 1 (y(no) - avg(no)) (4.12)

where avg(no) denotes the averaged orbit points for time no, Aavg(no) denotes the (estimated) covarian

0 and R denotes

the covariance matrix of the observation noise.

4.3 MMSE State Estimation: Local Techniques

The previous sections of this chapter dealt with nonrandom state estimation, that is, esti-

mation of an unknown, but nonrandom state vector or orbit segment and the emphasis was

on ML state estimation. In contrast, this section and the next deal with state estimation

in a Bayesian context, with the unknown state vector at a given time treated as a random

'Since reporting this self-cleaning, averaging estimator [76, 77], we discovered that similar work was
independently pursued and reported in [40]
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vector, and the emphasis is on Minimum-Mean-Squared-Error (MMSE) state estimation.

In this section we introduce a local, heuristic MMSE state estimator, and in the next, a

global, approximate MMSE state estimator. The extended Kalman filter (EKF) provides

the foundation for the local estimator discussed in this section, and variations of the es-

timator are provided for all three problem scenarios-known system dynamics, unknown

system dynamics with availability of a clean reference orbit, unknown system dynamics

with no reference orbit. The global estimator introduced in the next section is applicable

only to the first two of these scenarios. This latter estimator exploits the ergodicity of dis-

sipative, chaotic systems allowing the computationally intractable integral for the MMSE

state estimator given by (3.19) to be replaced by an infinite summation which is easier to

approximate.

4.3.1 The Extended Kalman Filter and Smoother

The extended Kalman filter (EKF) is a recursive state estimator that can be used with a

large class of nonlinear state-space models. Unlike the Kalman filter which is the optimal

MMSE estimator for a restricted set of linear state-space models, the EKF is a heuristic

algorithm which in general is not the MMSE state estimator for a given, nonlinear, state-

estimation problem. Because of this lack of optimality, one can not determine a priori the

performance of the extended Kalman filter for a specific problem as is possible with the

Kalman filter.

In this subsection, we derive the equations for the extended Kalman filter (EKF) for the

general DTS/DTO scenario given by (3.1)-(3.2) and repeated here for reference:

xT(n + 1) = fn(x(n)) + gn(x(n)) w(n) (4.13)

y(n) = hn(x(n)) + v(n). (4.14)

An underlying assumption in the derivation is that the functions f, gn, and h, in (3.1)

and (3.2) are sufficiently smooth so that they have Taylor series expansions.

To derive the EKF equations for obtaining the state estimate at time n + 1, one first

expands the functions fn and g, in Taylor series about the current state estimate i(nIn),

and the function h in a Taylor series about (nn- 1), where as for the Kalman filter

i (nn-1) and xi(nIn) denote the estimates of x(n) based on the observation sets Y(O, n- 1)
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and Y(O, n), respectively. The state estimate used in the expansion for each function is the

most recent estimate available when the function requires evaluation. The Taylor series

expansions are given by

f ,(x(n)) = fn(x(nln)) + F,(x(n) - &(nln) +.-. (4.15)

gn(x(n)) = Gn +'" (4.16)

hn(x(n)) = hn(&(nn - 1))+ Hn(x(n)- (nln-1))+..., (4.17)

where

Fn = D{fn((nln))} (4.18)

Gn = gn(i(nln)) (4.19)

Hn = D{h,(x(nln-1))}. (4.20)

Retaining only those terms explicitly shown in the above expansions yields the following

approximations to the DTS/DTO state equation (3.1) and observation equation (3.2):

x(n + 1) = fn((nln)) + F,(x(n) - i(nln)) + Gnw(n) (4.21)

= Fnx(n) + Gnw(n) + [fn(x(nn)) - Fn(nln)] (4.22)

y(n) = hn(i(nin - 1)) + Hn(x(n) - x(nln - 1)) + v(n) (4.23)

= Hnx(n) + v(n) + [h((nn - 1))- Hni(nln - 1)]. (4.24)

In (4.22) and (4.24), Fn and Hn are matrices, and one can evaluate the bracketed

expressions since the values of the quantities in these expressions are known at the time they

are needed. As a result, these equations are identical to the state and observation equations

used by the Kalman filter, with the addition of deterministic input terms. However, the

Kalman filter equations can easily be modified to account for deterministic inputs in the

state and observation equations. Thus, the Kalman filter can be applied to the system

model given by the above equations, and is in fact the MMSE estimator for this model.

The resulting filtering equations, provided in Table 4.1, constitute the extended Kalman

filter for the DTS/DTO model.
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i(n + 1In)
P(n + 1In)

i(n+ lin + 1)

K(n+ 1)

P(n + ln + 1)

&(O- 1)
P(01- 1)

Prediction Step

= fn(i(nln))

= FnP(nln)FT + GnQ(n)GT

Measurement Update Step

= i(n + lln) + K(n + 1) [y(n + 1) - hn+l(i(n + l1n))]

T T= P(n + I n)Hn+l [Hn+lP(n + 1ln)Hn+l + R(n + 1)]
= [I - K(n + 1)H.+] P(n + lln)

Initialization
= MO

= Po.

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Table 4.1: The Extended Kalman Filter (EKF) for the DTS/DTO Scenario

A comparison of the equations provided in Tables 3.1 and 4.1 reveals the similarity

between the Kalman filter and extended Kalman filter. However, a fundamental differ-

ence between the two is that the Kalman filter is the MMSE state estimator for a linear

state-space model, whereas the extended Kalman filter is the MMSE state estimator for a

linearized state-space model and a heuristic state estimator for the nonlinear state-space

model which gives rise to the linearized model. This analogy suggests that the effectiveness

of the EKF depends largely on the accuracy of the linear approximations of the nonlinear

functions fn, g, and hn. If the neglected higher-order terms in the Taylor series expansions

of these functions are not negligible, the EKF may perform poorly.

An interesting aspect of the EKF concerns the state estimate equation in the predic-

tion step (4.25). Combining this equation with (4.21) leads to the following sequence of

equations:

i(n + l1n) = E(x(n + 1)lY(O, n)) (4.32)

= f,(i(nin)) + Fn (E(x(n)IY(O, n)) - i(nln)) + E(Gnw(n)) (4.33)

= fn(i(nIn)), (4.34)
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since E(x(n)IY(O,n)) = x(nin) and E(Gnw(n)) = 0. This implies

E(x(n + 1)IY(O, n)) = E(f(x(n))lY(O, n)) = f(E(x(n)lY(O, n))), (4.35)

which although true for linear systems is not true in general for nonlinear systems.

Just as one can augment the Kalman filter equations to obtain a fixed-lag, linear

smoother, one can augment the extended Kalman filter equations to obtain a nonlinear

smoother. In fact, the same state and covariance update equations for the fixed-lag, linear

smoother given in Table 3.2 can be used for fixed-lag, nonlinear smoothing, with the appro-

priate substitution of the parameter matrices F=, G, and H, calculated for the EKF. In

the following sections, we refer to the resulting nonlinear smoother as the extended Kalman

smoother (EKS).

4.3.2 Performance Results with Known System Dynamics

In contrast to the Kalman filter for which one can evaluate the error covariance a priori,

the EKF and EKS are not optimal and one can only evaluate their performance on a

specific problem with Monte Carlo simulations. In this section, we present and interpret

experimental performance results obtained with the EKF and EKS on the Henon and Ikeda

maps when the system dynamics, i.e., the function f, are known. All performance results

are for the restricted DTS/DTO model given by (3.5) and (3.6) with the added restrictions

that h is the identity operator and R, the covariance matrix of the observation noise, is

diagonal. The results indicate the extreme sensitivity of the EKF and EKS to the driving-

noise covariance matrix Q, in the filtering and smoothing equations.

When using the EKF and EKS, one implicitly assumes that the initial state x(O) is a

Gaussian random vector with mean vector m 0 and covariance matrix Po, since as indicated

in Table 4.1, these values are used to initialize the filter. However, this is often an inappro-

priate assumption with dissipative, chaotic systems, with a more appropriate assumption

often being that the distribution of the initial state is that of the physical measure on

the attractor, for which there generally is not a corresponding PDF. In light of this and

to facilitate a performance comparison with the global estimator introduced later in this

chapter, we obtained all performance results by using the the initial data point y(O) as the

initial updated estimate (OO) and the noise covariance matrix R as the corresponding
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error covariance matrix P(010). This initialization strategy is equivalent to assuming that

P(01 -1) is a diagonal matrix with infinite values on the diagonal corresponding to complete

uncertainty in the initial state. Note that using the initial observation to initialize the filter

is only possible when the transformation h is invertible. Although this is a suboptimal way

to initialize the filter, the performance results obtained with this initialization method were

found to be comparable to those obtained with more standard initialization methods.

Figures 4-12 (a) and (b) show the first set of performance results obtained with the EKS

and known system dynamics. The performance curves are parameterized by the number

of lags used by the EKS, so that for example a lag of i indicates the results are those for

the lagged estimator $(n - in). By definition, a lag of zero corresponds to the standard

EKF. Each of the plotted points represents the average improvement in SNR for the two

components of the state vector, obtained by estimating a 2000-point orbit segment. Because

z'a
!

ZC'

zO

(a) (b)

INPUT SNR (dB)

Figure 4-12: Performance results for EKS for different numbers of lags, known system
dynamics, and Q = [0]. (a) Henon map; (b) Ikeda map.

the state equation (3.5) is deterministic and thus there is no driving noise, the driving-noise

covariance matrix Q, was set equal to the zero matrix for all times n in the EKF and EKS

equations, so that Q, - Q = [0], and the matrix Gn was set equal to the identity matrix

Id. The results for the Ikeda map are poor with the negative values indicating that the

SNR has actually gotten worse, and the results for the Henon map are mediocre except at

larger input SNRs.

Figures 4-13 and 4-14 show the performance results obtained with nonzero, diagonal

matrices for Qn = Q in the EKF and EKS equations, with the constant diagonal value

10- 5 used for the results in Figures 4-13 (a) and (b) and the value 10- 3 used for the results

in Figures 4-14 (a) and (b). Note that although a nonzero, covariance matrix Q was used
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in the EKF and EKS equations, the same deterministic state equation (3.5) was used to

generate the data. In other words, the nonzero matrix Q in the EKF and EKS equations

corresponds to a fictitious driving noise, or equivalently a conditioning noise used only in

the estimator. Overall, the performance results are better than those shown in Figure 4-12;

Zz

a
z
cc)

(a) INPUT SNR (dB) (b)

Figure 4-13: Performance results for EKS with known system dynamics, and Q = 10- 5 Ir.
(a) Henon map; (b) Ikeda map.

(a) INPUT SNR (dB) (b)

Figure 4-14: Performance results
(a) Henon map; (b) Ikeda map.

for EKS with known system dynamics, and Q = 10- 3 Id.

but especially for the Henon map, concomitant with the performance improvement at some

input SNRs is a degradation of performance at other input SNRs. Also, as one might expect,

the performance for lagged estimators is considerably better than that for an estimator with

no lags, with the improvement apparently saturating at 4 lags.

A comparison of the performance results in Figures 4-12, 4-13, and 4-14 indicates that

the EKS is extremely sensitive to the driving-noise covariance matrix Q used in the smooth-

ing equations. One method to circumvent this sensitivity is with careful selection of a

unique, driving-noise covariance matrix Q at each SNR. In practical applications, such
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tweaking would be undesirable and probably unacceptable, since the SNR may be unknown

or time-varying. As such, the performance results suggest that straightforward application

of extended Kalman filtering and smoothing techniques to chaotic maps has little practi-

cal value. However, as we show in the next section, the combination of extended Kalman

smoothing and orbit matching yields a potentially effective state estimator that can be used

even if the system dynamics are not known.

4.3.3 Performance Results with Unknown System Dynamics

One can enhance the performance of the EKS using less than full knowledge of the system

dynamics. As we show in this section, incorporation of orbit matching in the EKS yields

an estimator which does not require full knowledge of the system dynamics, is much less

sensitive to the covariance matrix Q, and performs better overall than the EKS alone.

As discussed in Section 4.3.1, use of the EKS requires that the system dynamics, i.e., the

function f in the state equation, be linearized about the estimated state i(nln) at each time

n. In particular, for the restricted DTS/DTO model of interest here the filtering equations

use the derivative matrix Fn -= D{f(i(njn))}. When the function f is not known, but a

sufficiently long reference orbit is available, one can exploit the topological transitivity of

chaotic systems, as was done earlier in the context of ML estimation, to obtain an estimate

of the linearized system dynamics at &(nln) needed for extended Kalman filtering and

smoothing. In other words, using the reference orbit one can obtain an affine parameter set

{An, bn}, where An is an Af x Ar-matrix and bn is an A-element column vector, which for

points z in a small neighborhood of x(njn) satisfy the following:

f(z) An z + bn. (4.36)

The matrix An is an estimate of Fu, whereas the vector bn is an offset vector.

One simple, but effective method to estimate the affine parameter set {An, bn} is the

following. First, find the nearest neighbors (as determined by an appropriate metric) to

i(nln) in the reference orbit and the immediate successors to these neighbors, that is, the

points in the reference orbit which immediately follow these neighbors. Let {o}N=(l denote

the N(n) orbits points selected as the nearest neighbors to &(nin) and let pi}iN(l denote

the successors to these points, so that Pi = f(oi). Next, apply least-squares line fitting to
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these neighbors and their successors to estimate the affine parameter set. Specifically, find

the matrix An and b which minimize the total prediction error E given by

N(n)

C-E = IIPi-(Aoi + b)I 2 (4.37)
i=1

An underlying assumption of this estimation technique is that there is little change in the

linearized system dynamics among points in small neighborhoods of i(nln) . This assump-

tion is reasonable in light of the underlying restriction in this section that f be differentiable

at all points on the chaotic attractor. This method of using a reference orbit to obtain lo-

cally linearized estimates of the dynamics of a chaotic system was apparently first proposed

in [21], developed further in [22] primarily in the context of prediction, and has been used

extensively since for various applications (e.g. [23, 45]).

Having obtained the affine parameter set {An, bn}, one can perform extended Kalman

filtering or smoothing at time n by substituting An for Fn in the filtering and smoothing

equations and by redefining the equation for the predicted state estimate i(n + 11n) given

by (4.25) as

i:(n + 1in) = An i(njn) + bn, (4.38)

In summary, we have the following algorithm for extended Kalman smoothing when the

system dynamics are unknown, but a noise-free reference orbit is available.

EKS with Noise-Free Reference Orbit

1. Given the present state estimate i(njn), find the nearest neighbors to i(nIn) in the

reference orbit. Let N(n) denote the number of selected neighbors.

2. Using the nearest neighbors and their immediate successors in the reference orbit,

determine the affine parameter set (An, bn) (where An is an A/ x N-matrix and b is

an N-element column vector) which minimizes the one-step, total squared prediction

error among the N(n) chosen neighbors and their successors.

3. Use the affine mapping determined by (An, bn) as an estimate of the system dynamics

at (nln) in the extended Kalman filtering and smoothing equations. In particular,

substitute An for Fn in these equations, and substitute (4.38) for (4.25) to obtain the

predicted estimate i(n + lln).
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4. Repeat the procedure until all, observations have been processed

There are several parameters associated with the above algorithm such as the number of

nearest neighbors used at each time n and the size of the reference orbit. In addition, fun-

damental elements of the above algorithm have been left unspecified, including the criterion

or metric used for selecting nearest neighbors. A logical choice of metric is the Euclidean

distance between each point in the reference orbit and the current state estimate. Figures

4-15 and 4-16 show the performance results obtained by using the Euclidean metric for

selecting nearest neighbors. The results in each figure were obtained by using a 4000-point

m
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Figure 4-15: Performance results for EKS with 4000-point reference
bors, and Q = 10- 5 I. (a) Henon map; (b) Ikeda map.
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Figure 4-16: Performance results for EKS with 4000-point reference orbit, 15 nearest neigh-
bors, and Q = 10- 3 IV. (a) Henon map; (b) Ikeda map.

reference orbit and 15 nearest neighbors for estimating the affine parameters at each time

n. In addition, nonzero covariance matrices Q were used in the filtering and smoothing

equations, with the same matrices used for the results in Figures 4-15 and 4-16 as were
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used for the results in Figures 4-13 and Figures 4-14, respectively. Overall, the results are

disappointing (except for the Henon map with larger input SNRs) and comparable to those

shown in Figures 4-13 and 4-14 suggesting that the aspects of the system dynamics used by

the estimator are available in the reference orbit.

As is the case when the system dynamics are known, one can improve the performance

of the EKS when the system dynamics are unknown by carefully selecting, by trial and

error, a unique matrix Q for each input SNR. However, one can avoid such undesirable

parameter tweaking with the use of an orbit-matching criterion to select nearest neighbors

used for estimating each affine parameter set. In particular, one matches, in a weighted least

squares sense, the current state estimate ~:(nIn), the previous m state estimates z(n-iln-i),

i = 1,-.--,m and the next r observations y(n + i), i = 1,...,r to orbit segments in the

reference orbit and chooses those reference orbit points as nearest neighbors, for which the

corresponding orbit segments most closely match. Mathematically, when h is the identity

operator, one chooses at time n those reference orbit points oi for which the following error

criterion is smallest:

m

E [(f-J(o) - i (n - n - j)) T W- 1 (f-j(o) - I n -Jl-))]
j=o

r

+ E [(fok(oi)- y(n + k)) T R-l(fk(oi)- y(n + k))] (4.39)
k=l

If h is not the identity operator, the following criterion is appropriate:

m

a [(f -j(oi) - (n - jln - j)) T W-l(f -J(o,) - i(n - jln - ))]
j=o

r

+ a [(h(f k(oi)) - y(n + k)) T R-l(h(fk(oi)) - y(n + k))]. (4.40)
k=l

In the above summations, the term f -j(oi) denotes the jth reference orbit point before oi,

and fk(oi) denotes the k h reference orbit point after oi. The matrix W is a weighting

matrix which one must select. In the examples that follow, all of which use the identity

operator for h, W was set equal to R, even though other choices for W may have been

equally or more appropriate.

Figures 4-17 and 4-18 show the performance results obtained with two different choices

of the parameter pair (m, r) used in the above criterion for selecting nearest neighbors.
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Additional computer experiments have suggested that there is no optimal selection of m

z

S
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Figure 4-17: Performance results for EKS with 4000-point reference orbit, 15 nearest neigh-
bors, Q = 10- Ir, and (m,r) = (3,3). (a) Henon map; (b) Ikeda map.
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Figure 4-18: Performance results for EKS with 4000-point reference orbit, 15 nearest neigh-
bors, Q = 10- 5 IV, and (m, r) = (1,4). (a) Henon map; (b) Ikeda map.

and r and that various combinations yield comparable results. The plotted results indicate

that use of this alternative criterion for selecting nearest neighbors yields an effective state

estimator (at least for the chaotic maps chosen), superior to that of the straightforward

EKS with known system dynamics.

As one would expect, the size of the reference orbit and the number of nearest neighbors

used for estimating the affine parameters strongly influence performance. Figures 4-19 and

4-20 depict the performance results obtained for differently sized reference orbits and differ-

ent numbers of nearest neighbors, respectively. Both sets of figures show the performance

results for a constant estimator lag of 4 and the parameter pair (, r) equal to (1, 4). The

results in Figures 4-19 (a) and (b) indicate performance improves steadily as the size of the

reference orbit increases from 500 to 4000 points. The results in Figures 4-20 (a) and (b)
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Figure 4-19: Performance results for
and (m,r) = (1,4). (a) Henon map;
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Figure 4-20: Performance results for EKS with 4 lags, 4000-point reference orbit, Q =
10- 5 I, and (m, r) = (1,4). (a) Henon map; (b) Ikeda map.
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indicate that there is no simple relation between neighborhood size and estimator perfor-

mance, with an apparent degradation in performance as the number of nearest neighbors

exceeds some system-dependent threshold.

Surprisingly, this state estimation approach involving affine parameter estimation and

extended Kalman smoothing provides nonnegligible performance gain even if no reference

orbit is available, the transformation h is the identity operator, and one uses the observation

set as the reference orbit in the algorithm outlined above. Figures 4-21 (a) and (b) show the

performance results obtained by estimating the first 1000 points of a 2000-point observation

set and using the entire observation set as the reference orbit. Surprisingly, although the
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Figure 4-21: Performance results for EKS with no reference orbit, 2000 observations, Q =
10- 4 IV, and (m, r) = (1,4). (a) Henon map; (b) Ikeda map.

performance is not as good as that obtained with a noise-free reference orbit, there is still

a nonnegligible SNR gain for each input SNR. Equally surprising is that the SNR gain

is nearly the same for different numbers of lags. The plotted SNR gain for each input

SNR is not the best achievable; larger gains are obtainable if one carefully selects the noise

covariance matrix Q and parameter pair (m, r) at each input SNR level.

When no reference orbit is available, the question arises as to the additional improvement

in performance, if any, obtained by iterating the estimator on the observation set. In

other words, does performance continue to improve if one iterates the estimator, using the

state estimates at each iteration as the observation set for the next iteration? Computer

experiments have suggested that an additional 2-4 dB SNR gain occurs with one additional

iteration, but there is little additional gain with more iterations.

A relevant consideration discussed in [27] is that the use of the least-squares method

of affine parameter estimation for linear regression problems is applicable only when the
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dependent variables and not the independent variables in the regression equations are noise-

corrupted. For the affine parameter estimation problem of interest here, both the dependent

and independent variables come from the reference orbit. With a noise-free reference orbit,

both sets of variables are noise-free; but, with no reference orbit and use of the observa-

tion set as the reference orbit, both sets of variables are noise-corrupted. Consequently,

the least-squares method used to estimate the affine parameters for the EKS when the ob-

servation set is also used as the reference orbit is strictly speaking inappropriate, with a

measurement-error-model or equivalently total-least-squares method [27, 31, 32, 81] theoret-

ically more appropriate. Such an approach was used for the results we presented in [77] in

the context of fixed-interval smoothing. However, more recent computer experiments indi-

cated that use of a measurement-error-model method for estimating the affine parameters

offered little if any overall performance improvement over use of the simpler least-squares

method, when orbit matching was used for selecting nearest neighbors. That is, use of the

measurement-error-model method provided performance improvement at some input SNRs

and performance degradation at other input SNRs. More importantly, the experiments

indicated that the measurement-error-model method was much more sensitive than the

least-squares method to filter parameters such as Q and the observation set size. Greater

sensitivity to the observation set size is not surprising, as the effectiveness of measurement-

error-model methods for parameter estimation often depends strongly on the size of the

data set used for estimating the parameters. It was due to the greater sensitivity of the

measurement-error-model method than the simpler least-squares method and comparable

performance results achieved with both methods (with no parameter fine tuning) that the

latter method was used for the above examples.

4.4 MMSE State Estimation: Global Techniques

The state estimators discussed thus far all require that a search be performed for nearest

neighbors. In this section, we introduce a global, approximate MMSE state estimator which

avoids this computationally intensive requirement. The estimator is applicable when the

initial condition (0) is a random vector with distribution given by the physical measure

on the attractor; and as with the state estimators discussed earlier, the estimator uses a

noise-free reference orbit.
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As discussed in Chapter 3, for a given observation set Y, the MMSE state estimator for

x(n) is the conditional mean which is given by (3.16) if the a posteriori density p(x(n)lY)

exists and by (3.19) otherwise, with the latter equation repeated here for reference:

E(x(n)iY) f x(n) p(YIx(n)) d/(n) (4.41)
f p(r[Y(n)) d(,,) 

where x(n) denotes the measure corresponding to the distribution of the state x(n) at time

n, and the integration over x(n) is defined in the Lebesgue sense. We know from Chapter 2

that the physical measure on the attractor is an ergodic measure, so that if the initial state

is distributed according to this measure, the state at all future times will be distributed

according to this measure as well. In light of this and ergodicity, if the distribution of the

initial state x(O) is given by the physical measure, then the following holds for the state

x(n) at each time n for almost all points z on the chaotic attractor:

N-1fr(n)p(YIx(n))dl(n) 1 -1 fi(z)pn(ylf i(Z)) (4.42)
= lim ~~~~~~~~~~~(4.42)f p(Ylx(n)) d/i(n) N-+oo N limMBoo M 1Pn(Yf'(z))

where p,(Ylfp(z)) denotes the PDF of the observation set conditioned on f 3 (z) being the

value of the state at time n. Thus, the conditional mean is simply a weighted average of

points on a chaotic orbit, where the weight for a point is given by the value of the likelihood

function conditioned on that point.

The above summation is not useful for practical MMSE state estimation for two reasons.

First, its evaluation requires that an infinite number of terms be calculated. Second, as

noted in Section 4.2, the likelihood function rapidly becomes impulse-like as the size of

the observation set Y increases. Thus, if one were to attempt to approximate the above

expression by summing over a finite number of terms, the value of the likelihood function

for each term would for all practical purposes be zero if Y contained more than a few

observations.

However, we can use a practical approximation to (4.42) which yields a potentially

effective state estimator. First, we approximate the infinite sums in the numerator and

denominator with finite sums involving the same number of terms, i.e., M = N. Second,

we approximate the likelihood function pn(YIfi(z)) with pn(Y(n- m, n + r)lfi(z)), i.e., we

only use a subset of observations occurring at times near the time of interest. If r = 0 the
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estimator is a state filter, whereas if r > 0 the estimator is a state smoother. Combining

these two approximations yields the following global state estimator (n) for the state at

time n:

(n) = f z) p (Y(n- m, n + r) f(z))
~i()= (4.43)

i~o Z=o pn(Y(n - m,n + r)IfJ(z))

where z is an arbitrarily selected point on the chaotic attractor (with the possible exception

of a set of points of measure zero). For the results reported here, the set {fi(z)}No

corresponds to a reference orbit segment.

One property of the estimator that arises because of its use of a rectangular window of

observations is that the observation set used at time n + 1 differs from the observation set

used at time n by 2 points. Furthermore, the following relation holds:

Pn+ (Y(n- m, n + r)jfi(z)) = pn(Y(n- m, n + r)[fil(z)). (4.44)

Therefore, if the reference orbit is allowed to grow by one point at each time n, then one

can reduce the computational burden by deriving the likelihoods Pn+l (Y(n- m + 1, n + r +

1)Ifi(z)) at time n + 1 from the likelihoods at time n. Equivalently, if the N likelihoods

{p,(Y(n - m,n + r)lfi(z))}N 1 are used in (4.43) at time n, then one can achieve a

computational savings at time n + 1 by using the likelihoods {pn+1 (Y(n - m + 1, n + r +

An alternative to the use of a fixed-size, rectangular window of observations at each

time n is the use of a growing window of observations with an exponential weighting of past

observations, as is often done in recursive filtering applications.

Figures 4-22 and 4-23 depict the performance results obtained with this approach on

the Henon and Ikeda maps. In both sets of figures, the curves are parameterized by the pair

(m, r) denoting the number of past and future observations used in the likelihood function

at each time. Also, for both set of figures, N was set equal to 4000 in (4.43). In Figures 4-22

(a) and (b), r = 0; thus, only the present and past observations are used in the likelihood

functions resulting in filtered state estimates. In contrast, in Figures 4-23 (a) and (b), r 0 0;

thus, future observations are used in the likelihood functions resulting in smoothed state

estimates. A comparison of the figures reveals superior performance with smoothing over

filtering. A striking feature of the smoothed results is the considerable performance gain

even with small input SNRs.
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Figure 4-22: Performance results for global estimator with N = 4000 and different param-
eter pairs (m, r). (a) Henon map; (b) Ikeda map.
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Figure 4-23: Performance results for global estimator with N = 4000 and different param-
eter pairs (m, r). (a) Henon map; (b) Ikeda map.
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Figures 4-24 (a) and (b) show the performance results obtained with fixed m and r

and different values of N. As might be expected, performance improves as N increases,

especially at larger input SNRs.
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Figure 4-24: Performance results for global estimator with (, r) = (3,3) and different
values for N. (a) Henon map; (b) Ikeda map.

4.5 Comparison of Estimators

The question arises as to which of the three state estimators introduced in this chapter-the

approximate ML, the EKS, or the approximate global MMSE-is the best estimator. In

general, it is inappropriate to compare estimators for nonrandom parameters with estima-

tors for random parameters, as the underlying problem scenarios are fundamentally different

for the two types of scenarios. However, in light of the underlying assumptions on the a

priori state distribution used in this chapter, namely that is given by the physical measure

on the attractor, and in light of the heuristic nature of the estimators, such a comparison

is at least partially justified here.

A comparison of the performance results for the three state estimators suggests that the

ML and global MMSE estimators perform comparably, although the experimental results

with the MMSE estimator are generally more consistent. In addition, both estimators

considerably outperform the EKS with smaller input SNRs; but, the EKS is the superior

estimator with larger input SNRs. The poor performance of the EKS with smaller input

SNRs and markedly better performance with larger input SNRs is typical performance for

a local, MMSE state estimator.

