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Abstract

Chaotic systems provide a rich mechanism for signal design and generation, with potential
applications to communications and signal processing. Because chaotic signals are typically
broadband, noise-like, and difficult to predict, they can be used in various contexts, e.g., as
masks for information-bearing waveforms and as modulating waveforms in spread spectrum
systems. Of practical significance are chaotic systems that possess the self-synchronization
property. This property allows two identical chaotic systems to synchronize when the second
system (receiver) is driven by the first (transmitter). A potential drawback to utilizing self-
synchronizing chaotic systems in applications is that the analysis and synthesis of these
systems is not well-understood due to their highly nonlinear nature. This thesis focuses on
both of these critical areas.

In this thesis, we develop a systematic approach for analyzing the self-synchronization
properties of general nonlinear systems. To further conceptualize the self-synchronization
property, we exploit an identified equivalence between self-synchronization and stable error
dynamics between the transmitter and receiver systems. We use this conceptualization to
prove that self-synchronization in the Lorenz system is a result of globally stable error dy-
namics. We then address robustness of self-synchronizing chaotic systems and develop an
approximate analytical error model that quantifies and explains the sensitivity of synchro-
nization in the Lorenz system to perturbation of the drive signal.

The ability to synthesize new chaotic systems enhances their usefulness for practical
applications. We develop and illustrate several systematic procedures for synthesizing new
classes of high-dimensional dissipative chaotic systems that possess the self-synchronization
property. The procedures vary in the number of drive signals required for synchronization
and the resulting complexity of the system dynamics. Finally, the practical implications of
this work are explored. Two techniques for embedding an information-bearing waveform in
a chaotic carrier signal and for recovering the information at the receiver are developed and
demonstrated using a Lorenz-based transmitter and receiver circuit.

Thesis Supervisor: Alan V. Oppenheim
Title: Distinguished Professor of Electrical Engineering
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Chapter 1

Introduction

For many years, there has been tremendous interest in the study of nonlinear dynam-

ical systems that exhibit chaotic behavior. It is now well-understood that chaotic

solutions of purely deterministic systems are an inherent feature of many nonlinear

systems. Chaotic behavior has been reported in a broad range of scientific disciplines,

including astronomy, biology, chemistry, ecology, engineering, and physics. Much of

this research has focused on dissipative chaotic systems. Such systems are character-

ized by limiting trajectories that are attracted to a region in state space that has zero

volume and fractional dimension. Trajectories on this limiting set are locally unsta-

ble, yet remain bounded within some region of state space. These sets are termed

strange attractors and exhibit a sensitive dependence on initial conditions in the sense

that any two arbitrarily close initial conditions will lead to trajectories that rapidly

diverge. This inherent instability makes long term predictability of chaotic signals

difficult because small uncertainties in the initial state will be exponentially amplified.

Synchronization of dynamical systems possessing these properties would seem to

be counter-intuitive. In 1990, however, it was discovered that a certain class of

dissipative chaotic systems possess a self-synchronization property [1, 2, 3]. This

property allowed two identical chaotic systems to synchronize when the second system

was driven by the first. In certain communication contexts, the first system can be

viewed as the transmitter and the second system as the receiver.

The phenomenon of synchronization has been of longstanding interest and studied
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extensively. However, these studies had typically focused on the complex interactions

among mutually coupled oscillator systems. The best known example is the motion

of the earth and moon. Other more recent examples include: spatially distributed

nonlinear systems such as coupled lasers [4], phase-locked loops [5], neural networks

[6], and biological systems [7, 8]. There is, however, a fundamental difference between

synchronization in mutually coupled systems and self-synchronizing systems. For the

latter systems the coupling is one-way, i.e., only from the transmitter to the receiver.

The concepts of self-synchronization and chaos from purely deterministic systems

suggest some potential applications - - one of the main motivating forces behind

this thesis. Because chaotic signals are typically broadband, noise-like, and diffi-

cult to predict, we have proposed their use in various contexts, e.g., as masks for

information-bearing waveforms and as modulating waveforms in spread spectrum sys-

tems [9, 10]. These proposed applications exploit the self-synchronization property

to faithfully recover the information at the receiver. A major drawback to utilizing

self-synchronizing chaotic systems in communication applications is that the analysis

and synthesis of these systems is not well-understood due to their highly nonlinear

nature. This thesis focuses on both of these critical areas.

With respect to analysis, we first develop a systematic approach for examining the

self-synchronization properties of general nonlinear systems. Although this approach

provides a valuable analysis tool, it does not provide much insight for understand-

ing the mechanism underlying the self-synchronization property. To overcome this

limitation, we reformulate our analysis approach from the viewpoint of nonlinear

stability theory. This approach enables us to identify an equivalence between self-

synchronization in chaotic systems and asymptotically stable error dynamics between

the transmitter and receiver systems. We then prove the global self-synchronization

property of the Lorenz system and provide a clear mathematical framework for our

subsequent analysis and synthesis techniques.

To utilize the Lorenz system in applications, it is important to examine the sen-

sitivity of synchronization when a perturbation signal is added to the synchronizing

drive signal. We establish an analogy between synchronization in chaotic systems,
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nonlinear observers for deterministic systems, and state estimation in probabilistic

systems. Then we show numerically that the performance of the Lorenz receiver

as a nonlinear observer compares favorably with two well-known extended Kalman

filter algorithms when the perturbation is white noise. The normalized error in syn-

chronization of each state variable is significantly less than the normalized error in

the drive signal, provided that the input chaos-to-perturbation ratio (CPR) is larger

than some critical value. We use stochastic calculus to determine the exact first and

second moments of the synchronization error signals when the perturbation is white

noise. This analysis explains the observed threshold effect at low input CPRs. In ad-

dition, the development of an equivalent linear time-invariant error model quantifies

the sensitivity of synchronization in terms of the spectral characteristics of the per-

turbation signal. This model explains why the synchronization is robust to wideband

perturbations, and why low-level speech signals or other narrowband perturbations

can be accurately recovered at the receiver even though the synchronization error is

comparable in power to the message itself.

We next turn our attention to the synthesis problem. In [11], it was demon-

strated that it is possible to create a five-dimensional chaotic system by augmenting

the Lorenz system with additional states. That approach, however, involves consid-

erable trial and error. In this thesis, we develop several systematic procedures for

synthesizing new classes of high-dimensional dissipative chaotic systems that possess

the self-synchronization property. The first class of systems that we introduce are

referred to as linear feedback chaotic systems (LFBCSs). LFBCSs are composed of

a low-dimensional chaotic system and a linear feedback system. We focus on LF-

BCSs that utilize the Lorenz system as the chaotic system component and develop

systematic synthesis procedures for this type of LFBCS. A second class of systems

generalizes the LFBCS concept by allowing for multiple Lorenz systems and a linear

system to be combined into a chaotic array. A systematic procedure for synthesizing

this class of systems is also developed. The third class of systems represent a further

generalization of these concepts; they eliminate the necessity of the linear system and,

therefore, consist of an entirely nonlinear system. A systematic synthesis capability

17
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is provided which allows high-dimensional non-Lorenz self-synchronizing chaotic sys-

tems to be designed. The synthesis techniques vary in the number of drive signals

required for synchronization and the resulting complexity of the system dynamics.

The flexibility afforded by the various synthesis techniques enhances the usefulness

of synchronized chaotic systems for communications and signal processing.

Having a strong theoretical understanding of the concept of self-synchronization

in chaotic systems, we next consider some applied aspects of these systems. First, we

show that the Lorenz transmitter and receiver systems can be implemented as sim-

ple analog circuits using commercially available hardware. The performance of these

circuits is shown to be in excellent agreement with numerical and theoretical predic-

tions. The desire to utilize the Lorenz circuits for private communications led us to

develop two techniques for embedding an information-bearing waveform in the chaotic

drive signal, and for recovering the information with the synchronizing receiver. With

the first approach, we show that low-level speech signals can be privately transmitted

and recovered with the receiver circuit. The second approach allows binary-valued bit

streams to privately transmitted and recovered. While these two approaches do not

represent the ultimate in privacy or practicality, they do mark an important starting

point for the field.

1.1 Outline of the Thesis

The thesis is organized as follows. In Chapter 2, we summarize some relevant topics

in nonlinear dynamics and chaos, and establish the notation used throughout the

thesis. The emphasis of this summary is on the local stability analysis of equilibrium

points, Lyapunov's direct method for examining global stability, and the concepts

of Lyapunov exponents and attractor dimension for chaotic systems. Each of these

topics plays a useful role throughout the thesis and the inclusion of this chapter makes

the thesis self-contained. The reader can, however, omit this chapter without loss of

continuity.

In Chapter 3, we generalize the ideas of chaotic system decomposition and self-

18
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synchronization, and develop a systematic approach for determining all of the stable

subsystems of general nonlinear systems. We then identify an equivalence between

self-synchronization and stable error dynamics. This equivalence allows us to prove

the global self-synchronization property of the Lorenz system and forms the basis for

our analysis and synthesis techniques discussed in subsequent chapters.

In Chapter 4, we perform numerical experiments that quantify the sensitivity of

synchronization in the Lorenz system when white noise is added to the drive signal.

To calibrate the performance of the Lorenz receiver, we compare its performance

against two well-known extended Kalman filter algorithms.

In Chapter 5, we perform a theoretical analysis of self-synchronization robustness

and signal recovery in the Lorenz system. We use stochastic calculus to determine the

exact first and second moments of the synchronization error signals when the drive

signal is perturbed by white noise. An approximate analytical error model explains

both the robustness of synchronization to wideband perturbations and why speech or

other narrowband perturbations can be faithfully recovered at the receiver.

In Chapter 6, we synthesize a new class of chaotic systems called linear feedback

chaotic systems (LFBCSs). The LFBCSs that we consider are composed of the Lorenz

system and an N-dimensional linear feedback system. Our primary theoretical results

include the development of self-synchronization and global stability conditions for

this class of systems. Linear stability analysis leads to an approach for estimating the

critical value of the bifurcation parameter at the onset of chaotic behavior. We also

suggest a systematic procedure for synthesizing new LFBCSs.

In Chapter 7, we develop an approach for synthesizing chaotic arrays that consist

of an arbitrary number of Lorenz oscillators and an N-dimensional linear system. The

theoretical results include: (i) the development of self-synchronization conditions for

this class of systems, (ii) the development of global stability conditions for this class

of systems, and (iii) a systematic synthesis procedure.

In Chapter 8, we develop an approach for synthesizing a general class of self-

synchronizing chaotic systems. A systematic synthesis procedure is used to show that

the Lorenz system is only one member of a more general class of three-dimensional

19
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chaotic systems which possess the self-synchronization property. To further illus-

trate the simplicity and generality of the synthesis procedure, the design of higher

dimensional chaotic systems is performed.

In Chapter 9, an analog circuit implementation of the Lorenz system is used to

demonstrate two potential approaches to private communications based on synchro-

nized chaotic signals and systems.

Chapter 10 summarizes the main contributions of this thesis and suggests some

directions for future research.

20
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Chapter 2

Nonlinear Dynamics and Chaos

In the main part of the thesis, we will need to utilize various well-known analysis

techniques in nonlinear dynamics and chaos. In particular, local stability analysis,

Lyapunov's direct method, and the concepts of Lyapunov exponents and attractor

dimension play key roles throughout the thesis. This chapter summarizes each of

these topics, with emphasis on nonlinear systems represented by a set of first-order

ordinary differential equations. While the inclusion of this chapter makes the thesis

self-contained, the reader can, however, omit this chapter without loss of continuity.

We begin by discussing the local stability analysis of nonlinear systems near the

equilibrium points. This analysis proves useful in later chapters where it is necessary

to find conditions on the system's parameters such that all of the equilibrium points

will be unstable. We then discuss Lyapunov's direct method. This method is useful

for examining the global stability of nonlinear systems and for determining trapping

regions for a dissipative chaotic flow. Finally, we discuss some useful measures of

chaotic behavior, in particular, the notions of Lyapunov exponents and attractor

dimension. These measures are useful for confirming and comparing chaotic behavior

for the various nonlinear systems that we consider.

21
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2.1 Equilibrium Points and Local Stability

Throughout this thesis, we will focus our analysis and synthesis efforts on nonlinear

systems which are representable by a set of ordinary differential equations of the form

=f(x), xERN . (2.1)

For simplicity, we will always assume that f(x) is a smooth function so that the basic

existence-uniqueness theorems for ordinary differential equations apply to (2.1).

A typical starting point for the analysis of (2.1) is to determine the equilibrium

(fixed) points and to perform a local stability analysis. The fixed points, x0 , satisfy

f(xo) = 0. Unfortunately, the determination of the zeros of a nonlinear function is of-

ten not analytically tractable. There are, however, well-known numerical techniques,

such as the Newton-Raphson method, which are well-suited to this problem.

For the purpose of discussion, let us assume that the fixed points of (2.1) have

been determined. The ,behavior of solutions near x0 can be examined by linearizing

(2.1) at x0 . The linearized system is given by

3 = Df(xo)6x, x E RN , (2.2)

where 5x = x- x and where Df = [fi/Dxj] is the system's Jacobian matrix.

Because equation (2.2) is linear in 6x, the local stability of this system can be easily

determined from the eigenvalues of the Jacobian matrix. Moreover, if Df(xo) has no

zero or purely imaginary eigenvalues, then the local stability of solutions to (2.1) near

xO is determined by the linearization [12]. This result is particularly useful in later

chapters where it is necessary to determine the critical parameter values for which the

fixed points of a nonlinear system undergo an abrupt change in stability. To illustrate

these concepts, the fixed points of the chaotic Lorenz system are determined and a

local stability analysis is performed.

The Lorenz equations, first introduced by E. N. Lorenz as a simplified model of

22

_ __



fluid convection [13], are given by

= U(y- -x)

p = rx-y-xz (2.3)

= xy-bz,

where a, r, and b are positive parameters. By varying r, the qualitative behavior of

solutions to (2.3) can change abruptly. Abrupt changes in the qualitative behavior

of a dynamical system are referred to as bifurcations and, in the case of the Lorenz

system, r is commonly referred to as the bifurcation parameter. The critical values

of r for which local bifurcations occur can be determined through linear stability

analysis.

The first step is to determine the fixed points of the Lorenz system - - the origin is

clearly a fixed point for all parameter values. Additionally, a pair of nontrivial fixed

points exists when r > 1. The state space location of these fixed points is given by

x = (iVb(r- 1), ±+b(r- 1), (r- 1)). The Jacobian matrix of the Lorenz system

evaluated at the origin (xo = O) is given by

-a ar 0
Df(0) = r -1 0

0 0 -b

The eigenvalue at -b represents a stable mode since b > 0. The characteristic poly-

nomial for the upper 2 x 2 block is given by

A2 - (o + 1)A + o(1 -r) = 0.

The two roots of this characteristic polynomial are in the left-half plane for r < 1.

For r > 1, one root is in the right-half plane and represents an unstable mode at

the origin. Thus, r is a bifurcation parameter for the Lorenz system because a slight

variation in r can abruptly alter the system's local stability.

The Jacobian matrix of the Lorenz system evaluated at the fixed point pair (x 0 =
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Xp) is given by

-a a 0

Df (xp) = 1 -1 - 1)

[b( - ) ±Vb( - 1) - b

The characteristic polynomial of Df(xp) is given by

3 + (a + b + 1)A2 + b(a + r)A + 2ba(r - 1) = 0 . (2.4)

The critical value of r, when a root of (2.4) crosses from the left-half plane to the

right-half plane, can be determined by applying the Routh-Hurwitz criterion. This

critical value, r, is given by

rc (a +b+3) (2.5)
a-b-i

As r is varied, a local bifurcation occurs when r = r. For r > r, the fixed point

pair is unstable. Thus, for r > max(l, rc) all fixed points of the Lorenz equations

are unstable. Assuming that the trajectories remain bounded, either limit cycles or

a chaotic attractor will exist. In Section 2.2, we utilize Lyapunov's direct method

to show that all trajectories of the Lorenz system remain bounded for all positive

parameter values. The interested reader may consult [12, 13, 14] for a more in-depth

analysis of the Lorenz equations.

2.2 Lyapunov's Direct Method

Lyapunov's direct method involves determining a family of closed curves (N = 2)

or closed surfaces (N > 2) in state space such that the general behavior of nearby

trajectories of a dynamical system can be examined. The best way to show how this

works is by example.
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Figure 2-1: Illustration of Lyapunov's Direct Method.

Example (Jordan and Smith [15])

In this example, consider the global stability of the origin for the system

X = -y-x, y = x-y3

To solve this problem, consider the family of closed curves V(x, y) = x 2 + y2 = k,

where k is a positive scalar. For each fixed k > 0, V(x, y) defines a circle enclosing

the origin in the xy-plane as illustrated in figure 2-1. We wish to show that for any

point on any of these circles, the state space trajectory through this point is directed

toward the interior of the circle. If this property holds for all k > 0, then the origin is

globally asymptotically stable. To show that this property holds, the total derivative

of V(x, y) is evaluated along trajectories. Specifically,

dV(x(t),y(t)) aV V = (4 + 4)

dt - 94 & + ay 

Since V(x,y) is negative for all (x,y) 0, the trajectories move continuously to

smaller and smaller circles and eventually approach the origin. This shows that the

origin is globally asymptotically stable.

In higher dimensional problems, V(x) is a positive definite scalar function of N

components (x 1,...,xN). By evaluating the total derivative of V(x), we can examine
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Figure 2-2: Positive Definite Functions.

the behavior of trajectories in high-dimensional state spaces. Specifically, the total

derivative of V(x) along trajectories is given by

dV(x(t)) N V
dt = E -fi(x)dt i=1 x

where fi(x) is the component of the vector field associated with the ith state equation

of the nonlinear system. If V(x) is a negative definite function, then the origin in

state space is globally asymptotically stable. In general, positive definite functions

may have multiple extrema as illustrated in figure 2-2(a). If, however, V1(x) is negative

definite, then V(x) exhibits a single global minimum at the origin as illustrated in

figure 2-2(b). Functions V(x) with this property are called Lyapunov functions. In

later chapters, we will find Lyapunov functions particularly useful for examining the

global stability of nonlinear systems.

In problems of a more general nature, it is often the case that stable fixed points

do not exist, yet all trajectories remain bounded in state space. To examine the

global behavior of trajectories in these systems, we consider quadratic positive definite

functions of the form

1
V(x) = (x - C)TP(x - C) = k, (2.6)

2
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where P is a symmetric N x N positive definite matrix and k is a positive scalar.