As to the question which estimator is the best, there is no simple answer. Two appealing
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aspects of the global MMSE estimator are its ease of implementation as well as its consistent

performance when applied to both the Henon and Ikeda maps. Furthermore, performance

with larger input SNRs is limited only by the number of terms N used in (4.42). Additional

experiments with larger input SNRs have suggested that performance continues to improve

as N increases beyond 4000.

One appealing aspect of the EKS is its potential value for self-cleaning, as suggested

by the performance results depicted in Figure 4-21. Another appealing aspect is that its

performance continues to improve as the input SNR increases beyond 20 dB. However, two

unappealing aspects of the EKS are its mediocre performance with extremely small input

SNRs and the large number of parameters one must specify when using it. Nonetheless,

the performance results presented in this chapter suggest that both the EKS and the global

MMSE estimator are potentially effective state estimators with chaotic systems.
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Chapter 5

Bounds on State Estimator

Performance

5.1 Introduction

As noted in Chapters 3 and 4, practical state estimators for nonlinear systems are often

heuristic, and Monte Carlo simulation is needed to assess their performance. When at-

tempting to design and refine state estimators for a given estimation problem, one often

has no way of knowing if poor performance of a state estimator is due to the estimator or to

a fundamental aspect of the problem itself. As such, it is often useful and desirable to know

the best performance achievable by any state estimator for a given estimation problem, or

equivalently to have upper bounds on achievable state estimator performance. Ideally, these

bounds should be "tight" in the sense that one could derive, at least in theory, an estimator

with performance achieving the bounds. However, just as deriving practical, optimal state

estimators is often an elusive goal, assessing the tightness of a given performance bound is

often an elusive goal as well.

In this chapter, we present and analyze computer simulations of several bounds on the

performance of state estimators for chaotic systems. The simulations and analysis indicate

that the Lyapunov exponents of chaotic systems strongly affect the achievable performance

of state estimators for these systems, and that for a dissipative, chaotic diffeomorphism,

there is a positive lower bound on the achievable total error variance when estimating the

state at a given time n using observations only for times before n or only for times after
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no. The simulations suggest that the behavior of the Cramer-Rao bound on state estimator

performance for a dissipative, chaotic diffeomorphism is similar to that for an unstable, lin-

ear, time-invariant (LTI) system for which the eigenvalues of the state transition matrix are

given by the the exponentials of the Lyapunov exponents of the chaotic system. This result

may not be surprising, since the definitions of both the Cramer-Rao bound and the Lya-

punov exponents involve linearizations of the system dynamics. However, the simulations

also reveal that this result holds only when the unknown state being estimated is treated

as a nonrandom parameter vector, and that the Cramer-Rao bound and generalizations of

this bound on state estimator performance when the unknown state is treated as a random

vector with known a priori PDF may provide little if any useful information for dissipative,

chaotic systems. The simulations also reveal the weakness of the Cramer-Rao bound for

noninvertible, chaotic systems, such as the ones considered in Chapter 6, even at moderate

input SNRs, and they suggest the value of a generalization of the Cramer-Rao bound known

as the Barankin bound for these systems.

The bounds we use in this chapter are not new, and they have been used in the past by

others for parameter estimation problems. However, to the best of our knowledge, they have

never been used for the types of deterministic systems of interest in this thesis. In addition,

the close relation between the behavior of these bounds for multidimensional, nonlinear

systems and the Lyapunov exponents of these systems has apparently not been explored in

the past, at least not for the problem scenario focused on in this chapter involving small to

moderate input SNRs, nonlinear, deterministic system dynamics, and unknown, nonrandom

state vectors.

We focus on the state estimation scenario involving unknown, nonrandom state vectors

in part because of the undesirable behavior of the performance bounds for random state

vectors, as illustrated in the final section of the chapter. As a consequence, many of the

results presented in this chapter strictly apply only to unbiased state estimators. The

challenging task of possibly extending the results to biased state estimators remains a topic

for future research, since it entails the discovery of new error bounds applicable to random

parameter vectors.

The next section briefly discusses the estimation problem of interest in this chapter and

the performance measures we week to bound. The section also briefly reviews the two gen-

eral performance bounds-the Cramer-Rao bound and the Barankin bound-emphasized
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in the chapter. The derivation of the specific form of these bounds for the estimation prob-

lem of interest in this chapter is provided in Appendix A. Section 5.3 provides computer

simulations of these bounds for various chaotic systems. In particular, Subsection 5.3.1

presents and qualitatively analyzes simulations of the bounds for two, dissipative, chaotic

diffeomorphisms: the Henon map and time-sampled Lorenz flow. The simulations reveal the

fundamental influence of system Lyapunov exponents and attractor boundedness on achiev-

able state estimator performance with these systems. Subsection 5.3.2 reveals the weakness

of the Cramer-Rao bound when applied to noninvertible, chaotic systems even with mod-

erate input SNRs, and the value of the Barankin bound for use with these systems. In

contrast to Sections 5.2 and 5.3 which deal with the problem of estimating nonrandom

state vectors, Section 5.4 deals with the problem of estimating random state vectors. Com-

puter simulations of performance bounds applicable to this problem are presented, with

the simulations suggesting the limited value of these bounds for state estimation involving

dissipative, chaotic systems and the need for novel performance bounds.

Finally, we emphasize that the purpose of this chapter is not to evaluate the specific

state estimation algorithms introduced in Chapter 4, but instead to examine the limitations

imposed by intrinsic aspects of deterministic, chaotic systems on theoretically achievable

state estimator performance with these systems.

5.2 Bounds for Nonrandom State Vectors

As in the previous chapter, we focus on the restricted DTS/DTO scenario given by

xa(n + 1) = f(x(n)) (5.1)

y(n) = h(x(n)) +v(n) (5.2)

where x(n) is the A-dimensional state vector, v(n) is a P-dimensional, zero-mean, Gaussian

white-noise sequence with covariance matrix R which is independent of the initial state

x(O), and h is a memoryless transformation assumed to be differentiable. Although we

derive performance bounds for arbitrary, differentiable h, we provide simulations only for

the special case in which h is the identity matrix. Because the CTS/DTO scenario can be

cast in the form of a DTS/DTO scenario, we use the above state-space model to represent

both the DTS/DTO and CTS/DTO scenarios in this chapter.
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The state estimation problem we focus on in this section is that of estimating x(no),

the unknown, but nonrandom state or equivalently orbit point at a fixed time no, given an

observation set Y(M,N) {y(i)}ti=M. As in previous chapters, we often omit the explicit

dependence of the observation set on M and N and use Y interchangeably with Y(M, N).

We also let /i (no) denote an arbitrary estimator for x(no) based on Y, and we let xnO denote

the actual, unknown value of x(no).

The two, related performance measures we seek to bound are the error covariance matrix

and the trace of this matrix, a quantity which equals the sum of the error variances of the

components of x(no). For a given estimator i(no) for the nonrandom state vector x(no),

the error covariance matrix P(i(no)) is given by

P(i(no)) - Ey;o0 {[i(no) - xO][i(no) - x]T} - B(x(no)) BT(x(no)) (5.3)

= ./J{~[(no) -xk[6(no) - Xno} p(Y; Xn,0 ) dY

-B(5:(no)) BT(x(no)) (5.4)

where Ey;z0 denotes expectation over the observation set Y given that x(no) = Xno,

p(Y; xno) is the likelihood function or equivalently the PDF of Y given that x(no) = x O,

and B(i(no)) is the bias of i(no) as given by

B(i(no)) = Ey;.o {f(no)} -. o (5.5)

= f ;(no)p(Y; Xn,)dY-x (5.6)

In general, performance bounds for nonrandom parameter vectors, including the two

bounds considered in this chapter, are applicable only to unbiased estimators, which are

those for which B(x(no)) = 0. Although one can adapt these bounds to handle biased

estimators, the resulting bounds are (often undesirably) estimator dependent with some

function of the estimator bias appearing in the bound. This unbiasedness constraint on

the bounds limits their value, since practical estimators including the ML estimator are

inherently biased in many estimation problems. However, the performance bounds for

unbiased estimators considered in this chapter provide useful insight into the problem of

state estimation with chaotic systems, with this insight being potentially relevant to biased

estimators as well. In addition, one of the bounds we consider, the Cramer-Rao bound, is
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an asymptotically tight bound that is achievable asymptotically with the ML estimator (an

asymptotically unbiased estimator), and a limiting case of the other bound, the Barankin

bound, is a tight bound with an explicit form of the unbiased estimator achieving the bound

provided in [6].

5.2.1 Cramer-Rao Bound

The Cramer-Rao bound is perhaps the most widely used performance bound for parameter

estimators. One advantage of the Cramer-Rao bound over other bounds is the relative ease

in explicitly deriving it for many estimation problems, including the problems considered

here. Furthermore, for estimation problems involving nonrandom parameters with additive

noise, the bound is generally asymptotically tight in the sense that as the input SNR goes to

infinity, the Cramer-Rao bound is achieved by an estimator, which in fact is the ML estima-

tor. In addition, at any input SNR if the error covariance matrix of some unbiased estimator

satisfies this bound with equality, the estimator is also the ML estimator. Throughout the

remainder of the chapter, we distinguish between the Cramer-Rao bounds for estimators of

nonrandom and random parameters by denoting the bound for nonrandom parameter esti-

mators as simply the Cramer-Rao bound and the bound for random parameter estimators

as the random Cramer-Rao bound.

Use of the Cramer-Rao bound requires that the likelihood function p(Y; x(no)) exist

and satisfy certain regularity constraints, specifically that it be twice differentiable with

respect to the parameter x(no) at the actual parameter value xno and that both derivatives

be integrable with respect to Y. For the estimation problem of interest in this chapter, the

Cramer-Rao bound on P(x(no)), the error covariance matrix of of i(no), is given by [86]

P(:i(no)) > J (5.7)

where J(axn), the Fisher information matrix, is given by

J(Xno) = Ey;zo {D (no) {logp(Y;xno)}D(no) {logp(Y;xno)}} (5.8)

and where D(, 0 ) {logp(Y; ,0)} denotes the derivative of logp(Y; x(no)) evaluated at xn,0.

We use this convention throughout the chapter, letting the subscript of the derivative oper-

ator denote the variable of differentiation and indicating the value of the variable at which
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the derivative is to be evaluated as an argument of the function being differentiated.

As shown in Appendix A, for the DTS/DTO scenario given by (5.1) and (5.2), the

Fisher information matrix reduces to the following:

N

J(xo ) = A D(nol){h(f i-nO (X ))} R1 D(,o){h (fi-O (O ))}. (5.9)
i=M

This expression for J(x,0 ) is closely related to the expressions defining global and local

Lyapunov exponents of f. In particular, as discussed in Chapter 3 the Lyapunov exponents

of f are the natural logarithms of the eigenvalues of the following matrix [21]:

1

A, = lim {Df'{f,(x)} D{fi'(x)}}', (5.10)
2 00

where x is a point on the attractor (except possibly one of those in a set of measure zero),

whereas the local Lyapunov exponents are the natural logarithms of the eigenvalues of the

following matrix [2]:

T~~~ I 7{D{f '(X)} D{f(x)}} , (5.11)

for some fixed integer I. A comparison of (5.9) and (5.10) reveals that in the special case

that both h and R are NV x A identity matrices, the Fisher information matrix J(x(n))

consists of a sum of partial products of the infinite product of matrices which determines the

Lyapunov exponents of f. Equivalently, for this special case the Fisher information matrix

consists of a sum of matrices which determine local Lyapunov exponents for increasing

values of I in (5.11). As a result, the local and global Lyapunov exponents of f strongly

influence the behavior of of J(x(no)) as suggested by the simulations in Section 5.3.

In many applications, one seeks to bound the trace of P(&(no)), which is the sum of the

error variances for the components of 5i(no) and which we denote the total error variance.

That is,
Af

Tr{P(i(no))} = Ey;o {(i(no) - xi(no))2} (5.12)
i=1

where Tr{.} denotes the trace of the bracketed matrix and where

x(no) = [x1 (no),x 2(no),.. .,xv(n)]T (5.13)

-(no) = [: 1(no),: 2(no),. .,iA(no)]T (5.14)
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From the Cramer-Rao inequality, it follows that

Tr{P((no))} > Tr{J-1 (x,)}. (5.15)

Two relevant facts from linear algebra are that the trace of a matrix equals the sum of

its eigenvalues and that the eigenvalues of an invertible matrix equal the reciprocals of the

eigenvalues of the inverse. Therefore, if {Ai} denote the set of eigenvalues of J(x,0 ), it

follows that

Tr{P(xi(no))} > 1 (5.16)

Thus, the sum of the reciprocals of the eigenvalues of the Fisher information matrix provides

a lower bound on the total error variance. Section 5.3 explores via computer simulation the

behavior of the eigenvalues of Tr{J-l (xno)} as a function of the number of observations for

two, dissipative, chaotic diffeomorphisms, the Henon map and time-sampled Lorenz flow,

and for a chaotic unit-interval map. The simulations reveal a close relation between these

eigenvalues and the Lyapunov exponents of the systems, with the qualitative behavior of the

eigenvalues for a given chaotic system similar to that of the eigenvalues for a deterministic,

LTI system which has a diagonal state transition matrix with diagonal elements given by

the exponentials of the Lyapunov exponents of the chaotic system. This similarity in the

behavior of eigenvalues of Fisher information matrices for estimation problems involving

chaotic and linear systems may not be surprising in light of the fact that the inverse of the

Fisher information matrix for a nonlinear estimation problem is the actual error covariance

matrix for the linear estimation problem that arises by linearizing the nonlinear problem

about the actual parameter value and estimating small perturbations about this value.

5.2.2 Barankin Bound

As noted in the previous subsection, for nonlinear parameter estimation problems the inverse

of the Fisher information matrix is the error covariance matrix for an associated linear

estimation problem. As a result, for many nonlinear estimation problems, the Cramer-Rao

bound is a fairly tight performance bound only with large input SNRs, with the effect of

nonlinearities not accounted for by the Cramer-Rao bound becoming important as the SNR

falls below a certain threshold. As we show in the next section, for state estimation with

chaotic systems, the Cramer-Rao bound can be a weak bound even with moderately large
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input SNRs. To establish the threshold SNR at which the Cramer-Rao bound begins to

lose its effectiveness, one must generally consider other performance bounds.

The Barankin bound is not a single bound but a general class, perhaps the most general,

of lower bounds on the error moments of unbiased estimators for unknown, nonrandom

parameters. Included in this set are the Cramer-Rao and Bhattacharyya bounds. In the

most general, probabilistic setting, the Barankin bound is defined on a probability space

(f, ,/,p), where Q = {w} is a set, 8 is a a-algebra of subsets of Q, and pt is a probability

measure defined on /3, with a family of density functions {p(w; 0)} (with respect to the

measure ) assumed to exist on this space. The density functions are indexed by the

parameter 0 E 0, where 0 is a parameter set. As shown in [6], for any real-valued function

§(w) which is measurable on and unbiased in the following sense

I §(w) p(w; ) d(w) = g(9), (5.17)

the following inequality holds for all finite m, real constants ai and parameters Oi E ,

i = 1, .- , m such that the region of support of p(w; 80o) contains that of each p(w; 8/):

E,,;o {(9(w) - g(0))2} J/((w) - g(Oo))2p(w; Oo) dp(w) (5.18)

> {ZEa 1 a[g(0i) - g(0)]} 2 (5.19
f 071 aiL(w; i, )]2p(W; )dyu(W)(*)

where

L(w; , 0o) = p(W; o) (5.20)

The right-hand-side of the above inequality is the Barankin bound, or more precisely an

element of the class of Barankin bounds.

With respect to parameter estimation, the probability space (Q, /3, p) is the observation

space, the density functions p(w; Oi) are likelihood functions with 00 denoting the actual

value of the parameter 8 one seeks to estimate, and the other 8i, i = 1, - , m, denoting other

parameter values which are typically referred to as test points. A fundamental, theoretical

property of the Barankin bound is that it is a tight bound in the sense that for a fixed

parameter value 0o, the least upper bound of the right-hand-side of (5.19) with respect

to all finite m (the number of test points), the test points themselves, and the constants

ai, is achievable by an unbiased estimator, an explicit expression for which is given in [6].
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However, the estimator with performance achieving the bound often has little practical

value, in part because the form of the estimator is a function of the unknown parameter

value.

Appendix A provides the equations for a restricted form of the Barankin bound for

vector-valued parameters, originally derived in [58, 59], as specialized to the problem sce-

nario of interest in this chapter with the transformation h in (5.2) equal to the identity

operator. As shown in the appendix, this restricted form of the Barankin bound is express-

ible as a sum of two components-one the inverse of the Fisher information matrix, and the

other a positive semidefinite matrix which depends upon the test points, the observation

noise covariance matrix, and the number of observations. For the problem scenario of inter-

est here, a strong sensitivity of this second component to the test points, observation noise

covariance matrix, and observations arises through the matrix B each element of which is

given by

N

Bij = exp [fk-no °(xi(no))- fk-no (Xno)] R - 1

k=M

x[fk-no°(xj(no)) - fk-no(Xno)]}, i,j = 1,2. *-,m (5.21)

where m is the number of test points, and aj(no) and xi(no) denote test points, i.e., values

of the state vector x(no) other than xno0 . Note that for i = j, Bij is the positive exponen-

tial of the weighted distance between orbit segments, one containing the actual parameter

value and the other containing a test point, with the inverse of the noise covariance matrix

providing the weights. Since the term grows exponentially with this weighted distance, it is

extremely sensitive to changes in the noise covariance matrix, number of points in the seg-

ments, and the choice of test points. Whereas the inverse of B enters the second component

of the bound, the influence of this second component on the overall bound is greatest when

the weighted distances between orbit segments are smallest. As a consequence, the influ-

ence of the second component of this restricted form of the Barankin bound on the overall

bound becomes greater as the input SNR decreases. Such behavior of the second compo-

nent is desirable, since the first component, the inverse of the Fisher information matrix or

equivalently the Cramer Rao bound, becomes tighter as the input SNR increases.
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5.3 Computer Simulations

In this section, we present and qualitatively analyze computer simulations of the Cramer-

Rao and Barankin bounds for three chaotic systems-the Henon map, time-sampled Lorenz

flow, and generalized shift map. The first two systems are dissipative diffeomorphisms

whereas the third is neither invertible nor dissipative. The simulations indicate that for

dissipative, chaotic diffeomorphisms there is a nonzero lower bound on the total error vari-

ance for estimators of x(no) given observations for only times less than or equal to no or

for only times greater than or equal to no, but this lower bound asymptotically approaches

zero as the number of observations for times both greater than and less than no increases.

The simulations also indicate that the Cramer-Rao bound can be a weak bound even with

moderately large input SNRs, for the problem of estimating the initial condition of an orbit

segment generated by a noninvertible, chaotic map. This weakness suggests the need for

other bounds, such as the Barankin bound, to realistically assess achievable state estimator

performance with these systems.

Various aspects of the bounds are considered, but the emphasis is on the behavior of the

eigenvalues of the bounding matrices (for the dissipative systems) as a function of the input

SNR and the number of observations. This emphasis on eigenvalues arises from the close

relation between these eigenvalues and the system Lyapunov exponents. As a consequence

of this relation, the behavior of the eigenvalues reflects the influence of the system Lyapunov

exponents on the performance bound.

The question arises as to how one chooses test points used in the Barankin bound. As

noted in Section 5.2, the restricted Barankin bound used in this chapter is expressible as

the sum of two components, one the inverse of the Fisher information matrix, and the

other a function of the orbit segments corresponding to these test points, the number of

observations, and the observation noise covariance matrix. Also noted in that section is the

fact that the influence of this second component on the overall bound is greatest when the

distance between these orbit segments and that corresponding to the actual parameter value

is smallest. With this in mind, we chose the test points for the dissipative systems used for

the simulations using the orbit matching approach introduced in Chapter 4. Specifically, a

reference orbit was generated and the m reference orbit points chosen as test points, where

m is the number of test points, for which the distances between the corresponding orbit
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segments and that corresponding to the actual state vector were smallest. For the unit-

interval map, the m points with orbits differing from that of the actual initial condition by

the least number of points were used as test points.

5.3.1 Simulations with Dissipative, Chaotic Diffeomorphisms

In this section, we provide computer simulations of the Cramer-Rao and restricted Barankin

bounds for the Henon map and time-sampled Lorenz flow. The sampling interval for the

Lorenz flow used in all simulations was .005 seconds. In addition, with the exception of the

results depicted in Figures 5-1-5-6, all results were obtained with normalized systems for

which the experimentally obtained signal variance of each component of the state vector

was identical. In other words, the components of the state vector were individually scaled

so that they all shared the same variance. Among the reasons for the scaling was that it

permitted the use of a single observation noise intensity to achieve the same input SNR

for each component of the state vector. Second, it prevented the contribution from one

component of the state vector to necessarily dominate the total error variance. The original

systems, without scaled state vectors, were used for the results shown in Figures 5-1-5-6

to facilitate the comparison of these systems with diagonal, linear systems having the same

Lyapunov exponents. Except where stated otherwise, all simulation results were obtained

with R, the observation noise covariance matrix, given by a2 IAr where Ig is the (f x A)-

identity matrix, and with h, the output transformation, equal to the identity operator.

Figures 5-1-5-3 (a) depict the eigenvalues of the inverse of the Fisher information matrix

for the Henon map as a function of the number of past, future, and both past and future

observations, respectively, with an arbitrary point on the attractor used as xno. Numerical

problems arise when calculating the eigenvalues of the Fisher information matrix for the

Henon map as the number of observations increases. As a result, relatively few numbers of

observations could be used for the figures. Figures 5-1-5-3 (b) depict analogous information

for the unstable, diagonal, linear system Fh which has the same set of Lyapunov exponents

{.42,-1.62} as the Henon map and is given by

e42 e0
Fh =1.62 (5.22)

0 e- 1 6 2
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Figures 5-4-5-6 depict analogous information for the time-sampled Lorenz flow and

the unstable, diagonal, linear system F1 which has the same set of Lyapunov exponents

{-.1125, .0075, O} as the Lorenz flow with sampling interval of .005 seconds and is given by

e.0075

0

0

0 0

e° 0 

0 e- 1 125

(5.23)
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As indicated by Figures 5-1-5-6, for both the Henon and Lorenz systems the eigenvalues

of J-l(x,) have the same qualitative behavior as those of the corresponding unstable,

linear systems. In light of this, it is useful to analyze the inverse of the Fisher information

matrix for diagonal, LTI systems to better understand the behavior of the inverse of the
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Fisher information matrix and consequently the Cramer-Rao bound for chaotic systems.

Properties of the error covariance matrix of optimal, Bayesian state estimators for arbitrary,

noise-driven linear systems have been studied extensively in the past. We only sketch the

highlights of these properties relevant to the specific problem of interest here. For an LTI

system with state and observation equations given by

x(n + 1) = Fx(n) (5.24)

y(n) = x(n) +v(n) (5.25)

were {v(n)} is a Gaussian, white-noise sequence with covariance matrix given by a2 IBM and

where F is an AF x X diagonal matrix given by

eAl 0 ... 0

0 eA2 0
F= (5.26)

0 0 -.. eA

with the Ai assumed to be real and distinct, the inverse of the Fisher information matrix
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J-(xn0 ) for arbitrary x, 0 and observation set Y(M,N) is given by

Sj O ... 0

0 S - 1 0
-( )= o2 2 (5.27)

0 0 . , -I

where
Syi - e2noAi 1 2 j

S71 = e2nO j 2MXj _ e(2N+2)Aj (5.28)

Because J-l(x,o) is a diagonal matrix, its eigenvalues are given by its diagonal elements,

and consequently analyzing the eigenvalues of J-l(x, 0 ) entails analyzing the diagonal el-

ements. Our interest is in the scaling behavior of each diagonal term S - 1 as N becomes

increasingly positive and M becomes increasingly negative. The results are the following:

* If Aj > 0, then the term e2 MkJ grows smaller as M becomes increasingly negative, so

that for large negative values of M

Sy'1 e(2n°-2)A(e 2 j - 1)e - 2NA j (5.29)

which goes to zero only if N -- oo and does so exponentially at a rate Aj. Thus, for

Aj > 0 and a fixed, finite value of N, S?1 > C(N) > 0 for some constant C(N) which

depends on N.

* If Aj < 0, then the situation is reversed, and e2NAj grows smaller as N becomes

increasingly positive, so that for large positive values of N

Sj -1 : e2n°oJi(1 - e2Xi)e- 2Mjxi, (5.30)

which goes to zero only if M -oo and does so exponentially at a rate Aj. Thus,

for Aj < 0 and a fixed, finite value of M, S -1' > C'(M) > 0 for some constant C'(M)

which depends on M.

* If Aj = 0, then

' N-M + 1' (5.31)

which is the reciprocal of the total number of observations. Thus, for Aj = 0, Sj 1
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scales as the reciprocal of the number of observations.

As noted earlier, for deterministic, LTI systems with real-valued eigenvalues none of

which are zero-valued, the Lyapunov exponents are the logarithms of the absolute value of

the eigenvalues. Thus, the Lyapunov exponents of F consist of the set {Ai}l-. As such,

the above results indicate that for diagonal, LTI systems with both positive and negative

Lyapunov exponents, the bound on the total error variance of estimators for x:0 as given

by the sum of the eigenvalues of the Fisher information matrix is nonzero when there are

only a finite number of observations for times before no, even if the number of observations

for times after no goes to infinity. Similarly, the bound is nonzero when there are only a

finite number of observations for times after no even if the number of observations for times

before no goes to infinity. Only as the number of observations for times both before and

after no goes to infinity does the sum of the eigenvalues and thus a lower bound on the total

error variance decay asymptotically to zero.

Since dissipative, chaotic systems have both positive and negative Lyapunov exponents

and in light of the similar, experimentally observed, qualitative behavior of the eigenvalues

of J-l(xa) for a chaotic system and the diagonal LTI system with the same Lyapunov

exponents, it appears that a similar result holds for chaotic systems, in the sense that there

is a nonzero bound on the total error variance of unbiased state estimators for xn0 given

only observations for times before or after no. The practical implication is that achieving

large SNR gains when performing state estimation with dissipative, chaotic systems requires

the use of observations both before and after the time of interest.

It is tempting to take this analogy between chaotic systems and unstable LTI systems

one step further and conclude that as with deterministic, LTI systems, independent of

the input SNR there is an exponential decay in uncertainty, or at least a bound on this

uncertainty, in the value of the state at time no as the number of observations for times

both greater than and less than no increases, or at worst a decay with rate dominated by the

reciprocal of the number of observations. However, as noted earlier the Cramer-Rao bound

for nonlinear systems only reflects properties of the locally linearized system. An intrinsic

nonlinearity of dissipative, chaotic systems is the boundedness of orbits on the attractor.

As one might expect, the size of a chaotic attractor, as given by the variance of orbits on the

attractor, influences achievable state estimator performance especially as the attractor size

and observation noise intensity become comparable. Whereas the Cramer-Rao bound does
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not account for this nonlinearity, the bound becomes weaker as the input SNR decreases,

as is the case with most nonlinear systems. The question arises as to the threshold, or

equivalently the input SNR, at which the Cramer-Rao bound begins to lose its effectiveness

and the rate at which it does so for chaotic systems. One particularly illustrative way to at

least qualitatively answer this question is with the use of the Barankin bound.

Figures 5-7-5-12 (a) depict the eigenvalues of the Cramer-Rao bound as functions of

the number of past, future, and both past and future observations, respectively with an

input SNR of 10 dB and with an arbitrarily selected point on the attractor used as xn. In

contrast to the earlier figures, the plotted results are not normalized by the noise variance

a 2 . Figures 5-7-5-12 (b) depict analogous information for the restricted Barankin bound

with 5 test points.
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Figure 5-12: Eigenvalues of Cramer-Rao and Barankin bounds with observation set Y(no -

N, no + N) for time-sampled Lorenz flow. (a) Cramer-Rao; (b) Barankin.

indicates that the decay rate for the most rapidly decaying eigenvalue with observations at

times before no is much smaller for the Barankin bound than for the Cramer-Rao bound,

thereby suggesting that the exponential decay rates associated with the Cramer-Rao bound

are overly optimistic. Figures 5-13 and 5-14 depict the eigenvalue sums for the Cramer-

Rao and Barankin bounds as a function of the input SNR for two different values of N in

the observation sets Y(no - N, n o + N). The figures indicate that for both systems, the

the Cramer-Rao and Barankin bounds on the total error variance deviate at input SNRs

below a threshold that depends upon both the system and the number of observations. The

results suggest the value of the Barankin bound on assessing achievable state estimation

performance with dissipative, chaotic systems and input SNRs smaller than 20 dB.
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Figure 5-13: Sum of eigenvalues of Cramer-Rao and Barankin bounds with observation set
Y(no - N, no + N) for Henon map. (a) N = 6; (b) N = 12.
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Figure 5-14: Sum of eigenvalues of Cramer-Rao and Barankin bounds with observation set
Y(no - N, no + N) for time-sampled Lorenz flow. (a) N = 20; (b) N = 40.

5.3.2 Simulations with Unit-Interval Maps

In this section, we consider performance bounds on unbiased estimators of the initial condi-

tion for a noninvertible, chaotic map. Although we focus on unit-interval maps, the results

are relevant to multidimensional chaotic maps as well. In particular, we consider bounds

on estimators for the initial condition x(0) of the shift map with observation set Y(0, N),

where the general form of the shift map is given by

x(n + 1) = f(x(n)) = ax(n) (mod ,3) (5.32)

where (mod 3) denotes modulo 3 and where a is an integer with absolute value greater

than one. Figure 5-15 depicts the function f for the parameter pair (a = 4, /3 = 1), the

pair used for all examples in this section.

i-

+
-
x

x(n)

Figure 5-15: Shift map with parameter pair (a = 4, -- = 1).

As indicated in the figure, the shift map is discontinuous, with a - 1 points of disconti-
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nuity. However, the map is differentiable except at these a - 1 points and has the constant

derivative of a. The Cramer-Rao bound is defined for each initial condition x0 which is

not a discontinuity point of any of the composed functions {fi}NO. For each such initial

condition and observation set Y(0, N), a straightforward derivation reveals that the inverse

of the Fisher information J-1 (x0 ) is given by

c~2
j- 1 (x(0)) = a2(N+ - (5 33)U2(N+l) - 1 (.3

where ao2 is the variance of the observation noise. This expression decays exponentially

with the number of observations at a rate a - 2. A similar result, exponential decay of the

Cramer-Rao bound with the number of future observations, holds for all other unit interval

maps having positive Lyapunov exponents. However, for the shift map, a points are mapped

by f to each point; as a consequence and independent of the number of observations, a - 1

orbit segments differ from that generated by x0 by a single point. Similarly, a - 1 orbit

segments differ from that generated by x0 by at most i points for each integer i. In light of

this, one might expect the Cramer-Rao bound to be a weak bound for the shift map even

with moderately large input SNRs.

Figures 5-16 and 5-17 confirm this expectation. The figures depict the Cramer-Rao and

0 ...

6C.o~ -1 sBARANKIN
.20

O-S
(.J - - -2 40.

(b -5CRAMER-RAO

o

J 
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Figure 5-16: Cramer-Rao and Barankin bounds for initial condition estimators of the shift
map with parameter pair (a = 4, 6 = 1) and with observation set Y(O, N). (a) Input SNR
= 15 dB; (b) Input SNR = 5 dB.

Barankin bounds on the performance of unbiased estimators for x(0) for the shift map as a

function of the number of observations and input SNR, respectively. Eight test points were

used in the Barankin bound for the results shown in the figures, with the orbit segments of

the test points differing from that of the actual initial condition by at most 2 orbit points.
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Figure 5-17: Cramer-Rao and Barankin bounds for initial condition estimators of the shift
map with parameter pair (a = 4, / = 1) and with observation set Y(0, N). (a) N = 4; (b)
N=8.

The figures indicate that the Cramer-Rao bound becomes a progressively weaker bound as

the number of observations increases. In the figures, the nonzero limiting behavior of the

Barankin bound arises from the noninvertibility of the shift map. Divergence of the Cramer-

Rao and Barankin bounds is not unique to the shift map, but instead can be expected with

any chaotic, unit-interval map and certain, noninvertible, multidimensional chaotic maps

as well.

5.4 Bounds for Random State Vectors

A fundamental limitation of performance bounds for estimators of nonrandom parameters is

that they are either applicable only to unbiased estimators or they are estimator-dependent

with the dependency generally a function of the estimator bias. In contrast, many per-

formance bounds for estimators of random parameters are applicable to both biased and

unbiased estimators, and the bounds are not estimator dependent. In this section, we briefly

consider performance bounds for state estimators of dissipative, chaotic systems, when the

unknown state vector x(no) is a random vector with known a priori PDF. Experimental

results are presented which suggest that widely used performance bounds for estimators of

random parameters have limited value with dissipative, chaotic maps. The specific problem

we consider is that of estimating the random initial condition x(0) of an orbit segment

generated by a dissipative, chaotic diffeomorphism given the (N + 1)-point observation set

Y(0, AN) for the special case in which p(x(0)), the a priori PDF of the initial condition, is

Gaussian with mean vector x 0 and covariance matrix 7-2 Is. All experimental results in the
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section were obtained with the time-sampled Lorenz flow. Because the Lorenz attractor has

a bounded region of attraction, the mean vector and covariance matrix of p(x(0)) used in

obtaining the experimental results were chosen to ensure that the probability of an initial

condition lying outside this region was extremely small.

5.4.1 Random Cramer-Rao Bound

In general, if the joint probability measure on the initial condition x(0) and observation set

Y has a corresponding PDF p(Y, x(0)), then the error correlation matrix PR(i(O)) for any

estimator i(0) of x(0) is given by

PR((O)) EY,(O (O ) {[()- x(O)][;(0)- x(0)]T } (5.34)

= J {x(O) - x(O)][(O) - x(O)]T} p(Y x(O)) dYdx(O). (5.35)

where as indicated above Ey,_(o) denotes expectation over the joint PDF p(Y, x(0)). The

trace of PR(/(O)) yields the total mean-squared (estimation) error (MSE) for the com-

ponents of i(0). The Cramer-Rao bound on PR(i(O)), hereafter denoted the random

Cramer-Rao bound, is given by

PR(;(O)) > JR-l(x(0)) (5.36)

where JR(x(O)), the Fisher information matrix for the random parameter vector x(0),

hereafter denoted the random Fisher information matrix, is given by [86]

JR(X(O)) = Ey,(o){D(o) { logp(Y, x(O))} D(o) {logp(Y, x(0))}} (5.37)

or equivalently by

JR(a(O)) = Ey,.(o) {D O) {logp(YIx(O))} D.(o) {logp(Ylx(O))}}

+E.(o) {D.(o) {logp(x(0))} Dx(o) {logp(x(0))}} (5.38)

= E(O) {J(x(O))}

+E(o) {D T0) {logp(x(0))} DS(O) {logp(x(0))}} (5-39)
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where J(x(0)) has the same form as the Fisher information matrix for nonrandom param-

eters used in the previous section. Use of the random Cramer-Rao bound requires that

p(Y, x(no)) exist and satisfy certain regularity constraints, specifically that it be twice dif-

ferentiable with respect to x(no) and that both derivatives be integrable with respect to

both x(no) and Y.

Since p(x(0)) is a Gaussian PDF with covariance matrix 72 IA, it follows that

E+(o) {D o) {logp(x(0)) }D(o) {logp(x(0))} = -2 IX, (5.40)

so that for the problem of interest here JR(x(0)) reduces to

JR(X(0)) = E£(O) {J(x(0))} + 7- 2 Id. (5.41)

As indicated by (5.41), the first component of JR(x(0)) involves an averaging of matrices,

where each matrix has the same form as the Fisher information matrix for a nonrandom

parameter. As suggested by the simulation results that follow, because of this averaging

the behavior of the random Fisher information matrix for initial condition estimators with

dissipative, chaotic maps differs considerably from that of the nonrandom Fisher information

matrix (i.e, the Fisher information matrix for nonrandom parameters). The results indicate

that this averaging can cause the random Fisher information matrix to exhibit undesirable

behavior which severely limits the value of the random Cramer-Rao bound for disspative,

chaotic systems.

Figures 5-18 and 5-19 depict the eigenvalues of JR-'(x(0)) for the time-sampled Lorenz

flow as a function of N for input SNRs of 20 dB and 30 dB, respectively. For these results

and all the results reported in this section, the expectation over x(0) in (5.41) was performed

using Monte Carlo simulation, with J(x(0)) calculated for 1000 samples of x(0) randomly

selected according to p(x(0)) and the resulting matrices averaged. As indicated by both

pairs of figures, the behavior of the eigenvalues differs considerably for the different values

of 7y, with the behavior for the smaller value similar to that observed earlier for nonrandom

parameters. For the larger value of 7, all of the eigenvalues decrease with increasing N,

with none exhibiting the limiting behavior exhibited by those for the smaller value of 7.

A nonrigorous explanation for this eigenvalue behavior is the following. Although the

Lyapunov exponents of a chaotic system are the same for nearly all initial conditions, the

106



20 40 00 so t0o

(a)
120 140 16 1 2()

(b)
NUMBER OF OBSERVATIONS (N)

Figure 5-18: Eigenvalues of random Cramer-Rao bound for initial condition estimators of
time-sampled Lorenz flow with observation set Y(0, N) and input SNR of 20 dB. (a) a = .1;
(b) 7 = 1.
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Figure 5-19: Eigenvalues of random Cramer-Rao bound for initial condition estimators of
time-sampled Lorenz flow with observation set Y(0, N) and input SNR of 30 dB. (a) 7 = .1;
(b) -y = 1.
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local manifolds or directions associated with these exponents differ at each point. With

observations of future state values and a fixed initial condition x(0), the Fisher information

(as given by J(x(0))) along the directions associated with negative Lyapunov exponents

remains small as the number of future observations increases, with a similar relation among

the directions associated with positive Lyapunov exponents and past observations. Equiv-

alently, J(x(0)) has bounded eigenvalues, one for each negative Lyapunov exponent, which

thus have bounded, nonzero inverses, even as the number of future observations becomes

large. However, the eigenvectors associated with these eigenvalues differ for different values

of x(0). All other eigenvalues increase without bound as the number of future observations

increases. When the expectation is taken over x(0) and there is thus an averaging of the

matrices J(x(0)), the resulting averaged Fisher information is not small in any direction for

the larger value of -y. Equivalently, both the large and small eigenvalues of the individual

matrices J(x(0)) influence each eigenvalue of Ez(o) {J(x(0))} with computer experiments

suggesting that each of these eigenvalues increases as the number of future observations

increases. Since the inverses of these eigenvalues (incremented by - 2) are the eigenvalues

of JR-1(x(O)), the result is that all eigenvalues of JR-l(x(0)) decrease with increasing

N. In contrast, for the smaller value of , the local manifolds associated with Lyapunov

exponents for the values of x(0) used in the averaging differ very little, so that the average

of the matrices J(x(0)) has similar eigenvalue properties as each of the matrices J(x(0))

individually.

This averaging of information matrices can lead to undesirable behavior by the Cramer-

Rao bound. Figures 5-20 (a) and (b) depict the superimposed eigenvalue sums of JR-' (x(0))

for the two values of y used for the earlier figures and with input SNRs of 20 dB and 30

dB, respectively. In both figures, there is a threshold value of N above which the eigenvalue

sum is smaller for the larger value of y. In addition, this threshold is smaller with the

larger input SNR value. The figures indicate that when N increases beyond a threshold,

the bound on the MSE is smaller when there is greater a priori uncertainty in the initial

condition 2(0). If in fact the bound were achievable, the nonsensical implication would be

that achievable state estimator performance increases with decreasing a priori knowledge

of the actual value of the initial condition. Furthermore, this undesirable behavior of the

bound becomes more pronounced as the input SNR increases. Consequently, the random

Cramer-Rao bound on the performance of initial condition estimators of dissipative, chaotic
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Figure 5-20: Summed eigenvalues of random Cramer-Rao bound for initial condition esti-
mators of time-sampled Lorenz flow with observation set Y(0, N). (a) Input SNR = 30 dB;
(b) Input SNR = 20 dB.

maps is least effective with input SNRs for which the Cramer-Rao bound is generally most

effective.

5.4.2 Weiss-Weinstein Bound

Just as the nonrandom Cramer-Rao bound has a random counterpart, the Barankin bound

has random counterparts as well [9, 88, 89, 90], with the most general of these counterparts

being the Weiss-Weinstein class of performance bounds for estimators of random parameters.

In contrast to the probabilistic setting for the Barankin bound provided in Section 5.2.2,

the probabilistic setting for the Weiss-Weinstein involves two probability spaces-one the

observation space (, , ,) (as with the Barankin bound), and the other the parameter

space (, r, v), where 0 = {0} is a set of parameter values, v is a a-algebra of subsets of

0, and v is a probability measure defined on q. An underlying assumption is that the joint

probability measure on the two spaces is absolutely continuous with respect to the product

measure, so that the joint density function p(w, 0) exists. As shown in [90] (with slightly

different notation), for any real-valued function 9(w) that is measurable on 2 the following

inequality holds for all finite n, real constants ai, offsets zi, and exponents si satisfying

0 < i < 1, for i = 1,. - - , n:

Ewe {((w) - g(a))2}

> [EL1 a E.,= { [g ( - z) - g()]Lls (w, -Zi, 0) }] 2
- -' - (5.42)
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where

L(w,l,02 ) P(W, 01) (543)
(543)

for 1, 2 E 0 and where E,,e denotes expectation over the joint density p(w, 9). The above

inequality, the Weiss-Weinstein bound, is the counterpart to (5.19), the inequality corre-

sponding to the Barankin bound. Note that whereas constant test points wi corresponding

to other parameter values are used in the Barankin bound, constant offsets zi are used in

the Weiss-Weinstein bound.

Appendix A provides the equations for a restricted form of the Weiss-Weinstein bound

for vector-valued parameters for the problem scenario of interest in this chapter. As shown

in the appendix, analogous to the restricted form of the Barankin bound considered earlier

in the chapter, this restricted form of the Weiss-Weinstein bound is expressible as a sum of

two components-one the inverse of the random Fisher information matrix, and the other

a matrix which depends on the test offsets, the observation noise covariance matrix, and

the number of observations. Figure 5-21 depicts the random Cramer-Rao and restricted

Weiss-Weinstein bounds for the same scenario used for Figure 5-20.
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Figure 5-21: Summed eigenvalues of restricted Weiss-Weinstein and random Cramer-Rao
bound for initial condition estimators of time-sampled Lorenz flow with observation set
Y(O,N). (a) Input SNR = 30 dB; (b) Input SNR = 20 dB.

A single test offset was used in the Weiss-Weinstein bound, with the offset carefully

chosen by trial-and-error to yield as tight a bound as possible. Additional experiments with

more than one test offset offered little if any improvement. As indicated by the figures, the

undesirable behavior exhibited by the random Cramer-Rao bound is also exhibited by the

restricted Weiss-Weinstein bound, in the sense that there is a threshold value of N above

which the bound on the MSE is smaller when there is greater a priori uncertainty in the
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initial condition x(0). As such, the undesirable behavior of the random Cramer-Rao bound

with larger input SNRs is not avoided with generalizations of the bound.

The question arises as to the existence of a performance bound for estimators of random

parameters which avoids the undesirable behavior of the random Cramer-Rao bound. It

is straightforward to derive a rate-distortion bound for the problem of interest here either

by specializing the more general bounds introduced in [28, 92] or by using the theory

developed in [7] as a foundation. Experiments have suggested that the resulting bound

avoids the undesirable behavior of the random Cramer-Rao bound but that the bound is a

much weaker bound than the Cramer-Rao bound except with extremely small input SNRs

and thus has little value with the input SNRs of interest here. Alternatively, the random

Cramer-Rao bound does not need to be incorporated in the Weiss-Weinstein bound as was

done for the results presented above. However, computer experiments have indicated that

with input SNRs above 20 dB, the Weiss-Weinstein bound is an extremely weak bound

when it does not incorporate the random Cramer-Rao bound.
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Chapter 6

MC Maps and Signal Synthesis

6.1 Introduction

Thus far in this thesis, we have focused on dissipative, chaotic systems and state estimation

with these systems. Various topological and ergodic properties of dissipative, chaotic sys-

tems have been considered, including the presence of both positive and negative Lyapunov

exponents, boundedness of attractors, and the existence of invariant measures; and the in-

fluence of these properties on achievable state estimator performance has been addressed.

Until now, we have not considered properties unique to individual chaotic systems, nor have

we discussed how one might synthesize a chaotic signal with specified properties.

In contrast to the previous chapters, this chapter focuses on signal synthesis, in particular

the synthesis of maps with properties that facilitate the detection and estimation of noise-

corrupted orbit segments generated by these maps. We introduce a class of maps that

are amenable to analysis and although deterministic, generate potentially useful random

processes. In the next chapter, we exploit this random-process-generation property of these

maps to derive computationally efficient, practical, optimal and suboptimal detection and

estimation algorithms involving these maps, and we briefly speculate on the use of these

maps and detection algorithms for secure communication.

Unlike the maps considered in Chapters 4 and 5, the maps considered in this chapter

and the next are neither dissipative nor invertible, and the attractors are not fractals but

simple subsets of R?. We also seldom use the word chaos in this chapter, thereby avoiding

the difficulties encountered in Chapter 2 in properly defining the word and in determining

whether a given system satisfies a given definition. However, many of the maps considered in
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this chapter have a positive Lyapunov exponent, bounded orbits, and sensitive dependence

on initial conditions and would thus satisfy many definitions of chaos.

Our interest in the maps discussed in this chapter arose in an effort to better under-

stand the behavior of certain state estimation algorithms involving Kalman filtering and

hidden Markov modeling with dissipative, chaotic maps. However, because of the rich set of

properties these simple, one-dimensional maps exhibit, the maps themselves have potential,

practical value and are worthwhile to investigate independently of dissipative systems.

The chapter begins by introducing MC maps, a class of piecewise linear maps of the unit

interval onto itself which give rise to Markov chains and continues by presenting previously

reported and newly discovered properties of MC maps. Finally, the chapter discusses the use

of MC maps for synthesizing maps having specified stationary PDFs and for synthesizing

multidimensional maps which also give rise to Markov chains.

A notational convention used in the chapter and the next is that for real numbers x and

y satisfying x < y, [x, y] and ]x, y[ respectively denote the closed and open intervals of the

real line R with x and y as endpoints. Similarly, ]x, y] and [x, y[ respectively denote left-

open, right-closed and left-closed, right-open subintervals of R. Also, A denotes Lebesgue

measure, whereas p denotes an arbitrary measure.

6.2 Markov Maps and MC Maps

The maps of principal interest in this chapter and the next comprise a subset of a much

larger class of maps of intervals of the real line to themselves known as Markov maps. The

formal definition of a Markov map is the following:

Markov Map: [12, 25] A piecewise continuous map f of an interval I = [io, in] to itself for

which there exists a set of points P {il, i2, in_1} known as partition points satisfying

io < i < ... < inI < in and such that the following two conditions hold:

1. For j = 0, 1, , n - 1, the restriction of f to the open subinterval ]ij, ij+l[ is a home-

omorphism (i.e., a continuous, invertible mapping with continuous inverse) onto an-

other subinterval ]ik(j), i(j)[, where ik(j) and il(j) are elements of the set {io, i. · , in}

and k(j) < it(j) 

2. f(P) C P, which means that partition points are mapped to partition points.
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3. f(i7),f(it) P, where f(i) lims.0 f(ij - 6), f(it) lims.0 of(ij + 6), and 6 > O.

This means that the left and right limits of f evaluated at each partition point are

also partition points.

Intuitively, this abstract definition means that a Markov map is a piecewise continuous

map of an interval I to itself for which one can find a partition of I into (nonoverlapping)

subintervals such that each subinterval is mapped nicely onto a union of other subintervals in

the partition, and such that the endpoints of these subintervals are mapped onto endpoints

of other subintervals in the partition. Implicit in the above definition is the fact that f gives

rise to the deterministic state equation x(n + 1) = f(x(n)) where x(n) I. We provide

examples of Markov maps later in the section.

A Markov partition is any finite partition of the interval I = [io, i,] into subintervals

for which f satisfies the three conditions for a Markov map. Since partition elements are

subintervals of R, we use the terms partition elements and subintervals interchangeably in

this chapter to refer to these elements. A Markov map may have many Markov partitions,

and in general it is difficult both to determine if a given map is a Markov map and to find

a Markov partition for a given Markov map. An important consideration, which underlies

the detection algorithms introduced later in the chapter, is that certain Markov maps have

an infinite set of Markov partitions that are straightforward to determine.

Of particular interest in this chapter is a small subset of Markov maps for which each

element f of the subset satisfies the following, additional constraint:

* f is piecewise linear and there exists a Markov partition for which f is affine on each

partition element. A piecewise linear map of an interval I to itself is a map that is

affline on each subinterval in a set of subintervals partitioning I. An affine map is a

map of the form f(x) = r x + , where r and / are real-valued constants.

We use the term MC map to denote an element of this subset of Markov maps, because

as shown later in the section, such a map gives rise to homogeneous, finite-state Markov

chains. Also, we use the term EMC map to denote an MC map which satisfies the following

additional constraint

* The map is eventually locally expanding in the sense that there exists an integer n

such that ID{fn(x)}l > 1 at all differentiable points of fn.
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Because it satisfies this additional constraint, an EMC map has a positive Lyapunov expo-

nent and in general exhibits sensitive dependence on initial conditions. A fact we exploit

later in the chapter is that this additional constraint is satisfied by any piecewise linear map

for which the slope of each affine segment is an integer with absolute value greater than

one.

Figures 6-1 (a) and (b) depict two EMC maps of the unit interval. Since x(n + 1) =

1-

CI..

(a) (b)
x(n)

Figure 6-1: Two EMC maps

f(x(n)), the figures depict the function f defining the map. Figure 6-2 (a) depicts an orbit

segment {x(i)}N0 generated by the map in Figure 6-1 (a), and Figure 6-2 (b) depicts an

orbit segment generated by the map in Figure 6-1 (b).
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TIME (n)

Figure 6-2: Typical orbit segments for respective maps in Figures 6-1 (a) and (b)

A Markov partition for the map shown in Figure 6-1 (a) is given by any division of the

unit interval into 2N equal length subintervals, where N is a positive integer. Similarly, a

Markov partition for the map shown in Figure 6-1 (a) is given by any division of the unit

interval into 4N equal length subintervals. For example, the partition given by the four
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equal length subintervals {[0,.25[,[.25,.5[,[.5, .75[,[.75, 1]} is a Markov partition for each

map.

A useful property of MC maps, which we exploit later in this chapter, is that under

certain conditions on the distribution of the initial condition x(0), the maps give rise to

Markov chains. As shown in [12, 61], a Markov map f of the unit interval gives rise to a

Markov chain if the initial condition has a constant PDF over the unit interval and there

exists a Markov partition P = {Ij} satisfying the following two constraints:

1. f(x) = Tjk x + Pjk, for x E Ijk and real constants rik, 3jk

2. f(Ijk) = Ik almost everywhere if Ijk 0

where Ijk denotes the points of Ij which are mapped to Ik by f. By definition, an MC map

satisfies these two constraints and thus gives rise to a Markov chain if the initial condition is

appropriately chosen. As we show later, the constraint on the PDF of the initial condition

can be relaxed. We also show that many other Markov maps both one-dimensional and

multidimensional, which do not satisfy the above constraints, give rise to Markov chains as

well.

For a given MC map defined on the unit interval [0,1] and a given Markov partition

{Ij} for which the above two constraints are satisfied, each partition element Ij corresponds

to a state Sj of a Markov chain. Since the restriction of f to Ij is an affine transformation,

then Ijk is either a subinterval of Ij or the empty set. In fact, a readily verified relation

we use later in the chapter is the following: Ijk = Ij n f- (Ik). The transition probability

from state Sj to state Sk equals the fraction of points in Ij that are mapped to Ik, which

is given by A(Ijk)/A(Ij) where A is Lebesque measure.

For the Markov maps shown in Figure 6-1 (a) and (b), with the Markov partition given

by {[0, .25[, [.25, .5[, [.5, .75[, [.75,1]}, the matrices of state transition probabilities, hereafter

referred to as transition probability matrices (TPMs), are the following, respectively:

.5 .5 0 0 .25 .25 .25 .25

0 0 .5 .5 .25 .25 .25 .25 (61)(6.1)
.5 .5 0 0 .25 .25 .25 .25

0 0 .5 .5 .25 .25 .25 .25

The dynamics of the Markov chain arise as follows. Let {Ij)} denote the elements of a
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Markov partition for f, and let {Sj} denote the states of the Markov chain corresponding

to this partition, where state Sj is associated with partition element Ij. Also, let (n)

denote the state or orbit point of f at time n, i.e., x(n) = fn(x(O)). To avoid confusion or

ambiguity, we henceforth use the word state only in reference to Markov chains. If x(n) E Ij,

the Markov chain is said to be in state Sj at time n. If the initial condition is a random

variable with appropriate distribution (e.g., constant PDF), the state sequence that arises

as a result of this mapping between orbit points and states is a first-order Markov process

with transition probabilities defined as above.

More formally, consider the random sequence S(n)} where (n) denotes the state

corresponding to the partition element in which x(n) lies (i.e., S(n) = Sj if x(n) E Ij).

Also, let P(S(O)) denote the initial state distribution given by P(S(O) = j) = A(Ij), and let

P(S(O), S(1), ... , S(N)) denote the joint probability of S(O), S(1), ... , S(N). The condition

on P(S(O)) implies that the initial condition x(O) is a random variable with constant PDF

over the unit interval. Under these conditions, the following Markov property holds:

P(S(O),S(1),...,S(N))= P(S(O)) P(S(1)IS(O)) ... P(S(N)IS(N- 1)) (6.2)

where

P([S(i) = k]l[S(i- 1) = j]) = A(Ij) (6.3)

In the next chapter, we exploit the relation between MC maps and Markov chains to derive

algorithms for detecting noise-corrupted orbit segments generated by these maps.

EMC maps are among the few maps exhibiting the properties associated with chaos

that are also amenable to analysis. Analysis of these maps is facilitated by their piecewise

linearity. Nonetheless, these maps have many interesting, potentially useful properties and

may be useful building blocks for other signals. In the next 4 sections, we consider properties

of EMC maps and more generally MC maps, which are relevant to detection and estimation

applications involving these maps. Among the properties we consider is the relative ease in

synthesizing an MC map with integer-valued slopes for the affine segments, which gives rise

to any specified Markov chain having a specified TPM with rational-valued entries. The

significance of integer-valued slopes is that any MC map having this property gives rise to

arbitrarily fine Markov partitions with equally sized partition elements, a fact we prove

later in the chapter. We also merge previously published results to establish a close relation
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between the properties of EMC maps and the Markov chains they give rise to. In particular,

we show that ergodicity of an EMC map is equivalent to irreducibility of the TPMs of all

Markov chains the map gives rise to and exactness of a EMC map is equivalent to primitivity

of the TPMs of all Markov chains the map gives rise to. We also show that the Markov

chain property of EMC maps is preserved under homeomorphisms, a result which allows

the synthesis of a Markov map which gives rise to any specified Markov chain and which

has any specified stationary PDF. Finally, we show how one can use this homeomorphism

property to design nontrivial multidimensional maps which give rise to Markov chains.

In the next section, we focus on the relation between MC maps and the Markov chains

they give rise to, whereas in Section 6.4 we deal with the relation between these maps

and their associated Markov partitions. Section 6.5 is devoted to the ergodic properties

of EMC maps, and Section 6.6 deals with the synthesis of multidimensional MC maps.

Various theorems and propositions are presented, with proofs provided for those that are

new. Several of the proofs are informal, with the essential elements of the formal proofs

provided but the excessive, unrevealing details omitted.

6.3 EMC Maps and Markov Chains

As originally shown in [43, p.294:Theorem 5] and later in [46, 80], given the transition

probability matrix (TPM) of any homogeneous, finite-state Markov chain and any vector

of nonzero, initial state probabilities, one can synthesize a piecewise linear map of the unit

interval onto itself which gives rise to that Markov chain. The map will be a Markov map,

but may or may not be an MC map depending upon the specified Markov chain. Thus,

Markov maps are generators of homogeneous, finite-state Markov chains. We briefly outline

the design process, primarily to clarify the relation between piecewise linear Markov maps

and Markov chains. To facilitate an understanding of the design process, we apply the

method to a specific example while outlining the process.

Let m denote the number of states of the desired Markov chain, and let the row vector

of state probabilities at time n be denoted 1i(n) = [r(n), 7r2(n)- ...-- , rm(n)], where i(n)

denotes the probability of being in state i at time n. With this notation, 11(0) denotes the

vector of initial state probabilities. Also, let the m x m TPM be denoted P = [Pij]i,'=l

where pij denotes the probability of transitioning from state i to state j in one time step.

119



For our example, we let m = 3, 17(0) = [.25,.25,.5], and we let P be given by

.5 .5 0

0 0 1 (6.4)

3 3 3

Now perform the following sequence of steps:

1. Partition the unit interval into m consecutive subintervals {Ij}j=l, where Ij has length

7rj(0). Let ej,j and ej,r respectively denote the left and right endpoints of Ij. (Note

that ej,r = ej+i,l.) For our example, the set of (closed) subintervals [ej,l,ej,,] is given

by {[0, .25], [.25, .5], [.5, 1]}.