Geometrically, (2.6) represents a family of ellipsoids in state space with c defining

the location of its center. Of particular importance for global stability analysis is

the determination of a closed surface S for which V(x) = 0. If V(x) < 0 for all x

outside S, then any ellipsoid T from the family (2.6) that contains S will suffice as a

global trapping region for the N-dimensional flow. This means that all trajectories

will eventually enter T and remain in T for all time thereafter. Finding a trapping

region may be a difficult task; however, if one can be found then it can be used to

prove that all trajectories remain bounded for all t > 0.

It is well-known that the Lorenz system provides an example of a nonlinear system

for which an ellipsoidal trapping region can be analytically determined. As we show

below, an ellipsoid from the family

1
V() = rx y 2 +a(Z -2r)2 ) = k, k > o (2.7)

will determine a trapping region for the Lorenz flow for k sufficiently large.

The total derivative of V(x) is given by

V(x) = -arx 2
- ay 2

-
a (z - r) 2 + a br2

By setting V(x) = 0 and rearranging terms, we obtain

x2 Y2 (z )2 = 1 . (2.8)
- + + ~~~~~~~~~~~~(2.8)

br br2 r 2

Equation (2.8) represents an ellipsoid in state space. This ellipsoid plays the role of

the closed surface S. Since V1 < 0 for all x outside of S, any ellipsoid T from the family

(2.7) which contains S will suffice as a trapping region for the Lorenz flow. Figure

2-3 illustrates the trapping region T and the V(x) = 0 ellipsoid S.

Another key feature of the Lorenz flow is that it is highly dissipative. This can

be shown by computing the divergence of the vector field for the Lorenz equations as
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z

x

Figure 2-3: A Trapping Region for the Lorenz Flow.

follows,

V ~~. x~ =~ - (o- + 1 + b)A± ay aiV(x = a + 5- + a7 =

Since the divergence is a negative constant, it follows that any volume in state space

will contract exponentially fast [14]. The use of the divergence operator will be shown

in Chapters 6-8 to be important for ensuring that our synthesis procedures produce

chaotic systems which are dissipative.

In summary, linear stability analysis of the Lorenz system (Section 2.1) showed

that for r > max(1, re) all of the fixed points are unstable and therefore the motion

is non-trivial. Lyapunov's direct method was then used to illustrate that the Lorenz

flow is confined to an ellipsoidal region in state space for all positive parameter values.

Furthermore, invariant tori are not possible in the Lorenz system, because the diver-

gence of the vector field is a negative constant. This property ensures that the Lorenz

system is dissipative with exponentially fast volume contraction. This analysis alone

does not guarantee the existence of chaotic behavior since the possibility for limit

cycles exists. A dynamical system which behaves chaotically must exhibit a positive

Lyapunov exponent. This issue is discussed in the next section.
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2.3 Quantifying Chaotic Behavior

In this section, we discuss the concepts of Lyapunov exponents and attractor dimen-

sion for dissipative chaotic systems. These concepts are used to measure and quantify

the chaotic behavior of the various nonlinear systems that we consider in subsequent

chapters of this thesis.

2.3.1 Lyapunov Exponents

Lyapunov exponents are the average exponential rates of divergence or convergence of

nearby trajectories in a dynamical system. Positive Lyapunov exponents correspond

to diverging trajectories in state space and set the time scale for reliable prediction

of future states. Negative Lyapunov exponents correspond to converging trajectories

in state space and set the time scale on which transient motion will decay [16]. In

between these two extremes are the zero Lyapunov exponents which correspond to

flow along the trajectory. If at least one Lyapunov exponent of a dynamical system

is positive, then a volume element in state space will expand in some direction and

nearby trajectories will diverge. The exponential expansion of a chaotic flow implies

that diverging trajectories must experience a repeated folding process in order for

the motion to remain bounded. Loosely speaking, each positive Lyapunov exponent

reflects a "direction" for which the folding process takes place and trajectories become

decorrelated. This dynamical behavior leads to a sensitive dependence on initial

conditions and is a primary feature of every chaotic system.

Lyapunov exponents are most easily understood by considering a one-dimensional

discrete-time map of the form

xn+1 = f(xn), x E R

Suppose that the initial state of this system is given by x = + xO, where xO

represents an infinitesimal error in the true initial state Xo. The error in specifying
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x, is given by

xn = xn.- xn = f () -f (xo)

Df'(xo)6xo

where f denotes the n-fold composition, f _ f o ... o f. Applying the chain rule

for differentiation we can write

Dfn(xo) = Df(x._)Df (Xn- 2) ... Df(xo) 

and therefore, the average rate of exponential growth of 6xn is given by

JX" ~n-i

|xo = H I Df(x)I = eAn
i=O

The Lyapunov exponent, A, can then be expressed as

1 n-1
A = lim -loglDf(xi)I

nooni=0

Lyapunov exponents can also be interpreted in information-theoretic terms [17].

Specifically, the positive exponents reflect the average rate at which predictive ability

is lost, or equivalently, the average rate of information gained by observing the current

state of the system. The well-known Henon map [18], for example, exhibits a positive

exponent equal to 0.4. If the initial condition is known to a precision of 16 bits, then

the ability to predict beyond approximately 40 iterations is lost.

The concept of Lyapunov exponents also applies to continuous-time dynamical

systems. To illustrate this, we denote the general solution of the dynamical system

x(t) = f(x(t)), x E R, by x(t) = t(x(O)). Analogous to the discrete-time case, the

initial state of the system is assumed to be given by x'(0) = x(0) + 6x(O), with the

resulting error at time t given by

ax(t) = x'(t) - x(t) = Ot(x'(0))- Ot(x(0)) : Dt(x(0))6x(0)

30

�_ _�_�__�_



By periodically sampling the linearized flow, Dot, the Lyapunov exponents for a

continuous-time system can be defined as those of a discrete-time system generated

by the mapping DebnT = Df ' .

Several notable properties of continuous-time chaotic systems are:

* all continuous-time chaotic systems have at least one zero Lyapunov exponent

corresponding to the direction tangent to the flow;

* the sum of the Lyapunov exponents is equal to the time averaged divergence of

the vector field;

* any continuous-time dissipative chaotic system has at least one negative expo-

nent, the sum of the exponents is negative, and the limiting trajectories evolve

on an attracting set having zero volume in state space; and

* the minimum dimension of a continuous-time chaotic system is three.

Using a symbolic notation, the spectrum of Lyapunov exponents for a three-dimensional

chaotic system has the unique representation (+, 0,-), whereas in four-dimensions

there are three possible types, with representations given by (+, 0,-,-), (+, 0, 0,-)

and (+, +, 0,-).

In dynamical systems with the state space dimension greater than one, the ex-

istence and computation of Lyapunov exponents relies on the multiplicative ergodic

theorem of Oseledec [19]. This theorem states that if a matrix product is defined as

Df (x) = Df(f- 1 (x)) Df(f(x))Df(x) ,

then under some general ergodicity conditions, the following limit exists

lim -log ([Df'(x)]T[Df(x)]) = A ,

where A is a diagonal N x N matrix. Furthermore, the Lyapunov exponents corre-

spond to the diagonal elements of A.
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Unfortunately, a direct application of the multiplicative ergodic theorem is nu-

merically unstable, especially when positive Lyapunov exponents exist. This diffi-

culty has been overcome by the QR decomposition approach suggested by Eckmann

and Ruelle [20], which is based on decomposing the matrix product Dfn(x) into

triangular factors. Their approach begins by defining Df(x) = Q 1R 1, where Q is

an orthogonal matrix and R1 is an upper triangular matrix. For j > 1, the matri-

ces Ti(x) = Df(fi-l(x))Qj-l are successively defined and decomposed according to

TJ(x) = QjRj. It is straightforward to show that Dfn(x) = QnR ... R 1. It can also

be shown that the diagonal elements Z) of the triangular matrix product Rn ... R

obtained from this algorithm satisfy

lim 1logAn) = Ai,
n-+oonT

where Ai corresponds to the i th largest Lyapunov exponent.

The QR method provides a numerically stable approach for computing the Lya-

punov exponents of a dynamical system defined by a set of state equations. Using

the QR method, we show in figure 2-4 the computed Lyapunov exponents for the

Lorenz system. For this case, the parameter values a = 16 and b = 4 were fixed,

and the parameter r was varied over the range 20 < r < 100. Note that the onset

of chaotic behavior occurs near r = 34 as evidenced by the existence of a positive

Lyapunov exponent. The large negative exponent is due to the highly dissipative

nature of the Lorenz chaotic attractor and, as expected, a zero Lyapunov exponent

is also apparent. Note also that equation (2.5) determines that all of the fixed points

will be unstable for r > 33.5. From figure 2-4, we see that this critical value closely

predicts when chaotic motion will occur.

2.3.2 Attractor Dimension

Long term chaotic motion in dissipative systems is confined to a strange attractor

whose geometric structure is invariant to the evolution of the dynamics. Typically, a

strange attractor is a fractal object and, consequently, there are many possible notions
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Figure 2-4: Lyapunov Exponents of the Lorenz System.

of dimension for strange attractors. In this section, we discuss some well-known and

widely accepted definitions of attractor dimension. We also discuss a simple relation-

ship to Lyapunov exponents and provide a numerical example to further emphasize

some useful aspects of these concepts.

Dissipative chaotic systems are typically ergodic. All initial conditions within the

system's basin of attraction lead to a chaotic attractor in state space which can be

associated with a time-invariant probability measure, p(x). Intuitively, the dimension

of the chaotic attractor should reflect the amount of information required to specify

a location on the attractor with a certain precision. This intuition is formalized by

defining the information dimension, dimHp, of the chaotic attractor as

dimH = lim log p[Bx(e)]
E-4O log e

where p[Bx(e)] denotes the mass of the measure p contained in a ball of radius e,

centered at the point x in state space [20, 21]. Information dimension is important
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from an experimental viewpoint because it is straightforward to estimate. The mass,

p[Bx(e)], can be estimated by

M
p[Bx(e)] M U(e-x- xl) ,

where U(-) is the unit step function. In typical experiments, the state vectors x are

estimated from a time delay embedding of an observed time series [22].

Information dimension will, in general, depend on the particular point x in state

space being considered. Grassberger and Procaccia's approach [23] eliminates this

dependence by defining the quantity

_ M M
C() M E E U(E-Ix- xjl)I

i=1 j=l

and then defining the correlation dimension, dimc p, as

dimcp = lim log C(e)
E-+0 log 

In practice, one usually plots log C(e) as a function of log and then measures the

slope of the curve to obtain an estimate of dimcp. It is often the case that dimHp

and dimcp are approximately equal.

There is also a meaningful relationship between information dimension and Lya-

punov exponents for chaotic systems [21, 24, 25]. If Al, ... , AN are the Lyapunov

exponents of a chaotic system, then the Lyapunov dimension, dimLp, is defined as

dimLp = k + A +1 + k (2.9)

where k = max{i: Al + + Ai > O}. Equation (2.9) suggests that only the first k + 1

Lyapunov exponents are important for specifying the dimensionality of the chaotic

attractor. Kaplan et al. [24, 25] conjecture that dimHp = dimLp in "almost" all

cases. Clearly, if this is correct then equation (2.9) provides a straightforward way to

estimate the attractor dimension when the dynamical equations of motion are known.
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Figure 2-5: Lyapunov Dimension of the Lorenz System.

In figure 2-5, we show the computed Lyapunov dimension of the Lorenz attractor

as the parameter r is varied over the range 20 < r < 100. Note that for r > 34, the

Lyapunov dimension is nearly constant with an average value of approximately 2.06.

This value is consistent with the correlation dimension of the Lorenz attractor given

in [26]. Similar numerical experiments with the Henon, R6ssler, and double scroll

[27] systems show a similar consistency. Since dimLp is relatively straightforward

to determine, we will use this approach throughout the thesis to obtain meaningful

estimates of the attractor dimension for the various chaotic systems that we consider.
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Chapter 3

Self-Synchronization in Chaotic

Systems

The concept of chaotic synchronization is intriguing, and until recently, had not re-

ceived much attention. It is now well-known that dissipative chaotic systems of a

certain class possess a self-synchronization property. This property allows two iden-

tical chaotic systems to synchronize when the second system is driven by the first.

The ability to synchronize remote chaotic systems by linking them with a common

drive signal suggests new and potentially interesting approaches to private communi-

cations. Some applied aspects of synchronized chaotic systems will be discussed and

demonstrated in Chapter 9.

Self-synchronization in chaotic systems is not well-understood due to the highly

nonlinear nature of these systems. The analysis presented in this chapter provides a

major step toward further understanding this remarkable property, and is organized

as follows. In Section 3.1, we discuss the concept of chaotic system decomposition and

demonstrate the self-synchronization property of the Lorenz system. In Section 3.2,

we formalize this concept and develop a systematic approach for examining the self-

synchronization properties of general nonlinear systems. In Section 3.3, we establish

an equivalence between self-synchronization in chaotic systems and asymptotically

stable error dynamics. We then use Lyapunov functions to provide an analytical

explanation of self-synchronization in a class of chaotic systems.
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3.1 Decomposing Chaotic Systems into Drive and

Response Subsystems

In 1990, Pecora and Carroll [1, 2] reported that certain chaotic systems could be

decomposed into drive and response subsystems that synchronize when coupled by a

common drive signal. Specifically, they decomposed a nonlinear system of the form

x = f(x), x ERN ,

into subsystems, i.e., expressed it as

a = D 1(dl,d 2), d RN- m (3.1)

a2 = D 2 (dl,d2), d 2 E R m . (3.2)

This decomposition can be performed by simply partitioning the state variables into

two groups, one associated with D1 and the other with D 2. However, only certain

partitions of the state variables will produce a stable D 2 subsystem in the sense

that all of the conditional Lyapunov exponents associated with D 2 are negative. If a

stable decomposition is achieved, then a stable response subsystem can be formed by

duplicating D 2 and replacing the state variables d2 by new state variables r. This

leads to a response subsystem of the form

= D 2 (d 1,r), r E Rm . (3.3)

Viewed as a single system, equations (3.1) and (3.2) can be interpreted as a transmit-

ter or drive system with (3.3) forming a receiver or response subsystem that is driven

by di. Figure 3-1 illustrates the approach.

In [1, 2], it was shown numerically that if the conditional Lyapunov exponents

associated with D 2 are all negative, then the state variables r will synchronize to the

state variables d 2. The term conditional is applied to emphasize that the dynamics of

D 2 depend on the drive variable d. In typical cases, an analytical determination of
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Figure 3-1: Decomposing a Chaotic System into Drive and Response Subsystems.

the conditional Lyapunov exponents is not possible and numerical approaches, such

as the QR decomposition method (Section 2.3), are necessary to calculate them.

The Lorenz system (2.3) provides an example of a chaotic system for which stable

decompositions are possible. For example, a stable (yi, Z1) response subsystem can

be defined by

Y = rx(t) - Yi - x(t)z ()

Z = x(t)yl - bl

and a stable ( 2, z2) response subsystem by

x2 = a(y(t) - x 2)

z2 = x2y(t) - bz 2

Equations (3.4) and (3.5) represent dynamical response systems which are driven

by the transmitter signals x(t) and y(t) respectively. It can be shown numerically

that the conditional Lyapunov exponents of the (yi, zl) response subsystem are both

negative and thus Y1 - yjl and Izl - z -+ 0 as t -+ oo [1, 3]. Also, the eigenvalues of

the Jacobian matrix for the ( 2, z2) response subsystem are both negative and thus

Ix2 - x[ and z2 - z - 0 as t --+ oo.

The two response subsystems can be cascaded to regenerate the full-dimensional
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dynamics which are evolving at the transmitter [9, 10, 28, 29]. If the input signal

to the (l,zl) subsystem is x(t), then the output y(t) can be used to drive the

(x 2, z 2) subsystem. This subsequently generates a "new" (t) in addition to having

obtained, through synchronization, y(t) and z(t). It is also possible to regenerate the

full-dimensional dynamics of the transmitter by reversing the order of the response

subsystems and using y(t) as the drive signal. The advantage of using x(t) as the

drive signal is that the two response subsystems given by equations (3.4) and (3.5) can

be combined into a single system having a three-dimensional state space [30, 31, 32].

This produces a full-dimensional receiver system given by

Zr = (Yr -Xr)

Pr = rx(t) - Yr - (t)Zr (3.6)

z, = (t)y, - bzr

An interesting feature of the receiver equations (3.6) is that they are algebraically

similar to the transmitter equations (2.3), except that the drive signal x(t) replaces

xr(t) in the second and third equations.

In figure 3-2(a), (b), and (c), we show the decomposed, cascade, and combined rep-

resentations respectively, for a receiver system that can regenerate the full-dimensional

dynamics of the Lorenz system. Note that the receiver depicted in figure 3-2(a) is

four-dimensional and requires that two drive signals be communicated. The receiver

depicted in figure 3-2(b) eliminates the need for two drive signals but is also four-

dimensional. In an analog circuit implementation of the receiver systems, the state

space dimension corresponds to the number of integrators and is, therefore, related to

system complexity. The combined representation (figure 3-2(c)) requires the fewest

integrators and is preferable in certain applications. For the remainder of the thesis,

we will refer to the combined representation as the Lorenz receiver in light of the

potential applications.

To illustrate the self-synchronization property of the Lorenz receiver, we show in

figure 3-3(a) a comparison between the transmitter signal x(t) (dashed line) and the

corresponding receiver signal xr (t) (solid line), when the receiver is initialized from the
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Figure 3-2: Lorenz Synchronizing Receiver Representations: (a) Decomposed Form.
(b) Cascade Form. (c) Combined (3-D) Form.
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zero-state. Figures 3-3(b) and (c) show a similar comparison between the y(t) and

z(t) transmitter and receiver signals, respectively. Synchronization is clearly rapid

and maintained. Furthermore, the synchronization of the transmitter and receiver is

global, i.e., the receiver can be initialized in any state and the synchronization still

occurs. This important result will be proven analytically in Section 3.3.

The ability to decompose the Lorenz equations into cascading subsystems that

regenerate the full-dimensional transmitter dynamics suggests an interesting approach

for studying the self-synchronization properties of general nonlinear systems. This

approach relies on determining the stable response subsystems for general nonlinear

systems and is discussed in Section 3.2.