2. Partition each subinterval Ij into m consecutive subintervals {Ijk}km=l where Ijk has

length 7rj(O)Pjk = A(Ij) Pjk, which is the product of the transition probability from

state j to state k and the length of subinterval Ij. Also let ejk,l and ejk,, respectively

denote the left and right endpoints of Ijk ( Note that if Pjk = 0, the subinterval Ijk

has zero length. Zero length subintervals are included here only as a notational aid

to simplify the use of indices). For our example, the sets of subintervals [ejk,l, ejk,,]

for fixed j and increasing k are given by

{[e1 .,1, el.,r]} = {[0, .125], [.125, .25], [.25, .25]} (6.5)

{[e2.,l, e2 .,r]} = {[.25,.25],[.25,.25],[.25,.5]} (6.6)

{[e3.,1, e3.,r]} = {[.5, 2], [3 6] [6 1]}. (6.7)

3. Now consider a map f from the unit interval to itself as a function in the (x, y)-

plane which maps each point xo E [0, 1] to some point yo E [0, 1]. Let (xo, yo) denote

the relation yo = f(xo). For each subinterval Ijk with nonzero length, draw the

line segment in the (x, y)-plane with left endpoint given by the (x,y) pair (ejk,l, ek,j)

and right endpoint given by the (x, y) pair (ejk,,, ek,r). This corresponds to a linear

mapping of the subinterval Ijk (on the x-axis) onto the subinterval Ik (on the y-axis).

Figure 6-3 depicts the resulting piecewise linear map for our example. Special care

must be taken at each discontinuity point to ensure that the point maps to a single

point.
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Figure 6-3: Synthesized MC map.

The critical aspects of the synthesis procedure are in specifying the lengths of the various

subintervals and in ensuring that each subinterval Ijk maps linearly onto Ik. Note that since

Ijk has length 7rj(O)pjk = A(Ij)pik and Ik has length rk(O) = A(Ik), it follows that f'(Ijk),

the slope of the affine mapping of Ijk onto Ik, is given by

f'(Ijk) = -rk(O) - A,(Ik) (6.8)
7i(0) Pi \I) (6.8

The synthesis procedure is not the only one possible. For example, the substitution of the

line segment with left-right endpoint pairs (ejk,l, ek,r) and (ejk,,, ek,l) for the segment with

left-right endpoint pairs (ejk,l, ek,l) and (ejk,, ek,r) yields the same results.

The subintervals {Ij} are the m states of the Markov chain. The state sequence arising

with almost all initial conditions x(0) for the induced dynamical system x(n + 1) = f(x(n))

is a sample path of the desired Markov chain, provided that x(O) is a random variable with

constant PDF over the unit interval. As discussed earlier in this thesis, randomness in a

deterministic, chaotic system is due solely to randomness in the initial condition. However,

this randomness constraint on the initial condition is necessary only to ensure the initial

state probabilities have the desired values. Consider the situation in which we only observe

the partition element in which x(n) lies at each time n, or equivalently we know the state

sequence of the Markov chain and nothing else. Then, regardless of the distribution of

the initial condition, the transitions between states will be random events with the desired

transition probabilities. In other words, with restricted knowledge about the orbit point

x(n) at each time n, the original, deterministic process becomes a random process with the

desired Markov chain structure.
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Although the map f that results from the synthesis procedure is an MC map, the

partition given by the set of intervals {Ij} is not a Markov partition for the map since the

restriction of f to each of these intervals is not an affine mapping, but instead a piecewise

linear mapping. However, the finer partition given by the set of subintervals {Ijk} is in fact

a Markov partition for f.

We now extend the relation between Markov chains and MC maps in two ways, with

both extensions useful for the detection and estimation applications considered in the next

chapter. First, we have the following result that simplifies the selection of Markov partitions.

Proposition 1: Given a TPM with rational-valued elements and a vector of rational-

valued, nonzero initial state probabilities for a Markov chain, one can synthesize an MC map

and if desired an EMC map which gives rise to this Markov chain, with each of the affine

segments of the map having integer-valued slope.

Proof: (see Appendix B)

Second, the procedure discussed earlier for synthesizing Markov maps which give rise

to Markov chains requires that the initial condition x(O) have a constant PDF over the

unit interval, that the initial state probabilities all be nonzero, and that the length of each

interval Ij be equal to the initial probability of the corresponding state. Each of these

requirements can be relaxed and the Markov chain property still hold, as indicated by the

following corollary.

Corollary 1: The Markov chain property of the Markov map designed with the procedure

discussed earlier still holds if the initial condition x(0) is a random variable with constant

PDF over each interval Ij, but the constant value need not be the same for different intervals.

In this case, the initial state probability for Sj, the state corresponding to interval Ij, is

given by the product of the interval length A(Ij) and the constant value associated with

that interval by the PDF of the initial condition.

Proof: We omit a formal proof. Instead, we note that the proof of Proposition 1 still

holds with only minor changes when the PDF of the initial condition is constant over each

subinterval Ij. The state transition probabilities remain the same since they are determined

by ratios of subinterval lengths, i.e., Pjk = A (Note that this corollary may in part be

implied by Corollary 1.2 in [61]).

In light of the above corollary, we are free to arbitrarily specify the lengths of the
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intervals corresponding to each state of the Markov chain provided that each interval has

nonzero length and the distribution of x(0) is chosen appropriately. This result is useful if

we wish to cascade two MC maps in the sense that we generate an orbit segment {x(i)}N=0

with one map and then use the final orbit point x(N) as the initial condition for the second

map. As we discuss Section 6.5, a subclass of EMC maps have unique, stationary PDFs

that are constant over the partition elements of suitably chosen Markov partitions. As a

result, if the two EMC maps are synthesized appropriately, the state sequence arising from

the second map with initial condition x(N) is a sample path of a Markov chain as well.

6.4 Markov Partitions

The questions arise as to how one goes about choosing Markov partitions for MC maps

and how one determines if a piecewise linear map is a Markov map or an MC map. The

selection of Markov partitions for MC maps is an important consideration when these maps

are used for detection and estimation applications.

Unfortunately, there are no comprehensive answers to these questions but instead a host

of partial answers. For example, one necessary condition for a piecewise linear map to be a

Markov map is that the endpoints of the affine segments be periodic or eventually periodic

points of the map. The necessity of this condition is a consequence of the fact that a Markov

map must have a Markov partition for which the restriction of the map to each partition

element is an affine transformation. Thus, the endpoints of the affine segments must be

partition points for such a partition. Since partition points are required to map to partition

points and each partition is required to have a finite number of elements, it follows that

these endpoints must be periodic or eventually periodic points of the map. Otherwise, there

would be an infinite number of partition points and concomitantly an infinite number of

partition elements.

One special case in which the periodic points are particularly simple to find is when

the slope of each affine segment is integer-valued. As shown in [78], in this special case,

all rational points are periodic or eventually periodic. If in addition the endpoints of the

domains of the affine segments and the images of these endpoints are rational-valued, the

following, stronger result holds as well.

Proposition 2: For any piecewise linear map f of the unit interval to itself for which
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the slope of each affine segment is integer-valued and the endpoints of the affine segment

domains along with the images of these endpoints are rational-valued, there exists a uniform

Markov partition of the map. Furthermore, any uniform refinement of such a partition is

also a Markov partition. By a uniform Markov partition, we mean a Markov partition for

which each partition element has the same length. By a uniform refinement of a uniform

Markov partition, we mean any uniform Markov partition for which the set of partition

points include those of the original uniform partition.

Proof: (See Appendix B)

Earlier we showed that one can synthesize an MC map with integer-valued slopes that

gives rise to any finite-state, homogeneous Markov chain with rational-valued transition

probabilities. As indicated by the above proposition, for these maps one can always find a

sequence of increasingly finer, uniform Markov partitions.

When given both an MC map f for which the slopes of the affine segments are not all

integer-valued and a Markov partition for the map, the question arises as to how one goes

about finding Markov partitions that are refinements of this partition. A simple approach is

to use successive inverse images of the original partition points as additional partition points.

These additional points get mapped by f or compositions of f to the original partition

points, and thus satisfy the requirement that partition points be mapped to partition points.

This approach was used in [14, 46] to approximate arbitrary, monotonically expanding, one-

dimensional maps by piecewise linear Markov maps.

6.5 Ergodic Properties of EMC Maps

As one might expect, there is a strong relation between the ergodic properties of MC maps

and the Markov chains which they give rise to. In this section, we explore this relation

and in particular show that ergodicity of an EMC map is equivalent to irreducibility of

the TPMs of the Markov chains the map gives rise to, and exactness of a EMC map is

equivalent to primitivity of the TPMs of the Markov chains the map gives rise to. As we

discuss later in the section, the practical relevance of stationary PDFs in the context of

EMC maps is that they facilitate the synthesis of maps, not necessarily EMC maps, which

give rise to any specified Markov chain and and any stationary PDF. We do not consider

the spectral properties of EMC maps, a topic closely related to that of stationary PDFs.
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The reader is referred to [37] for an exposition on this topic.

6.5.1 Ergodic Theory Fundamentals

Before discussing the ergodic properties of EMC maps, we briefly review several relevant

concepts from ergodic theory not considered in Chapter 2. Much of the information is

extracted from [50, 55, 87] to which the reader is referred for additional details.

As in Section 2.3.2, we consider a measure space (X,/3,q,) where X is a set, /3 is a

a-algebra of subsets of X, and i is a measure on /3. Of special interest is when X is the

unit interval I (or an arbitrary interval on the real line) and /3 is the Borel a-algebra on

I, which is defined as the smallest a-algebra that includes the open intervals on the real

line intersected with I. Also, of special interest is when p is either Lebesgue measure,

or a measure that is absolutely continuous with respect to Lebesgue measure, which as a

consequence has a corresponding probability density function (PDF). In other words, we

are principally interested in very simple measure spaces with probability measures having

corresponding PDFs.

As noted in our earlier discussion of ergodic properties, given a measure space (X, /3, I),

a transformation f: X -+ X is measurable if f-(B) E 3 for every B E . This means

that the inverse image of every element of /3 is also in /3. A measurable transformation

is nonsingular if 1 (f-l(B)) = 0 for every B E /3 for which p(B) = 0. A measurable

transformation is measure-preserving if p(f- (B)) = g(B); is then said to be an invariant

measure of f. Our principal interest is in measure-preserving transformations for which the

invariant measure has a corresponding PDF.

Given a measure space (X,/3, p), let L'(p) denote the set of all absolutely integrable

functions on (X, /3, p), where an absolutely integrable function g on (X, /3, /) is a real-valued

function (i.e., g: X -- R) that is measurable on (X, /3, p) and satisfies

J Ig(x)l dl(x) < oo. (6.9)

Each h E Ll(p) which satisfies h(x) > 0, Vx E X and f h(x) dp(x) = 1 is known as a density

function on (X, /3, ). When p is Lebesgue measure A, such a function is simply a PDF

familiar to non-mathematicians. Note that each density function h induces a probability

measure Ph defined by Ph(B) = fB h(x) dp(x) for each B E 3.
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For each nonsingular transformation f: X - X on (X, /3, I), there is a unique operator

Pf: Ll(/) Ll(p) known as the Frobenius-Perron operator which satisfies

lB Pf (p(x)) d.(x) = J (B) p(x) dl(x) (6.10)

for each B E and p E L(u) [50, 55]. This rather abstract definition of the Frobenius-

Perron operator has a simple, intuitive interpretation when X is the real line 7., / is

the Borel a-algebra, p is Lebesgue measure, and p(x) is a PDF. With these restrictions,

Pf(p(x)) is the PDF induced by the transformation f. In other words, Pf(p(x)) is the

PDF which when integrated over the set f(B) for each B E , gives the same value as

is obtained by integrating p(x) over B. If f is invertible and differentiable and we let

y = f(x), the defining expression for Pf (p(x)) reduces to the following expression found in

many probability textbooks (e.g., [68, p. 118]) for the PDF py(y) induced by f:

f(f-(y)) 
-YY=Ittly) (6.11)

where f'(f-'(y)) denotes the derivative of f evaluated at f-1(y).

As one might expect, Pf = P7 which means that the Frobenius-Perron operator for

the n-fold composition of the transformation f is the same as the n-fold composition of the

Frobenius-Perron operator for f. As such, the Frobenius-Perron operator is the discrete-

time Fokker-Planck operator [38, 50] for the special case of a deterministic state equation.

A density function that is a fixed point of P, i.e., a density function p(x) which satisfies

P (p(x)) = p(x), is called a stationary density of f since the density function induced by f

is the same as the original density function. It follows directly from the defining equation

for the Frobenius-Perron operator that if p(x) is a stationary density of f, and p denotes

the measure induced by p(x), i.e., #p(B) =_ fB p(x) dx for each B E , then f is a measure-

preserving transformation on the probability space (X, , pp).

As discussed in Chapter 2, a measure-preserving transformation f (on (X, /3, )) is

ergodic if the only invariant, measurable sets (i.e, sets B E 3 satisfying f l(B) -= B) have

measure 0 or 1. In some references [50, 55], the definition of ergodicity does not require that

f be measure-preserving, only that it be nonsingular. However, most properties generally

associated with an ergodic transformation, such as the equivalence of time averages and

ensemble averages, are valid only when the transformation is measure-preserving.
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Our interest in ergodic transformations in this chapter differs from that in earlier chap-

ters in which we exploited the ergodicity of dissipative, chaotic maps in a heuristic MMSE

state estimator. Of interest in this chapter is the fact that an ergodic transformation has at

most one stationary PDF of the Frobenius-Perron operator Pf. In particular, if a transfor-

mation f is measure-preserving and ergodic on (X, /, g) and pL has a corresponding density

function p(z), then p(z) is the unique stationary density function of Pf. We exploit this

property of ergodic, measure-preserving transformations later in the chapter to synthesize

signals which give rise to random variables with specified PDFs.

An equivalent condition for ergodicity of a measure-preserving transformation f is that

the following condition hold for all sets A, B E :

n-1

lim -1 ° (A n f -i(B)) = p(A) #(B) (6.12)
1--.o'

which means that on average A and f-i(B) are independent of each other. A related but

stronger property than ergodicity, not used in this chapter, is that of being strong mixing.

A measure-preserving transformation f on the probability space (X, 3, p) is strong mixing

if the following condition holds for all sets A, B E 3:

lim (A n f-(B)) = 1(A) (B) (6.13)

which means that A and f -i(B) asymptotically become independent of each other.

Finally, an even stronger concept than strong mixing is exactness. A measure-preserving

transformation T on the probability space (X, , p) is exact if the following condition holds

for all sets B E with p(B) > 0:

lim (f (B)) = 1 (6.14)
n--+oo

Essentially, this condition means that the successive images under f of each measurable set,

even those of arbitrarily small measure, expand until they cover almost all of X.

As discussed in [50], there is a strong relation among ergodicity, mixing, and exactness.

In particular, an exact transformation is mixing, and a mixing transformation is ergodic.

Therefore, if f is an exact transformation on (X,13,,/) where # has corresponding density

function p(x), then p(x) is the unique stationary density function of f. In addition, given
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any initial density function po(x) on X, Pf(po(x)) converges (in norm) as n goes to infinity

to p(x). Therefore, not only does an exact transformation have a unique stationary den-

sity function, but all density functions converge to this density function under successive

applications of the Frobenius-Perron operator.

Although it is often difficult to determine whether a given system is ergodic, mixing, or

exact, the definitions of these properties are straightforward and the properties exhibited

by systems with these properties are well-understood. Furthermore, for the systems of

interest in this chapter, in particular MC maps, the underlying measure space is extremely

simple. This situation contrasts markedly with the one considered earlier in the thesis, where

defining the nebulous concept of chaos and defining an appropriate topology or measure

space on the attractors of dissipative systems suspected of being chaotic were formidable

tasks.

We now consider the relation among the ergodic concepts defined above and the topo-

logical property-sensitive dependence on initial conditions-most often associated with

chaos. For convenience, we consider the measure space (X, 8, y) with X denoting the unit

interval, denoting the Borel a-algebra, and y denoting Lebesgue measure; and we use the

standard topology on the unit interval with basis given by the intersection of open intervals

with the unit interval. Our first observation is that an ergodic system need not have sen-

sitive dependence on initial conditions. For example, the rotation map with state equation

given by

x(n + 1) = f(x(n)) = x(n) + a (mod 1) (6.15)

is ergodic if the constant a is irrational [87]. However, the map does not have sensitive

dependence on initial conditions since distances between points on the unit interval are

preserved by f, except for a wrap-around effect at the endpoints.

However, exactness of a map f implies sensitive dependence on initial conditions. This

follows almost directly from the definition of exactness. Specifically, given any point x

on the unit interval and any subinterval J containing x, limn Ioo (f n(J)) = 1 by def-

inition of exactness. Therefore, for any E [0,1], there exists an integer N(x, 6) such

that ,u(fN(x' 6)(JX)) > 1- 6. As such, there exists a point y J for which IfN(x,5)(y) -

1-i-fN(x'6)(X) > 46 

In contrast, a map is not necessarily exact even if it is both ergodic and has sensitive
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dependence on initial conditions. The map g(x) shown in Figure 6-4 (a) is ergodic and

has sensitive dependence on initial conditions. We do not formally prove these claims here,

xx

(a) x(n) (b)

Figure 6-4: (a) Map g having sensitive dependence on initial conditions that is ergodic but
not exact; (b) g3

but sketch one approach for proving them. One can verify both claims by considering the

composed map g3 shown in Figure 6-4 (b). As indicated by the figure, g3 consists of three

separate shift maps, one acting on each of the subintervals [0,1/3[, [1/3,2/3[, and [2/3,1].

Each of these subintervals is invariant under g3. Ergodicity is established by using the facts

that the shift map is ergodic (as shown in [50, 87]) and that g applied to each of the three

subintervals [0,1/3[, [1/3,2/3[, and [2/3,1] consists of either a translation or a shift followed

by a translation. With these facts, it is straightforward to verify the equivalent condition

for ergodicity proven in [87], which requires that for each measurable set A with nonzero

measure the following condition holds:

00 

fn(A) = 1. (6.16)
n=1

Sensitive dependence on initial conditions follows from the fact that the shift map exhibits

sensitive dependence on initial conditions and g3 consists of three shift maps, one applied

to each of the three invariant sets of g3 given by [0,1/3[, [1/3,2/3[, and [2/3,1].

Therefore, the map shown in Figure 6-4 (a) is ergodic and has sensitive dependence

on initial conditions. However, the map is not exact as it is straightforward to verify that

limn_.o 1 (fn(J)) = 1/3 $ 1 for every subinterval J C [0,1/3[.

Concepts similar to ergodicity and exactness apply to the transition probability matrices

(TPMs) of homogeneous, finite-state Markov chains. In particular, let P = [ij] denote the
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TPM of a homogeneous, finite-state Markov chain, where pij denotes the probability of

transitioning from state i to state j in one time step, and let Pn = [pt] denote the n step

TPM of the Markov chain, where p denotes the probability of transitioning from state i

to state j in exactly n time steps. Pn is the nt h power of P, but in general p~ is not the nth

power of pij. The TPM is irreducible if for each pair of indices (i, j), there exists a positive

integer nij such that pij > 0. Intuitively, irreducibility of the transition matrix means that

it is possible to eventually get from each state of the Markov chain to every other state. A

well-known result from linear algebra [29, 49] is that every irreducible matrix has a unique,

invariant left eigenvector. It follows from this that every Markov chain with an irreducible

TPM has a unique, invariant state probability vector, i.e., a row vector of probabilities 11

that satisfies TP = 11. A Markov chain with irreducible TPM is also ergodic with respect

to this invariant probability vector.

If in addition to being irreducible, the TPM has the property that there is a single,

positive integer m such that p7 > 0 for all pairs of indices (i,j), then the TPM is also

primitive. Intuitively, a Markov chain with primitive TPM is one in which it is possible

to get from each state to itself and to each other state in exactly the same number of

time steps. A Markov chain with primitive TPM has the property that any initial state

probability vector converges to the unique, invariant probability vector as time goes to

infinity.

6.5.2 EMC Maps, Markov Chains, and Stationary PDFs'

Unless indicated otherwise, in this section all EMC maps are assumed to be maps of the unit

interval to itself. By appropriately merging results from [12, 25, 55, 87], we can establish

the following, strong connection between EMC maps and the Markov chains which they

give rise to.

Proposition 3: a. Ergodicity of an EMC map for which each subinterval of the unit

interval has nonzero measure is equivalent to irreducibility of the TPMs of the Markov

chains the map gives rise to. Thus, an ergodic EMC map has a unique stationary PDF,

and each Markov chain it gives rise to has a unique, invariant state probability vector.

b. Exactness of an EMC map for which each subinterval of the unit interval has nonzero

Some of the work in this section was performed in conjunction with S. Isabelle at MIT
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measure is equivalent to primitivity of the TPMs of the Markov chains the map gives rise

to. Thus, not only does an exact EMC map have a unique stationary PDF, but given any

nonsingular PDF for x(O), the PDF of x(n) converges as n goes to infinity to the unique

stationary PDF. Similarly, each Markov chain which the map gives rise to has a unique,

invariant state probability vector which all other initial state probability vectors converge

to.

Proof: (See Appendix B)

As noted in [12] and used in the proof of Proposition 3, the stationary PDF of an

ergodic EMC map is piecewise constant. A simple way to find it is the following. First, find

a Markov partition {Ij}>.1 and the TPM of the corresponding Markov chain. Next, find the

invariant probability vector for this TPM. Let 11 = [7r 1,, ,'] denote this vector, where

7rj denotes the invariant probability associated with the state corresponding to subinterval

Ij. The stationary PDF for all points in Ij is given by rj /A(Ij).

Although EMC maps which give rise to Markov chains with irreducible TPMs have

piecewise constant stationary PDFs, one can not independently specify this PDF and a

specific Markov chain which the map gives rise to. However, using an EMC map as a

building block, one can synthesize a Markov map (which may or may not be an EMC map)

that has any specified stationary PDF and which also gives rise to a Markov chain with

any specified TPM. To do so, one utilizes the following relation, established in [12], among

maps with stationary PDFs and maps derived from them via homeomorphisms:

Proposition:[12] For any EMC map f which gives rise to a Markov chain with irreducible

TPM and any differentiable homeomorphism h: I -+ I, the transformation g- h o f o h- 1

has a unique stationary PDF pG(x), which is given by PG(x) = pF(h-(x))I' where pF(X) islh'(h- ())l'
the unique stationary PDF of f and h'(h-'(x)) denotes the derivative of h evaluated at

h' (x).

The above proposition is essentially a restatement of the relation considered earlier (in the

discussion of the Frobenius-Perron operator ) between the PDF of a random variable and

the PDF resulting from a memoryless transformation on that random variable. In this case,

the random variable is x(n) with PDF PF, h is the transformation, and PG is the PDF of

the transformed random variable h(x(n)).

As noted in [68, p. 261] and in other probability textbooks, given a random variable v
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with PDF pv and distribution function Fv where

ro
Fv(vo) - pv(v)dv (6.17)

one can create a random variable w with specified PDF pw or specified distribution function

Fw(wo) = f pw(w) dw using the transformation Fw1 (Fv), so that

w = Fw (Fv(v)). (6.18)

An implicit assumption with this transformation is the invertibility of Fw, which is always

the case if pw(w) > 0 for all real w or if the domain of Fw is restricted to those w for which

Pw(w) > .

We can use this result for transforming PDFs and the earlier proposition to synthesize

a Markov map that has any specified (well-behaved) stationary PDF and which gives rise

to a Markov chain with any specified irreducible TPM. The procedure is as follows. First,

synthesize an EMC map f which gives rise to the desired Markov chain. From Proposition 3,

we know that such a map has a stationary PDF that is piecewise constant and in particular

constant over each element of any Markov partition. Furthermore, the PDF must be nonzero

almost everywhere on the unit interval. Otherwise, there would be a subinterval of zero

density, which would necessarily correspond to a partition element or union of partition

elements in any Markov partition, since the stationary PDF is constant over partition

elements. Consequently, this subinterval of zero density would be associated with at least

one state in the associated Markov chain. The invariant probability for this state would

necessarily be zero, since its value is given by the integral of the stationary PDF over the

corresponding subinterval. However, each element of the invariant vector of an irreducible

matrix must be nonzero, by convention. Thus, the stationary PDF must be nonzero almost

everywhere.

Let PF denote the stationary PDF of f and FF the corresponding distribution function.

Let PG denote the specified, stationary PDF and FG the corresponding distribution function.

Now let h = Fjl(FF) in the above proposition. If h is a differentiable homeomorphism, then

by this proposition and the result for transforming PDFs, g will have the desired stationary

PDF. Note however that the requirement that h be a differentiable homeomorphism requires

that the desired PDF PG be sufficiently well-behaved in a mathematical sense.
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In addition, g gives rise to the same Markov chains as f. An informal argument as to

why this is true is the following. Since h is a homeomorphism, it is by definition continuous

and invertible. Because of the continuity of h, each subinterval Ij in a Markov partition

Mf = {Ij} of f is mapped by h to a subinterval. Because of the invertibility of h, the

image under h of any two different partition elements do not intersect. Therefore, the set of

subintervals Mg = {h(Ij)} forms a partition for g. Also, since h is a homeomorphism, the

partition is a Markov partition since g acting on each element in Mg is equivalent to f acting

on the corresponding elment in Mf . That is, if f(Ij) = Ik U It, then g(h(Ij)) = h(Ik) U h(11)

which is easily verified:

g(h(Ij))- (h o f o h-')(h(Ij)) (6.19)

= h(f(h(h-(Ij)))) = h(f(1j)) (6.20)

= h(Ik U II) = h(Ik) U h(I,). (6.21)

If {Sj} denote the states associated with the partition Mf such that Si is associated with

Ii, and if we associate state Si with h(Ii) as well, then state sequences that arise under the

dynamics of g are sample paths of a Markov chain, the same Markov chain as for f. This

follows from two facts. First, pf(Ij) = Ig(h(Ij)) where pf and p/ are the measures induced

by PF and PG respectively. This is a consequence of PG being the density induced by the

transformation h. Second, the transition probabilities are the same. This is a consequence

of the following relation which we verify below:

f (Ijk) - -(h(Ij)) (6.22)
Afj(Ij) ig (h(Ij))

where Ijk denotes the portion of Ij mapped to Ik by f and h(Ij)k denotes the portion of

h(Ij) mapped to h(Ik) by g. The ratio i) is the transition probability from state Sj to

Sk for m~a n g(h(/,)k)
Sk for map f and s±,(h(/I)) is the transition probability from state Sj to Sk for map g. This

is a generalization (briefly discussed in [61]) of the earlier result for piecewise linear maps of

the unit interval in which transition probabilities were given by the ratio of interval lengths.

For the EMC map f, the definitions of transition probabilities are identical, as they must

be since PF is constant over partition elements.

To verify (6.22), we must show that h(Ijk) = h(Ij)k. To do so, we first note the following
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relations which are straightforward to verify:

Ijk = Ij n f-l'(Ik) (6.23)

h(Ij)k = h(Ij) n g-l(h(Ik)) (6.24)

g-1 = hof-l oh - 1. (6.25)

Substituting (6.25) in (6.24) yields

h(Ij)k = h(Ij) n (ho f -1 o h-1)(h(Ik)) (6.26)

= h(Ij) nh(f'(Ik)) (6.27)

= h(Ij nf'(Ik)) (6.28)

= h(Ijk) (6.29)

where the next to last equality holds because h is a homeomorphism.

The Markov partitions of g are uniquely determined by those of f and the transformation

h. Whereas the map f might give rise to uniform Markov partitions, in general this is not

true of g. For example, if the region of support of g is all of R (e.g., PG is a Gaussian PDF),

then two partition elements will have infinite length for any Markov partition, whereas all

others will have finite length.

The question arises as to the relevance of unique, stationary PDFs for a map. The answer

is that such a PDF, if it exists, determines the concentration of orbit points on the real line,

for orbits generated by most initial conditions. For example, Figures 6-5, 6-6, and 6-7 depict

EMC maps and typical orbit segments generated by each map. The maps shown in Figures

6-6 (a) and 6-7 (a) were both derived from the map in Figure 6-5 (a) using the procedure

outlined above. The stationary PDF of the map shown in Figure 6-5 (a) is constant over

the unit interval; the stationary PDF of the map shown in Figure 6-6 (a) equals 4 over the

subinterval [.4, .6[ and .25 elsewhere; and the stationary PDF of the map shown in Figure 6-7

(a) equals 4 over the subinterval [.0, .2[ and .25 elsewhere. For each map, the orbit segments

reflect the stationary PDFs, with orbit points concentrated in regions where the probability

density is large in Figures 6-6 (b) and 6-7 (b). The relation between stationary PDFs and

the behavior of orbits coupled with the ability to independently specify the stationary PDF

of a Markov map and the Markov chains it gives rise to may have practical value, such as
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Figure 6-5: (a) EMC map; (b) Typical Orbit segment
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Figure 6-6: (a) EMC map; (b) Typical Orbit segment
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Figure 6-7: (a) EMC map; (b) Typical Orbit segment
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in the design of signals for communication applications.

6.6 Multidimensional Markov Maps

It is straightforward to synthesize multidimensional Markov maps that give rise to Markov

chains, a surprising fact in light of the difficulty generally encountered in finding Markov

partitions for maps with dimension greater than one. With one-dimensional maps, partition

elements of Markov partitions are subintervals or one-dimensional volume elements, and

the requirement for a partition to be a Markov partition is that each subinterval in the

partition maps to a union of subintervals in the partition. Similarly, with m-dimensional

maps, partition elements for Markov partitions are m-dimensional volume elements, and

the requirement for a partition to be a Markov partition is that each volume element in

the partition maps to a union of volume elements in the partition. As one might expect,

synthesizing maps of the m-dimensional unit cube for which one can find volume elements

satisfying this requirement is in general a daunting task.

One set of piecewise linear, m-dimensional maps for which one can find Markov parti-

tions and which also give rise to Markov chains is the set of hyperbolic toral automorphisms

[20]. However, although a Markov partition is known to exist for a given hyperbolic toral

automorphism, finding the partition elements is a fairly complex procedure even in two

dimensions [3, 10, 11].

We now discuss techniques for synthesizing m-dimensional MC maps which give rise

to Markov chains by using one-dimensional MC maps as building blocks. The simplest

technique is to start with m one-dimensional MC maps and use each, or more precisely the

state of each, as a component in an m-dimensional state vector. For example, if xi(n + 1) =

fi(xi(n)) denotes the state equation for the ith one-dimensional MC map, then the state

equation for a two-dimensional MC map is given by

x(n + 1) = x(n + 1) ] F(x(n)) [ f(x(n)) 1 (6.30)
X2(n + l) f2(X2(n))

It is straightforward to show that if a Markov partition for fi has N1 elements and

a Markov partition for f2 has N2 elements, then the corresponding Markov partition for

F has N 1N 2 elements, with each partition element a rectangle in the unit square with
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each side parallel to one of the coordinate axes. Furthermore, Markov partitions for the

multidimensional map also give rise to Markov chains. It is straightforward to show that

if Iij denotes the partition element formed from the ith partition element of fi and the jth

partition element of f2, then the transition probability from Iij to Ikl is given by Pik qjl

where Pik is the transition probability from the ith state to the kth state of fi and qjl is the

transition probability from the jth state to the Ith state of f2.

The dynamics of multidimensional MC maps synthesized this way are rather trivial since

the dynamics along each component are independent and are those of a one-dimensional

MC map. However, by relaxing the restriction that the multidimensional MC map be a

mapping from the unit m-cube to itself, one can easily extend this synthesis approach

to create multidimensional MC maps with nontrivial dynamics. To do so, one applies a

similarity transformation to the original multidimensional transformation. For example,

let A denote an invertible, m-dimensional matrix and let x(n + 1) = F(x(n)) denote

the state equation of an m-dimensional MC map synthesized by using a one-dimensional

MC map for each component. Then, y(n) = Ax(n) is also an MC map with state equation

y(n + 1) = G(y(n)) given by

y(n + 1) = G(y(n)) = AFA-'y(n). (6.31)

An informal argument as to why G is an MC map is the following. Because A is invertible,

it is a homeomorphism. Therefore, one can use the same reasoning as used in the earlier

discussion about synthesizing Markov maps with specified PDFs to argue that if MF = {Ij}

is a Markov partition for F then {AIij} is a Markov partition for G. Specifically, because

A is continuous, each element of MF is mapped by A to a connected region (a parallelogram

since A is linear) and because A is invertible and the elements of MF are disjoint, the images

of these elements are disjoint as well. Furthermore, the fraction of each partition element

AIij mapped to a partition element A IkI by G is the same as the fraction of Iij mapped

to Ikl by F, because A is a homeomorphism. Therefore, the state transition probabilities

are the same for the two maps.

As noted above, since each partition element Iij is a rectangle with each side parallel

to a coordinate axis, it follows that each partition element A Iij is a parallelogram and not

necessarily a rectangle. Also, in contrast to the components of the state vector of F for
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which each is the state of a one-dimensional MC map with dynamics independent of the

other components, the components of the state vector of G are not independent in general,

and each does not correspond to the state of a one-dimensional MC map.

Figure 6-8 depicts 4000 consecutive orbit points generated by a two-dimensional MC map

F synthesized by using the maps shown in Figures 6-6 (a) and 6-7 (a) to generate each com-

ponent of the state vector. One component of the state vector is plotted versus the other in

1.2

Figur .- 8: Two-d~imeson. · M a0.80.60.4 0.2

0~~~~~~~~~~

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 68: Two-dimensional EMC map

Figure 6-8. Figure 6-9 depicts 4000 consecutive orbit points generated by the map AFA-1

where A is given by

1 2
A 2. (6.32)

By appropriately selecting the one-dimensional maps for the components of F and the

transformation A, one can generate multidimensional MC maps with interesting attractor

patterns.

We can generalize this result by letting y(n) = H(x(n)) for any homeomorphism H,

which leads to the map with state equation y(n + 1) = G(y(n)) given by

y(n + 1) = G(y(n)) = H(F(H-(y(n)))). (6.33)

Using similar reasoning as used in the preceding section, one can show that because H

is a homeomorphism, the image of each (rectangular) partition element Iij under H is

a connected region in the range of H, the image is disjoint from the images of all other
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Figure 6-9: Two-dimensional EMC map derived from map shown in Figure 6-8

partition elements, and the set {H(Iij)} is a Markov partition for G. One can also show

that the two maps give rise to the same Markov chains.

6.7 Practical Considerations

The discussion thus far has ignored a practical problem one encounters when simulating

certain MC maps on digital computers. The problem is due to the ability of digital comput-

ers to store and manipulate only dyadic rationals. As noted earlier, every rational number

on the unit interval is an eventually periodic point of any MC map for which the slope

of each affine segment is integer-valued. As such, each initial condition is either periodic

or eventually periodic, and thus no orbits are dense, exhibiting the randomlike behavior

expected of orbits generated by such maps.

Although one might argue that this situation arises with all maps, not just MC maps,

the effects are more pronounced with certain MC maps. For example, consider the shift

map given by xn+ = 2x, (mod 1). The name shift map arises from the fact that the

map shifts the binary representation of x, left one place and retains the fractional part

of the result. All rational points on the unit interval are periodic or eventually periodic

points of the shift map, and in theory all irrational points have dense orbits. However,

since a computer stores only dyadic rationals and since the shift map shifts the binary

representation of xn left one place, it follows that the computer-generated orbit for the shift

map with any'initial condition x0 becomes zero-valued after a finite amount of time.
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Figure 6-10 depicts the computer-generated orbit corresponding to the initial condition

v. Despite the fact the actual initial condition is irrational, the computer approximates2'

0o

0

a c
X 

O.

O.

TIME (n)

Figure 6-10: Orbit segment for shift map with initial condition 

the initial condition with a dyadic rational, and the orbit becomes zero-valued after a finite

amount of time.

There are several practical, though not totally theoretically justifiable ways to circum-

vent this undesirable situation when simulating MC maps such as the shift map on a com-

puter. First, for each affine segment with slope that is integer-valued and even, one can

perturb the slope slightly. For example, one might replace a slope of 2 with a slope of

1.9999999999. Unfortunately, the substitution changes the dynamics of the map as well

as any stationary PDFs. In fact, the resulting map may not even have a stationary PDF

even though the original map is ergodic. Intuitively, one would expect the dynamics of the

new map to be close to those of the original. However, it is difficult if not impossible to

analytically evaluate the effect of perturbed slopes, and it is unclear if the invariant den-

sity or dynamics of the perturbed map converge to those of the unperturbed map as the

perturbations go to zero.

Alternatively, one can add a small driving noise term to the state equation of an

MC map. This yields the following non-deterministic state equation:

Xn+l = f(xn) + w" (6.34)

where {wn} is a white-noise sequence. If the PDF of each noise term wn is constant with

region of support over [-ca, a] for some constant cta, then as shown in [13], the stationary

PDF of the driven system converges in L-norm to that of the undriven system as the
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driving noise sequences converges to an impulse at the origin, i.e., as the bounding constant

a goes to zero. Furthermore, in contrast to the undriven system which may have an infinite

set of periodic points, the driven system has no periodic points and as a result the orbit

generated by each initial condition exhibits the expected randomlike behavior.

Similarly, if one expresses wn as en where e is a small positive constant and {en} is an

independent, identically distributed random sequence with nonzero density over R, then the

stationary PDF of the driven system converges to that of the undriven system in L'-norm

as -+ 0, as a consequence of a more general result given by [50, p.289:Theorem 10.6.1].

A third technique, the one used for the examples in this chapter, consists of scaling and

then rescaling each of the affine mappings comprising the MC map. In particular, the affine

map

f(x) = rx + (6.35)

is replaced by the theoretically equivalent affine map

f(X) = -[( 7 r) x + ( )] (6.36)

where a is an irrational number and the parenthesized expressions are evaluated first. Fig-

ures 6-11 (a) and (b) show the first 100 orbit points and orbit points 1001 to 1100, re-

spectively, for the same map and initial condition used for Figure 6-10 but with the affine

transformations comprising the map scaled and rescaled as indicated above by the constant

7 = Vii. The orbit exhibits the randomlike behavior expected with this map and initial

C-_
x_

: (no (b)

Figure 6-11: Orbit segments for shift map with irrational initial condition and affine trans-
formation scaled and rescaled by = /. (a) Orbit points 1-100: (b) Orbit points
1001-1100.
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condition.

An interesting property of this third technique is that orbit segments of EMC maps

generated using it, or at least those EMC maps for which the slope of each affine segment is

an integer with absolute value greater than one, are deterministic both in a theoretical and

in a certain practical sense. In particular, given an EMC map f and an (N + 1)-point orbit

segment {x(i) = f(x(O))}No generated with this technique, the backward orbit segment

{y(i)}tN 0 obtained by defining y(N) = x(N) and y(n) = fnl(y(n + 1)) for 0 < n < N - 1,

where f denotes the affine mapping associated with x(n), is the same as {x(i)}N to

within machine precision. In other words, by running the final orbit point x(N) through

successive compositions of the inverse system fj-l implicitly defined by the orbit segment,

one recovers the orbit segment to within machine precision. Figure 6-12 depicts the average,

point-by-point, squared reconstruction error normalized by the variance of the original orbit

segment {x(i)}N 0 of the shift map, with the original orbit segment generated using the third

technique discussed above. Figure 6-13 (b) shows analogous results for the EMC map shown
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.34.5
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2 2.5 3 3.5 4 4.5 5

LOG N
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Figure 6-12: Normalized, average, point-by-point, squared reconstruction error (NRE) with
orbit segments of length N + 1 for shift map.

in Figure 6-13 (a).

As suggested by the figures, in contrast to orbit segments of the dissipative maps consid-

ered in earlier chapters, an orbit segment of an EMC map is recoverable from the final orbit

point if the sequence of affine segments which gave rise to the orbit segment is known. This

invertibility or recoverability property of EMC maps with affine segments having integer-

valued slopes is due in part to the contractive nature of the inverse system f1. In the

next chapter, we exploit this property in the derivation and implementation of an ML state

estimator for use with these maps.
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Figure 6-13: EMC map and normalized, average, point-by-point, squared reconstruction
error (NRE) with orbit segments of length N + 1. (a) EMC map; (b) NRE.
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Chapter 7

Detection and State Estimation

with MC Maps

7.1 Introduction

As in Chapter 6, the class of maps of interest in this chapter is the class of MC maps,

a class of piecewise linear unit-interval maps for which the members give rise to Markov

chains. However, in contrast to Chapter 6 which focused on properties of these maps

and synthesis of signals using these maps as building blocks, this chapter focuses on the

exploitation of these properties in practical, optimal and suboptimal detection and state

estimation algorithms for use with these maps. We first consider detection, in particular

the problem of discriminating among a finite number of EMC maps when given a noise-

corrupted orbit segment generated by one of the maps. We introduce a hidden-Markov-

model (HMM) representation of this discrimination problem, with the representation being

an exact one if the orbit points are properly quantized and an approximate one otherwise.

We then exploit this representation in computationally efficient, optimal and suboptimal

discrimination algorithms, and we assess the performance of the algorithms. We also exploit

this HMM representation in iterative, optimal and suboptimal ML estimation algorithms

for estimating both an unknown, constant scale factor applied to the orbit points as well

as the variance of the corrupting noise. We conclude our discussion of detection by briefly

considering an experimentally determined discriminability metric for use with these maps.

Our focus then shifts to state estimation with MC maps, in particular the problem of

145



obtaining the ML estimate of each point of an orbit segment generated by an MC map

when given a noise-corrupted version of that orbit segment. We first consider the issues and

complications that arise when attempting to perform ML state estimation with MC maps.

Next, we introduce an HMM representation of the state estimation problem. The represen-

tation is not exact; but it constitutes a fundamental component of an ML state estimator

which we derive and show to be optimal if the representation is appropriately chosen and

suboptimal, but nonetheless potentially effective, otherwise.

7.2 Detection of EMC Maps

7.2.1 Problem Scenario

The close relation between EMC maps and Markov chains facilitates the detection or dis-

crimination of these maps based on noise-corrupted orbit segments generated by the maps.

In this section, we show that when the orbit points are properly quantized, one can per-

form optimal, computationally efficient discrimination among these maps, and when the

outputs are not quantized, one can perform computationally efficient, albeit suboptimal

discrimination.

The underlying problem scenario we consider is the following. We are given M one-

dimensional EMC maps {fi}il, and an unobserved (N + 1)-point orbit segment X -

{x(i)}No is generated by one of the maps. We are also given a set of N + 1 observations

Y = {y(i)} - 0, where y(i) is given by

y(n) = hk(x(n)) + v(n), 0 < n < N. (7.1)

In this equation, {v(i)}N=0 is a white-noise sequence which is assumed to be independent of

the initial condition x(0) and the chosen map fk and for which the variance of each v(i) is

0 2. Also, hk is a memoryless transformation which may be dependent upon the map fk. In

Section 7.2.2 we consider the case in which hk is a quantizer. In Section 7.2.3 we focus on

the case in which hk is the identity operator but briefly consider more general choices of hk

as well. In Section 7.4, we consider ML estimation of hk when it is an unknown, constant,

scale factor.

This scenario gives rise to several related problems. The problem of interest here is an M-
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ary hypothesis testing problem in which one seeks to determine, ideally in an optimal way,

which of the M maps generated the unobserved orbit segment X and thus gave rise to the

observations Y. One motivation for considering this problem is its relevance to a potential

scheme for secure M-ary communication. With this scheme, an EMC map is associated with

each of the M signals. To transmit a signal, one generates a sufficiently long orbit segment

X from the corresponding map and transmits this segment or a transformation hk of the

segment. If the channel is an independent, additive noise channel, the task at the receiver

involves M-ary hypothesis testing, that is, determining which of the M maps generated the

received, noise-corrupted orbit segment. This potential communication scheme has some

similarity with those techniques for spread-spectrum communication which utilize binary

chipping or pseudo-random noise (PN) sequences. However, in contrast to these techniques,

the scheme does not require the receiver to be precisely synchronized to the transmitter.

Only a sufficiently long subsegment of each transmitted orbit segment needs to be isolated

for detection. Also, because of the flexibility in designing EMC maps, one could choose

the M maps as a function of the expected noise level of the channel. At low noise levels,

the maps and the associated signals could be chosen to be nearly indistinguishable so as

to minimize the possibility of interception, whereas at high noise levels the maps could be

chosen to be quite dissimilar, possibly antipodalin the binary case as discussed in [65, 66, 67].

A fundamental result from estimation theory is that for equally likely maps, the optimal

detection rule, in a minimum probability of error sense, is to choose that map among the

M, with the largest likelihood p(Ylfk), where p(Ylfk) is the PDF of the observation set

Y conditioned on the map fk having generated the orbit segment X giving rise to Y.

The next two sections introduce optimal and suboptimal algorithms for calculating these

likelihoods. In both sections, the transformations {hk}, the M maps, and the variance

ca2 of the observation noise are assumed to be known. Section 7.4 considers optimal and

suboptimal methods to partially overcome the need for these assumptions.

7.2.2 Detection with Quantized Orbit Points

One can efficiently compute the exact likelihoods used in the optimal detection rule when

each of the M transformations hk is a quantizer which associates a single, unique value

with each element of a Markov partition for fk. That is, if Ik denotes the jth partition
elem ent for m ap fk and Hk denotes the value associated w ith this partition elem ent by hk,~.7

element for map fk and R* denotes the value associated with this partition element by hk,
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then hk(x) = Hjk for all x E I. (For example, Hk might be the midpoint or an endpoint

of Ik). With the M quantizers chosen this way, the detection problem reduces to that of

discriminating among M hidden Markov models (HMMs). As such, one can use the forward

portion of the computationally efficient forward-backward algorithm [74, 75] to calculate the

the M likelihoods {p(Ylfk)}k:.l

Specifically, for each map fk the partition elements {I}T l correspond to the unobserved

states in the HMM associated with that map, where Tk denotes the number of partition

elements for the Markov partition associated with fk. For the problem scenario introduced

earlier, o(n), the output at time n associated with Ij, is given by

o (n) = Hj + v(n). (7.2)

In other words, if fk generated the orbit segment X = {x(i)}yi0 and x(n) E , then y(n),

the observation at time n, is given by

y(n) = hk(x(n)) + v(n) = o(n) = Hk + v(n). (7.3)

With this observation equation, p(y(n)[[x(n) E I, fk]), the PDF of the observation y(n)

conditioned on the map fk having generated the orbit segment and x(n) being in partition

element Ip, is given by

p(y(n)J[x(n) E Ij,fk]) = pv (v(n) = y(n)- H) (7.4)

where pv is the PDF of each term in the white-noise sequence.

We define the forward variable a(n) as follows:

ac(n) = p(y(O), y(l1), .y(), x(n) E Ik) (7.5)

That is, (n) is the joint PDF of the observations through time n and x(n) E IP, condi-That is, 3~n 7

tioned on map fk having generated the orbit segment X = {xi}= O. Note that 4(n) canN~~~~~~~

also be expressed

ac(n) = p(y(O),y(l),...,y(n)[x(n) E I, fk])p(x(n) E Ij fk). (7.6)
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Also, we let k = Lj TIfk denote the TPM associated with fk, where denotes the

probability that x(n) E Ik given that x(n - 1) E Ik. (Note that Pk and pk have different

meanings than in Chapter 6).

Using these definitions and notational conventions, we have the following computation-

ally efficient algorithm, the forward algorithm, for calculating each likelihood function and

optimally discriminating among the maps:

1. For each map fk, compute a4(n) as a function of n for j = 1, , Tk with the following

recursion:

ao(O) = p(y(O)|[x(O) E I fk])p(x(O) E I fk)

( n.+ l) = [E Q ( )p ]

xp(y(n + 1)I[x(n + 1) E I, fk]), n = 0,1,., N - 1 (7.7)

2. For each map, compute the likelihood p(Ylfk) by exploiting the relation given by

Tk

P(Ylfk) = aZ a(N). (7.8)
j=l

3. Choose the map fk for which p(YIfk) is largest.

The detection algorithm requires specification of initial state probabilities p(x(O) E

IPfk) for each map. These probabilities are particularly easy to determine if the initial

condition is a random variable with constant PDF over the unit interval. In this case,

p(x(O) E Ifk) is given by the length of I. In the more general case, p(x(O) E Iklfk) is

given by the PDF of x(0) integrated over Ik. The PDF of x(0) can not be arbitrary, for the

Markov chain property of the maps to hold as suggested by Corollary 1 in Chapter 6. In

particular, the PDF of x(O) must be constant over each partition element for the Markov

chain property to apply to map k. In general, when this condition is violated, the partition

elements no longer correspond to the states of a homogeneous.Markov chain, but they may

correspond to the states of an inhomogeneous Markov chain, that is, a Markov chain with

time-varying state transition probabilities.
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7.2.3 Detection with Unquantized Orbit Points

When each of the M transformations hk is the identity operator, the detection problem is

that of discriminating among M EMC maps based on noisy observations of unquantized

orbit points. In general, for the case of unquantized orbit points, optimal discrimination

among the M maps is not computationally feasible because the initial condition x(0) is

unknown and the maps are chaotic. However, if the EMC maps each give rise to arbitrarily

fine Markov partitions, computationally efficient, albeit suboptimal discrimination is still

possible if we model the dynamics of each map as an HMM and apply the detection rule

outlined earlier.

Specifically, we first select a sufficiently fine Markov partition for each map, with the

the necessary fineness of the partition dependent upon the M maps being used. We know

of no optimality criteria for quantifying this expression for a given set of maps. One subop-

timal, practical method to choose partition sizes is by trial-and-error, with detection results

obtained experimentally via Monte Carlo simulations. On the basis of experiments with

various EMC maps which give rise to uniform Markov partitions, it appears that there is

a threshold partition size, with finer partitions offering little if any improvement in perfor-

mance over a partition with elements having length equal to this threshold size.

Having selected a Markov partition for each map, we apply the detection rule outlined in

Section 7.2.2, with one fundamental change. In particular, we use the following expression

for (n) in place of (7.2):

o(n) = uk(n) + v(n), (7.9)

where u (n) is a random variable which is independent of v(n) and which has a constant PDF

with region of support Ik. Thus, each observation y(n) is now the sum of two independent

random variables with conditional PDF p(y(n)I[x(n) e I, fk]) given by the convolution of

the PDFs of u(n) and v(n).

The motivation for modeling the noise-free output of each state as a uniform random

variable with region of support over the corresponding partition element follows from two

facts. First, as noted above, for the Markov chain property to hold, the PDF of the initial

condition x(0) must be constant over each partition element. Second, as shown in [12], the

Frobenius-Perron operator restricted to PDFs that are constant over each partition element

of a Markov partition for an MC map is a linear operator. As a consequence, if the PDF
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of the initial condition x(0) is constant over each partition element, the PDF induced by

f acting on x(0) is constant over each partition element as well. As a result, the PDF of

x(n) conditioned on x(n) lying in a given partition element is constant over that partition

element, thereby suggesting the appropriateness of modeling the noise-free output of each

state of the Markov chain in the HMM as a uniform random variable.

It is straightforward to extend this suboptimal detection algorithm to the case in which

each hk is not the identity, but instead an arbitrary, piecewise differentiable, memoryless

transformation. In this case, an appropriate model for the noise-free output of each state

is that of a random variable with PDF induced by hk acting on a uniformly distributed

random variable, where the region of support of the uniformly distributed random variable

is the corresponding partition element.

7.3 Detection Examples

In this section, we compare the performance of the optimal and suboptimal detection algo-

rithms. We focus on the binary detection problem in which we seek to discriminate between

two EMC maps based on a noise-corrupted orbit segment generated by one of the maps. For

convenience but not by necessity, all performance results were obtained with a Gaussian,

white noise sequence used for {v(i)}y=O0.

We first consider the two maps depicted in Figures 7-1 and 7-2, with typical orbit

segments also shown in the figures. The maps are antipodal in the sense that for a given

1-1

+

x(n) TIME (n)

Figure 7-1: EMC map f and typical orbit segment. (a) EMC map; (b) Orbit segment.

initial condition x(0), corresponding orbit points of the maps satisfy the relation fi(x(O)) =

1 - f(z(0)) fr i > 0. (The conditions required for antipodality were established in [65]).
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Figure 7-2: EMC map f2 and typical orbit segment. (a) EMC map; (b) Orbit segment.

Because the maps are antipodal, their power density spectra are identical. Both maps also

have identical stationary PDFs given by the constant value one over the unit interval. Any

uniform partition of the unit interval into 4 N subintervals, where N is any positive integer,

is a Markov partition for each map.

Figures 7-3 (a) and (b) depict the error probabilities as a function of the input SNR for

an 8-element Markov partition and differently sized orbit segments.

a' ,
0

0-

0
-j

(a) INPUT SNR (dB) (b)

Figure 7-3: Detection error probabilities Pe for EMC maps fi and f2 with 8-element Markov
partitions and differently sized orbit segments used in the likelihood function. (a) Quantized
orbit points; (b) Unquantized orbit points.

The actual ratio used for each input SNR value is that of the variance of a random

variable with constant PDF over the unit interval (which equals 1/12) and the observation

noise variance. Whereas the stationary PDF of each map has the constant value one over the

unit interval, the SNR values are the same as the SNR values which use the actual signal

variance (given by the variance of points in a typical orbit) when the orbits points are

unquantized, but may differ slightly from the actual signal variance with coarsely quantized
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orbit points. The curves are parameterized by the length of the noise-corrupted orbit

segment used in the likelihood function. Ten thousand independent trials, with each map

generating the orbit segments for half the trials, were used to obtain the error probabilities

for values greater than or equal to .01, whereas one hundred thousand independent trials

were used to obtain error probabilities below this value. The plotted results indicate that

for a given input SNR, performance improves with an increase in the orbit segment size, as

one might expect. In addition, the results suggest that the performance of the suboptimal

detector (the one using unquantized orbit points) is comparable to that of the optimal

detector (the one using quantized orbit points) with 20-point and 40-point orbit segments.

Figures 7-4 show performance results for differently sized Markov partitions and a 20-

point orbit segment used in the likelihood function. The results suggest that the detection

a)

a-o
0

(p.2

0
-j

o:D

(a)
INPUT SNR (dB)

Figure 7-4: Detection error probabilities Pe for EMC maps fi and f2 with 20-point orbit
segments and differently sized Markov partitions used in likelihood functions. (a) Quantized
orbit points; (b) Unquantized orbit points.

algorithm is insensitive to the size of the Markov partition used for discriminating between

the two maps.

Figures 7-7 and 7-8 depict analogous performance results as those in Figures 7-3 and 7-4,

but obtained with the two EMC maps f3 and f4 shown along with typical orbit segments

in Figures 7-5 and 7-6. EMC maps f3 and f4 satisfy a weaker form of antipodality than

maps fi and f2. Specifically, while it is not true that f3(x(0)) = 1 - f(x(O)) for i > 0, it is

true that f(x(0)) = 1 - f(1 - x(0)). A comparison of the performance results for fi and

f2 with the results for f3 and f4 suggests that the former results are slightly better than

the latter, as one might expect in light of the stronger form of antipodality satisfied by fi

and f2.
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Figure 7-5: EMC map f3 and typical orbit segment. (a) EMC map; (b) Orbit segment.
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Figure 7-6: EMC map f4 and typical orbit segment. (a) EMC map; (b) Orbit segment.
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Figure 7-7: Detection error probabilities Pe for EMC maps f3 and f4 with 8-element Markov
partitions and differently sized orbit segments used in likelihood functions. (a) Quantized
orbit points; (b) Unquantized orbit points.
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Figure 7-8: Detection error probabilities Pe for EMC maps f3 and f4 with 20-point orbit
segments and differently sized Markov partitions used in likelihood functions. (a) Quantized
orbit points; (b) Unquantized orbit points.

One should not infer from these examples that the detection algorithms are only useful

with antipodal maps. In fact, there may be detection applications, such as secure commu-

nication over low-noise channels, in which the use of antipodal maps is neither necessary

nor desirable.

7.4 Scale Factor and Noise Variance Estimation

The detection algorithms introduced in Sections 7.2.2 and 7.2.3 require that the observa-

tion noise variance as well as each output transformation hk be known. However, these

quantities may be unknown or only partially known in practical applications. For example,

in applications in which orbit segments from EMC maps are transmitted over a channel,

the orbit points may undergo a number of unknown transformations, such as linear and

nonlinear filtering, fading, scaling, and noise corruption. In this section we focus on two

of these transformations-scaling and noise corruption. In particular, we discuss how to

simultaneously estimate a constant, multiplicative scaling factor applied to each orbit point

and the variance of an additive, Gaussian, white, corrupting noise.

By exploiting the relation between noise-corrupted orbit segments of Markov maps and

sample paths of hidden Markov models, we can derive computationally efficient iterative al-

gorithms for estimating an unknown scale factor and noise variance. When the orbit points

are properly quantized, the estimation algorithms are iterative ML estimation algorithms.

With unquantized points, the algorithms are not ML estimation algorithms but are poten-

tially effective, nevertheless. The specific estimation algorithms we use are variations of
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the Baum-Welch re-estimation procedure [74, 75], an iterative ML technique for estimating

parameters of hidden Markov models from sample observations. Of interest here is the case

in which the EMC map is known, as well as a Markov partition for the map and the TPM

of the Markov chain corresponding to the partition.

We first consider the case of quantized orbit points. For this case, we can formulate

the re-estimation procedure for estimating the unknown noise variance and scale factor

as follows. As noted above, we assume that we are given a Markov map f, a Markov

partition for the map {Ij}=l, a TPM P = [ij] for the Markov chain associated with the

partition, and an associated set of constant values {Hj}T'=1, with Hj the value associated

with partition element Ij. The set {Hj}T=_ consists of the the state values or equivalently

the quantization values of the orbit points, with the value Hj associated with each orbit

point lying in Ij. In the following equations, H(n) denotes the quantization value associated

with the orbit point x(n), i.e., H(n) = Hj if x(n) E Ij. Finally, we assume that an (N + 1)-

point orbit segment X = {x(i)}N Oy 0 is generated by the map and we observe the observation

set Y = {y(i)}=o0, where y(n) is given by

y(n) = kH(n) + v(n) (7.10)

and where k is the unknown scale factor we seek to estimate and {v(i)}N=O0 is a Gaussian,

white-noise sequence with unknown variance a2, which we also seek to estimate.