3.2 Determining the Stable Response Subsystems

for General Nonlinear Systems

The first step is to formalize the concepts of chaotic system decomposition and self-

synchronization. We can then develop a systematic approach for determining all

of the stable response subsystems for general nonlinear systems and show how to

cascade these subsystems in an optimal way. While this analysis is presented using a

continuous-time framework, the approach also applies to discrete-time systems.

The class of nonlinear systems that we consider is represented by a set of N

first-order ordinary differential equations of the form

x = f 1 (x1, .. ,XN)

(3.7)

;N = fN(Xl, -..., XN)

The functions fl, ... , fN map RN -+ R 1 and are assumed to be smooth. In our subse-

quent analysis of chaotic system decomposition and self-synchronization, the following

definition of driven subsystems will be useful.

42

�1_ __



x

y

Synchronizing
Receiver

x(t) (Drive Signal)
Xr

Yr

Zr

Transmitter Signal Receiver Signal

0 (a) 1 2 3 4 5

0 1 2 3 4 5
(b)

5(c) 1 2 3 4

Time (s)

Figure 3-3: Synchronization of Transmitter and Receiver Signals
tern. (a) x(t) vs. xr(t). (b) y(t) vs. yr(t). (c) z(t) vs. zr(t).

in the Lorenz Sys-

43

Chaotic
Transmitter

y

- z

y(t)

80

z(t) 40

0
0

I-. _e ----------- ------------------ �--

X(t,



Definition 3.1 For any positive integer N, let JN be the set whose elements are

the integers, 1, 2,..., N. Fix a proper subset j C JN. Let xj denote the set of state

variables with indices that range over the elements of j. We say that a state xi, for

i E JN, drives a subsystem composed of states xj if and only if

j fj(xi,xj), i j

Applying Definition 3.1 to the Lorenz equations (2.3), we can conclude that:

* y drives the x subsystem, but that x does not drive the y subsystem because

the equation for y also depends on the state z;

* neither x nor y alone drive the z subsystem by the same definition; and

* every two-dimensional subsystem of (2.3) satisfies Definition 3.1. Specifically,

x drives the (y, z) subsystem, y drives the (x, z) subsystem, and z drives the

(x, y) subsystem.

In fact, any system of the form (3.7) can be drive decomposed into subsystems,

where each subsystem is driven by a single state variable. As discussed above, we

see that exactly four driven subsystems exist for the Lorenz system. They are listed

below.

1. x drives (y, z).

2. y drives (x, z).

3. z drives (x, y).

4. y drives x.

This approach to drive decomposition can be readily extended to N-dimensional

systems. There are exactly N possible one-dimensional subsystems in the single drive

variable case, i.e., one subsystem corresponding to each state variable. Equivalently,
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the number of one-dimensional subsystems S1 is given by the combination,

S1 "- --- - N
I1 (N- 1)!=1!

NAIn general, the number of rn-dimensional subsystems Sm~ is given bySm =
m

The total number of subsystems S of any order is obtained by summing Sm, for

m = 1, ... , N - 1,

N-1

S E Sm = 2N - 2
m=1

Observe that S has an exponential dependence on N. For N = 3, there are at most

6 subsystems, and for N = 10, there are at most 1022. However, the number of

subsystems which satisfy Definition 3.1 is usually much less because some of the state

equations may depend on only a few state variables. A simple approach for identifying

the various subsystems which satisfy Definition 3.1 is discussed below.

The number of unique N-bit binary words, excluding the zero-string and one-

string, is exactly 2N - 2. Therefore, a two-dimensional subsystem that is composed

of states xj, for j = 1, 2}, can be represented by the binary word B(xj) given by

B(xj) = (1, 1, 0, ..., 0)

In this case, the' 's occur in the two leftmost bit positions, corresponding to the x1

and 2 states respectively. The binary representation makes it clear why the zero-

string and one-string are omitted. The former would correspond to a zero-dimensional

subsystem and the latter would correspond to an N-dimensional subsystem. Both of

these cases are excluded by Definition 3.1.

The binary representation is an orderly way of identifying the various subsystems
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Response
B(Xj)
(O 0 1)
(O 1 0)
(0 11)
(1 o o)
(101)
(1 1 0o)

Drive Satisfy
x y z Def. 3.1?
1 1 0 No
1 0 1 No
1 0 0 Yes
0 1 0 Yes
0 1 0 Yes
0 0 1 Yes

Stable?
No
No
Yes
Yes
Yes
No

Table 3.1: Drive Decomposition of the Lorenz System.

for a general system of differential or difference equations. In table 3.1, we show the

drive decomposition table for the Lorenz system. This table is constructed by assigning

each drive variable to a column, and every possible subsystem to a row. The rows

follow the standard binary ordering. Since table 3.1 represents a three-dimensional

system, it has 6 rows. An N-dimensional system would have a table with (2 N- 2 ) rows.

A "1" entry in the table indicates that the corresponding drive variable couples into

the subsystem and that the drive variable is not a state variable of that subsystem.

A "" entry in the table indicates that the corresponding subsystem is not driven

by that drive variable. The table also indicates which subsystems satisfy Definition

3.1. These are the response subsystems and they will be represented notationally by

conditioning them with respect to the drive variable. For example, if x drives the

(y, z) response subsystem then it will be denoted by (y, zlx).

The drive decomposition table provides a systematic approach for identifying the

response subsystems from the algebraic structure of the transmitter equations. State

variables which belong to stable response subsystems (SRSs) can be regenerated by

a self-synchronizing receiver and those belonging to unstable subsystems can not.

Table 3.1 shows that the Lorenz system contains exactly four response subsystems,

as expected. Three of these are two-dimensional and one is one-dimensional. Of these

four response subsystems, only the (y, zix), (x, zly) and (xly) are stable in the sense

of having a complete set of negative conditional Lyapunov exponents. The stable

response subsystems are indicated in the last column of table 3.1.
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The SRSs are of primary interest in our subsequent analysis because they can be

used in cascade to regenerate the transmitter dynamics. One way of regenerating the

three-dimensional dynamics of the Lorenz system is to use the cascade

x * (y, zlx) -+ (xly) 

With x(t) as the drive signal, the (y, zjx) response subsystem allows y(t) and z(t)

to be reconstructed through synchronization. Subsequent use of y(t) to drive the

(xly) response subsystem allows x(t) to be regenerated. A systematic approach for

determining an appropriate cascade of SRSs can be obtained by using trees. A brief

description of trees as used in this context is given below.

To describe trees, we first introduce some terminology. A tree consists of nodes

and branches, where each node represents a SRS. Every branch has exactly two nodes

associated with it. The upper node corresponds to the Ith level of the tree and the

lower node to the ( + 1)st level of the tree. A path consists of an interconnection of

branches arranged from the highest node of the tree to the lowest node of the tree.

The lowest level node of any path is called a terminal node.

To construct an SRS tree, we begin by listing each state variable, x 1,...,xN, at

the top level of the tree. Then we treat the state variable x1 as the drive variable and

locate the "1" entries in column 1 of the drive decomposition table which correspond

to SRSs. Each of these SRSs becomes a level 2 node and a branch is drawn connecting

it to x1. This procedure is repeated for state variables x 2 , ... ,xN by considering

columns 2 through N, respectively. If no SRSs correspond to the "1" entries in a

given column of the drive decomposition table then the corresponding drive variable

is terminal. At level 2 of the tree, we treat the SRS state variables as drive variables

and repeat the above procedure. In general, the SRS state variables at the Ith level of

the tree become drive variables for the ( + 1)st level SRSs. From this construction, it

is clear that every SRS is driven by a state variable from the previous level. We say

that a Ith level state variable is terminal if:

1. it is also a state variable of some SRS at a higher level of the tree along the

same path, or
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(yzlx) (xly) (xzly)-I-~~

(xly) (x,zly) (y,zlx) (y,zlx)

home home home

Figure 3-4: SRS Tree for the Lorenz System.

2. it was terminated at some higher level node of the tree.

The tree construction is complete when every path reaches a terminal node. A node

is terminal if:

1. all of the SRS state variables are terminal, or

2. the union of the SRS state variables along the same path comprise a complete

set of state variables (also called the home path).

In figure 3-4, we show the complete SRS tree for the Lorenz system. The SRS

tree clearly indicates which transmitter states are recoverable through synchronization

and which SRSs to use to recover those states. In this figure, we see that there are

exactly three cascades of SRSs which can be used to regenerate the full-dimensional

transmitter dynamics. These cascades correspond to the three "home" paths and are

listed below.

1. x > (y,zlx) - (xly)

2. x > (y, zlx) (x, zly)

3. y > (x, zlY) > (y, zlx)

It is possible that several cascades of SRSs may correspond to a home path. To

help choose an optimal cascade, we define the path length as the overall dimensionality
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of the SRSs representing that path. In an analog circuit realization of the SRSs, the

path length corresponds to the total number of integrators and is therefore related

to system complexity. It is advantageous from an implementation viewpoint to select

the cascade corresponding to the shortest path length. For the case of the Lorenz

system, cascade 1 has a length of three whereas cascades 2 and 3 have a length of four.

Therefore, cascade 1 represents the minimum length. If more than one home path

shares the minimum length, we can further distinguish between these home paths by

choosing the cascade which minimizes a certain cost function. In the context of state

estimation, each home path can be viewed as a full-dimensional observer, and we can

base our optimization approach on a cost function which reflects the overall stability

of the observer. One such cost function is based on the sum of the largest conditional

Lyapunov exponents of each SRS in the cascade. We denote this cost function by

Jmax and define it as

Jma = max {CL(SRSi)} , (3.8)

where CL(.) denotes the conditional Lyapunov exponents.

In the Lorenz system with parameters o = 16, r = 45.6, and b = 4, the conditional

Lyapunov exponents of the three SRSs are given by

CL(xly) = (-16)

CL(x, zly) = (-16,-4) , (3.9)

CL(y, zlx) = (-2.5,-2.5)

Evaluating Jmax for cascades 1, 2, and 3, we obtain -18.5, -6.5, and-6.5, respectively.

In this case, cascade 1 minimizes Jmax and also has the minimum length. Cascade 1

would be the optimal choice based on these criteria.

We observe that the SRS tree construction procedure must terminate after, at

most, N levels. These N levels correspond to N SRSs which can be used in cascade

as a full-dimensional observer. This result is summarized in Theorem 3.1.
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Response Drive
B(xj) x y z
(001) 0 1 0
(010) 1 0 1
(011) 1 0 0
(100) 0 1 0
(1 01) 0 1 0
(110) 0 0 1

Drive Decomposition

Satisf
Def. 3.

Yes
No
Yes
Yes
Yes
Yes

of the

fy
1? Stable?

No
No
Yes
Yes
No
No

Double Scroll System.

Theorem 3.1 If a stable decomposition of an N-dimensional system produces a full-

dimensional observer, then the observer consists of a cascade of, at most, N single-

input stable response subsystems.

As a second example of drive decomposition, consider the double scroll equations

[27]
x = (y- h(x))

= -y+z

= - ,

(3.10)

where h(x) is a piecewise linear function

alx + (ao - al)

ao x

alx - (ao - a)

-1 <x< 1

x<-1

The drive decomposition table for this system is given in table 3.2. For the param-

eter values that we have chosen, a = 9,3 = 100/7, ao = -1/7, and a = 2/7, the

conditional Lyapunov exponents for the SRSs are given by

CL(xly)

CL(y, zlx)

= (-1.0),

= (-.5,-.5) 
(3.11)

In figure 3-5, we show the complete SRS tree for the double scroll system. Note

that there are two ways to regenerate the full-dimensional dynamics of this system.
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X

(yzlx)
1hm

(xly)

home

Y

(xly)

(y,zlx)

Ihomehome

Figure 3-5: SRS Tree for the Double Scroll System.

Drive Satisfy
x y z Def. 3.1?
1 0 0 Yes
1 0 0 Yes
1 0 0 Yes
0 1 1 No
0 1 0 Yes
0 0 1 Yes

Decomposition of the

Stable?
Yes
No
No
No
Yes
No

Rbssler System.

Because the two home paths represent a re-ordering of the SRSs, our optimality

criteria will not distinguish between them.

The Rdssler system, given by

= -y-z

! = x+ay (3.12)

z = b+z(x-c)

provides an example of a chaotic system for which the full-dimensional dynamics can

not be regenerated by a cascade of single-input SRSs. The drive decomposition table

for this system is given in table 3.3. For the parameter values that we have chosen,

a = .2, b = .2, and c = 11, the conditional Lyapunov exponents for the SRSs are given
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Response
B(xj)
(0
(0
(0
(1
(1
(1

Table 3.3:

1)
1 0)
11)
o 0)

1)
1 0)
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x y z

(zlx) (x,zly)
I I

(zlx)
I-'-

Figure 3-6: SRS Tree for the Rbssler System.

by

CL(zlx) = (-10.9) (3.13)

CL(x, zly) = (-.04,-10.9)

In figure 3-6, we show the complete SRS tree for the Rbssler system. The (x, zly)

response subsystem allows x(t) and z(t) to be regenerated with y(t) as the drive

signal. The (zlx) response subsystem allows z(t) to be regenerated with x(t) as the

drive signal. This figure suggests, however, that it is not possible to regenerate the

full-dimensional dynamics of the Rbssler system with this approach.

It should be emphasized that drive decomposition tables and SRS trees are par-

ticularly useful for examining the self-synchronizing properties of higher dimensional

systems. The relatively low-order systems discussed in this section were chosen to

illustrate the approach, rather than to suggest limitations. Two potential drawbacks

of this approach are:

* it requires considerable computation to determine the conditional Lyapunov

exponents of each response subsystem; and

* the approach does not provide much insight for understanding the self-synchronization

property. It also does not suggest a systematic procedure for synthesizing new

chaotic systems which possess the self-synchronization property.

In Section 3.3, we analyze self-synchronization from the viewpoint of nonlinear
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stability theory. A major advantage of this approach is that it provides a clear math-

ematical framework for analyzing and synthesizing a large class of self-synchronizing

chaotic systems.

3.3 Equivalence Between Self-Synchronization and

Asymptotic Stability

The main theme of this section is the relationship between self-synchronization and

asymptotic stability. We will focus our attention on chaotic systems which possess

the complete self-synchronization property, i.e., systems for which it is possible to

regenerate all of the transmitter signals. For simplicity, we also assume that the

transmitter and receiver systems have the same state space dimension, as was the

case for the combined representation of the Lorenz receiver (Section 3.1). In Chapters

6-8, we develop synthesis techniques for this class of systems and in Chapter 9 we

discuss some applied aspects.

Below, we give a mathematical definition of self-synchronization which is useful

in our subsequent analysis.

Definition 3.2 Two dynamical systems, a transmitter x = f(x) and a receiver

Xr = f(x, xr), where x and x E RN, and f: RN - RN, are said to possess the

self-synchronization property if there exists a domain Q in RN such that if x(O) and

xr(0) E Q, then IIx(t) - xr(t)ll - 0 as t -+ oo. The self-synchronization is termed

global if spans RN.

Definition 3.2 in effect states that the concept of self-synchronization is equivalent

to the concept of asymptotically stable error dynamics between the transmitter and

receiver systems. If we define the synchronization errors by e(t) = x(t) - xr(t), then

Definition 3.2 implies that lle(t) - 0 as t -÷ o. This is equivalent to our definition

of asymptotically stable error dynamics.

In Section 2.2, we showed that Lyapunov's direct method is useful for examining
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the asymptotic stability of general nonlinear systems. When the error system is linear,

we can restrict our attention to quadratic Lyapunov functions of the form

E = leTRe
2

where e denotes any vector in the error system's state space, and where R is a

symmetric N x N positive definite matrix. Geometrically, E represents an ellipsoid

in the error system's state space with the center of the ellipsoid located at the origin.

If E is negative definite, then Lyapunov's theorem (Theorem 10.2 in [15]) ensures

that the origin is globally asymptotically stable. Thus, the transmitter and receiver

systems will synchronize regardless of the initial conditions.

To show that self-synchronization in the Lorenz system is a result of stable error

dynamics, we first define the error signals as

e (t) = (t) - X(t)

ey(t) = y(t) -yr(t)

e2(t) = z(t) - (t)

Assuming that the Lorenz transmitter and receiver parameters are identical, a set of

equations which govern their error dynamics is given by

e = o(ey - ex)

= -ey - x(t)e, (3.14)

e = x(t)ey - bez

Using a more concise notation, these error equations can be written as a linear time-

dependent system of the form

e = A(t)e

where e = (ex, ey, es). A sufficient condition for the error equations to be globally
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asymptotically stable at the origin can be determined by considering a Lyapunov

function of the form

E(e) = 2 (-e + + ez

Note that E(e) is positive definite provided that a > 0. The time rate of change of

E(e) along trajectories is given by

1
E(e) = -ed.& + eye + ezez

= - e e be

Provided that b > 0, E(e) is negative definite. Since u and b in the Lorenz equations

are both assumed to be positive, E is positive definite and E is negative definite.

It then follows from Lyapunov's theorem that e(t) - 0 as t -+ o. Therefore,

synchronization occurs as t - oc regardless of the initial conditions imposed on the

transmitter and receiver systems.

Note also that the Lorenz transmitter and receiver systems do not have to operate

chaotically for synchronization to occur. By appropriately choosing the parameters

a, r, and b, the motion can, in principle, be confined to limit cycles and yet synchro-

nization between the transmitter and receiver will still occur. This shows that the

self-synchronization property exhibited by certain chaotic systems does not depend

on chaotic behavior; rather it should be viewed as a result of stable error dynamics

between the transmitter and receiver systems.

A drawback of the Lyapunov approach for analysis problems is that it is usually

difficult to define an appropriate Lyapunov function for examining the stability of

general nonlinear systems. For synthesis problems, however, we can assume that a

suitable Lyapunov function exists, and determine the constraints that this assumption

places on the system's algebraic structure. In Chapters 6-8, we use this approach

to propose several systematic procedures for synthesizing self-synchronizing chaotic

systems.
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2r

Figure 3-7: Block Diagram of the Lorenz Synchronizing Receiver.

Another issue concerns the sensitivity of the synchronization when a perturbation

signal p(t) is added to the synchronizing drive signal x(t). Clearly, this an important

practical issue for realistic systems that utilize chaotic synchronization. As a step to-

ward further addressing this issue, Chapter 4 establishes an analogy between synchro-

nization in chaotic systems and nonlinear state estimation in probabilistic systems.

This analogy is possible because synchronized chaotic systems can be viewed as per-

forming the role of a nonlinear observer. For example, consider figure 3-7 which shows

a block diagram representation of the Lorenz receiver equations (3.6). The Lorenz

receiver can be viewed as an open-loop nonlinear observer. It would seem that this

system would not make a highly robust observer because of the open-loop structure.

Chapter 4 addresses this issue by comparing the performance of the Lorenz receiver

to two well-known extended Kalman filter algorithms when white noise is added to

the transmitter's drive signal.
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Chapter 4

Self-Synchronization and

Nonlinear State Estimation

In Chapter 3, we showed that synchronization in the Lorenz system is a result of sta-

ble error dynamics between the transmitter and receiver systems. In effect the Lorenz

receiver is a type of nonlinear state estimator. This interpretation suggests an anal-

ogy between self-synchronization in chaotic systems and nonlinear state estimation

in probabilistic systems using extended Kalman filters (EKFs). The performance of

EKFs in state estimation problems is well-documented, whereas studies of the sensi-

tivity of synchronization in chaotic systems has only recently been explored [33, 34].

In this chapter, we numerically examine the sensitivity of synchronization in the

Lorenz system when a white noise perturbation signal p(t) is added to the synchro-

nizing drive signal x(t). In this case, the Lorenz receiver equations are given by

Xr = (Yr -Xr)

1r = rs(t) - yr- (t)Zr (4.1)

Zr = S(t)Yr - bzr

The received drive signal s(t) is given by

s(t) = (t) + p(t)
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With s(t) equal to the transmitter signal x(t), the receiver state variables xr, Yr, and Zr

will asymptotically synchronize to the transmitter variables x, y, and z. The receiver

variables, however, will not exactly synchronize to the transmitter variables when

p(t) is non-zero. To calibrate the performance of the Lorenz receiver as a nonlinear

state estimator, we will compare its performance to the well-known continuous and

linearized EKF algorithms.

In Section 4.1, we discuss the implementation of the EKFs for the Lorenz system.

In Section 4.2, we present the numerical experiments and performance comparisons.

4.1 State Estimation of the Lorenz System

Probabilistic state estimates of the Lorenz system can be obtained by expressing the

Lorenz system dynamics and received signal as a dynamical system of the form

x(t) = f(x(t)) + w(t) (4.2)

s(t) = Hx(t) + p(t)

The vector x denotes the Lorenz state variables, i.e., x = (x,y,z). The process

noise w(t) and measurement noise p(t) are assumed to be zero-mean, white, and

uncorrelated. We denote by Q(t) and 2 the spectral densities of w(t) and p(t),

respectively. Because the received signal is given by s(t) = x(t)+p(t), the observation

matrix H is equivalent to the row vector (1, 0, 0).

In Section 4.1.1, we discuss the continuous EKF algorithm for obtaining state

estimates of the Lorenz system. In Section 4.1.2, we discuss an alternative state

estimation approach, the linearized EKF algorithm. In Section 4.1.3, we determine

an appropriate spectral density Q(t) for use in the EKF algorithms.
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4.1.1 Continuous EKF

The continuous EKF state estimation equation corresponding to the dynamical sys-

tem model represented by (4.2) is given by

i(t) = f(R(t))+ K(t)[s(t)- Hf(t)] (4.3)

The Kalman gain K(t) is determined by linearizing (4.2) about the current state

estimate, i.e., by expressing x(t) as

x(t) = x(t) + x(t)

The linearized system, which is valid for small Jx(t), is given by

5S(t) = Df(k(t))6x(t) + w(t) (44)

v(t) = s(t) - Hi(t) = H6x(t) + p(t)

The time-dependent matrix Df(k(t)) corresponds to the Jacobian matrix of the

Lorenz system evaluated at the current state estimate. Since equation (4.4) repre-

sents a linear time-dependent system, the Kalman filter error covariance matrix P(t)

and Kalman gain K(t) are governed by the matrix Riccati equation given below.

P(t) = Df(k(t))P(t) + P(t)DfT (R(t)) + Q(t)

-i P(t)HT HP(t) (4.5)

K(t) = P(t)HT

Equations (4.3) and (4.5) determine the continuous EKF state estimates for the

Lorenz system. In figure 4-1, we show a block diagram of the continuous EKF. In

comparison with the block diagram of the Lorenz receiver (figure 3-7), we see that

the EKF has a closed-loop structure whereas the Lorenz receiver has an open-loop

structure.

Although the state estimation equation (4.3) captures the exact nonlinear dynam-

ics of the Lorenz system, the state estimates will diverge if K(t) becomes small. This
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p(t) (noise)

Figure 4-1: Block Diagram of the Continuous EKF for the Lorenz System.

follows from the fact that chaotic systems are sensitive to initial conditions and any

error in the current state estimate will increase exponentially fast if K(t) is small. To

avoid the filter divergence, the spectral density Q(t) must be appropriately adjusted.

This issue is discussed further in Section 4.1.3. We next discuss the linearized EKF

algorithm for obtaining state estimates of the Lorenz system.

4.1.2 Linearized EKF

The linearized EKF algorithm is based on the assumption that the actual system

state is given by

x(t) = x(t) + x(t), (4.6)

where the nominal trajectory x(t) is assumed to be known. The quality of the lin-

earized EKF's state estimates depends on having an accurate nominal trajectory. In

many applications, however, an accurate nominal trajectory may not be available.
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Figure 4-2: Block Diagram of the Linearized EKF.

For the Lorenz system, our approach for obtaining the nominal trajectory "on-line"

is to use the state estimates from the Lorenz receiver. This approach is illustrated in

figure 4-2.

The dynamics governing 5x(t) are determined by substituting equation (4.6) into

(4.2) and expanding f(x(t)) in a Taylor series through linear terms. The resulting

linearized system is given by

5k(t) = Df(R(t))6x(t) + w(t) (47)

v(t) = s(t) - H(t) = H6x(t) +p(t)

The Kalman filter for estimating x(t) is given by

6x(t) = Df(x(t))5(t) + K(t)[v(t) - HS6(t)] (4.8)

The error covariance matrix P(t) and Kalman gain K(t) are governed by the matrix

Riccati equation given below.

P(t) = Df(x(t))P(t) + P(t)DfT (x(t)) + Q(t)

- P(t)HT HP(t) (4.9)

(t) = P(t)H T
UP
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A useful feature of the Riccati equation is that the Jacobian matrix Df((t))

depends on the nominal trajectory rather than the current state estimate, as was the

case for the continuous EKF. Since the nominal trajectory is assumed to be known a

priori, the Kalman gain and error covariance matrix can be computed "off-line."

4.1.3 Process Noise

Determining an appropriate spectral density Q(t) of the process noise w(t) is an

important issue. One might conclude that Q(t) should be very small due to our

complete knowledge of the system model that we wish to simulate. However, rapid

filter divergence occurs in this case. The local instability of chaotic systems creates

"new" uncertainties about the eventual evolution of the system state which must

be accounted for by appropriately adjusting Q(t). If Q(t) is too small, then the

Kalman filter rejects the received data and favors the model, thus leading to rapid

filter divergence.

One approach to identifying a good first estimate of Q(t) for the Lorenz sys-

tem is by observing that Q(t) and Lyapunov exponents have the same units (s-x).

Intuitively, positive Lyapunov exponents affect the evolution of future states in a de-

terministic system in much the same way that Q(t) affects the uncertainty of future

states in a probabilistic system. It seems plausible that Q(t) could be, in some sense,

related to Lyapunov exponents. A simple argument to support this intuition is given

below.

Over short time intervals the exponential divergence of nearby trajectories in a

chaotic system is dominated by the largest positive Lyapunov exponent Ama. If 6x(O)

represents a small perturbation from x(t) at t = 0, then the trajectories diverge at a

rate given by

16x(t)lI Jcx(t) = eAmazt 1 + Amaxt . (4.10)

This divergence creates uncertainty in the current state of the chaotic system. Now

consider the situation of a first-order integrator driven by white noise. The dynamical
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system is represented by

x:(t) = w(t) , (4.11)

where w(t) has a constant spectral density equal to Q. The Lyapunov equation

governing the uncertainty in the current state of (4.11) is given by

P(t) = Q (4.12)

Equation (4.12) has the solution P(t) = P(O) + Qt. For P(O) = 1 and Q = Amax, the

evolution of uncertainty in the first-order integrator is equivalent to the evolution of

uncertainty in the chaotic system. This argument suggests a connection between Q

and the largest positive Lyapunov exponent.

The largest Lyapunov exponent for the Lorenz system, with parameter values

a = 16,r = 45.6, and b = 4, is approximately 1.5. Using Q(t) = 1.5Ic, where I is

the 3 x 3 identity matrix and c is a positive scalar, extensive simulations of both the

continuous and linearized EKFs were run. We determined that a small range for c

exists which produces acceptable performance for both EKFs. We selected a value

near the middle of this range, specifically c = 2.

In the next section, a set of experiments is conducted to evaluate the performance

of the Lorenz receiver and EKFs when the perturbation p(t) is Gaussian white noise.

4.2 Performance Comparisons

In this set of experiments, we denote by a2,a 2, 2, and cr the average power in

x(t), y(t), z(t), and p(t), respectively. The input chaos-to-perturbation ratio (CPR)

reflects the perturbation in the drive signal and is given by

Input CPR = 101og 0lo [C]
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The output chaos-to-error ratio (CER) associated with x(t) reflects the error between

x(t) and xr(t) and is defined as

Output CERx = 101ogo10 [ · ]
UexJ

The output CER for the state variables y(t) and z(t) are similarly defined as

Output CER = 1010glo [Ur2]

Output CER = 101Oglo0 [Outpt CEZ =20o 10 Ec~
In figure 4-3, we illustrate the numerical experiment used to evaluate the output

CER of the Lorenz receiver and EKFs as a function of the input CPR. Each state

estimator receives the identical input sample values, i.e., the received signal s(t) is

simultaneously observed by the Lorenz receiver and EKFs. An initial rest condition is

imposed on the Lorenz receiver while the EKFs are initialized using the true state of

the transmitter at t = 0. State estimates were computed for several seconds and the

first few seconds of output data were discarded to eliminate start-up transients. The

output CER was then computed for the state estimates from the remaining output

data.

In figure 4-4, we compare the performance of the Lorenz receiver (solid curves) and

the continuous EKF (dashed curves). The performance of these two state estimators

is similar over a wide range of input CPRs. Near -10 dB input CPR, the Lorenz

receiver exhibits a sharp threshold effect. However, above this threshold, the Lorenz

receiver achieves an output CER which is approximately 10 dB greater than the input

CPR. We should emphasize that the performance of the Lorenz receiver is insensitive

to initial conditions. The EKF, on the other hand, requires accurate initial conditions

or the state estimates may rapidly diverge. The EKF also has a disadvantage at high

input CPRs. Because the EKF algorithm inverts the noise density a, a lower bound

was placed on or in order to avoid numerical problems at high input CPRs. This

limits the quality of the EKF state estimates at high input CPRs.
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Figure 4-3: Numerical Experiment to Evaluate the Output CER vs. Input CPR.

In figure 4-5, we show the performance curves for the Lorenz receiver and linearized

EKF. Although the performance of these two state estimators is very similar, the

linearized EKF has an important advantage over the continuous EKF. The linearized

EKF can be initialized with a wide range of initial conditions and not diverge, which

was not the case for the continuous EKF. The linearized EKF's insensitivity to initial

conditions is due to the ability of the Lorenz receiver to provide meaningful state

estimates even at low input CPRs. These state estimates provide an accurate nominal

trajectory for the linearized EKF.

In an informal experiment, we numerically evaluated the sensitivity of the Lorenz

receiver and continuous EKF to parameter modeling errors at the receiver. The trans-

mitter parameters were fixed at their nominal values while each receiver parameter

was treated as a uniformly distributed random variable. The mean value of the re-

ceiver parameters equaled the value of the corresponding transmitter parameter. The

variance of the receiver parameters reflected the percent modeling error being tested,

where modeling error was defined as the ratio of the standard deviation to the mean
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Figure 4-4: Performance Comparison: Lorenz Receiver vs. Continuous EKF.
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Figure 4-5: Performance Comparison: Lorenz Receiver vs. Linearized EKF.
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Figure 4-6: Sensitivity to Modeling Errors: Lorenz Receiver and Continuous EKF.

value of the receiver parameters. A wide range of modeling errors was tested, with the

input CPR fixed at 10 dB throughout the experiment. In figure 4-6, we summarize

the results of the experiment. The performance curves were averaged over several

independent trials. The slopes of these curves indicate that the sensitivity of the

Lorenz receiver and EKF are comparable over the range of modeling errors tested.

In summary, the performance of the Lorenz receiver for obtaining state estimates of

the Lorenz system is comparable to the corresponding continuous and linearized EKF

algorithms when white noise is added to the drive signal. Two notable characteristics

of the output CER vs. input CPR curves for the Lorenz receiver are:

* a threshold effect is evident at a critical value of input CPR; and

* above the threshold, the normalized error in synchronization of each state vari-

able is significantly smaller than the perturbation.

In Chapter 5, these characteristics are explored in greater detail.
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Chapter 5

Robustness and Signal Recovery

in a Synchronized Chaotic System

In Chapter 4, we showed that the Lorenz receiver produces robust state estimates

when the drive signal is perturbed by additive white noise. The normalized error in

synchronization of each state variable is approximately 10 dB less than the normalized

error in the drive signal, provided that the input CPR is larger than some critical

value. These observations pose the question of whether the synchronization is also

robust to speech or other narrowband perturbations. This chapter is motivated by

the desire to answer this question as well as the related questions listed below.

- Why does the Lorenz receiver exhibit a threshold effect at low input CPRs?

- Are the synchronization errors correlated, and if so, is it a linear or nonlinear
dependency?

- Does the sensitivity of the synchronization depend on the spectral characteristics
of the perturbation signal? If so, can it be explained?

- Suppose that the received signal consists of the sum of a low-level speech signal,
or other narrowband message, and the synchronizing drive signal. Can the
message be accurately recovered by subtracting the regenerated drive signal at
the receiver from the received signal? Why or why not?

When a message or other perturbation is added to the chaotic drive signal, the

receiver does not regenerate a perfect replica of the drive; there is always some syn-
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chronization error. By subtracting the regenerated drive signal from the received sig-

nal, successful message recovery would result if the synchronization error was small

relative to the perturbation itself. One of the main results presented in this chap-

ter is that for the Lorenz system, the synchronization error is not small compared

to a narrowband perturbation; nevertheless, the message can be recovered because

the synchronization error turns out to be nearly coherent with the message. We will

present experimental evidence for this effect, along with an explanation in terms of

an approximate analytical model.

In Section 5.1, we present the results of several experiments which demonstrate the

robustness of synchronization to white noise perturbations and the ability to recover

speech perturbations. In Section 5.2, we use stochastic calculus to determine the

first and second moments of the synchronization error signals when the perturbation

is white noise. A dynamical system interpretation of the second moment equation

explains the threshold effect observed at low input CPRs. This equation also provides

an analytical means for quantifying the correlation between the error signals. In

Section 5.3, we develop an approximate analytical model that quantifies and explains

the sensitivity of the synchronization in terms of the spectral characteristics of the

perturbation. We also explain why speech and other narrowband perturbations can

be recovered faithfully, even though the synchronization error is comparable in power

to the message itself. In Section 5.4, we summarize the primary contributions of this

chapter.

5.1 Experiments to Demonstrate Robustness and

Signal Recovery

In this section, we conduct a series of experiments to demonstrate the robustness

of synchronization to white noise perturbations and the ability to recover speech

perturbations. These experiments focus on the synchronizing properties of the Lorenz
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transmitter equations,

x = u(y-x) (5.1)

= rx-y-xz (5.1)

z = xy-bz

and the corresponding receiver equations,

r = o((Yr X-r)

yr = rs(t) Yr- s(t)Zr (5.2)

Zr = S(t)Yr - bzr

Previously, we showed that with s(t) equal to the transmitter signal x(t), the signals

xr, yr, and Zr will asymptotically synchronize to x, y, and z, respectively.

In our notation for the transmitter and receiver equations, we have established

the convention that , , and denote dx/dT,dy/dr, and dz/dr respectively where

r = t/T is normalized time and T is a time scale factor. This convention provides the

flexibility for adjusting the time scale of the signals. It is also convenient to define

the normalized frequency w = QT, where Q denotes the angular frequency in units

of rad/s. The parameter values used in our experiments are = 16, r = 45.6, and

b = 4. For the experiments which use a speech segment as the perturbation signal,

the value of T is 400 usec, otherwise T = sec.

The use of the Lorenz system for practical applications requires that the receiver

approximately synchronizes when a perturbation p(t) is added to x(t), i.e., when s(t)

is given by

s(t) = x(t) + p(t)

In Section 5.1.1, we experimentally examine the error between the state variables

x, y, and z in the transmitter, and the state variables r, Yr, and Zr in the receiver

when p(t) is white noise. The corresponding errors will be denoted as e, ey, and ez
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respectively, i.e.,

e)= x(t) = - r(t)

ey(t) = y(t) -yr(t)

e(t) = z(t) - Zr(t)

By subtracting the regenerated drive signal x,(t) from the received signal s(t), the

recovered message is

i(t) = s(t) - x(t) = p(t) + [x(t) - x (t)]

In this context, e(t) corresponds directly to the error in the recovered message. In

Section 5.1.2, we experimentally examine this error when p(t) is a speech signal.

5.1.1 Sensitivity of Synchronization to Additive White Noise

In figure 5-1, we plot the output chaos-to-error ratio (CER) for each state variable

as the input chaos-to-perturbation ratio (CPR) is varied over a wide range. Two

relevant characteristics of the output CER curves are: (i) a threshold effect is evident

at low input CPRs, and (ii) above the threshold the normalized synchronization error

of each of the state variables is approximately 10 dB less than the normalized error

in the drive signal x(t). We analytically determine an exact moment equation which

closely predicts both of these characteristics later in Section 5.2.

In figure 5-2, we plot the message and error spectra for each of the three state

variables vs. normalized frequency w. Note that at relatively low frequencies, the

error in reconstructing x(t) slightly exceeds the perturbation of the drive but that for

normalized frequencies above 20 the situation quickly reverses. The analytical model

developed in Section 5.3 closely predicts and explains this behavior. These figures

suggest that the sensitivity of synchronization depends on the spectral characteristics

of the perturbation signal. For signals which are bandlimited to the frequency range

0 < w < 10, we would expect that the synchronization errors will be larger than
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and CERz vs. Input CPR for the Lorenz Syn-

the perturbation itself. This turns out to be the case, although the

shows there are additional interesting characteristics as well.