As in Sections 7.2.2 and 7.2.3, we define the forward variable aj(n) as

aj(n) = p(y(O), y(1), .. , y(n), x(n) e Ij), (7.11)

which as indicated earlier is recursively computable:

aj(O) = p(y(O)[x() E Ij])p(x(O) E Ij) (7.12)

a (n + 1) = a (n)pii

xp(y(n + 1)1[x(n + 1) E Ij]), n = 0,1,.., N - 1 (7.13)

Now we also define the backward variable j(n) as

Oj(n) = p(y(n + 1), y(n + 2)..., y(N)jx(n) Ij), (7.14)
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which is recursively computable backward in time as follows:

Oj(N) = 1 (7.15)
T

1j(n) = Epjlp(y(n+ l)l[x(n+ 1) e II])(l(n+ 1), n = O,--,N-1. (7.16)
1=1

Finally, we define the conditional state variable 7yj(n) as

?j(n) = p(x(n) e Ij IY), (7.17)

where Y is the observation set {y(i)}N=0. As indicated by (7.17), yj(n) denotes the probabil-

ity density that x(n) E Ij conditioned on the entire observation set. The forward, backward,

and conditional state variables satisfy the following relation:

?Yj~ = oj(n) lj(n) aj(n) O (n) (7.18)
j() = p(Y) j (n)(n)) (7.18)

where the denominator is simply a normalization constant.

It follows from more general results in [53, 75] that when each state Sj of a hidden

Markov model has a scalar, Gaussian output PDF with mean mj and variance aj2, the

re-estimation equations for rhj and &2, the estimates of mj and oj2, are given by

nJ = E =0j 7 y(i) (7.19)

=E2=o L 7 j(i) (y(i) - rhj)2 (7.20)a2 E= (7.20)

Note that if -yj(i) = 1 for all i, the re-estimation formulas are the sample mean and variance.

The re-estimation formulas are iterative algorithms, with the estimated means and variances

used to calculate the conditional state probabilities {-yj(n)} which are subsequently used in

the above equations to re-estimate the means and variances.

For the problem of interest here, mj = k Hj where k is the unknown scale factor and

Hj is known. For this problem, a straightforward derivation, (for which we know of no

references) analogous to that used in [53] to obtain the above re-estimation equations,
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yields the following re-estimation equation for k, the estimate of the scale factor k:

E_ E/N= T 1 j(i)Hjy(i)
(7.21)

which is a weighted average of the observations, as is the case with (7.19), but with the

weights now also dependent on the known values {Hj}. Similarly, since oj = a 2 is the same

for each state, a straightforward derivation yields the following re-estimation equation for
&2:

.2 = NZ$o 'j=1 7 j(i) (y(i) - k Hi)2 (7.22)

ZN=0 1:17=l 7j(i)
1 N T

N + 1 Z yj(i) (y(i)-k Hj)2 (7.23)
i=O j=l

As discussed in [75], the Baum-Welch re-estimation procedure is closely related to the

Expectation-Maximization (EM) algorithm, and as with the EM algorithm only local con-

vergence is assured with the re-estimation procedure. As a consequence, the estimated

parameter values converge to steady-state values which may or may not be the actual pa-

rameter values.

Two problems arise with unquantized orbit points. First, the HMM model introduced

in Section 7.2.3 is not an exact representation of the dynamics underlying the observations.

Second, the derivation of closed form re-estimation equations for an unknown scale factor

and observation noise variance appears to be an intractable problem. However, using the

above re-estimation equations for quantized orbit points as a foundation, we can derive

Baum-Welch-like re-estimation equations for the unknown scale factor and noise variance

with the HMM model for unquantized orbit points. Recall that with this model, each

observation y(n) is the sum of two random variables, one the observation noise term with

unknown variance we seek to estimate, and the other a uniform random variable with mean
k j+k L+-kLj and variance (kLj+-kLj)2 for some j, where Lj denotes the left endpoint of2 12

partition element Ij and k denotes the unknown scale factor. Thus, an intuitively reasonable

re-estimation procedure for obtaining the unknown scale factor and variance is to use k Lj +

kLi+2l-kL in place of k Hj in the above re-estimation equations for quantized orbit points2

and to subtract from each term in the above expression for the variance estimate, an estimate

of the variance of the uniform random variable associated with that term, or in other words
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a term having the form (k L7 +-kL )2 The "Baum-Welch-like" re-estimation equations for12

unquantized orbit points that result are the following:

= 0X E= 1 yj(i) (Lj + L+ ) y(i) (7 24)k 3= 3 --2 ~~~~~~~~~~~~(7.24)
E>=o Sf_=1 Ij(i) (Lj + L )2

&2_ 1 N T1 Z 71j(i)x (7.25)
i=0 j=l

y(i)- k(Lj + L + _ Lj) 2 (kLj+j- Lj)2 (7.26)
2 ~12

where we define LN+1 to be the right endpoint of IN.

Figures 7-9 and 7-10 depict the error in estimating the scale factor and noise variance for

the EMC map shown in Figure 7-5. The actual scale factor used for the results was 2 and the
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Figure 7-9: Mean-squared error (MSE) (average of 100 trials) for scale factor estimation
for EMC f3 map using 100 observations. (Actual value of scale factor value was 2). (a)
Quantized orbit points; (b) Unquantized orbit points.

noise variance was determined by the SNR. The performance measure used in Figures 7-9

(a) and (b) is the squared estimation error averaged over 100 independent trials. Similarly,

the performance measure used in Figures 7-10 (a) and (b) is the squared estimation error

averaged over 100 independent trials and normalized by the actual value of the variance.

The curves in the figures are parameterized by the size of the uniform Markov partition

used, with 100 observations used in the estimation equations for each plotted result. The

scale factor and variance estimates were both initialized with the value 1. The estimation

algorithms were iterated either until they converged or an upper limit of 50 iterations was

reached.

As indicated by the figures, the results with quantized and unquantized orbit points are
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Figure 7-10: Normalized mean-squared error (MSE) (average of 100 trials) for noise variance
estimation for EMC map f3 using 100 observations. (Noise variance determined by input
SNR). (a) Quantized orbit points; (b) Unquantized orbit points.

comparable except for variance estimation with large input SNRs and an 8-element Markov

partition, or equivalently an 8-state Markov chain in the HMMs. The results also indicate

an insensitivity to the Markov partition size, except for variance estimation at high input

SNRs with unquantized orbit points. Figures 7-11 and 7-12 depict the performance results

for a fixed-sized, 16-element uniform Markov partition (equivalently a 16-state Markov chain

in the HMMs) and differently sized orbit segments. The figures suggest a strong correla-

tion between scale factor estimation accuracy and the orbit segment size but negligible

correlation between variance estimation accuracy and the orbit segment size.

wLU

0

(
0
-j

(a) (b)(a) INPUT SNR (dB) (b)

Figure 7-11: Mean-squared error (MSE) for scale factor estimation for EMC map f3 using
16-element uniform Markov partition. (Actual value of scale factor value was 2). (a)
Quantized orbit points; (b) Unquantized orbit points.

The question arises as to the advantage of the re-estimation equations for unquantized

orbit points over the re-estimation equations for quantized orbit points, when the observa-

tions arise from unquantized orbit points. Figure 7-13 depicts the absolute bias, defined
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Figure 7-12: Normalized mean-squared error (MSE) for noise variance estimation for
EMC map f3 using 16-element uniform Markov partition. (Noise variance determined by
input SNR). (a) Quantized orbit points; (b) Unquantized orbit points.

as the absolute value of the difference between the estimated scale factor and actual scale

factor, averaged over 100 independent trials, obtained with both scale factor re-estimation

equations when applied to observations arising with unquantized orbit points. As indicated

c3
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5 20

Figure 7-13: Estimated scale factor minus actual scale factor with re-estimation equations
for quantized and unquantized orbit points using 100 observations arising from unquantized
orbit points and a 16-element uniform Markov partition. (Actual value of scale factor was
2).

in the figure, a nonnegligible positive bias arises at all SNRs with the re-estimation equation

for quantized orbit points. Additional experiments have shown the bias to be dependent on

the scale factor and to increase as the scale factor increases.
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7.5 Map Discriminability

A useful tool when selecting EMC maps for detection applications would be a metric which

quantifies the discriminability among these maps. Unfortunately, finding such a metric

remains an elusive goal. We have explored metrics based on divergence (or cross entropy)

rates of Markov chains [19] and Bhattacharya distance measures [41] with little success. The

fundamental problem is in finding a metric that is consistent with experimentally obtained

detection results.

A useful empirical metric for hidden Markov models with finite observation alphabets

was introduced in [39]. This metric, which uses asymptotic cross-information rates (defined

below), is easily adapted for use with continuous-valued observations and EMC maps. Un-

desirable aspects of the metric are that it is a function of the observation noise variance and

its calculation may require that a large set of simulated observations be obtained for each

map being compared.

The metric arises as follows. We start with a set of M hidden Markov models {fi}

with each consisting of an underlying homogeneous, finite-state Markov chain and state-

dependent output. For the problems of interest here, the underlying Markov chains are

those corresponding to Markov partitions of EMC maps and the output associated with

each state of the Markov chain is either a Gaussian random variable when orbit points are

quantized or the sum of a Gaussian random variable and uniformly distributed random

variable when orbit points are not quantized.

We let Y~ denote a set of n observations associated with f and define an n-point

information rate E(j, j, n) as

E(j, j, n) _-logp(YIf3 ) (7.27)

and n-point cross-information rates E(k, j, n) as

1
E(k, j, n) _- logp(YIn[k), k = 1, 2, . . ., M, k j. (7.28)

n

These rates are simply log-likelihood values normalized by the number of observations. Note

that these quantities are not entropy rates as they do not involve the expectation over the

observation set.
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For a restricted form of this scenario in which only a finite number of values are possible

for each output, it was shown in [70] that each of the following limits exists:

E(k,j) lim 1logp(YIfk), k = 1, -.--M (7.29)
n--*o 7

and that the following relations hold:

E(j,j) > E(k,j), k = 1,--. M. (7.30)

For the detection problems of interest here involving continuous-valued outputs, convergence

of the n-point information rates has never been proven. Nonetheless, experimental results

obtained with EMC maps suggest that the n-point information and cross-information rates

approach asymptotic values with small perturbations about these values as n grows large.

For example, Figure 7-14 depicts differences of information and cross-information rates for

EMC maps fi and f2 shown in Figures 7-1 and 7-2 as a function of time with an input

SNR of 0 dB. As the figures suggest, the differences appear to approach asymptotic mean

0.1 . . . . . . . . . . . .l
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Figure 7-14: Information rate differences as a function of time for EMC maps f and f2

with an input SNR of 0 dB. (a) Quantized orbit points; (b) Unquantized orbit points.

values with small perturbations about the mean. The motivation for showing the rate dif-

ferences E(1, 1, n) - E(2, 1, n) and E(2, 2, n) - E(1, 2, n) and not the individual information

and cross-information rates arises from the close relation among these differences and the

discrimination criterion used in the detection algorithms introduced earlier. In particular,

using (7.27) and (7.28), we have the following:

E(1,1,n)-E(2,1,n) = logP(Y1 lf ) (7.31)
p(Y2[ If2)

163



E(2,2, n)-E(1,2,n) = logp(Y2If2) (7.32)p(y2 f)

With the detection algorithms, the discrimination criterion consists of deciding upon that

map for which the corresponding likelihood p(YJlfk) is largest for a fixed observation set

YJ. For binary detection involving maps f and f2, a correct decision is made when (7.31)

is positive for the case in which f generated the observations. Similarly, a correct decision

is made when (7.32) is positive for the case in which f2 generated the observations. As such,

the differences E(1, 1, n) - E(2, 1, n) and E(2, 2, n)- E(1, 2, n) are qualitative indicators of

the discriminability between the maps as n grows large, with larger, positive values of the

differences suggesting greater discriminability.

Figure 7-15 depicts information rate differences for EMC maps f3 and f4 shown in

Figures 7-5 and 7-6 as a function of time with an input SNR of 0 dB. As the figures suggest
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Figure 7-15: Information rate differences as a function of time for EMC maps f3 and f4

with an input SNR of 0 dB. (a) Quantized orbit points; (b) Unquantized orbit points.

and as the performance results presented earlier confirm, the discriminability between fi

and f2 is much greater than that between f3 and f4

7.6 State Estimation with MC Maps

7.6.1 Problem Overview

In the preceding sections of this chapter, we have shown how the close relation between

EMC maps and Markov chains facilitates the detection or discrimination of these maps

based on noise-corrupted orbit segments. In this section, we show how this relation facil-

itates practical, optimal and suboptimal ML state estimation with EMC maps and more
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generally MC maps.

We focus on the fixed-interval smoothing scenario in which we are given an MC map f,

an unobserved (N + 1)-point orbit segment {x(i) = f(x(O))}N=0 generated by f, and a set

of N + 1 observations Y = {y(i)}= 0 with y(i) given by

y(i) = x(i) + v(i) (7.33)

where {v(i)}N=0 is a Gaussian, white-noise sequence with variance ar2. It follows from earlier

results in the thesis that for this scenario, the log-likelihood function for the jth orbit point,

log p(Y; x(j)), is given by

N (y(i)-- f['-/o),j)(X(j 2

log p(Y;x(j))= C(N)- Z 2 (7.34)
i--0

where C(N) is a constant independent of both the observation set Y and the orbit segment,

and where f[.o)j)(x(j)) equals fi-J(x(j)) if i - j > 0 and equals the actual value of the

inverse image fiJ(x(j)) which gave rise to the observations if i - j < 0. In other words,

we assume that there is a fixed initial condition x(0) so that the following holds:

x(i) = fi(x(O)) = fi(o),j)(x(j)) i,j = O,.. , N (7.35)

Because f is a deterministic mapping, there is a bijective correspondence between initial

conditions x(O) and (N + 1)-point orbit segments {fi(x(0))}=O, so that any property as-

sociated with a specific orbit segment can be associated with a specific initial condition as

well.

We let L denote the smallest number of affine segments of f in the sense that two affine

segments are considered part of the same segment if they have the same affine parameter

pair. Also, we let (ri,,3i) and Ai denote the affine parameter pair and segment domain,

respectively, associated with the ith affine segment, so that f(x) = ri x + ,i if z E Ai. Note

that each Ai is a subinterval of the unit interval, disjoint from all the other Ai, and the

set of subintervals {Ai}~ is a partition of the unit interval but not necessarily a Markov

partition of f.

We can associate sequences of N + 1 affine parameter pairs and affine segment domains

with each (N + 1)-point orbit segment or equivalently with each initial condition. In par-
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ticular, for the initial condition x, we associate the sequences {(7(i,x),3(i,X))}Y 0 and

{A(i,x)}yo0 where (i,x) = j, 3(i,x) = Oj, and A(i,x) = Aj if fi(x) E Aj. One can

show that because each Ai is a subinterval and disjoint from all the other Ai, the set of

initial conditions with the same associated sequence of segment domains {A(i,x)}No is a

subinterval A(x), which is given by

N

A(x) = nf f-i(A(i,x)) (7.36)
i=O

where f-i denotes the possibly multiple-valued, inverse image of the composed map fi.

It is straightforward but tedious to show that because f is piecewise linear, fi is piecewise

linear as well, so that

fi(x) = T(i,O0,x) x + B(i,O0,x) i = O,.- ,N (7.37)

where

T(0, 0, x) = 1 (7.38)

B(,0O ,x) = 0 (7.39)

and for i > 0

i-1

T(i,O0,x) = II r(k,x) (7.40)
k=O

i-2 i-1
B(i,O,x) = 6(i- 1,x)+ y [(kx) l r(l,x) . (7.41)

k=O I=k+l

In addition, for a given orbit segment {x(i) = f(x)}y 0, the following holds

fio),j)(x(j)) = T(i,j,x)x(j)+ B(i,j,x) i,j = O.* *,N (7.42)

where

T(j,j,x) = 1 (7.43)

B(j,j,x) = 0 (7.44)
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while for i > j

i-j-1

II [r(k + j,x)]
k=O0

i-j-2

B(i,j,x) = 6(i-1,x) + Z
k=O

i-j-1

(k + j, ) fi r(I + j,x) .
I=k+l

and for i < j

1

i - - 1 7(i + k, x)rk=0
( ~~j-i-2 j-i-1 

= -T(i,j,x) x l(j-1, x) + 0(i + k,x) II T(i + 1,x) (7.48)
k=O I=k+l -

Therefore, we can express (7.34) as

log p(Y;x(j)) = C(N) _ (y(i)- T(i,j,x)x(j)- B(i,j, x))2
i=o2o.

which is a quadratic function of the unknown orbit point x(j).

7.6.2 ML State Estimation Considerations

We first consider maximizing (7.49) for the special case in which j = 0, so that x(j) =

x(O) _ x and (7.49) becomes

log p(Y; x)- log p(Y;x(o))= C (y(i)- T(i, 0, x) x- B(i, 0, x))2
log AY; X) = lg AY / (O = 202 , (7.50)

i=0

If the sequence of parameter pairs {(T(i, 0, x), B(i, 0, x))}N 0 is known and independent

of x, then finding the value(s) of x for which (7.50) has extremal values for a given ob-

servation set is a straightforward calculus problem having a closed-form solution. In this

special case, (7.50) has a unique extremum (except possibly for degenerate cases) because

it is quadratic in x. Furthermore, this extremum is a maximum because (7.49) becomes

arbitrarily small as x becomes arbitrarily large or small.

Now consider the case in which the affine parameter pairs {(T(i, 0, x), B(i, 0, ))}$f 0 are

those associated with ML, the ML estimate of the initial condition x. In other words,

as with any initial condition, associated with xiML is a an orbit segment fi(iML)}iN=o , a
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sequence of affine parameter pairs {(r(i, ML), (i, -ML))N=o, and a sequence of aine

segment domains {A(i, iML)}i=o . In addition, there is a sequence of parameter pairs

{(T(i, 0, ?ML), B(i, 0, XML))}N=o uniquely determined from {(r(i, xML), 3(i, xML))}No. Sub-

stituting the parameter pairs {(T(i, 0, XML), B(i, 0, XML))}N=o in (7.50) and maximizing over

x yields the following expression for the maximizing value XMAX:

EXMAX = o T(i, 0, XML)(y(i)- B(i, 0, XML)) (7.51)
XMAX = · i~ 2iOXL (7.51)EiN_oT2(i,0, ML)

We now show that XMAX equals XML if it is in A(iML), the subinterval of initial condi-

tions with the associated sequence of affine segment domains {A(i, XML)} O. If not, XML is

the endpoint of A(iML) for which (7.50) has the larger value. The validity of this, assertion

follows from the fact that by definition XMAX is the value of x that maximizes (7.50) for

the fixed sequence of parameter pairs {(T(i, 0, xML), B(i, 0, iML))}ZiNO. Also by definition,

XML is the value of x that maximizes (7.50) when the expression is evaluated with the cor-

rect parameter pairs {(T(i, 0, x), B(i, 0, x))}N=o0 associated with x. Since (7.50) has a single

maximum for a given sequence of parameter pairs and {(T(i,O 0, XML), B(i, 0, iML))}tNo is

the sequence associated with XML, it follows that XMAX equals ML when the former is in

the subinterval of initial conditions associated with {(T(i, 0, ML), B(i, 0, iML))}fl-. How-

ever, it is possible that XMAX lies outside this subinterval. In this case, because (7.50) is a

quadratic function of x (for fixed sequence of parameter pairs) and because XML E A(iML),

it follows that XML is the endpoint of A(XML) closer to XMAX or equivalently the endpoint

for which (7.50) has the larger value.

What we have shown thus far is that if {(r(i, iML), (i, XML))}No, the sequence of affine

parameter pairs associated with the ML orbit segment, is known one can in theory determine

the ML orbit segment by first evaluating 7.51 to obtain XMAX. If XMAX A(iML), then

XML, the ML estimate of x(0), equals XMAX; if not, then £ML equals the endpoint of A(iML)

closer to XMAX. Having obtained ML, one can obtain XML(i), the ML estimate of the i th

point of the orbit segment, by using the relation XML(i) = fi(iML). However, in practice it

is often difficult to determine A(iML). An additional practical concern is that the theoretical

relation XML(i) = fi(ML) is generally not a useful relation with EMC maps, since these

maps are expanding and thus inevitable computer round-off error in the determination of

XML is amplified by successive compositions of the maps with themselves.
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We now consider an alternative approach for calculating the ML orbit segment. The

approach is equivalent in theory to the approach just discussed, but it is more useful in

practice. It involves first obtaining ML(N), the ML estimate of the final point of the

orbit segment, instead of XML, the ML estimate of the first point of the orbit segment.

The approach can be used with any EMC map for which the image of each affine segment

domain under f is a union of affine segment domains and the slope of each affine segment

is an integer with absolute value greater than one.

Because f is deterministic and XMAX is the value of x(O) that maximizes (7.49) for j = 0

when T(i, 0, x) = T(i, 0, XML), and B(i, 0, x) = B(i, 0, XML) for each i = 0,--. , N, it follows

that fN(XMAX) is the value of x(N) that maximizes (7.49) for j = N when T(i,N,x) =

T(i, N, ML) and B(i,N,x) = B(i, N, XML) for each i. However, direct maximization of

(7.49) for the fixed sequence of affine parameter pairs {T(i,N, XML), B(i, N, ML)} yields

the following for the maximizing value XMAX(N):

XMAX(N) E tO T(i, N, ML)(Y(i) - B(i, N, XML)) (7.52)
oE 0 T(i,N, ML)

Since fN(XMAX) and XMAX(N) both maximize logp(Y;x(N)) which is a quadratic ex-

pression in x(N) with a single extremum, it follows that XMAX(N) = fN(XMAX) and

thus XMAX fi&ML,N)(XMAX(N)) where f(NMLN) denotes the invertible mapping implic-

itly defined by the sequence of affine parameter pairs {r(i, ML),I3(i, XML)}N=O. Thus,

one can determine XMAX by first evaluating (7.52) and then using the relation XMAX =

f (ML,N)(XMAX(N)).

The question arises as to the relevance and value of this alternative method for calcu-

lating XMAX. There is a twofold answer. First, given any MC map f, not necessarily an

EMC map, for which the image of each affine segment domain under f is a union of affine

segment domains and given any two segment domains Ai and Aj satisfying Ainf-'(Aj) $ 0,

then f-1(x) n Ai 0 for each x E Aj. In other words, since f(Ai) is a union of affine seg-

ment domains, it follows that if Aj is in that union of segment domains and x E Aj, then

at least one point in the possibly multiple point set f-l(x) lies in Ai.

It further follows by induction that if f has this property of affine segment domains

mapping onto unions of affine segment domains and y A(N, iML), where A(N, :ML) is

the affine segment domain containing fN(iML), then f-N(y) n A(O, XML) $ 0 and more
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importantly f-N(y) n A(iML) 0 as well as firLN)(Y) E A(ML). What this means is

that an equivalent condition for checking if XMAX E A(XML) is to check if XMAX(N) E

A(N, XML), a far simpler task since A(N, XML) is an affine segment domain and these

domains are known a priori.

As a result, if XMAX(N) E A(N, ML), then XMAX = f(MLN)(XMx(N)) A(iML)

and thus ML = XMAX = LN)(MAx) If XMAX(N) A(N, M), then by a simi-

lar argument as used earlier ML(N) fN(iML) is given by the endpoint z of A(N, ML)

for which logp(Y; x(N)) has the larger value and XML = f(XLN)().

The second part of the twofold answer to the question as to the value of using XMAX(N)

to determine XMAX involves the constraint that f be an EMC map for which the slope of

each affine segment is an integer with absolute value greater than one. As discussed in

Section 6.7, such an EMC map has a recoverability or invertibility property in the sense

that the entire orbit segment is recoverable from the final orbit point in both a practical

and theoretical sense. Therefore, given such an EMC map, we can recover XML and the

entire ML orbit segment {fi(iML)}No from XML(N) in theory and practice if the inverse

system {fiuL.,N)}N=o is known by using the equality

XML(i) = f N)(ML()) (7-53)

The above equality is theoretically equivalent to the equality

XML(i) = fi(XML). (7.54)

However, the former equality is more useful in practice because the composed inverse system

fix(o),N) is contracting and consequently does not amplify any computer round-off error as

is the case with the composed system fi.

At first glance, it appears that (7.51) is of little value in finding XML and (7.52) is

of little value in finding XML(N) since both expressions use the set of affine parameter

pairs {(r(i, iML), 3(i, iML))}No, knowledge of which apparently requires knowledge of the

unknown ML estimate XML. In [65, 66, 67], it was shown that for a special class of maps

known as generalized tent maps, the affine parameter pairs {(r(i, XML), ,(i, xML))} and ob-

servations are causally related. For maps in this special class, one can determine each affine

parameter pair (r(i, ML), 3(i, iML)) from the subset of observations {y(j)}=O, thereby{Y2}3, hrb
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allowing recursive, computationally efficient ML orbit point estimation and simultaneous

determination of the affine parameter pairs. The method in [65] does not appear to be

adaptable to the more general class of MC maps, since the affine parameter pairs and ob-

servations are not causally related for these maps in general.

One method to obtain the sequence of affine parameters associated with XML is the com-

putationally intensive, brute-force method of evaluating (7.51) for each possible sequence

of affine parameter pairs, determining the most likely orbit segment associated with each

sequence, and choosing the sequence of parameter pairs for which the associated most likely

orbit segment yields the largest value of the likelihood function. However, the orbit segment

obtained with this method which yields the largest value of the likelihood function is in fact

the ML orbit segment. What we seek is a computationally simpler estimator for the ML

orbit segment. In the next section, we introduce such an estimator; the estimator exploits

the relation between MC maps and HMMs discussed earlier in the chapter. The estimator

is an optimal ML estimator if the HMM it uses is chosen appropriately. Otherwise, the

estimator is a suboptimal ML estimator, but one that is potentially effective nevertheless.

We conclude this section with a subtle, theoretical issue involving ML state estimation

and MC maps. An implicit assumption in the discussion thus far has been the existence

of XML. In fact, if f is not continuous, XML may not exist except in a limiting sense. In

particular, consider the situation in which XMAX is not in A(iML), and thus the likelihood

function attains its maximum among points in A(iML) at an endpoint Xe of A(iML).

However, xe may not belong to A(XML) if f is discontinuous at one of the points of the

orbit segment {f (xe)I=0. In other words, each endpoint of an affine segment domain either

belongs to that segment domain or to the domain of the adjacent segment, with the endpoint

having two possible images under f depending upon which domain the point belongs to. The

implication is that xe can be the ML estimate of z only if it is in A(:ML). If xe ~ A(iML),

then :ML does not exist since the likelihood function is increasing on any infinite sequence

of points in A(iML) converging to xe. Whereas the number of discontinuities of f is finite,

the probability of it occurring is negligible. Consequently, in the discussion that follows we

assume that XML exists and that it is unique, although the results are readily generalized

to the case of multiple values of x maximizing the likelihood function.
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7.7 Optimal/Suboptimal ML State Estimator for MC Maps

7.7.1 Theoretical Foundation

We now show that for any MC map which gives rise to arbitrarily fine Markov partitions,

one can in theory obtain the sequence of affine parameter pairs {(r(i, iML), (i, ML))}No

associated with XML without knowledge of ML. As shown in the previous section, if the

ML sequence of affine parameter pairs is known, it is straightforward to determine XML and

the entire ML orbit segment. The theoretical result presented in this subsection provides

the foundation for a practical state estimator introduced in the next subsection. For a given

set of observations, the estimator is the optimal ML estimator if a certain HMM used by

the estimator is chosen appropriately. The estimator may be a suboptimal ML estimator

otherwise.

The theoretical result presented in this subsection and the estimator introduced in the

next both exploit the close relation between the likelihoods of orbit segments generated by

MC maps for a given set of noisy observations and the likelihoods of state sequences of asso-

ciated HMMs. To offer some insight into this relation, we consider an MC map f along with

a Markov partition {Ij}T 0 and its corresponding Markov chain, with Sj denoting the state

associated with Ij. Just as we can associate a sequence of affine parameter pairs and affine

segment domains with each orbit segment or initial condition, we can associate a sequence of

affine parameter pairs {(r(i, S), /P(i, S))}N 0 and affine segment domains {A(i, S)}No0 with

each state sequence S {S(i)}N 0 of the Markov chain. In particular, if S(i) = Sj and

Ij C Ak, we let (r(i, S),3(i, S)) = (rk, k) and A(i) = Ak. That is, for each i we associate

the affine parameter pair and segment domain for the affine segment of f whose domain

contains the partition element associated with S(i).