5.1.2 Sensitivity of Synchronization to Additive Speech

In this experiment, p(t) is a low-level speech signal (the message to be transmitted

and recovered). The normalizing time parameter is 400 psec and the speech signal

is bandlimited to 4 kHz or, equivalently, to a normalized frequency wo of 10. Figure

5-3 shows the power spectrum of a representative speech signal and the chaotic signal

x(t). The overall CPR in this experiment is approximately 20 dB.

To recover the message, we subtract the regenerated drive signal at the receiver

73

next experiment

_ L I C I



3
-

3 3

(a) Normalized Frequency (0o) (b) Normalized Frequency (0))

3a
LIV

(c) Normalized Frequency (to)

Figure 5-2: True Power Spectra of the Error Signals: (a) E(w). (b) Ey(w). (c)
E (w) .

from the received signal. In this case, the recovered message is

P(t) = p(t) + e(t)

It would be expected that successful message recovery would result if e (t) was small

relative to the perturbation signal. For the Lorenz system, however, we will show

that although the synchronization error is not small compared to the perturbation,

the message can be recovered because e (t) is nearly coherent with the message.

Experimental evidence for this effect is presented below and an explanation in terms
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Figure 5-3: Power Spectra of x(t) and p(t) when the Perturbation is a Speech Signal.

of an approximate analytical model is presented in Section 5.3.

In figure 5-4, we show the spectrum of P(t) for this same example. Notice that P(t)

includes considerable energy beyond the bandwidth of the speech. Furthermore, P(t)

resembles a scaled version of the message at low frequencies. Later, we show that these

observations are consistent with the synchronization error e:(t) being nearly coherent

with the message at low frequencies and noise-like at high frequencies. Consequently,

the speech recovery can be improved by lowpass filtering fi(t). We denote the lowpass

filtered version of p(t) by Pf/(t). In figure 5-5(a)-(c), we show p(t),s(t), and Pf(t)

respectively. With this lowpass filtering, the message-to-error ratio is approximately

10 dB.

5.2 Determining the Synchronization Error Mo-

ment Equations

In this section, we analytically determine the first and second moments of the syn-

chronization error signals when the perturbation is white noise to help explain the

threshold effect observed at low input CPRs. We start with an approximate approach

(Section 5.2.1) and then use stochastic calculus to obtain an exact result (Section

5.2.2).
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Figure 5-4: Power Spectra of p(t) and p(t) when the Perturbation is a Speech Signal.

5.2.1 Approximate Approach

By subtracting the receiver equations (5.2) from the transmitter equations (5.1), the

following set of error equations is obtained.

-a0 a 0 0

e = 0 -1 -s(t) e + z(t) - r p(t) (5.3)

0 s(t) -b -y(t)

These error equations represent a linear time-dependent system of the form

e = A(s(t))e + b(t)p(t) (5.4)

If we assume that the perturbation p(t) is small, then we can approximate (5.4) by a

linear time-dependent system of the form

e = A(x(t))e + b(t)p(t) (5.5)

By using augmented state models, it is possible to analyze the statistical properties

of (5.5) when p(t) is temporally correlated. We will assume, however, that p(t) is

a zero-mean white noise process with covariance function Kp(t, T) = Ucr(t- r) to

simplify the presentation of our error analysis approach.
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Figure 5-5: (a) Original Speech. (b) Received Signal. (c) Recovered Speech.
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From (5.5), the first moment of e(t) is governed by a differential equation of the

form

le(t) = A(x(t))r7 e(t) (5.6)

Previously, we showed that equations of this form are asymptotically stable at the

origin (see equation (3.14)). Thus, r7(t) -+ 0 as t - oo. This shows that the Lorenz

receiver produces unbiased state estimates of x, y, and z when p(t) is a small zero-

mean white noise process. We show later that this result holds even when p(t) is not

small.

The error covariance matrix Pe(t) corresponding to (5.5) is governed by the matrix

Lyapunov equation

Pe(t) = A(x(t))Pe(t) + Pe(t)AT (x(t)) + oab(t)bT (t) . (5.7)

This equation shows that Pe(t) depends linearly on the noise intensity a4. For small

op2 (large input CPRs), the numerical estimates of output CER vs. input CPR,

shown in figure 5-1, are consistent with this observation. However, due to the linear

dependence on a, equation (5.7) does not predict the threshold effect observed at low

input CPRs. In the threshold region, oa is relatively large and equation (5.7) is no

longer a valid approximation of the true error covariance matrix. In the next section,

we use stochastic calculus to determine exact moment equations which overcome this

limitation.
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5.2.2 Exact Approach via Stochastic Calculus

The exact error equations (5.3) can be represented by a bilinear system having a

four-dimensional state space. Specifically, we define the augmented vector ( by

e1

ey

ez

L1 -

and determine the dynamics of ( below.

-o a 0

o -1 -x(t) 0o
0 x(t) -b o

0 0 0 0

+

00 0 0

0 0 -1 z(t)-r

0 1 0 -y(t)

0 0 0 0

p(t) ( (5.8)

Equation (5.8) has the form = {A0 (t) + Al(t)p(t)}(, i.e., it represents a bilinear

system which is driven by the stochastic process p(t). Methods based on the theory of

stochastic differential equations and Lie algebras have been developed for the analysis

of this class of systems [36, 37, 38]. As shown below, we can utilize these theories to

determine the first and second moments of e(t). We will also assess the stochastic

stability of these moments.

The Ito differential equation corresponding to (5.8) is given by

d = {Ao(t)dt + Aj(t)apdw(t)} , (5.9)

where the stochastic process w(t) is the integral of white noise, i.e., w(t) is a Brow-

nian motion or Wiener process. Ito equations are particularly useful for computing

expectations. They are awkward, however, for performing differential computations

because the rules of Ito calculus do not conform to the rules of ordinary calculus.

On the other hand, Stratonovich equations obey the rules of ordinary calculus but
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expectations are more difficult to calculate. A common approach is to convert the Ito

equation to Stratonovich form, perform the necessary differential calculations, and

convert back to Ito form.

The Stratonovich equation corresponding to (5.9) is given by

dsC = {[Ao(t)- 2 (t)]dt + A(t)apdw(t))(
2 1 + 1 tudwt}

(5.10)

Following Willsky and Marcus [38], the "nth-power" of (5.10) is given by

= {[A'n3(t)- 2 A(t)[n]]dt + [n(t)pd,w(t)C [~n] , (5.11)

where the vector [n] consists of the elements

n-ni 
.. o

n2722)(
n - n 1 -... -ni- ) enj en2 en31 n4)eY 

ordered lexicographically. Converting (5.11) back to Ito form, we obtain

{[An](t) - -(A2(t)[[n] -A [] (t)2]dt + A[n] (t)pdw(t)}[n] (5.12)

The moment equations for ([n] are obtained by taking expected values of (5.12). The

result of this calculation is given by

dt []} = { [n] (t) - (A2 (t) []

For n = 1, equation (5.13) reduces to

d

dt
= Ao(t)E{((t)} (5.14)

We now utilize the following definition to assess the stochastic stability of (5.14).

Definition 5.1 (Willsky and Marcus [38]) A vector random process, , is nth-order
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asymptotically stable if

lim E{([n](t)} = 0
t-+oo

Applying this definition to equation (5.14) we see that the Lorenz error dynamics

are first-order asymptotically stable, i.e., E{e(t)} -+ 0 as t - oc. Equivalently, the

Lorenz receiver produces state estimates with the following property.

Theorem 5.1 The Lorenz receiver produces unbiased state estimates when zero-mean

white noise of arbitrary intensity is added to the drive signal x(t).

While Theorem 5.1 is an important property from certain state estimation perspec-

tives, it does not explain the threshold effect observed at low input CPRs. To further

investigate this effect, we will determine the second moment of ~.

Evaluating the moment equation (5.13) for n = 2 we obtain

-2

0

0

0

0

0

+ 

a 2a

-1-a -

x(t) -I

0

0

0

0

0

0

(z(t) - r)

-y(t)(z(t) - r)

y(t)2

0

x(t)

0

0

0

0
o

x(t)

Cp

0

0

0(

-2x(t)

-b-1 -ap 2

2x(t)

0

0

0

ap

-x(t)

-2b

E

2
e e

exey

exez

2
ey

eye2

2
ez

This six-dimensional system can be represented by a cascade of two three-dimensional

subsystems as illustrated in figure 5-6. The dynamical equations defining these sub-

systems are given below.
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Figure 5-6: Cascade System Representation of the Second Moment Equations.

Subsystem 1:

ey -2
eye, = x(t)

e J

Subsystem 2:

2{ex
exey

exez

-2

0

0

-2x(t)

-b - O1-p2

2x(t)

2a

-1 -

x(t)

p

-x(t)
-2b

0

-x(t)

-b- 

(z(t) - r)2

-y(t)(z(t)- r)

y(t)2

ez +

- Le2

2
x

E exey + oE

exez

0

2

eye
eye,

I
It is important to recognize that subsystem 2 does not depend on 2, and its

stability can be assessed by considering the positive definite function1 ,

1 ( 1 -2 + ee 2 + ez2)E2 - e2 + ~-eey/+

Evaluating the time rate of change of E 2 , we obtain

/2 = _(-- + a) eey2 (b + o)- 2

Because E2 is positive definite and E 2 is negative definite, it follows from Lyapunov's

theorem that subsystem 2 is globally asymptotically stable. For any bounded input,

subsystem 2 produces bounded outputs.

Subsystem 1 clearly depends on ao and is stable for o72 less than some critical value.

'In our subsequent notation, the overbars will denote statistical averages.
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This critical value can be determined by considering the positive definite function,

El1 (e + 2e_.ez + e z)E1 = -22 2Y2)

Evaluating the time rate of change of E1 , we obtain

E - -2 ( -e)-2 (b + a) ;e2 2 b - '4 ) e2

Observe that E1 is negative definite if the following condition is satisfied.

b-a4 > 0
4

This condition shows that subsystem 1 is stable for values of that satisfy the

inequality

< 2V' = y. (5.15)

Equation (5.15) identifies a threshold -y for which subsystem 1 is stable; thus, the

second moment equations produce bounded outputs. For values of au2 which exceed

this threshold, subsystem 1 will loose stability and cause the second moment equations

to be unstable.

Before confirming this analysis by numerical experiment, it is useful to write the

second moment equations in the form

Pe(t) = A(x(t))Pe(t) + Pe(t)AT(x(t)) + ob(t)bT(t) + SPe(t)ST , (5.16)

where S is a constant skew-symmetric matrix given by

0 0 0

S= 0 0 1

0 -1 0
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Equation (5.16) is a type of Lyapunov equation that is similar to the approximate

version given by equation (5.7). The only difference is that (5.16) contains the higher

order term SPe(t)ST . This term destabilizes (5.16) at low input CPRs. The results

of our second moment analysis are summarized below.

Theorem 5.2 The exact synchronization error covariance matrix Pe(t) of the Lorenz

receiver is governed by the matrix Lyapunov equation

Pe(t) = A(x(t))Pe(t) + Pe(t)AT(x(t)) + a b(t)bT (t) + USPe(t)ST

when zero-mean white noise of intensity o is added to the drive signal x(t). Moreover,

Pe (t) is bounded for o- < 2 .

In figure 5-1, we showed a plot of output CER for each state variable as the input

CPR is varied over a wide range. In figure 5-7 we reproduce these curves (dashed

lines) together with a plot of the output CER as predicted by the Lyapunov equation

(5.16) (solid curves). The analytical predictions are in excellent agreement with the

numerical results.

In figure 5-8(a), we show a plot of the synchronization error variances (diagonal

elements of Pe(t)) vs. 2. For small , the error variances depend linearly on

a; as expected. For ur > 4 (2V/b = 4), the error variances become unbounded.

This critical value of instability is in excellent agreement with the value predicted by

equation (5.15). This analysis confirms that the threshold effect is due to an inherent

instability of the second moment equation at low input CPRs.

In figure 5-8(b), we show a plot of the synchronization error correlation coefficients

vs. c2. The correlation coefficient pxy reflects the correlation between e: and ey and

is defined by

c(exey
Pxy - X

alex Oey

where c7exey denotes the covariance of ex and ey. An analogous definition is used for pzz

and pyz. The coefficient pTy suggests a strong linear dependence between ex and ey.
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Figure 5-7: Prediction of the Output CER From the Second Moment Equation.

This dependence is consistent with the exact error equations (5.3) which indicate that

et is the result of processing ey with a lowpass filter having a cutoff frequency w equal

to a. The coefficients Pxz and pyz indicate that both e and ey are nearly uncorrelated

with e. This may not be obvious from the exact error equations, however, in Section

5.3 we develop an approximate error model which provides further insight into why

this is the case.

It is also of interest to determine whether the robustness of synchronization in the

Lorenz system is sensitive to the parameter values used in the implementation of the

transmitter and receiver equations. One way to measure the sensitivity is by defining

the perturbation-to-error ratio (PER) for each state variable. The PER associated
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with x(t) is defined by

PERx -= Output CERX - Input CPR 

The PER associated with y(t) and z(t) is defined analogously. An informal experiment

was run in which the Lorenz parameter r is held fixed while of and b are varied

individually, and the input CPR is fixed at 10 dB. The Lyapunov equation (5.16) was

then used to provide analytical predictions of the output CER for each state variable.

In figure 5-9(a), we show a plot of the PER for each state variable vs. . A small

improvement in PER. and PERy is obtained by decreasing a from its nominal value of

16. This is consistent with the lowpass filtering interpretation of the error equations;

reducing a narrows the passband of the lowpass filter. A small improvement in PERz

is obtained by increasing ao. In figure 5-9(b) we show a plot of the PER for each state

variable vs. b. Variations in the b parameter have little affect on the PER of each

state variable. This experiment suggests that the robustness of synchronization in

the Lorenz system is not sensitive to the parameters tested.

5.3 Development of an Approximate Synchroniza-

tion Error Model

In Section 5.1.1, we showed numerically that when the perturbation is white noise,

the normalized error in each state variable is approximately 10 dB less than the

normalized error in the drive signal. Also, the error in reconstructing the state vari-

ables slightly exceeds the perturbation of the drive signal at low frequencies, but

for normalized frequencies above 20 the situation quickly reverses. In Section 5.1.2,

we demonstrated that a low-level speech signal could be added to the drive signal

and accurately recovered at the receiver. In this section, we develop an approximate

analytical error model which is consistent with and explains these observations [34].

It is useful in our subsequent analysis to rewrite the error equations (5.3) in the

87

_ �I� 1 ��1___11�1_



12

11

10

9

8

12

11

10

9

8

10 14 18 22
(a) (

2.5 3.5 4.5 5.5
(b) b

Figure 5-9: (a) Perturbation-to-Error Ratio vs. Lorenz System Parameter (Input
CPR=10 dB). (b) Perturbation-to-Error Ratio vs. Lorenz System Parameter b (Input
CPR=10 dB).

88

PERZ PER

.7/ 7 

' /
PERY

Lorenz Parameters and r
are Fixed at Their Nominal
Values. Input CPR = 10 dB.

I . . . I

�II_ _ __ _ _



form

-a o 0 0 

= 0 -1 0 e+ -e s(t) + v(t) + -r p(t), (5.17)

0 0 -b ey -y(t)

where

v(t) = z(t)-

The constant 2 denotes the mean value of z(t). For the parameter values that we

have chosen, the value of 2 - 39.

Our approach to analyzing the error system (5.17) is to assume that:

* the perturbation p(t) is small, i.e., XI <a2;

* (t) is white noise; and

* x(t) and y(t) can be approximated by binary-valued functions with random

transition times.

The first assumption is straightforward and allows us to approximate s(t) by x(t) in

equation (5.17). The second assumption is justified by numerical experiment. While

the third assumption may seem to be a very crude approximation, it is nevertheless

a helpful heuristic. To make it more plausible, consider a sample function of x(t)

and y(t) as illustrated in figure 5-10(a) and (b) respectively. A notable characteristic

of these signals is that x(t) resembles a scaled and slightly delayed version of y(t).

This similarity is consistent with the Lorenz equations (5.1) which indicate that x(t)

is the result of pr9cessing y(t) with a lowpass filter having a cutoff frequency w

equal to a. The binary-valued functions (dashed lines) in figure 5-10(a) and (b)

emphasize the bipolar nature of these signals. The amplitude of these functions is

scaled to reflect the standard deviation while the transition times occur at the zero

crossings of the underlying waveform. The zero crossings of x(t) and y(t) appear to

be randomly distributed and nearly coincide with each other. This suggests that we
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can approximate x(t) and y(t) by

x (t) -- U., W (t)

y(t) - y W (t)

where w(t) = +1 with randomly distributed transition times. The power spectrum of

w(t) is broadband because of the random transition times and, as depicted in figure

5-10(c), reasonably approximates the power spectrum of the underlying waveforms.

Because w(t) is broadband, modulation of a narrowband signal with w(t) will signif-

icantly increase the bandwidth of the narrowband signal. On the other hand, since

w 2 (t) = 1, the original narrowband signal can be exactly recovered by modulating

with w(t) a second time.

With these assumptions, equation (5.17) becomes

a 0 0

-1 0 e+ -ez ax w(t) +

0 -b ey

01

v(t) + - r p(t)

-Uy w (t)

In the context of spread spectrum communications, we refer to

function. The resulting error model, which we refer to as the

ror model, is illustrated in figure 5-11. Hil(s), H 2(s), and H 3(s)

functions of linear time-invariant systems and are given by

1( 1
Hi(s) = s + 1 ' H 2 (s) = s + b H(s) =

(5.18)

An essential feature of this model is that it is driven by the scaled perturbation

(2 - r)p(t) and a white noise signal n(t) = v(t)p(t) having an intensity that de-

pends on p(t). We are now going to make a plausibility argument that sfb(t) con-

tains the message p(t). First, observe that the modulated signals -yw(t)p(t) and

axw(t)e(t) are also broadband because p(t) and e(t) are modulated by the broad-

band spreading function w(t). If these modulated signals were directly modulated
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Figure 5-11: Spread Spectrum Model of the Lorenz Error Dynamics.

by w(t) a second time, then it would be possible to exactly recover p(t) and e(t)

respectively. In figure 5-11, we see that ez(t) is the result of lowpass filtering the sum

-oYw(t)p(t) + aw(t)e(t) with H 2(s). It seems reasonable that the feedback signal

Sfb(t) = -w(t)ez(t) will approximate a weighted sum of p(t) and e(t). This heuris-

tic argument is consistent with numerical experiments and allows the error signals

ey(t) and e(t) to be viewed as consisting of the sum of a noise component due to

lowpass filtering n(t) and a component due to lowpass filtering the perturbation p(t).

As we show below, this interpretation of the error signals can be made more rigorous

by adding an additional constraint.

In our subsequent analysis, it is useful to view equation (5.18) as two subsystems:

e_ = a(ey - es); and (5.19)

[ 1y _ = p -1 -azw(t) ey [ n(t) + ( - r)p(t) 1 (5.20)= ~~~~~~~~+ (5.20)J_ [, oaw(t) -b ez -ow(t)p(t) 

The first subsystem (5.19) is a linear time-invariant system. The second subsystem

(5.20) is also linear but has a time-dependent coefficient w(t). Exploiting the linearity

of these subsystems, we can write the solution to (5.19) and (5.20) in terms of their

free and forced response (more precisely, their zero-input and zero-state response).

92

_��_ �_ _� �__�_



We are now going to argue that ey(t) and e:(t) are dominated by their forced response,

and that these responses are not affected by setting w(t) = 1 for all time.

Inspection of equation (5.20) shows that the forced response of ey(t) does not

depend on the sign of w(t). The same is true for e(t), because e(t) is the output

of a linear time-invariant system which is driven by ey(t). Only the free responses of

these error signals depend on the sign of w(t). The contribution of the free response

to the overall solution, however, is relatively small. This follows from the observation

that the free response of ey(t) and e(t) consists of brief transients; a new transient

is induced each time w(t) changes sign. Since the average time between sign changes

of w(t) is long compared to the decay time of the transients, the forced response

dominates the overall solution. The corresponding argument for ez (t) is more difficult.

However, our numerical experiments will clearly show that the constraint w(t) = 1

leads to an error model which is consistent with the exact error equations.

With w(t) = 1, the forced solution to (5.18) is given by

es(s) = H 3 (s)ey(s) ,

ey(s) = H1(s)P(s)+ H 2 (s)N(s) , (5.21)

es(s) = H 21 (s)P (s) + H 22 (s) N (s)

where e(s),P(s), and N(s) denote the Laplace transforms of e(t),p(t), and n(t) re-

spectively. The transfer functions Hij(s), for i, j = 1, 2, correspond to linear time-

invariant systems and are given by

HI((s) = (-r)(s+b) + u.,y

H12(s) = s+bHll~) =s 2 +(b+1)s+b+uff
s2 + (b + )s + b + 2

s2 + (b + 1)s + b + ,2 H21(s) = ( - r) - ory(s + 1)
H 22 (s) = o'X

s 2 +(b+ )s+b+a2

Equation (5.21) represents an equivalent linear time-invariant error model which is

driven by the perturbation p(t) and white noise n(t). A block diagram representation
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Figure 5-12: Equivalent Linear Time-Invariant Model of the Lorenz Error Dynamics.

of (5.21) is shown in figure 5-12. This system clearly shows that ey(t) and e(t) can

be viewed as consisting of the sum of a noise component due to lowpass filtering n(t)

and a component due to lowpass filtering the perturbation p(t).

In the experiment where a low-level speech signal was added to the drive signal

(Section 5.1.2), the recovered message was given by

P(t) = p(t) + e(t)

The error signal e(t) depends on the properties of Hll(s) and H 12(s). In figure

5-13(a) and (b), we show pole-zero plots for Hll(s) and H12 (s) respectively. These

transfer functions represent second-order lowpass filters having a cutoff frequency w

approximately equal to 13. The magnitude and phase response of these filters is

shown in figure 5-13(c) and (d), respectively. Note that H 11 (s) slightly amplifies

signal components within its passband 0 < < 13, whereas H 12 (s) attenuates signal

components in this frequency range. For messages which are bandlimited to this

frequency range, such as the speech sample illustrated in figure 5-3, the error signals

ey(t) and e(t) will resemble a slightly amplified and noise-corrupted version of the

message. Furthermore, these error signals will be nearly coherent with the message
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because both Hu (s) and H 3 (s) exhibit a small group delay in this frequency range.

Below, we compare the performance predicted by this error model with experi-

mental results for both white noise and speech perturbations.

5.3.1 Error Model Performance with Additive White Noise

In figure 5-2, we showed the power spectrum of each of the error components as

compared with the spectrum of the white noise perturbation and noted that most

of the error power is contained in the low frequencies. The error model as depicted

in figure 5-12 clearly indicates that each of the error components is the output of a
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lowpass filter. In figure 5-14, we reproduce figure 5-2 and include the power spectrum

of the error components as predicted by the model of figure 5-12. As we see, the true

results and the results predicted by the model are consistent.

5.3.2 Error Model Performance with Additive Speech

In this section, the performance predicted by the error model in figure 5-12 is com-

pared with the experimental results when the perturbation is a speech signal.

In figure 5-15, we show a block diagram representation of the message recovery

process. The recovered message P3(t) consists of two components, one corresponding
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Figure 5-15: Dynamical System Representation of the Message Recovery Process.

directly to the message p(t) and the other corresponding to the error signal e(t).

We know from the experimental results in Section 5.1.2 that P(t) represents a faithful

recovery of p(t). Clearly, if e,(t) is small relative to p(t), then p(t) - p(t). However,

the assumption that e: (t) is small is not correct because the low frequency components

in p(t) will produce a significant synchronization error. Instead, the explanation is

that e(t) is not small but is coherent with p(t). This is plausible from figure 5-

15 which indicates that e(t) consists of the sum of a noise component due to n(t)

and a component due to p(t). Because p(t) is relatively low frequency, it can pass

through H1 (s) and H 3 (s) with little phase shift whereas the noise component will be

significantly attenuated. Therefore, e (t) will resemble a scaled version of p(t) at low

frequencies and be noise-like at higher frequencies. This analysis is verified below by

numerical experiment.

In figure 5-16(a), we show a comparison of the true and estimated power spectrum

of e(t). These spectra are consistent and resemble the message spectrum in the

frequency range 0 < w < 3. In figure 5-16(b) we show a comparison of the true

and estimated power spectrum of (t). These spectra are also consistent and closely

resemble the message spectrum in the frequency range 0 < < 3. Although the

synchronization error e(t) is larger than the message p(t), the recovered message P(t)
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resembles a scaled version of p(t) because the message and error are nearly coherent

at these frequencies.

To improve the message-to-error ratio of P(t), an additional lowpass filter with a

transfer function given by

Hp(w) { 1/2 0 < w < 3 rad

0 w> 3rad

can be used to process P(t). Applying this filter to both the true and estimated P(t),

we obtain the recovered speech waveforms shown in figure 5-17. The model estimate

is in excellent agreement with the true result.

5.4 Summary

This chapter examined the questions of synchronization robustness and signal recov-

ery in the Lorenz system. In Section 5.2, the use of stochastic calculus enabled us

to determine the exact first and second moments of the synchronization error signals

when the perturbation is white noise. Stability analysis of the second moment equa-

tion explains the threshold effect observed at low input CPRs. This equation also

provides an exact analytical means for quantifying the correlation between the error

signals. Some helpful insights gained from the analysis presented in Section 5.2 are

given below.

* The Lorenz receiver exhibits a threshold effect at low input CPRs because the
second moment equation loses stability at a critical value of . Using Lyapunov
functions, the critical value was predicted as 2= 2Vb.

* The synchronization errors ex and ey exhibit a strong linear dependence which is
explained by the fact that e is the result of processing ey with a lowpass filter
having a cutoff frequency w equal to a. Also, the error variable e is nearly
uncorrelated with both e and ey.

In Section 5.3, the development of an approximate analytical error model has
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Figure 5-17: Speech Waveforms: (a) True Recovered Message. (b) Recovered Message
using the Equivalent Linear Time-Invariant Model.

further enhanced our understanding of self-synchronization robustness and signal re-

covery. Some helpful insights gained from this model are given below.

* The Lorenz receiver can be viewed as a type of lowpass filter which slightly
amplifies signals within its passband 0 < w < 13 and rapidly attenuates signals
outside of this frequency range. The sensitivity of synchronization, therefore,
depends on the spectral characteristics of the perturbation. For example, the
normalized error in synchronization is approximately 10 dB less than the nor-
malized error in the drive signal when the perturbation is white noise. For
perturbations having a lowpass characteristic, the receiver's synchronization er-
ror is larger than the perturbation; however, both e. and ey are nearly coherent
with the perturbation at low frequencies. The analytical model explains why
the synchronization is robust to wideband perturbations, and why the errors
are nearly coherent with the message at low frequencies.

* We can now offer the explanation that a low-level speech signal can be faith-
fully recovered at the receiver because the synchronization error e, (t) is nearly
coherent with the speech at low frequencies. Thus, the receiver's own syn-
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chronization error reinforces the message to allow an accurate recovery of the
original message. Additional lowpass filtering can then be used to improve the
message-to-error ratio of the recovered message.

These results improve our understanding of the mechanisms underlying the syn-

chronization in the Lorenz system. In certain communication applications, however,

it is undesirable to be restricted to the Lorenz system; we need the ability to choose

from a variety of synchronized chaotic systems. Unfortunately, there are currently

no known systematic techniques for synthesizing chaotic systems which possess the

self-synchronization property. In Chapter 6, we address this issue by synthesizing a

class of chaotic systems which we refer to as linear feedback chaotic systems. Chapters

7 and 8 discuss alternative approaches which also provide for a systematic synthesis

capability.
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Chapter 6

Synthesizing Self-Synchronizing

Linear Feedback Chaotic Systems

A potential drawback to utilizing synchronized chaotic systems in communications is

that systematic synthesis procedures have not been developed. In fact, only a few

chaotic systems which possess the self-synchronization property are currently known.

In [11], it was shown that it is possible to create a five-dimensional chaotic system

by augmenting the Lorenz system with additional states. However, that approach

involved considerable trial and error.

This chapter is directed at a systematic approach for synthesizing high-dimensional

dissipative chaotic systems which possess the self-synchronization property. To de-

velop this approach, we begin by considering a class of chaotic systems which we

refer to as linear feedback chaotic systems (LFBCSs). LFBCSs are composed of a

low-dimensional chaotic system and a linear feedback system as illustrated in figure

6-1. Applying linear feedback to a chaotic system will increase its dimensionality,

allowing for considerable flexibility in the design of new chaotic systems. Although

this approach is applicable to any chaotic system, we will focus our attention on LF-

BCSs which utilize the Lorenz system. The advantages of applying linear feedback

to the Lorenz system are that the resulting high-dimensional chaotic systems are

analytically tractable and relatively easy to implement. Furthermore, this approach

allows an unlimited number of self-synchronizing LFBCSs be designed, increasing the
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CHAOTIC SYNCHRONIZING
TRANSMITTER RECEIVER

Figure 6-1: Communicating with Linear Feedback Chaotic Systems.

applicability of synchronized chaotic systems for practical applications.

In the communications scenario illustrated in figure 6-1, the LFBCS at the trans-

mitter conveys the chaotic drive signal x(t) to an identical LFBCS at the receiver.

This drive signal provides a means for establishing and maintaining synchronization

between the transmitter and receiver systems. Although these systems may operate

chaotically, the self-synchronization property ensures complete coherence between the

transmitter and receiver systems. In Chapter 9, we demonstrate some applied aspects

of synchronized chaotic systems using an analog circuit implementation of the Lorenz

system.

In Section 6.1, we examine a LFBCS in which the Lorenz signal x(t) drives the

linear system and the output of the linear system is added to the equation for x in the

Lorenz system (x-input/x-output LFBCSs). Section 6.2 examines a LFBCS in which

the Lorenz signal z(t) drives the linear system and the output of the linear system

is added to the equation for in the Lorenz system (z-input/z-output LFBCSs). In

both sections, we focus on:

- the development of self-synchronization and global stability conditions;

- a well-defined systematic synthesis procedure;

- a linear stability analysis of the fixed points to determine the critical values of

the bifurcation parameter such that all of the fixed points will be unstable; and
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- numerical examples to illustrate the theoretical results.

In Section 6.3, we summarize the results of this chapter.

6.1 x-Input/x-Output LFBCSs

Although many types of LFBCSs are possible, consider the situation where the chaotic

Lorenz signal x(t) drives a single-input/single-output linear system and the output of

the linear system is added to the equation for x in the Lorenz system. In this case,

the transmitter equations are given by

x= a(y-X)+

y = rx-y-xz

z = xy - bz (6.1)

i = Al + Bx

v = CI+Dx

where and v denote the state variables and output of the linear system, respectively.

The linear system is N-dimensional, i.e., A is N x N, B is N x 1, C is 1 x N, and D is

1 x 1. For notational simplicity, we refer to the transmitter state variables collectively

by the vector x = (x, y, z, 1), when convenient.

Our first goal in this section is to develop sufficient conditions such that the

transmitter (6.1) satisfies the requirements that:

- there exists an algebraically similar receiver system which possesses the global

self-synchronization property; and

- the transmitter system is globally stable.

These two requirements are satisfied in Sections 6.1.1 and 6.1.2, respectively. Section

6.1.3 summarizes the various self-synchronization and global stability conditions and

suggests a systematic procedure for synthesizing x-input/x-output LFBCSs. In Sec-

tion 6.1.4, we perform a linear stability analysis of the fixed points for this class of

systems. In Section 6.1.5, we describe the results of several numerical experiments.
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6.1.1 Conditions for Global Self-Synchronization

From certain theoretical and practical viewpoints, it is advantageous for the syn-

chronizing receiver to have the same algebraic structure as the transmitter. The

self-synchronization properties of the Lorenz system suggest a receiver system of the

form
ir = 0(Yr-Xr) + Vr

yr = rx(t) - yr - x(t)zr

Zr = X(t)Yr - bzr (6.2)

ir = Alr + Bx(t)

vr = CIr + Dx(t)

Algebraically, the receiver system (6.2) is obtained from the transmitter (6.1) by

renaming variables x -+ xr and substituting the drive signal x(t) for xr (t) in all state

equations except the first.

We can study the self-synchronization properties of the transmitter and receiver

equations by forming the error system. The error system is derived by defining the

error variables

e = x(t) - xr(t)

ey = y(t)-yr(t)

e = z(t) - Zr(t)

el = l- 1

and subtracting (6.2) from (6.1) to obtain

e = a(ey - e) + Cel

6y = -ey- x(t)ez (6.3)

ez = x(t)ey - bez

et = Ael

Since the dynamics of el are independent of ex, ey, and ez, we can see that if A is
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a stable matrix, then the el subsystem is globally asymptotically stable at the origin.

The (ey, ez) subsystem is also decoupled from the rest of the system, and was shown

previously (equation (3.14)) to be globally asymptotically stable at the origin. The

error signal e:(t) must also go to zero as t -+ oc because e:(t) is the output of a stable

linear time-invariant system that is driven by ey(t) and el(t). From this analysis, we

conclude that the error system is globally asymptotically stable at the origin if A

is a stable matrix. Equivalently, with A as a stable matrix, the transmitter and

receiver are guaranteed to synchronize regardless of the initial conditions imposed on

these systems. In the next section, we develop conditions sufficient to ensure that the

transmitter is globally stable.

6.1.2 Conditions for Global Stability

A set of sufficient conditions for which all trajectories of the transmitter equations

remain bounded can be determined by defining a family of ellipsoids

V(x) = 1 (rx + y 2 + (z - 2r) 2 + Tl) = k (6.4)

where P is a symmetric N x N positive definite matrix and k is a positive scalar. As

we show below, for k sufficiently large, V(x) will determine a trapping region for the

transmitter's flow.

Evaluating V(x) we obtain

T

= - -b(z[ 1 M [ + ar2b
L I 1 

where the matrix M is given by

M [ r(-D) -(BTP + rC) 1 (6.5)
M = (6.5)

- (PB+rC + T) -(PA + ATP) 

If M is positive definite, then V(x) = 0 determines an ellipsoid in state space. Suffi-
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cient conditions for M to be positive definite are given below.

* PB+rCT=O.

* PA + ATP is negative definite.

* a-D>O.

The first condition provides a constraint between the allowable B and C vectors. The

second condition can be satisfied by choosing a stable A matrix such that PA + ATP

is negative definite. The third condition provides an upper bound on D.

If these conditions are satisfied, then V = 0 determines an ellipsoid in state space

of the form

T

y2 (z-r)2 + M[] = 1. (6.6)
br 2 r2 ar2 I I

Since V < 0 for all x outside of the ellipsoid (6.6), any ellipsoid from the family (6.4)

which contains (6.6) will suffice as a trapping region for the flow. This ensures global

stability of the transmitter equations.

If the self-synchronization and global stability conditions are satisfied, the trans-

mitter equations are dissipative. Specifically, the divergence of the vector field corre-

sponding to (6.1) is given by

v x = '+9y+Z + ali
= -(o-D+1+b-tr(A))

Exploiting the stability condition on A leads to the inequality

N

tr(A) = E Re(Ai) < 0
i=1

The stability condition on A, together with a-D > 0, ensures that the divergence is a

negative constant. A constant negative divergence implies that the transmitter equa-
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tions are dissipative and that any volume in state space will go to zero exponentially

fast.

6.1.3 A Systematic Synthesis Procedure

Sections 6.1.1 and 6.1.2 give sufficient conditions for the transmitter to be dissi-

pative and globally stable and for the receiver system to possess the global self-

synchronization property. These conditions are summarized below.

Self-Synchronization

Global Stability {

1.

2.

3.

4.

A is stable.

PB + rCT = 0, for some N x N positive

definite matrix P.

PA + ATP is negative definite.

a-D > O.

Condition 1 implies that there exists a positive definite solution P to the matrix

Lyapunov equation

PA+ATP+Q = 0 , Q > 0

By choosing Q to be any symmetric positive definite matrix, condition 3 can always be

satisfied. Exploiting this relationship, the following synthesis procedure is suggested.

Synthesis Procedure

1. Choose any stable A matrix and any N x N symmetric positive definite matrix

Q.