We let {pij}=t denote the state transition probabilities of the Markov chain corre-

sponding to the given Markov partition; we let p(y(i)Sj) denote the output PDF associated

with the jth state for either of the HMM models (quantized or unquantized outputs) intro-

duced earlier; and we let r(Sj) denote the initial state probability of the jth state. Then,

for a given state sequence S = {S(i)}N o0 and a given set of observations Y = {y(i)}tYo, the

joint PDF of the state sequence and observations p(S, Y) is given by

N

p(S, Y) - 7r(S(0)) p(y(O)IS(O)) I P(i-1),s(i) p(y(i)JS(i)). (7.55)
i=1
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The Viterbi algorithm [74, 75] is a computationally efficient algorithm for finding the state

sequence which maximizes p(S, Y), and this state sequence also maximizes p(SIY), i.e., it is

the most probable state sequence for the given observation set. We also have the following

expression, which we use later for P(S) = P(S(O),.., S(N)), the probability of the state

sequence S:
N

P(S) = r(S(0)) IPs(i-1),s(i). (7.56)
i--1

We now consider the set of state transition pseudo-probabilities {qij}Tj=l where qij = 1

if pij > 0 and qij = 0 if pij = 0; and we consider the set of initial state pseudo-probabilities

{n(Sj)}=l1, where y(Sj) = 1 for each j. With these state transition pseudo-probabilities

and initial state pseudo-probabilities, we define the joint pseudo-PDF q(S, Y) as

N

q(S,Y) = q(S(0))p(y(0)lS(0)) rJ qS(i-1),s(i)p(y(i)Is(i)) (7.57)
i=1

J =op(y()ls(i)) if P(S) > 0 (7.58)

0 if P(S) = J

As with (7.55), we can use the Viterbi algorithm to efficiently determine the state sequence

which maximizes q(S, Y) for a given observation set Y.

We now use these state transition pseudo-probabilities and initial state pseudo-probabil-

ities with the HMM model for quantized orbit points introduced in Section 7.2.2. As in that

section, we let Hj denote the value associated with Sj, but we now require that Hj E Ij.

In other words, we require that the constant, quantized value associated with each state be

a point in the partition element corresponding to that state. For a given state sequence S,

we let H(i) denote the quantized value associated with S(i), i.e., H(i) = Hj if S(i) = Sj.

For this model and the earlier assumption that the observation noise sequence {v(i)}N=o0 is

a Gaussian, white-noise sequence with variance oa2, the following is true:

logp(y(i)S(i)) = C(O) - (y(i)- H(i))2 (7.59)2 o,2~~~~~7.9
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where C(0) is a constant. Therefore, if P(S) > 0,

logq(S,Y) = C(N) (y(i)- (i))2 (7.60)
i=0

which is the same expression as log p(Y; x(j) given by (7.34) if we associate the sequence

of state values {H(i)}No with the orbit segment {fi(x(O))No. Thus, if the sequence

{H(i)}N 0 is treated as an orbit segment, then the ML state sequence SML = {SML(i)}No

which we define as the state sequence that maximizes q(S,Y) or equivalently q(S}Y), is

also the state sequence with nonzero probability, i.e., P(SML) > 0 which maximizes the

log-likelihood function given by (7.34).

In light of the close relation between (7.34) and (7.60), one might expect there to be a re-

lation between the most likely state sequence SML and the ML orbit segment {fi(NML)}TVo

It is plausible that for a given MC map, one can find a sufficiently fine Markov partition

such that if {IML(i)},=o denotes the sequence of partition elements associated with SML,

then fi(&ML) E IML(i) for each i. However, it is unclear how one might prove this rela-

tion. In Appendix B, we establish the weaker relation that for a given MC map, a given

set of observations, and a sufficiently fine Markov partition, the sequence of affine param-

eter pairs associated with the most likely state sequence SML is the same sequence as

{(r(i, }ML),/,(i, iML))}, the sequence of affine parameter pairs associated with XML. The

value of this relation is that for a given MC map and set of observations, if we first select

a Markov partition for which this equality in sequences of affine parameter pairs holds and

then determine SML and its associated sequence of affine parameter pairs, we can in theory

evaluate ML and the entire ML orbit segment. In light of the discussion in the previous

subsection, we can also obtain the ML orbit segment in practice if the map is an EMC map

with affine segment slopes having absolute value greater than one and for which the image

of each affine segment domain is a union of affine segment domains. In summary and more

formally, we have the following result:

Proposition 4: For any MC map f which gives rise to arbitrarily fine Markov partitions

and for a given, finite set of observations Y = {y(i)}Yi 0 , one can determine the ML sequence

of affine parameter pairs {(r(i, ML),/3(i, kML))} without knowledge of XML, and as a

consequence one can in theory determine the ML orbit segment {XML(i)}No without testing

every sequence of affine parameter pairs.
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Proof: (see Appendix B)

Although choosing a Markov partition satisfying the conditions of the proof guarantees

that the ML state sequence yields the sequence of affine parameter pairs corresponding to

the ML orbit segment, often a partition with fewer elements works as well. A practical

iterative method for choosing a sufficiently fine Markov partition is to start with a coarse

partition, determine the sequence of affine parameter pairs corresponding to the ML state

sequence, and then iteratively select refinements of the partition until the corresponding

sequences of affine parameter pairs for the ML state sequences remain the same. In addition,

as suggested by the proof of the theorem, as the number of observations N increases,

increasingly finer Markov partitions may be needed. For larger values of N, an alternative,

possibly suboptimal ML estimator involves using a Markov partition which may not be

sufficiently fine to ensure that the sequence of affine parameter pairs associated with the

ML state sequence of the corresponding Markov partition is the same sequence as that

associated with the ML orbit segment.

7.7.2 The Estimation Algorithm

As noted earlier, the solution of (7.51) yields ML only if it lies in A(iML), and it is often

impractical to determine A(ML) especially for larger values of N. Also noted earlier was

the fact that the relation XML(i) = f (ML) is often of little practical value with EMC maps

because of the expansive nature of these maps and computer round-off error in determining

XML. However, we can circumvent both practical problems with EMC maps for which the

affine segment slopes having absolute values greater than one and for which each affine

segment domain maps onto a union of affine segment domains. For these maps, we can first

find ML(N), generally a far simpler task, and from this calculate the ML orbit segment as

{fLzM,N)(:ML(N)}N=o. The two EMC maps used for the examples in the next subsection

both satisfy these constraints.

Fusing these practical considerations with the theoretical result presented in the previous

subsection leads to the following following practical algorithm for estimating the ML orbit

segment based on a set of observations Y for any EMC map f which gives rise to arbitrarily

fine Markov partitions and for which the affine segment slopes have absolute values greater

than one and for which each affine segment domain maps onto a union of affine segment

domains.
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Optimal/Suboptimal ML State Estimator

1. Given an (N + 1)-point observation set Y(O, N) and a Markov partition for f, find

the ML state sequence for the quantized-output HMM model associated with this

partition in which the quantized output value for each state is given by any point

in the corresponding partition element and which uses the state transition pseudo-

probabilities and initial state pseudo-probabilities defined in the previous subsection.

Let SML denote this state sequence.

2. Given the ML state sequence, find the associated sequences of affine parameter pairs

{(i, SML), 3(i, SML}=o and affine segment domains {A(i, SML)}N o. If the Markov

partition is sufficiently fine so as to satisfy the sufficient condition specified in the

proof of Proposition 4, the sequences will be the same as those associated with the

ML orbit segment. If not, the sequences may not be the same as those associated

with the ML orbit segment, and the algorithm may not be optimal.

3. Evaluate (7.52) for XMAx(N) using the sequence of affine parameter pairs associated

with the ML state sequence.

4. If XMAX(N) E A(N, SML), set *ML(N) equal to XMAX(N). If not, set *ML(N) equal

to the endpoint of A(N, SML) for which log p(Y; x(N)) has the larger value.

5. Let {fiMLN)}No denote the function implicitly defined by {r(i, SML),3(i, SML}i=O

(analogous to the function iML N)}N defined earlier). In particular, we have the

following for i = 1 and i = 2:

X(N - 1) = f ,N)(()) x(N) - (N- 1, SML) (7.61)

x(N - 2) = f( ,N)(x(N)) - (N(N - 2, SML ) (7.62)
- = - - ~ ~~- 2, SML)

6. Calculate the reverse orbit segment {kML(N - i) = f;ML,N)(iML(N))}. This orbit

segment is the ML orbit segment if the Markov partition is sufficiently fine.

7.7.3 Estimation Examples

Figures 7-17 (a) and (b) depict the performance results obtained by applying the ML esti-

mator to the maps shown in Figures 7-16 (a) and (b), respectively. Both maps were used for
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examples earlier in the chapter. Each plotted SNR gain reflects the average improvement

0,

0.

O.'

+C_ 0.

0.

0.2

0.

(a) x(n)(b)

Figure 7-16: Two EMC maps. (a) g1: (b) g2-.

V

(I)

(a) INPUT SNR (dB) (b)

Figure 7-17: Performance results for estimating 100-point orbit segment. (a) g91: (b) g92-.

in SNR obtained by estimating each point of a 100-point orbit segment. More precisely, for

each input SNR, 1000 independent observation sets were generated with the same 100-point

orbit segment. The estimator was applied to each of the observation sets, and the average

SNR improvement in estimating the 100 orbit segment points was calculated for each ob-

servation set. The 1000 values of average SNR improvement were then averaged and used

in the figure as the plotted SNR gain for the corresponding input SNR.

The curves are parameterized by the number of states in the HMM model used to

estimate the sequence of affine parameters associated with the ML orbit segment. Also

shown in the figures is the upper bound on the SNR gain provided by the Cramer-Rao

bound for unbiased estimators. Using the more general results in [76], one can show that

the Cramer-Rao bound for fixed-interval smoothing with one-dimensional maps is given

by a2 /N where N is the number of orbit segment points and a2 is the observation noise
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variance.

The figures suggest that the ML estimator is superoptimal in the sense that the SNR

gain exceeds the Cramer-Rao bound at some input SNRs. However, such is not the case as

the ML estimator is biased for these maps, and thus the Cramer-Rao bound for unbiased

estimators is only applicable to the estimator in an asymptotic sense as the input SNR

tends to infinity. Although deriving an analytic expression for the bias appears to be an

intractable problem, we can examine its behavior in simulations. Figures 7-18 (a) and (b)

depict the absolute value of the bias at each orbit point for the results shown in Figures

7-17 (a) and (b), respectively. The larger bias values at the end of the orbit segment is

7-
C
c-((
m

CD(9
Oj

...... .a (b)
I IVL (n)

Figure 7-18: Estimator bias for results in Figure 7-17. (a) g: (b) g2-

understandable in light of the fact that the squared estimation error is largest at the end

of the segment. The performance results for both maps exhibit a threshold effect with

significant SNR gain for input SNRs above a threshold and mediocre or negligible SNR

gain for input SNRs below the threshold. Such an effect is typical of ML estimators for

nonlinear estimation problems, with the threshold indicating the input SNR value below

which nonlinearities strongly influence the likelihood function. Large SNR gains at larger

input SNRs is not peculiar to the chosen orbit segment as suggested by Figures 7-19 (a) and

(b), which depict the average of the performance results for 100 randomly chosen 100-point

orbit segments.

Because both maps are noninvertible, one-dimensional, and exhibit sensitive dependence

on initial conditions, estimation accuracy improves as the number of observations at future

times increases (as indicated by the performance bound analysis in Chapter 5). As a result

and as noted above, at higher input SNRs the estimation errors associated with the final

points of an orbit segment dominate the average of squared estimation errors for all orbit
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Figure 7-19: Average of performance results for estimating 100 randomly chosen 100-point
orbit segments. (a) gl: (b) 92.

points. Figures 7-20 (a) and (b) depict the performance results for the same conditions as

used for the results in Figures 7-17 (a) and (b), but with the estimation errors for the last 30

points of the estimated 100-point orbit segment, omitted from the SNR gain calculation. A

co
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c
z
Cn
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Figure 7-20: Performance results for estimating 100-point orbit segments with estimates of
last 30 points not used in gain calculation. (a) g1: (b) g2-

comparison of corresponding pairs of figures reveals the dominant role that the estimation

error for these omitted points has on the average squared estimation error.

Finally, the question arises as to the value of using an HMM model to estimate the

sequence of affine parameter pairs associated with the ML orbit segment. Figures 7-21 (a)

and (b) depict the performance results obtained by using the sequence of affine parameter

pairs associated with the observation set Y. That is, for each i the parameter pair (j, 3j) for

which y(i) e Aj was used for ((i, iML), i(i, iML)). The poor performance results suggest

the necessity and value of using an HMM to estimate the sequence of affine parameter pairs

associated with the ML orbit segment.
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Figure 7-21: Performance results for estimating 100-point orbit segment with sequence of
affine parameter pairs associated with the observation set used as the estimated sequence
associated with the ML orbit segment. (a) fl: (b) f2.
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Chapter 8

Conclusions

8.1 Summary and Contributions

This thesis has dealt with the analysis and synthesis of chaotic maps and time-sampled

chaotic flows, with a focus on the problems and issues that arise with noise-corrupted orbit

segments generated by these systems. Both dissipative systems and nondissipative systems

have been considered, with both types of systems considered in the context of analysis

and the latter type also considered in the context of synthesis. With respect to dissipa-

tive systems, three suboptimal, probabilistic state estimation algorithms-an ML estimator

based on grid search, a local MMSE estimator based on extended Kalman smoothing, and

a global MMSE estimator based on a finite-sum approximation to the conditional mean

integral-have been introduced and their performance experimentally assessed on three

different problem scenarios: known system dynamics, unknown system dynamics but avail-

ability of a noise-free reference orbit, unknown system dynamics and no availability of a

noise-free reference orbit. Both the ML and local MMSE estimators exploit the topological

transitivity of dissipative, chaotic systems when restricted to their steady-state attractors,

and both estimators are potentially effective for all three problem scenarios. The global

MMSE estimator exploits the existence of an ergodic measure on a steady-state chaotic

attractor, which allows the substitution of an infinite summation for the integral defining

the conditional mean which yields the optimal MMSE state estimator. One feature of the

global MMSE estimator is that it converges to the optimal MMSE state estimator as the

number of terms in the finite summation defining the estimator goes to infinity.

The assumed determinism in the system dynamics facilitates the derivation of upper
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bounds-Cramer-Rao, Barankin, and Weiss-Weinstein-on state estimator performance.

These bounds have been derived for the state estimation problem of interest in the thesis,

and their behavior has been experimentally analyzed on two, dissipative, chaotic systems:

the Henon map and time-sampled Lorenz flow. The Cramer-Rao and Barankin bounds

have been shown to provide potentially useful information on the influence of fundamen-

tal properties of dissipative, chaotic diffeomorphisms-positive Lyapunov exponents and

boundedness of attractors-on achievable state estimator performance, when the unknown

state is nonrandom. In contrast, the random Cramer-Rao and Weiss-Weinstein bounds

have been shown to be of limited value in the context of initial condition estimation with

dissipative, chaotic diffeomorphisms, when the unknown initial condition is a random vector.

With respect to nondissipative maps, the thesis has considered a class of piecewise linear

unit-interval maps, members of which give rise to finite-state, homogeneous Markov chains.

The thesis has presented known properties of these maps, established additional properties,

and explored the potential value of these maps as generators of signals for practical appli-

cations. A close relation between noise-corrupted orbit segments generated by the maps

and hidden Markov models has been established, and this relation has been exploited in

practical, optimal and suboptimal algorithms for detection, parameter estimation, and state

estimation with the maps.

This thesis has made two, principal contributions to the research community. First,

it has established a rigorous, probabilistic foundation for the problem of state estimation

with deterministic, dissipative, chaotic diffeomorphisms. In particular, the thesis has shown

how the existence of invariant measures on steady-state chaotic attractors facilitates prac-

tical state estimation with dissipative, chaotic systems. In addition, the thesis has shown

the value of the Cramer-Rao and Barankin bounds for assessing the'influence of funda-

mental properties of chaotic systems including the existence of positive Lyapunov expo-

nents, boundedness of attractors, and system invertibility or noninvertibility on theoret-

ically achievable state estimator performance with these systems. Finally, the thesis has

exposed the limitations of performance bounds for estimators of random parameters when

applied to dissipative, chaotic systems.

The second, principal contribution of the thesis involves its consideration of MC maps.

In particular, by assimilating known and establishing additional properties of these maps,

the thesis has identified a potentially useful and versatile source of signal generators. In
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addition, the detection, parameter estimation, and state estimation algorithms introduced

in the thesis for use with these maps may prove to be of value in applications involving the

maps. These algorithms may also provide useful insight into the design of optimal, effective,

and robust algorithms for detection, parameter estimation, and state estimation with other

classes of chaotic systems such as dissipative maps and flows.

8.2 Suggested Future Research

This thesis has either partially or totally resolved several research problems involving chaotic

systems; and as a result, several new research problems have emerged. Consequently, the

analysis, algorithms, and experimental results presented in this thesis implicitly suggest a

number of interesting, challenging, and potentially fruitful topics for future research.

With respect to state estimation with dissipative maps, the state estimation algorithms

and performance bound derivations introduced in Chapters 4 and 5 may have shed new

light on the problem of state estimation with chaos, but optimal, practical, probabilistic

state estimation with chaos remains an elusive goal. It would be useful to explore methods

to refine the approximate ML and MMSE state estimators introduced in Chapter 4 so that

the simplifying, practical, heuristic elements of the estimators are avoided. Alternatively,

it would be useful to establish a theoretical justification for these heuristic elements and

formulate theoretically motivated guidelines for choosing values for the various parameters

which these elements introduce into the estimators. In the pursuit of these tasks, it might be

useful to replace the deterministic state equation used throughout the thesis by a sequence

of noise-driven state equations with the deterministic equation as the limit.

An additional topic for future research arises from the similarities of the global MMSE

state estimator introduced in Chapter 4 with the hidden Markov modeling (HMM) esti-

mator introduced in [63], which also is a global estimator. Each of the estimators has

strengths and weaknesses over the other, and computer experiments suggests that each is a

potentially effective state estimator with dissipative, chaotic maps. A useful research task

would involve merging the two estimators in an effort to create a hybrid state estimator that

retains the strengths and avoids the weaknesses of the individual estimators. Useful insight

into both estimators might be obtained by studying them in conjunction with the class

of MC maps introduced in Chapter 6. In fact, as noted at the beginning of that chapter,
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our original purpose in studying MC maps was to better understand the theoretical and

practical properties of the HMM estimator. A related task, not considered in the thesis,

would involve extending the global MMSE estimator to the self-cleaning problem scenario,

that is, the state estimation scenario in which the system dynamics are unknown and a

noise-free reference orbit segment is not available. Computer experiments suggest that the

estimator in its present form is not useful for this scenario.

With respect to state estimator performance bounds, several questions remain unre-

solved and several new research problems have emerged thereby suggesting a number of

challenging, potentially beneficial research tasks. Perhaps the most important and useful

of these tasks would be the development of new state estimator performance bounds for

use with dissipative, chaotic diffeomorphisms when the unknown state is a random vec-

tor. The importance of this task stems from the experimental results presented in Chapter

5 which graphically indicated that existing performance bounds for estimators of random

parameters have limited value with dissipative, chaotic systems. In addition, many of the

fundamental conclusions of the chapter involving the influence of Lyapunov exponents, at-

tractor boundedness, and system invertibility on achievable state estimation performance,

are strictly applicable only to unbiased state estimators. It appears that this restriction on

the bias is an intrinsic aspect of all existing performance bounds for nonrandom-parameter

estimators which is avoidable only by using estimator-dependent bounds or by treating the

unknown parameter as random. In light of this, it appears that extending the fundamental

conclusions of the chapter to arbitrary state estimators, both unbiased and biased, requires

consideration of performance bounds for estimators of random parameters, thereby under-

scoring the need for new, effective performance bounds for the problem of state estimation

with chaotic systems when the unknown state is random.

Several unresolved or unexplored issues concerning the unit-interval maps considered in

Chapters 6 and 7 remain; a number of worthwhile, potentially fruitful research tasks should

be undertaken to resolve these issues. For example, as suggested in Chapter 6, MC maps

might be useful signal generators in light of the rich set of properties these maps exhibit.

It would be useful to ascertain the strengths and weaknesses of using MC maps and maps

derived from them over other techniques for generating Markov chains and processes with

specified stationary PDFs. It would also be useful to identify specific, practical applications

in which MC maps might be used, such as secure communication, and to assess the value
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of using MC maps for these applications. An unrelated research task involves the detection

algorithm introduced in Chapter 7 for discriminating among EMC maps based on noise-

corrupted, unquantized orbit segments. Although the algorithm is suboptimal, it appears

that the algorithm converges in an appropriately defined sense to the optimal, minimum

probability-of-error detector, as the Markov partition used by the detector becomes increas-

ingly fine. It would be useful to formally and conclusively establish convergence properties

of the detector.

Only a relatively small class of deterministic, unit interval maps was considered in

Chapters 6 and 7. However, this class of maps is dense (in an appropriately defined sense)

in a much larger set of unit-interval maps [14, 46]. It would be useful to determine if the

detection and estimation algorithms introduced in Chapter 7 can be extended to this larger

set of maps. Similarly, it would be useful to determine if the properties of MC maps are

shared by other classes of deterministic maps and flows, and if so, if the detection and

estimation algorithms introduced in the thesis can be extended to these other classes of

deterministic systems as well.
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Appendix A

Performance Bound Equations

A.1 Cramer-Rao Bound

In this section, we derive the Cramer-Rao bound for the problem scenario of interest in

Chapter 5 when the unknown state to be estimated is nonrandom. The derivation of the

Cramer-Rao bound for deterministic, nonlinear systems has appeared elsewhere (see e.g.,

[85]); we include it here for completeness and for a more general problem scenario, one

involving a variable number of observations occurring at past and future times, than has

been considered in the past. In particular, we derive the Fisher information matrix J(x, 0 ),

the inverse of which provides the Cramer-Rao bound on the error covariance matrix of any

unbiased estimator for x(no) when x(no) = Xro, where x o is the actual value of the state

at time no.

For the DTS/DTO model given by (5.1) and (5.2) and with the slightly more general

assumption that the observation noise sequence is white, but not necessarily Gaussian with

the PDF of each sequence element given by pv(v), the PDF p(y(i); x(i)) is given by

p(y(i); x(i)) = pv(y(i)- h(x(i))) (A.1)

and since x(i) = fi-n°(x(n0 )) and the noise is white, it follows that the likelihood function

p(Y; x(no)) is given by

N

p(Y; x(no)) - II pv(y(i) - h(x(i))) (A.2)
i=M
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N

1 I v(y(i)- h(fi-n°(x(no)))), (A.3)
i=M

and therefore
N

logp(Y; (no)) = j logpv(y(i) - h(fi-'°(x(no)))). (A.4)
i=M

To establish the Cramer-Rao bound for this problem scenario, we need to determine the

Fisher information matrix J(xno), the general form of which is given by

J(Xno) = EY;O {D Tn) {logp(Y; Xno)} D( 0o) {logp(Y;xo)}} (A.5)

where DT(no) {logp(Y; no )} denotes the derivative of logp(Y; x(no)) taken with respect to

x(no) and evaluated at xno. Applying the chain rule of vector differentiation to (A.4) yields

D_(no) {logp(Y; no )} =

N

E D {logpv(v(i))} D(no) {h(f i-n° (xno))} (A.6)
i=M

where v(i) = y(i)- h(fi-'(x(no))). Note that D_(no) {h(fi-no(x(no)))} is expressible as

a product of the derivative of f or f l, specifically

Dx(no) {h(f'-no(x(no)))} =

D {h(fi-no°(x(no)))} D{f(x(i - 1))} ... D{f(x(no))} (A.7)

for i > no + 2, as

Dx(o) {h(fi-(x(no)))}

D {h(f'-no (T(nO)))} D{f -(x(i + 1))} ... D{f l-(x(no))} (A.8)

for i < no - 2, and with analogous expressions for no - 1 < i < no + 1.

With the appropriate substitutions, the Fisher information matrix becomes

N N

J(x 0 ) = ' D ) {h(fO (no))} Q(i, j)D(no) {h(fi-no (xno))} (A.9)
i=M j=M
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where the matrix Q(i,j) is given by

Q(i,j) = Ey;:o {DT {logpv(v(i))} D {logpv(v(j))}}. (A.10)

This decomposition effectively decouples the dependence of J(x, 0o) on the statistics of the

noise v(n) and the dynamics of the system f, with the noise statistics reflected in the

matrices Q(i,j). When the observation noise is also Gaussian with covariance matrix R,

Q(i,j) = R ij (A.11)

where 6ij = 1 if i = j and 0 otherwise, and J(xna,) reduces to the following:

N

J(xno) = E DT(no){h(fi-nO(xno))}R-lDx(no){h(fi-no(xno))}. (A.12)
i=M

A.2 Barankin Bound for Vector-Valued Parameters

The Barankin bound for unbiased estimators of scalar-valued parameters given by (5.19)

has a counterpart, derived in [58, 59], for unbiased estimators of vector-valued parameters.

For the problem scenario of interest in Chapter 5 in which we seek to bound P(&(no)), the

error covariance matrix for the unbiased estimator x(no) for xno given the observation set

Y, the general form of the Barankin bound is the following:

P(i(no)) > X Q-1 XT. (A.13)

In this equation, X is the A' x m-matrix given by

X = [xi(no) - Xno, X2(no) - Cno,* ,Xm(no) - xno, (A.14)

where {xi(no)}T=1, the test points, denote values of x(no) other than xnO. Also, Q is an

m x m-matrix with ijth element qij given by

qij = Ey;nO {L(Y;xi(no),Xn)L(Y;xj(no), Xno)} (A.15)
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= J L(Y; xi(no), xno) L(Y; x(no), Xno)p(Y; xn) dY (A.16)

where L(Y; Xk(no), xno) is the likelihood-ratio given by

L(Y; k(no), xo) p(Y; Xk(no))7)
PY; Xn0)'

As shown in [59], by appropriately augmenting the original set of test points, one

can derive a restricted form of the above bound which is expressible as the sum of two

components-one the inverse of the Fisher information matrix, and the other a positive

semidefinite matrix which depends on the test points. In particular, this restricted form of

the Barankin bound can be expressed as

P((no)) > J- ( 0 ) + (X - J(o) A)A- (X - J'( 0O) A)T (A.18)

where

a = B-ATJ -l(Xn0
) A (A.19)

J(xn0 ) = the Fisher Information Matrix

= Ey;:o {D(no) {logp(Y;xno)} Dz(n) {logp(Y; xno)}} (A.20)

Aij = Ey;xO ogP(n i) L(Y;xj(no),nO)j (A.21)
Ox (no, i)

i = 1,2,.- .,A; j = 1,2,---,m

Bij = Ey;x0 {L(Y; xi(no), Xno)L(Y; j(no), Xno)} (A.22)

i,j = 1,2,-- -,m

where x(n0 ) = [(no, 1),x(no, 2),-..--.,x(no, A)]. Since J(Xno) is the Fisher information

matrix and the second term in (A.18) is positive semidefinite (as noted in [59]), this special

form of the Barankin bound always provides a tighter bound on the error covariance matrix

than the Cramer-Rao bound.

For the problem scenario of interest in Chapter 5 for the special case in which the output

transformation h is the identity operator, a straightforward derivation yields the following
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values for the elements of A and B:

A.,j E [fk- °(J(no)) - fk-no°( 0 )]TR D=( 0 ){fk °(xno)} (A.23)
k=M

j = 1,2,---,m
N

Bij = exp E [f-no (i(no))-fk-n ( )]T
k=M

xR - [f k-n (xj(no)) - fk-no (xno)]} (A.24)

i,j=1,2-..,m

where A.,j denotes the jth column of A.

A.3 Weiss-Weinstein Bound for Vector-Valued Parameters

Analogous to the Barankin bound, the Weiss-Weinstein bound for estimators of scalar-

valued, random parameters given by (5.4.2) has a counterpart derived in [90] for estimators

of vector-valued, random parameters. For the problem scenario of interest in Chapter 5 in

which we seek to bound PR(X(0)), the error covariance matrix for estimators of the random

initial condition x(0) given the observation set Y, the general form of the Weiss-Weinstein

bound is the following:

PR(i(0)) > Z W - 1 ZT. (A.25)

In this equation, Z is the A' x m-matrix given by

Z = [zi, Z2, - Zm] (A.26)

with each zi an -dimensional vector and W is an m x m-matrix with ij t h element wij

given by

wij = Ey,:(o) {Li(Y, x(0)) £j(Y, x(0))} (A.27)

where

z4k(r, ,(o)) = Lsk(Y,x(o)+ Zk, ,(o)) - L-sk(Y,x(O) - Zk, (O)) (A.28)
L-sk (Y, (O)- Zk, X(0))

L(Y,x(o),X 2(0)) = p(Y, xi(0)) (A.29)
p(Y, X2(0))
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and where 0 < k < 1. In the equations that follow, we set each sk equal to .5 as suggested

in [90].