2. Solve PA + ATP + Q = 0 for the positive definite solution P.

3. Choose any vector B and set C = -BTP/r.

4. Choose any D such that a - D > 0.

Next, the stability of the fixed points needs to be addressed. We must determine

conditions which ensure that all of the fixed points of the transmitter equations are
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unstable so that non-trivial motion will occur. As shown below, this can be accom-

plished through a linear stability analysis of the transmitter equations.

6.1.4 Linear Stability Analysis

Inspection of the transmitter equations shows that the origin is always a fixed point.

Two additional fixed points can be determined by setting the transmitter's vector

field equal to zero and solving for the non-trivial stationary points. The equations to

be solved are listed below'.

1. (y* - x*) + C* + Dx* = 0,

2. rx* - y*- xz* = 0,

3. xy* - bz* = 0,

4. Al* + Bx* = O.

Combining equations 2 and 3, y* and z* can be determined in terms of x* as

rbx*
b+ x* 2

* rx*2

b +x*2

Equation 4 determines 1* as

1* =-A-Bx *

and x* is determined from equation 1 as

x* = ±ijb( + i-BD ) D(6.7)

'State variables with star "*" superscripts denote fixed points in this analysis.
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The term under the radical in (6.7) must be positive in order for these fixed points

to exist. This suggests that a fixed point pair exists for r >_ r, where r is given by

+ CA- lB - D
arc= 1+

Observe that the scalar H(O) = -CA-1 B + D is equivalent to the transfer function of

the linear feedback system evaluated at the origin. Therefore, r can be conveniently

written as

r = 1 - H(O) (6.8)
a

Now that we have determined all of the fixed points and the critical value of r for

which they exist, we are ready to perform a stability analysis.

Linear stability analysis of the fixed points can be performed by studying the

Jacobian matrix corresponding to (6.1). Evaluating the Jacobian matrix at the origin

we obtain

J(0) =

D-a a 0 C

r -1 0 T

0 0 -b 0T

B 0 0 A

If all of the eigenvalues of J(0) are in the left-half plane, then the origin is stable.

If at least one eigenvalue is in the right-half plane, then the origin will be unstable.

In typical experiments, increasing the value of r above some critical value will cause

the origin to lose stability. In practice, this critical value can always be determined

numerically for a specific LFBCS. As shown below, an analytical analysis of the

eigenvalues of J(0) will provide additional conceptual insight and allow us to draw

some general conclusions regarding the behavior of generic LFBCSs.
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Using the matrix identity

All= A 12 - A - A 12A2 'lA21 1 A221
A 21 A 22

the characteristic polynomial for J(0) is determined as

N A ~+ rH(A) -
AI-J(O) = (A+b) l(A-Ai) OA+= 0. (6.9)

i=l -r A +1

The eigenvalues Ai, for i = 1, ..., N, belong to the A matrix and, therefore, represent

stable modes. The eigenvalue A = -b also represents a stable mode. Unstable modes

will exist for r sufficiently large. As shown below, the presence of unstable modes can

be detected by determining the characteristic polynomial of the 2 x 2 determinant in

(6.9).

The characteristic polynomial for the 2 x 2 determinant in (6.9) is given by

A 2 +( a + 1-H(A))A+a(1-r)-H(A) =0 . (6.10)

As r is varied, a bifurcation occurs when a root of (6.10) crosses the imaginary axis

in the complex plane. When this occurs, the critical value(s) of r can be determined

by restricting our attention to solutions of (6.10) for values of A = 3f, for f > 0.

Substituting A = 3f into (6.10) and introducing the notation H(3f) = Hs(f)+3H,(f)

we obtain

[u(1 - r) _ f 2 - HR(f) + fHi(f))] + 3 [ (a + 1 - HR(f)) - Hi(f)] = 0

Setting the imaginary part of this expression equal to zero and solving for f in terms

of HR(f) and H.(f) we obtain

_ H(f)
f =+l-H R(f) = G(f) (6.11)
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Similarly, by setting the real part equal to zero we obtain

r = 1- f 2 + HR(f)- fHI(f) (6.12)

Equation (6.11) determines the eigenfrequencies where bifurcations occur and (6.12)

determines the corresponding bifurcation parameter. The term "eigenfrequency" is

used here to describe the point on the imaginary axis in the complex plane where the

roots of a characteristic polynomial cross when traversing from the left-half plane to

the right-half plane or vice versa.

The eigenfrequency equation (6.11) is written as f = G(f), where G(f) is deter-

mined by the frequency response of the linear feedback system. Note that G(f) is an

odd and continuous function. Because of these properties, we know that G(O) = 0

and therefore f = 0 is always a solution to the eigenfrequency equation. From (6.12),

the value of r corresponding to f = 0 is given by r = 1 - H(O)/u. This value of r

also corresponds to the existence of the fixed point pair (compare with (6.8)). This

analysis suggests that the fixed point pair is created when the origin loses stability

(commonly referred to as a pitchfork bifurcation). This type of bifurcation is also

exhibited at the origin in the Lorenz system (without feedback). Later in Section

6.1.5, numerical analysis of a specific LFBCS provides support for these observations.

Now that the stability of the origin is further understood, we turn our attention

toward the stability of the fixed point pair. Evaluating the Jacobian matrix at the

fixed point pair we obtain

J(xo) =

D-a a 0 C

r-z* -1 -x* 0 T

y* x* -b 0 T

B 0 0 A

Substituting the coordinates of the fixed point pair into J(xo), and computing the

resulting eigenvalues, provides a numerical approach for examining the linear stability

of these fixed points. As was the case at the origin, however, additional conceptual
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insight is gained by examining the eigenvalues of J(xo) analytically.

The eigenfrequency and bifurcation equations corresponding to the fixed point pair

can be determined through an analysis similar to that used at the origin. Omitting

the algebraic details, the resulting eigenfrequency equation is given by

f = f 3 +HI(f)(b + K(f)_ f 2 ) - (f (613)
K(f) + H(O) - HR(f)(b + 1) + b(a + 1) G'(f) , (6.13)

where the function K(f) is given by

K(f) = f 2 (( + b+ 1) - bH(O) + HR(f)(b - f 2 ) _ fHI(f)(b + 1) (6.14)
2a- H(O) - HR(f)

The bifurcation parameter can be shown to satisfy

r = ( a) ( b) (6.15)

Solutions to the eigenfrequency equation (6.13) can be determined graphically for

arbitrary H(f) by plotting f - G'(f) and locating the zero-crossings. The bifurcation

equation (6.15) can then be used to determine the critical values of r for which

the fixed point pair undergoes bifurcations. It is also interesting to note that the

eigenfrequency and bifurcation equations determine the critical values of r in terms

of the frequency response of any N-dimensional linear system.

To gain additional insight into the behavior of solutions to (6.13), observe that

G'(f) is an odd and continuous function. It then follows that G'(0) = 0 and, therefore,

f = 0 is always a solution to (6.13). From (6.15), the corresponding value of r is given

by

= H()

Recall that this value of r predicts the pitchfork bifurcation at the origin when the

origin loses stability and the fixed point pair is created. If the fixed point pair is stable

when it is created, then its loss of stability occurs when a complex conjugate pair of
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eigenvalues (f > 0) crosses into the right-half plane. This type of bifurcation is akin

to a Hopf bifurcation. Using a specific LFBCS, we will demonstrate this behavior

numerically in the next section.

6.1.5 Numerical Example

The synthesis procedure suggested in Section 6.1.3 allows an unlimited number of

Lorenz-based x-input/x-output LFBCSs to be designed. For the purpose of demon-

stration, consider the following five-dimensional LFBCS.

= ((y-X)±+ -

= rx-y-xz

, =xy - bz

i] [= -[' '] [J 1 (6.16)

i2 = -[1 1][ 2
-~~~~10

In this system, the Lorenz signal x(t) drives a two-dimensional linear system and

the output of the linear system is added to the equation of the Lorenz system.

It can be shown in a straightforward way that the linear system satisfies the self-

synchronization and global stability conditions for suitable choices of P, Q, and R.

For the numerical demonstrations presented below, the Lorenz parameters chosen are

= 16 and b = 4; the bifurcation parameter r will be varied.

Using the eigenfrequency equation (6.13), we show in figure 6-2(a) a plot of

f- G'(f) vs. f. The zero-crossing of f- G'(f), for f > 0, corresponds to the

eigenfrequency where a Hopf bifurcation occurs and the fixed point pair becomes

unstable. Substituting this critical frequency into the bifurcation equation (6.15) de-

termines the critical value of r for which the bifurcation occurs. Alternatively, we can

plot equation (6.15) vs. f and obtain the critical value of r graphically as illustrated

in figure 6-2(b). As indicated, the critical value is rHopf = 34. From these figures, we
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see that as r increases above ropf, the fixed point pair remains unstable because no

additional bifurcations occur in the indicated range for r.

In figure 6-2(c), we show the bifurcation diagram for the LFBCS. This diagram

is generated by plotting the x-component of the fixed points as a function of the

bifurcation parameter. The solid lines indicate that the corresponding fixed point is

stable, whereas the dashed lines indicate that the fixed point is unstable. In the region

where all the fixed points are unstable, the motion is confined to either limit cycles or

a chaotic attractor. In typical numerical experiments, we observe that chaotic motion

usually occurs for r slightly above rHopf.

In figure 6-3, we show the computed Lyapunov exponents as r is varied over the

range 20 < r < 100. Note that the onset of chaotic behavior occurs near r = 34, as

evidenced by the existence of a positive Lyapunov exponent. This critical value of r

is in excellent agreement with the value of rHopf predicted by the eigenfrequency and

bifurcation diagrams. Other important characteristics of figure 6-3 are listed below.

* Two exponents equal to -1/2 are apparent. These exponents correspond to the

real parts of the linear system poles.

* A large negative exponent is apparent. This exponent is due to the highly

dissipative nature of the LFBCS.

* A zero exponent is also apparent. This exponent corresponds to motion tangent

to the flow.

For comparison purposes, the computed Lyapunov exponents for the Lorenz system

(without feedback) are also shown in this figure.

In figure 6-4, we show the computed Lyapunov dimension as r is varied over the

same range, 20 < r < 100. This figure demonstrates that the LFBCS achieves a

greater Lyapunov dimension than the Lorenz system without feedback applied. The

Lyapunov dimension could be increased by using more states in the linear system.

However, numerical experiments suggest that a limit will be reached since the Lya-

punov dimension depends more heavily on the most positive exponents and stable

linear feedback creates only negative exponents.
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Figure 6-2: (a) Eigenfrequency Diagram for a 5-Dimensional x-input/x-output LF-
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Figure 6-4: Lyapunov Dimension for a 5-Dimensional x-input/x-output LFBCS.
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In figure 6-5, we show various projections of the LFBCS's chaotic attractor. The

(x, y) and (x, z) projections are similar to the Lorenz system. The (, 11) and (, 12)

projections, however, reveal a more complex structure and suggest that the trajecto-

ries evolve on a higher dimensional attractor in state space.

In figure 6-6, we demonstrate the rapid synchronization between the transmitter

and receiver systems. The curve measures the distance in state space between the

transmitter and receiver trajectories when the receiver is initialized from the zero

state. Synchronization is maintained indefinitely.

In the next section, we examine a LFBCS where the Lorenz signal z(t) drives an

N-dimensional linear system and the output of the linear system is added to the 

equation of the Lorenz system. These systems, which we refer to as z-input/z-output

LFBCSs, provide additional insight into the behavior of different types of LFBCSs.

6.2 z-Input/z-Output LFBCSs

The transmitter equations for this class of LFBCSs is given by

x = c(y-x)

= rx-y-xz

z = xy-bz+ v (6.17)

1 = Al+Bz

v = Cl+Dz

where and v denote the state variables and output of the linear system, respectively.

The linear system is N-dimensional, i.e., A is N x N, B is N x 1, C is 1 x N, and

D is 1 x 1.

Following the development outlined in Section 6.1, we will first determine suf-

ficient conditions such that the transmitter equations satisfy two requirements: (i)

there exists an algebraically similar receiver system which possesses the global self-

synchronization property, and (ii) the transmitter system is globally stable. Section

6.2.1 contains the self-synchronization analysis and Section 6.2.2 contains the global
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Figure 6-6: Self-Synchronization in a 5-Dimensional x-input/x-output LFBCS.

stability analysis. In Section 6.2.3, we suggest a systematic procedure for synthesizing

z-input/z-output LFBCSs. In Section 6.2.4, we describe the results of several numer-

ical experiments which demonstrate the theoretical results. Appendix A contains the

linear stability analysis for z-input/z-output LFBCSs.
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6.2.1 Conditions for Global Self-Synchronization

The synchronizing receiver equations for z-input/z-output LFBCSs are given by

r = a(Yr- xr)

Yr = rx(t) - Yr - (t)zr

Zr = X(t)Yr - bzr + v, (6.18)

ir = Alr +Bzr

vr = Clr + Dzr

This system is obtained from the transmitter by renaming variables x -+ x and

substituting the drive signal x(t) in place of x,(t) in the equations for yr and r

The corresponding error system is given by

e = a(ey - e)

6 = -ey - x(t)ez

ez = x(t)ey -bez + Cel + Dez

e = Ae + Bez

Note that the error variables e do not decouple from the rest of the error system,

which was the case for the x-input/x-output LFBCSs studied in Section 6.1. In this

case, a set of sufficient conditions for the error system to be globally asymptotically

stable at the origin can be determined by considering a Lyapunov function of the

form

E(e) = 2 (e +e +e +eTRe) ,

where R is a symmetric N x N positive definite matrix. For conciseness, the error

variables are denoted by the vector e = (ex, ey, ez, el).

122

�I ____



The time rate of change of E(e) along trajectories is given by

r T

(e) = -e) e -- T , (6.19)2 [ j e ~ ~~~el el

where the matrix T is given by

b-D - (BTR + C)

T = -(RBCT) -½(RA+ATR) 

Observe that E is negative definite if T is positive definite. A sufficient set of condi-

tions for T to be positive definite are given below.

* RB + CT = 0, for some N x N positive definite matrix R.

* RA + ATR is negative definite.

* b-D>O.

If these conditions are satisfied, then the transmitter and receiver systems are guar-

anteed to synchronize regardless of the initial conditions. In the next section, we

develop the sufficient conditions which will guarantee that the transmitter is globally

stable.

6.2.2 Conditions for Global Stability

A set of conditions sufficient for bounding all trajectories of the transmitter can be

determined by defining a family of ellipsoids

V(x) = (r2 + y2 + (z - 2r)2 + lTP) = k , (6.20)

where P is a symmetric N x N positive definite matrix and k is a positive scalar.
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If we restrict PB + cC T = 0, then lV(x) can be written in the form

V(x) = -rx 2 -_ y 2 _
z-r

1-q

T

1-q

where the matrix M is given by

M = [u(b- D)
0

oT

-2(PA + ATP)

Also, the scalar c is given by

c = Ur2(b- D) - qT(PA + ATp)q
2

and the vector q is given by

q = -r(PA + ATP)-l(PB- aCT)

If M is positive definite and c > 0, then V(x) = 0 determines an ellipsoid in state

space. Sufficient conditions for M to be positive definite and for c > 0 are given

below.

. PB+aCT=O.

* PA + ATP is negative definite.

* b-D>O.

The first condition is simply the PB + cCT = 0 restriction. The second condition can

be satisfied by choosing a stable A matrix such that PA + ATP is negative definite.

The third condition provides an upper bound on D. Comparing these conditions with

the self-synchronization conditions reveals some similarity between them.
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If these conditions are satisfied, then V = 0 determines an ellipsoid of the form

arx2 ay2 1 z - r ]
c c c q

or c cl-

T

z - '

Since V' < 0 for all x outside of the ellipsoid (6.21), any ellipsoid from the family

(6.20) which contains (6.21) will suffice as a trapping region for the flow.

The transmitter equations are dissipative if the self-synchronization and global

stability conditions are satisfied. Specifically, the divergence of the vector field corre-

sponding to (6.17) is given by

Ox ay = + - Z i=1 ali

= -(a+l+b-D-tr(A))

With A stable and b- D > 0, the divergence is a negative constant. This implies

that all volumes in state space will go to zero exponentially fast.

6.2.3 A Systematic Synthesis Procedure

Sections 6.2.1 and 6.2.2 give sufficient conditions for the transmitter to be dissi-

pative and globally stable and for the receiver system to possess the global self-

synchronization property. These conditions are summarized below.

Self-Synchronization

Global Stability

1. RB + CT = 0, for some N x N positive

definite matrix R

2. RA + ATR is negative definite

3. b-D>O0

4. PB + aCT = 0, for some N x N positive

definite matrix P

5. PA + ATP is negative definite

6. b-D > 
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If we choose P = uR, then conditions 1 and 4 and conditions 2 and 5 are equiva-

lent. Furthermore, conditions 2 and 5 imply that A is stable. As a result, there exists

a positive definite solution R to the matrix Lyapunov equation

RA+ATR+Q = 0 ,

where Q is any positive definite matrix. In light of these simplifications, the following

synthesis procedure is suggested.

Synthesis Procedure

1. Choose any stable A matrix and any N x N symmetric positive definite matrix

Q.

2. Solve RA + ATR + Q = 0 for the positive definite solution R.

3. Choose any vector B and set C = -BTR.

4. Choose any D such that b- D > 0.

This synthesis procedure is nearly identical to the x-input/x-output synthesis proce-

dure developed in Section 6.1.

In the next section, a numerical example demonstrates the behavior of a z-input/z-

output LFBCS.
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6.2.4 Numerical Example

For the purpose of demonstration, consider the following five-dimensional z-input/z-

output LFBCS.

x = a(y-x)

y = rx-y-xz

i = xy-bz+i'

[il [ -2 1 ][ l]±[1]o (6.22)

= -[ 11[ ] i2 -10 12

The linear system in this example is identical to the one used in Section 6.1.5. The

overall dynamics of (6.22) will be different than the corresponding x-input/x-output

LFBCS, however, because the Lorenz signal z(t) drives the linear system and the

output of the linear system is added to the equation of the Lorenz system. The

linear system can be shown to satisfy the self-synchronization and global stability

conditions for suitable choices of P, Q, and R.