As with the Barankin bound although never shown in the literature, with the appropriate

selection of test offsets, one can derive a restricted form of the Weiss-Weinstein bound that is

expressible as the sum of two components-one the inverse of the Fisher information matrix

for random parameters, and the other a function of test offsets, the number of observations,

and the observation noise intensity. To do so, one augments the given set of test offsets

with K additional offsets {zi} ' + l, with Zm+j = zej for j = 1, 2 -. ,, where z is a

scalar and ej is the jth unit vector in 1RV. In the limit z - 0, the Weiss-Weinstein bound

approaches the following:

PR(X(0)) > JR-'(x(0)) + (Z - JR-'(x(O)) A)a-'(Z - JR- 1 (x(0)) A)T (A.30)

where

JR(x(0)) = the Fisher Information Matrix for x(0)

= Ey, (o) {DT(o) {logp(Y, x(0))} D:(o) {logp(Y, x(0))}} (A.31)

Z = the Kr x m-matrix of test offsets

= [z 1, z 2 ,' *, Zm] (A.32)

a = B- AT J R- 1(x(0)) A (A.33)

Aij Ey(o) ({ logp (Y, x(O)) £j(YX(O)) (A.34)a9xi(o)
i = 1,2,.-,; j = 1,2,---,m

Bij = Ey:(o) {£X(Y, x(0)) £j(Y, x(O))} (A.35)

i,j= 1,2,-..,m

where x(0)= [xI(0),x 2(0), .-,XAr(0)].

For the problem scenario of interest in Chapter 5 for the special case in which the

observation noise covariance matrix R equals a2 Ir and the output transformation h is the

identity operator, a straightforward derivation yields the following values for the elements
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of A and B:

A.,j

AfA (j)

= E(O) VDA(ji) ' j:

[P((O)) + .]=tp(X(o)) exp

(A.36)

[ + z) (())]}]

[fk(x(0) + zj)- fk(x(0))]I
20-2

T

D{fk(X(0))}] + X°- (O)] }
712

Z)[fk(x(o)- z) - f0))12
p(:(0)) exp - N2 Ei}fk(X(O)

0 X ) k= 0 2D N [fk(X() - a 0 T
x Zj) _ f k (X(o))] T DI f k l ~o))}+I _ X(O)I T '

x o2a2 D7~() }j ± [ 2

= [ (x(()°)) i] exp-8a 2[{Efk(x(0)

[V /(i, j )Bij = E(o) D(i,,j) }

x exp - ~0 [fk(X(o) + Z,) -
k=O

+ { [p(x(o) + zi) p(x(o) - Zj)] 5

p(x(O))

- z)-fk(X(o))]2}]

x exp [-
I N

I-2 If '((°) + Zi) -
k=O

fk(x(O)-_ Zj)]2] }

[p(X(0) - Z) p(X(O) + Zj)]5
p((O))

fk(X(o) + Z3)]2] }
- 2 E[ f k((0)- Z)-

k=O

[p((0)- i) p((O)- Zj)]-
p((O))

1
x exp -

N

Zi[fk(X(o)- Z)
k=O

[p(a(0) - zi) 1
- L p(x(O)) exp- 8a2

X [P((O) - Zj)] expL p(X(o)) exp
1

E -a2

- fk(X(o)- zj)]2] }

N

{=[fk(X(O) - z_) - fk(X(O)
k=O

{N[fk(()- )
.: f k(X(o) _Zj) _

k=O

(A.39)

)]2

(A.40)
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I. k=O

)A(j) (A.37)

(A.38)

f k(X(O) + zj)]2] }

x exp

DV(i, j)

AT

f k (_T (0))] 2



where A.,j denotes the jth column of A.
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Appendix B

Proofs for Chapters 6 and 7

Proof of Proposition 1: Given a matrix of rational-valued state transition probabilities

P = [Pj]ij=1 and a row vector 11(0) = [(O), . rm(O)] of nonzero, rational-valued, initial

state probabilities, where m is the number of states, we synthesize a piecewise linear Markov

map f using the procedure outlined in Section 6.3. Because each initial state probability

7rj is rational-valued and equals A(Ij), the length of the corresponding subinterval, the

endpoints of the subintervals Ij are rational-valued. Also, because each state transition

probability Pjk is rational-valued, the slope rjk of the affine transformation which maps

ljk onto Ik and which is given by rjk = (I) is rational-valued as well. Because it is

rational-valued, Tjk = j where nk and dk are integers.dik~nj

As in the outline of the synthesis procedure, let (ejk,l, ek,l) denote the left endpoint of

this affine segment in (x, y)-coordinates, and let (ejk,,., ek,r) denote the right endpoint, when

the affine segment is treated as a line segment in the (x, y)-plane. We now replace the affine

transformation mapping Ijk onto Ik, by dk affine transformations, with the slope of each

transformation equal to djkTjk = nijk, hence an integer, and the left and right endpoint

pairs of the 1th such transformation given by (ejk,I + t ek,l) and (eik,=: + 1+1 ek,r) for
djk' djk '

l = 0, 1,. , djk- 1. What we in fact have done is replace the original affine transformation

with djk affine transformations each of which maps a subinterval of length A(Ijk)/djk onto

Ik. Thus, the range of each transformation is identical to that of the original transformation.

We do this to each of the affine transformations so that each transformation of the resulting

map has integer slope. If we seek to guarantee that the map is an EMC map, we do a

similar substitution to any affine segments with slopes of 1 or -1; we are free to specify the
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number of affine segment replacements for these segments.

We must show that state sequences that arise with the transformed map are those of a

Markov chain with the same TPM as that of the original map. We use a minor adaptation

of the proof provided in [61] for the case in which there is a single affine transformation

between pairs of states. As in the proof in [61], it is sufficient to show that for each positive,

integer n

iI in) = AI A(Iii2 in) (B.1)

where

Iioi ... in -{x : x E Iio, f(x) E Ii, ", fn(x) E in} (B.2)

The sufficiency of the condition follows from two facts. First, by definition of a Markov

process, state sequences defined on the partition {Ij} are those of a Markov chain if the

following is true:

)- (Io A(Iioi) )(Iii2) A(Iin-in (B.3)(Ag0 (IO ) (I ) B (I.3)

However, if (B.3) holds, (B.1) holds as well. Second, using an inductive argument, one can

show that (B.1) implies (B.3) as well. Therefore, (B.1) and (B.3) are equivalent conditions,

and thus establishing the validity of (B.1) is sufficient for establishing that state sequences

that arise with the transformed map are those of a Markov chain.

To establish the validity of (B.1), we begin by inductively showing that

f(Ioil...i,) = Ii,...in, almost everywhere (B.4)

whenever Iioi... in is nonempty. Since f(Iijk) C Ijk, it follows that A(f(Iijk)) < A(Ijk). Also,

since Iij = Uk Iijk, it follows that f(Iij) = Uk f(Iijk) and hence

Ij = f(Ii) = f(Iijk). (B.5)
k

Using the facts that f(Iijk) # f(Itji) for k l and the restriction of f to Iij consists of dij

affine transformations each with slope nij, results in the following chain of equalities:

A(1j) = A (ufzijk) (B.6)
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= E A(f(Iijk)) (B.7)
k

E nij A(dijk) (B.8)

k

= Z rij(Iijk). (B.9)
k

The third equality follows from the fact that we've replaced the original affine transformation

with slope rij which maps Iij onto Ij by dij affine transformations of slope nij each mapping

a subinterval of Iij of length A(Iij)/dij onto Ij. Since the range of each of the transformations

is identical, a subinterval of Iijk of length A(Iij3k)/dij is in the domain of each of the dij

transformations. Equivalently, the range of f(Iijk) is the same as the range of f restricted

to each of these dij subintervals of Iijk, and because f is piecewise linear, (f(Iijk)) =

(ni;(fiik)) which is the length of the image of f (with slope nij) restricted to one of the
iJ dij

subintervals.

Now A(Ii) = Ek A(Ijk) and A(f(Iijk)) = ijX(Iijk) < A(Ijk). Therefore,

(Ij) = A(Ijk) = rij (Iijk) (B.10)
k k

can be true only if A(Ijk) = rijA(Iijk). Since f is piecewise linear on Iij with each of the dij

affine pieces having slope nij, a domain of length AX(Ij)/dij, and range Ij, this is equivalent

to

f(Iijk) = Ik almost everywhere (B.11)

To complete the induction, we assume that for all nonempty Iioi the following is true

f (/o..= ... il (B.12)

for all < n- 1. Consider any nonempty set Iio... in_. Then proceeding as above, we

have f(Iioin_) C I...i_, and therefore A(f(Iio ... in_ )) = rio ,,(Iio... i_) < (il ...in_ ).

However, Iio...in_, = Uin Iio...in_ in and thus f(Io... in_) = Uin f(Iio... in_,in). According to

the induction hypothesis, this implies

Ii...in = f(Iio ... in_-lin) (B.13)
in
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and thus the following is true:

A(Iji...in-l) = ZEni'il A °d ,(i ) (B.14)
in djoil

= rioil A(Iio ...in-li ) (B.15)
in

Using the fact that Ii ...in_ = Uin Ii ... in-,in leads to the following equality

Z A(Ii ... in) = Ei~i1A (Ii0.. in) (B.16)
in in

Since no individual term in the right member of the above equation can exceed the corre-

sponding term in the left member, the equation is valid only if

A(Ii---in ) = rioi, ,(Iio. .in ) (B.17)

Because f is piecewise linear on Iioj and using a similar argument as above, we must have

f(Iioil ...in) ' il i2 ...in almost everywhere (B.18)

This completes the induction. Now observe that

(Iio(I...in ) = i(B.19)
Tioi,

But, rij = A(Ij)/A(Iij) whenever Iij is nonempty. Therefore, B.19 may be expressed

A(Iii in) =A(fii ) A(L in) (B.20)

which is sufficient to guarantee that the state sequence is that of a Markov chain. To es-

tablish the fact that the transition probabilities are the same as those of the original map,

we note that the portion of partition element I mapped onto partition element element Ik

is given by Ijk for both maps. Finally, we note that the proof still holds if A is replaced by

any probability measure on the unit interval for which there is a corresponding PDF that

is constant on each partition element. 
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Proof of Proposition 2: Let 3 be the integer-valued, least common denominator of

the endpoints of the affine segments and the images of these endpoints. Such a 3 exists

since these points are all rational-valued by assumption. Consider the j3 element, uniform

partition with the set of partition points P = {}=0, with each partition element having

length 1/X3. The endpoint of the affine segments and their images are all partition points

since 3 is the least common denominator of these points. Thus, both the domain and range

of each affine segment consist of connected unions of partition elements, i.e., the domain

and range are subintervals.

The restriction of the map f to the domain of each affine segment is an affine transfor-

mation and thus expressible as x(n + 1) = f(x(n)) = ax(n) + b where a is integer-valued by

assumption. The left endpoint of the affine segment and its image are given by and ,

respectively, for some integers i and j, since they are partition points. It follows that the

endpoints of the other partition elements in the domain of the affine segment are given by

{ ik }=l for some n. For each such endpoint ,, we have the following:

+k = ai + b (B.21)) = a +

i ak
= (a +b)+ (B.22)

j + ak (B.23)

j + ak (B.24)

Since j, a, k are all integer-valued, the image of is also a partition point. This condition

holds for the partition points in the domain of each afine segment and thus for all partition

points. Therefore, each partition point is mapped to a partition point. Also, whereas the

restriction of f to the domain of each affine segment is affine and thus continuous and the

image of an interval under a continuous one-dimensional mapping is also an interval, each

partition element is mapped to a union of partition elements.

For the second part of the proof, let P' be the partition points for a uniform refinement

of the original uniform partition. Whereas the refinement is also a uniform partition, it

follows that P' = {} 7 =0 for some integer y. Therefore, -y = C for some integer C and the

partition points are expressible asP' = {}. We can now apply the first part of the

proof to this partition, since the endpoints of the affine segments are also partition points,
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with each given by c, for some i, and the domain of each affine segment is a union ofC/3

partition elements. 

Proof of Proposition 3: a. We first show that if an EMC map f gives rise to a Markov

chain with irreducible TPM, the EMC map is ergodic and each subinterval of the unit

interval has nonzero (invariant) measure. If f gives rise to a Markov chain with irreducible

TPM, then f is a class C function as defined in [12] and by Theorem 1 of the same reference

has a unique, invariant measure that is absolutely continuous with respect to Lebesgue

measure, and thus has a unique, stationary PDF PF. Furthermore, this PDF is nonzero on

each subinterval as is easily verified as follows. As shown in [12], given any Markov partition

{IjJ}? for a a class C function, the Frobenius-Perron operator restricted to PDFs that are

constant over each partition element is a linear operator and thus can be represented by a

matrix M. That is, if p(x) denotes a piecewise constant PDF satisfying p(x) = pj for all

x E Ij and p = [P1, ,PN] is a row vector, Pf (p(x)), the Frobenius-Perron operator applied

to p(x), is given by p M. It is straightforward to show that this matrix is related to the TPM

P of the Markov chain corresponding to the Markov partition by the following similarity

transformation:

M = D P D - 1 (B.25)

where D is a diagonal matrix with ith diagonal element given by A(Ij). If P is irreducible,

it has a unique, invariant probability vector / with no zero-valued elements. Therefore, M

has a unique invariant row vector with no zero-valued elements given by 1 D - 1. Because

it is invariant, this vector corresponds to a fixed point of the Frobenius-Perron operator,

and thus its elements are the constant PDF values of the partition elements for the unique,

stationary PDF of f. Since f has a unique stationary PDF that is nonzero over the unit

interval (except possibly at the endpoints of partition elements), f is ergodic by Theorem

[50, p.55:Theorem 4.2.2].

We now show that if an EMC map f is ergodic with respect to an invariant measure

PF with corresponding PDF PF that is nonzero almost everywhere, each Markov chain

it gives rise to has an irreducible TPM. Let Ij}Nl denote the elements of any Markov

partition, {Sj} 1 denote the states of the associated Markov chain, and P = [pij] denote

the corresponding TPM. If P = [Pij] is not irreducible, there exists two states Si and Sj
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such that it is impossible to ever get to Sj from Si, or equivalently pnj = 0 for all positive,

integer-valued n where Pij is the ijt h element of pn, the n-step TPM. However, because

of the relation between states and partition elements this means that f(Ii) n Ij = 0 for

all positive, integer-valued n. Therefore, for all x Ii and with 11, denoting the indicator

function over Ij, the following holds:

n-1
lim Lli,(fi(x)) = 0 (B.26)

n--oo i=

< 11j (X) PF(X) dx = F(I) (B.27)

where the inequality holds because pF(lI3 ) > 0 since pF(X) is nonzero almost everywhere.

However, the inequality is a contradiction of the Birkhoff ergodic theorem. Therefore, P

must be irreducible.

Note that as a consequence of the proof, it follows that for an EMC map, and more

generally for an MC map, to be ergodic with respect to an invariant measure having a

corresponding PDF, the PDF can only be zero over subintervals which are partition elements

in Markov partitions.

b. We first show that if an EMC map f gives rise to a Markov chain with a primitive

TPM, the map is exact. Let PF denote the stationary PDF of f and PF denote the measure

this PDF gives rise to. From [50, p.66,Theorem 4.4.1.c], it suffices to show that the following

holds for each density function of F (where g E L(,aF) is a density function if it is

nonnegative and satisfies f g(x) dYF(X) = 1):

lim I]P7(g) - 1 lim IP(g(x)) - 1 duF(X) = (B.28)

where P7 is the Frobenius-Perron operator of fn. The above condition means that the

Frobenius-Perron operator applied to any density function (with respect to PF) converges

strongly to the constant 1. Intuitively, this means that any initial PDF for the map f

converges under the dynamics of f to the stationary PDF. As noted in [50, p. 69], it suffices

to prove the above condition for all g in a linearly dense subset of the set of density functions.

Because PF is absolutely continuous with respect to Lebesgue measure on the unit interval, a

linearly dense subset of density functions consists of all normalized characteristic functions

k,(x), where k(x) = 1 if x E 3 and 0 otherwise and 3 is a subinterval of the unit'~~~~~~~X .r(0)
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interval.

Two facts which simplify the proof follow directly from more general results in [24].

First, any MC map which gives rise to a Markov chain with primitive TPM has a dense

set of eventually periodic points. Second, if an MC map gives rise to a Markov chain with

primitive TPM, then all Markov chains which the map gives rise to have primitive TPMs

as well. In light of the first fact, f gives rise to arbitrarily fine Markov partitions since

one can find a Markov partition which includes any given eventually periodic point x. In

particular, one starts with any Markov partition and uses the finite set of distinct points

{fi(x)} as additional partition points. In addition, the set of subintervals with eventually

periodic points of f as endpoints are dense in the set of all subintervals of the unit interval.

Therefore, to verify (B.28) for all density functions, it suffices to verify it for normalized

characteristic functions k(x), where ca a subinterval with eventually periodic points of f

as endpoints.

The following lemma follows as a consequence of [12, Theorem 3] which establishes the

relation used earlier between the TPM of the Markov chain which arises from a Markov

partition and the Frobenius-Perron operator restricted to PDFs that are constant over each

partition element.

Lemma: The time evolution under the dynamics of f of any piecewise constant PDF,

where the endpoints of the subintervals with constant PDF values are eventually periodic

points of f, is uniquely determined by the time evolution of the TPM of a Markov chain.

Sketch of Proof: Because the endpoints are eventually periodic points, one can find a

Markov partition with these endpoints among the partition points; and the PDF is con-

stant over partition elements. Therefore, from [12, Theorem 3] and as discussed earlier

the Frobenius-Perron operator restricted to PDFs that are piecewise constant over parti-

tion elements has a matrix representation which is related to the TPM of the corresponding

Markov chain by a similarity transformation involving a diagonal matrix (with the length of

the partition elements as the diagonal terms). Therefore, the time evolution of a piecewise

constant PDF under the dynamics of f is uniquely determined by the time evolution of the

TPM of the Markov chain. 

Since f gives rise to a Markov chain with primitive TPM, it has a unique, stationary

density that is nonzero almost everywhere (from part a.). Now given any k(z), one can
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find a Markov partition with the endpoints of a as partition points. Because the TPM P of

the corresponding Markov chain is primitive, any vector of initial state probabilities 11(0)

converges to the unique, invariant probability vector, which we denote , of the TPM.

Let 11(0) be chosen such that rj(0), the initial probability for the state corresponding to

partition element Ij, is given by

7rj 0) k ka(x)dx = A(Icla) (B.29)
-17 A (a)

As defined, 1(0) is the probability vector corresponding to the density function k,(x) for

the chosen Markov partition. In addition, we know from the discussion in part (a.) that the

Frobenius-Perron operator restricted to PDFs that are piecewise constant over this Markov

partition has the matrix representation M given by (B.25). Since 11(0) converges to 11,

then k(x) converges to H D - 1, where D is a diagonal matrix with jth diagonal element

given by A(Ij). However, by the uniqueness of the stationary density of f, 11 D 1 must

equal this density. Therefore, the initial PDF k(x) converges pointwise to the unique

stationary PDF of f. The convergence is also convergence in L'(iF), i.e., (B.28) holds

with g(x) = ka(x), because Pf(kep) is piecewise constant for each n, with a finite number of

pieces no greater than the number of elements in the chosen Markov partition. Since a is

arbitrary, the result holds for each subinterval with endpoints given by eventually periodic

points of f. Therefore, the result holds for all density functions.

We now show that if f is exact with respect to an invariant measure that is nonzero

over every subinterval of the unit interval, then the TPM of each Markov chain it gives

rise to is primitive. Consider any Markov partition {Ij} for f and let Sj denote the state

associated with Ij of the corresponding Markov chain. Since f is exact

lim 1t(f(I)) = 1 (B.30)

However, since Ij is a partition element, f(Ij) is a union of partition elements. Further-

more, each partition element has finite measure and the number of partition elements is

finite. Therefore, the exactness property must be satisfied for some finite integer N(j), i.e.,

p(fN(i)(Ij)) = 1, and it must also be true that fN(J)(Ij) = I (except possibly on a set of

measure zero), where I is the unit interval. In light of the correspondence between partition

elements and states of the Markov chain, it follows that each state of the Markov chain is
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taken to every state of the chain after N time steps where N is the largest of the N(j).

Therefore, the TPM of the Markov chain is primitive. 

Proof of Proposition 4: As noted in the discussion before the statement of the

proposition, if the sequence of affine parameter pairs (r(i, iML), 3(i, iML))}Vo is known,

then one can determine the ML orbit segment fi(iML)}No . As a consequence of the

following lemma, one can determine this sequence by exploiting the relation between noise-

corrupted orbit segments of MC maps and hidden Markov models (HMMs).

Lemma: For any MC map which gives rise to arbitrarily fine Markov partitions and any

finite set of observations Y = y(i)}YO, one can find a Markov partition for which the

corresponding Markov chain has the property that for an appropriately defined HMM (with

the definition not dependent on the observation sequence), the sequence of affine parameter

pairs associated with the most likely state sequence SML is identical to the sequence of

affine parameter pairs associated with XML. (The definition of SML and the sequences of

affine parameter pairs associated with SML and the :ML are provided in the discussion

before the statement of the proposition).

Proof of Lemma: As in Section 7.6, let L denote the minimum number of affine segments

of f, (i, !i) denote the pair of affine parameters associated with the ith affine segment,

and Ai denote the domain of this segment, so that f(x) = ri x + Pi if x E Ai. As noted

in the section, one can associate a sequence of N + 1 affine segment domains, {A(i, x)}Nv

with each initial condition x, and this sequence is associated with a subinterval of initial

conditions A(x) which is given by

N
A(x) = nf f-i(A(i,x)) (B.31)

i=o

where f i denotes the inverse image of the composed map fi. One can show that two such

subintervals A(x) and A(y) are either identical or disjoint and these subintervals form a

partition of the unit interval, which is in fact a Markov partition. Thus the subintervals

form a set of equivalence classes of points on the unit interval. Let AEQ = {A(xi)} denote

a complete set of these equivalence classes, i.e., the {A(xi)} are disjoint subintervals whose

union equals the unit interval. There are LN+1 sequences of affine domain segments not all

of which are associated with initial conditions. As such there are at most LN+l equivalence
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classes in AEQ. It follows from the discussion in the section that the restriction of the

log-likelihood function (7.50) to each equivalence class in AEQ (when treated as a function

of the initial condition x) is a quadratic function in x since the same sequence of N + 1

affine parameter pairs is associated with each point in an equivalence class.

Let LF(A(xi)) denote the supremum (generally maximum) value of the log-likelihood

function logp(Y; x) given by (7.50) restricted to x E A(xi). By definition, the log-likelihood

function attains its maximum value on the unit interval at XML. It follows that this value is

also the largest of the {LF(A(xi))} and is associated with that subinterval A(xj) which con-

tains ML, so that A(iML) = A(xj). Let MIN denote the difference between LF(A(iML))

and the next largest of the {LF(A(xi))}. In other words, 8 MIN represents the smallest dif-

ference between the value of the likelihood function for ML and the value of the likelihood

function for all other initial conditions on the unit interval with associated sequences of

affine segment domains which differ from the sequence associated with ML.

Now consider any Markov partition for f and its associated Markov chain. Also, con-

sider the HMM model introduced in Section 7.6 which uses the state transition pseudo-

probabilities {qij}, the initial state pseudo-probabilities (Sj) = 1, and for which the output

PDF p(ylSj) associated with each state Sj is given by

(CV exp [- ] (YH
p(ySj)- (2o- 2 2 (B.32)

where Hj E Ij and Ij is the partition element associated with Sj.

A fact which follows from the discussion in the chapter is that there is a state sequence

Sx = {Sx(i)}N0 associated with each initial condition x, where Sx(i) Sj if fi(x) E Ij. In

addition, given any state sequence S = {S(i)}N=0 with nonzero probability, i.e., P(S) > 0,

there is an initial condition (actually, a subinterval of initial conditions) x associated with

S, in the sense that S = S which means that S:(i) = S(i) for 0 < i < N. It follows from

this that for any state sequence S for which q(S, Y) > 0, where q(S, Y) is the joint pseudo-

likelihood of the state sequence and observation set, there exists some initial condition x

such that Sx = S.

For arbitrary initial condition x, we now derive an upper bound on the absolute difference

[q(Sx, Y) - p(Y; x)1, which can be thought of not only as the absolute difference of the joint

pseudo-likelihood of the state sequence associated with x and the likelihood of x, but also as
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the absolute difference of the joint pseudo-likelihood of a state sequence and the likelihood

of any initial condition associated with that state sequence. In light of the close relation

between q(Sx, Y) and the log-likelihood function (7.34), what we in fact are upper bounding

is the difference between the value of the likelihood function for the pseudo-orbit segment

{H(S(i))}N=o and any actual orbit segment with associated state sequence S (where

H(S-(i)) = Hj if SX(i) = S). We now show that such an upper bound is provided by

7MAX which is given by

7MAX - (2 O2)(N+1)/2 (B.33)

where is the length of the longest partition element.

To establish the validity of (B.33), we first note that for a fixed y, the Gaussian PDF

p(y; x) given by
2

y;x) = (2p [ )/2 (B.34)=(2 r o.2)1/2

has a slope attaining its maximum absolute value at x = y+ a, with this maximum absolute

value PIAX given by

P~'f A -exp[]P (2ic=)( 2 ) *(B.35)P~A -- (2 7r c4)1/2'

Therefore, for any two points xl and x2 with Ixl - x21 < , the absolute difference IP(Y; xl) -

p(y; x 2)1 is upper bounded by PMAX E. In addition, one can show that for positive real

numbers a, b, and c with a > b, and positive integer n, [(a + c)n - (b + c)n] > [an bn].

Since the maximum value of p(y;x) is (2ra2)- 1/2 (attained at x = y), it follows that

for a fixed sequence {y(i)}N 0 and variable sequences {xi(i)}tN0 and {x2(i)}N 0 satisfying

IxI(i)-x 2(i)I < for each i, an upper bound on the absolute difference I 0 p(y(i)lxi(i))-

rl=op(y(j)x2(j)) is given by

N N- (1 - PMVAX E)N+l
II p(y(i)Ix 1(i)) - 17 p(y(i)Ix2(i))I < (2 rr a2)(N+1)/2 (B.36)
i=O j=

- 1- (i - exp- i)N+1
= ~~~~~~~~~~(B .37)
(2 7 ra2)(N+1)/2 (B.37)

However, the product rIN=o p(y(i);xl(i)) is the likelihood of a state sequence if for each
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i, xl(i) = Hj for some j. Similarly, the product rlN=op(y(j);x 2()) is the value of the

likelihood function when {x 2(i)} is an orbit segment. Therefore, (B.37) provides an upper

bound on q(S:,Y)-p(Y;x)l as well.

Because 7MAX is an increasing function of e and f gives rise to arbitrarily fine Markov

partitions (by assumption), we can find a Markov partition with small enough such that

2 -7MAX < MIN-. (B.38)

where 5MIN was defined earlier as the smallest difference between the value of the likelihood

function for iML and the value of the likelihood function for all other initial conditions on

the unit interval with associated sequences of affine segment domains which differ from the

sequence associated with XML.

Given such a Markov partition and the Markov chain corresponding to the partition,

consider q(S eML, Y), the joint likelihood of the observation set and state sequence associated

with XML. Because SML is the state sequence associated with :EML and (B.38) holds, it

follows that

q(SiM L,Y) > P(Y; ML) - YMAX (B.39)

> P(Y; ML) 26MIN (B.40)

Now let SBIG denote the state sequence which maximizes the joint likelihood q(S, Y) among

those state sequences for which the associated sequence of affine parameter pairs is different

from the sequence associated with S i ML. As noted earlier, if q(SBIsG, Y) > 0 then SBIG is

associated with at least one initial condition z of f. However, because the same sequence

of affine parameter pairs is associated with both SBIG and z and this sequence is different

from the sequence associated with ML, the following must be true

p(Y; z) < p(Y; ML) - MIN (B.41)

by definition of 6 MIN. Therefore, we have the following chain of inequalities:

q(SBIG, Y) < P(Y; Z) + MAX (B.42)

< P(Y; £ML) - MIN + MAX (B.43)

207



< p(Y; ML) - MIN+ 6 MIN (B.44)2
bMIN

p(Y; :ML)- (B.45)
2

Combining (B.40) and (B.45) yields the following:

q(StM L, Y) > P(YJML) - MIN (B.46)
2

> q(SBIG, Y) (B.47)

The inequality means that with the chosen Markov partition and with any refinement of

the partition, the state sequence associated with ML has a greater joint likelihood, or

equivalently a larger likelihood, than the likelihood of any other state sequence for which

the sequence of associated affine parameter pairs differs from that associated with ML.

Therefore, the sequence of affine parameter pairs associated with the state sequence with

largest likelihood must be identical to that associated with XML.

An important observation is that this result does not imply that SXML is the most likely

state sequence. The sequence of affine parameter pairs associated with SML is associated

with other state sequences as well, and one of these state sequences may be the most likely

state sequence. 

In light of the lemma, one can find the sequence of affine parameter pairs associated with

xML by first finding a sufficiently fine Markov partition and its corresponding Markov chain

and then determining the most likely state sequence for an appropriately defined HMM and

the sequence of affine parameter pairs associated with this state sequence. If the partition

is fine enough, this sequence of affine parameter pairs will be the same as the sequence

associated with XML. 0
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