We performed a detailed linear stability analysis of the z-input/z-output trans-

mitter equations (see Appendix A) analogous to the one in Section 6.1.4 to derive the

eigenfrequency and bifurcation equations for this class of systems. Using the eigen-

frequency equation (A.5), we show in figure 6-7(a) a plot of f - G'(f) vs. f. Figure

6-7(b) shows a plot of the corresponding bifurcation equation (A.6). As indicated, a

Hopf bifurcation occurs at rHopf = 34. Figure 6-7(c) shows the bifurcation diagram

for the LFBCS and illustrates that all of the fixed points are unstable for r > rHopf.

In figure 6-8, we show the computed Lyapunov exponents as r is varied over the

range 20 < r < 100. These exponents are remarkably similar to the x-input/x-output

example exponents (figure 6-3) even though the transmitter equations are different.

In particular, the onset of chaotic behavior occurs near r = 34 and two exponents

equal to -1/2 are evident. Another striking similarity between the two LFBCS types

127

_ _I �I � ___11___1______�_1�__



s

.S-5

-5

S

(b) f

zu

X*

-20
0 20 40 60 80 100

(c) r

Figure 6-7: (a) Eigenfrequency Diagram for a 5-Dimensional z-input/z-output LF-
BCS. (b) Graphical Determination of the Bifurcation Parameter. (c) Bifurcation
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is the computed Lyapunov dimensions as illustrated in figure 6-9.

In figure 6-10, we show various projections of the LFBCS's chaotic attractor. The

(x, y) and (x, z) projections are similar to the Lorenz system as was also the case

for the z-input/xz-output LFBCS. The (x, 11) and (, 12) projections suggest that the

trajectories evolve on a higher dimensional attractor in state space. Comparing the

(x, 11) and (x, 12) projections in this figure with the corresponding projections in figure

6-5 shows that the two LFBCS types exhibit different spatial patterns.

In figure 6-11, we demonstrate the rapid synchronization between the transmitter

and receiver systems for both LFBCS types. The curves measure the distance in

state space between the transmitter and receiver trajectories when the receivers are

initialized from the zero state. Synchronization is maintained indefinitely in both

cases.

6.3 Summary

The analysis and synthesis results presented in this chapter have further enhanced

our understanding of self-synchronization in a class of chaotic systems. The devel-

opment of a systematic procedure for synthesizing high-dimensional chaotic systems

which possess the self-synchronization property may serve a useful purpose for future

communications applications. Some conjectures and insights gained from this work

are listed below.

* Many of the qualitative properties of the Lorenz system are maintained after

applying stable linear feedback. Specifically, there are at most three fixed points

- - the origin plus a fixed point pair. In typical experiments, the origin loses

stability via a pitchfork bifurcation and the fixed point pair loses stability via a

Hopf bifurcation. This same behavior is known to occur in the Lorenz system.

* The Lyapunov spectrum for a LFBCS consists of the Lyapunov exponents for

the Lorenz system plus additional negative exponents equal to the real part of

the linear system poles. Therefore, LFBCSs exhibit only one positive Lyapunov

exponent. These conjectures are supported by limited numerical experiments.
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Figure 6-11: Self-Synchronization in 5-Dimensional LFBCSs.

* An interesting future experiment would be to switch between the two LFBCS

types at the transmitter and to detect the source of the transmitted drive signal

by measuring the synchronization error at the corresponding receivers. If the

source of the transmitted signal is difficult to detect by unintended listeners,

then this approach may be potentially useful for private communications.

* Hardware implementations of LFBCSs should be straightforward and inexpen-

sive. We already know how to implement the Lorenz system with a simple

analog circuit (see Chapter 9). Implementing the linear feedback system should

be even easier.

While LFBCSs appear to be very promising, they seem to exhibit only a single

positive Lyapunov exponent. The creation of additional positive exponents can sig-
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nificantly increase the attractor dimension of a chaotic system and may be desirable

from certain private communication viewpoints because higher dimensional systems

typically give rise to more complex dynamics. The desire to create more complex

systems raises two interesting questions:

1. Is it possible to synthesize self-synchronizing chaotic systems by mutually cou-

pling several Lorenz oscillators?

2. Does the coupled system exhibit multiple positive Lyapunov exponents?

As we show in the next chapter, the answer to both of these questions is affirmative.
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Chapter 7

Synthesizing Self-Synchronizing

Chaotic Arrays

It is well-known that coupling among nonlinear oscillators can produce a wide range

of nonlinear dynamical behavior, including periodicity, chaos, hyperchaos, and syn-

chronization. To explore some of the dynamical processes that can occur in these

systems, there have been several theoretical, numerical, and experimental investi-

gations of coupled oscillator systems. Kowalski et al. [39], for example, has shown

numerically that a system consisting of an ensemble of Lorenz oscillators can exhibit

mutual synchronization while behaving chaotically. Synchronized chaos has also been

investigated in arrays of R6ssler oscillators [40, 41], laser systems [4], neural networks

[6], and Selkov models [42]. Although significant progress has been made toward

understanding these systems, synthesizing self-synchronizing chaotic arrays has not

been addressed.

In this chapter, we develop a systematic approach for synthesizing a class of chaotic

arrays which possess the self-synchronization property. These arrays are composed of

several Lorenz oscillators and a linear feedback system. The linear system provides

for both integrated and direct coupling between the individual Lorenz oscillators.

The advantages of linearly coupling several Lorenz oscillators are that the resulting

chaotic arrays are analytically tractable and have a modular structure which makes

them straightforward to implement.
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Figure 7-1: Communicating with Chaotic Arrays.

Figure 7-1 illustrates a communication scenario in which the transmitter array con-

veys a set of drive signals to an identical receiver array. These drive signals provide

a means for establishing and maintaining synchronization between the transmitter

and receiver arrays. Although the transmitter and receiver arrays can exhibit very

complex dynamics, they will be completely synchronized. A potential drawback of

this approach is that the synchronization requires that more than one drive signal

be communicated - - one drive signal for each Lorenz oscillator. This requirement

increases the complexity of the communication system. There are, however, potential

advantages to this approach. The utilization of several drive signals could make it

more difficult for an unintended listener to obtain synchronization with the transmit-

ter. Chaotic arrays are also highly modular and easy to modify. Increasing the state

space dimension of the array can be achieved by simply adding additional oscillators

to the transmitter and receiver.

There are several ways to linearly couple a set of Lorenz oscillators. Our approach

is based upon a natural generalization of the z-input/z-output LFBCSs introduced

in Section 6.2. Specifically, the chaotic signals z(t) from each Lorenz oscillator drive

the linear system, and the resultant outputs are added to the appropriate oscillator's

equation for . This type of array can be represented by a set of state equations of
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the form

Xi = 'i(y i - Xi)

yi = rixi - y - xiZi

zi = xiyi - bizi + vi (7.1)

i = Al+Bz

v = Cl+Dz ,

where the subscript "i" denotes the individual Lorenz oscillators from the set i =

1, ... , K. The vectors

Z1 //1

Z - -V--z= . ij>= )J
ZK VK~U

denote the inputs and outputs of the linear system, respectively.

In (7.1), the linear system is N-dimensional with K inputs and K outputs. There-

fore, the matrices A,B, C, and D have dimension N x N, N x K, K x N, and

K x K respectively. In the single oscillator case, i.e., where K = 1, the system

(7.1) reduces to the z-input/z-output LFBCS studied in Section 6.2. In this sense,

the chaotic array can be viewed as a straightforward generalization of LFBCSs that

allows for multiple Lorenz oscillators to interact through linear feedback. For nota-

tional simplicity, we will denote the state variables in (7.1) collectively by the vector

v = (x 1, Y1, Z1, -..., XK, YK, ZK, 1) when convenient.

Following the approach outlined in Chapter 6, our first goal is to develop sufficient

conditions for which the transmitter equations (7.1) satisfy two requirements: (i)

there exists an algebraically similar receiver system which possesses the global self-

synchronization property, and (ii) the transmitter system is globally stable. These

requirements are satisfied in Sections 7.1 and 7.2, respectively. In Section 7.3, we

summarize the various self-synchronization and global stability conditions for this

class of systems and suggest a systematic procedure for synthesizing chaotic arrays.

In Section 7.4, we perform a linear stability analysis of the fixed points for a low-order

chaotic array. In Section 7.5, we describe the results of several numerical experiments
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which demonstrate the nonlinear dynamical behavior of the low-order chaotic array.

Section 7.6 summarizes the results of this chapter.

7.1 Conditions for Global Self-Synchronization

The design and implementation of large chaotic arrays is potentially complicated. A

significant simplification is achieved by considering a receiver array which has the

same algebraic structure as the transmitter. For the Lorenz-based chaotic arrays

considered in this chapter, an appropriate set of receiver equations is obtained from

the transmitter equations (7.1) by renaming variables v -4 vr and substituting the

drive signals xi(t) for xir(t) in the equations for Yir and zi. In this case, the receiver

equations are given by

ir -= i(Yir - Xir)

yir = rixi(t) - Yir - Xi(t)Zir

Zir = Xi(t)yir - bzi, + Vir (7.2)

ir = Alr +Bzr

vr = Clr + DZr

The error system is derived by defining the error variables

eyi(t) = yi(t) - ir(t)

ezi(t) = zi(t) - zir(t)

el(t) = (t)- Ir(t) 
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and subtracting (7.2) from (7.1) to obtain

i = i(ey - ei)

6yi = -eyi - xi(t)ezi

ezi = xi(t)eyi- biezi + Ciel + Diez

e = Ael +Bez .

(7.3)

In this system, we denote the K rows of C by Ci and the K rows of D by Di. The error

vector ez denotes the K error variables corresponding to ezi(t), i.e. ez = (ezl, ... , ezK).

A set of sufficient conditions for the error system to be globally asymptotically

stable at the origin can be derived by considering a Lyapunov function of the form

E(e) = 2 -exi + eyi + ei + elRe2\ 1 ri

where R is a symmetric N x N positive definite matrix. The

E(e) along trajectories is given by

E(e)
K |[ei 1 -1

= e [11i=1 eyi L{ [ ]TI~~~
where the matrix T is given by

time rate of change of

T = Ab- (D+D T)
1 (RB + C T )

-~(BTR +C)

-(RA + ATR)

Notice that T contains the diagonal matrix Ab = diag(bl, ... , bK). The diagonal ele-

ments of Ab correspond to the set of b parameters for the ensemble of Lorenz oscilla-

tors.

Observe that is negative definite if T is positive definite.

conditions for T to be positive definite are given below.

A sufficient set of

* RB + CT = 0, for some N x N symmetric positive definite matrix R.

* RA + ATR is negative definite.
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* Ab- (D + DT) is positive definite.2

The first condition provides a constraint between the allowable B and C matrices. The

second condition can always be satisfied if A is a stable matrix. The third condition

provides a bound on D. If these conditions are satisfied, then the transmitter and

receiver arrays are guaranteed to synchronize regardless of their initial conditions.

7.2 Conditions for Global Stability

A set of sufficient conditions for which all trajectories of the transmitter equations

remain bounded can be determined by defining a family of ellipsoids

V(v) = (XTArx + YTAy + (z - 2r) A(z- 2r)+ Tpl) = k , (7.5)
2v

where P is a symmetric N x N positive definite matrix and k is

The vectors x, y, z, and in (7.5) represent the transmitter's state

given by

Z1

ZK

a positive scalar.

variables and are

11

1K

The diagonal matrices Ar = diag(rl, ... , rK) and A, = diag(al, ... , UK) in (7.5) contain

the set of r and a parameters for the ensemble of Lorenz oscillators. The vector r =

(r 1 , ... , rK) contains the set of r parameters for each oscillator (the same parameters

that correspond to the diagonal elements of Ar).

If we impose the restrictions PB + CTA_ = 0 and A.D = DTA,, then V(v) can

be written in the form

Vl(v) = -XTA A r x -yTAy -

T

z - r

1-q
M +c,- r

1-q
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where the matrix M is given by

M [ A(Ab - D) A

L ° -2(PA +ATP)

Also, the scalar c is given by

c = rTA(Ab- D)r qT (PA + ATP)q
2 q'

and the vector q is given by

q = -(PA + ATP)-1l(PB- CTA,)r

If M is positive definite and c > 0, then V(v) = 0 determines an ellipsoid in state

space. Sufficient conditions for M to be positive definite and for c > 0 are given

below.

* PB + CTA =O. 

* AD = DTAA, .

* PA + ATP is negative definite.

* A(Ab - D) is positive definite.

The first and second conditions are simply the imposed restrictions. The third condi-

tion can be satisfied by choosing a stable A matrix such that PA + ATP is negative

definite. The fourth condition provides a bound on D.

If these conditions are satisfied, then V = 0 determines an ellipsoid of the form

T

x/AArx yVTA~y 1 z- r [z- r
A- A - K M = 1 (7.6)

c c c 1-~q] l 76C C C I-q I -q

Since V1 < 0 for all v outside of the ellipsoid (7.6), any ellipsoid from the family (7.5)

which contains (7.6) will suffice as a trapping region for the transmitter's flow.
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It is also important to determine the appropriate conditions which ensure that

the transmitter equations are dissipative. The divergence of the transmitter's vector

field is given by

V v 
= a + a, + ai + al

= -(tr) + K + tr(Ab-D)-tr(A))li
= - (tr (A,) + K + tr(Ab - D) - tr (A)) 

The divergence is a negative constant if the condition

tr(A,) + K + tr(Ab- D) - tr(A) > 0,

is satisfied. This condition alone ensures that the transmitter equations are dissipa-

tive with exponentially fast volume contraction. In the next section, we summarize

the various self-synchronization and global stability conditions and suggest a straight-

forward synthesis procedure.

7.3 A Systematic Synthesis Procedure

If K Lorenz oscillators are line

conditions:

Self-Synchronization

Global Stability

arly coupled as defined by equation (7.1), and if the

1. RB + CT = 0, for some N x N positive

definite matrix R,

2. RA + ATR is negative definite,

3. Ab- (D + DT) is positive definite,

4. PB + CTA, = 0, for some N x N positive

definite matrix P,

5. AND is symmetric,

6. PA + ATP is negative definite,

7. A,(Ab- D) is positive definite,

8. tr(A,) + K + tr(Ab- D) - tr(A) > 0,
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are satisfied, then the transmitter array is dissipative and globally stable, and the

receiver array possesses the global self-synchronization property. Although satisfying

each of these conditions may seem to be a formidable task, the conditions can be

significantly reduced by making two simplifying assumptions.

If we choose P = oR and A, = aI, where I denotes the K x K identity matrix,

then conditions 1 and 4 and conditions 2 and 6 are equivalent. Furthermore, condition

5 will then imply that D is symmetric, and thus, conditions 3 and 7 are equivalent.

Also, conditions 2 and 6 imply that A is stable. In this case, condition 8 will be

automatically satisfied. As a result of A being stable, there exists a positive definite

solution R to the matrix Lyapunov equation

RA+ATR+Q = 0 , Q > 0

By choosing any stable A matrix and any symmetric positive definite Q matrix,

conditions 2 and 6 can always be satisfied. In light of these simplifications, the

following synthesis procedure is suggested.

Synthesis Procedure

1. Choose any stable A matrix and any N x N symmetric positive definite matrix

Q.

2. Solve RA + ATR + Q = 0 for the positive definite solution R.

3. Choose any N x K matrix B and set C = -BTR.

4. Choose any K x K symmetric matrix D such that Ab- D is positive definite.

Comparing this synthesis procedure with the z-input/z-output LFBCS synthesis pro-

cedure (Section 6.2.3) shows that they are consistent.

In the next section, we perform a linear stability analysis of the fixed points for a

low-order chaotic array. This analysis provides additional insight into the nonlinear

dynamical behavior of this class of systems.
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7.4 Linear Stability Analysis

For this analysis, we consider a chaotic array consisting of two Lorenz oscillators and

an N-dimensional linear system. The transmitter equations are given by

Oscillator 1:

x 0(y-x) 

= rlx-y-xz + 0

xy - b z Vl

Oscillator 2:

a(v-u) 0

v . = [r2u-V-uw + 0

[ zuv - b 2w 2

Linear System:

= Al+B[

v = C1+D[ ]

To clearly distinguish the state variables of the two oscillators, we have used (x, y, z)

to denote the state variables for oscillator 1 and (u, v, w) to denote the state variables

for oscillator 2. We have also imposed the restriction = al = a 2 to be consistent

with the synthesis procedure developed in Section 7.3. The r and b parameters of the

two oscillators are, however, independent.

Inspection of the transmitter equations shows that the origin is always a fixed

point. Additional fixed points can be determined by setting the transmitter's vector

field equal to zero and solving for the non-trivial stationary points. The equations to
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be solved are listed below.

1. (y* - *) = 0,

2. rx* - y*- x*z* = 0,

3. x'y* - blz* + C1 l* + D 1

4. a(v* - u*) = 0,

5. ru* -v* -u*w*= 0,

6. uv* - b2w* + C21* + D2

7. Al*+B
Z*IW*

W *

[Z ]=0,
W *

=0.

Equations 1 and 2 determine that y* (1 - rl + z*) = 0. It then follows that either

y* = 0 or z* = r -1 .

Similarly, equations 4 and 5 determine that v*(1 - r2 + w*) = 0, from which it follows

that either

v* = 0 or w* = r 2 -1 . (7.8)

Equations 3, 6, and 7 can then be combined to obtain

I x*2
U*2

= [Ab + CA-1B-D]
*:]W *

(7.9)

Observe that the 2 x 2 matrix H(0) = -CA-1B + D is equivalent to the transfer

function of the linear system evaluated at the origin. Therefore, equation (7.9) can
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be conveniently written as

[ [2A] [b H()] (7.10)

Equations (7.7) through (7.10) provide relationships among the various compo-

nents of the fixed points. To explicitly solve these equations, we must distinguish

between four different types of fixed points which arise from the four possible combi-

nations of stationarity conditions given by equations (7.7) and (7.8). An analysis of

each type of fixed point is presented below.

Type 1 Fixed Points: (y* = 0, v* = 0)

Type 1 fixed points are the most straightforward to analyze. Because y* = 0 and

v* = 0, equations 1 and 4 imply that x* = 0 and u* = 0, respectively. It follows from

(7.10) that z* = 0 and w* = 0, if the 2 x 2 matrix Ab - H(0) is invertible. We then

find that 1* = 0 from equation 7. From this analysis, we see that the type 1 fixed

point is simply the fixed point at the origin.

To perform a linear stability analysis, it is useful to reorder the transmitter equa-

tions so that the state variables in the reordered system can be represented by the

vector v' = (x, y, z, w, 1, v, u). With this reordering of the states, the Jacobian matrix

evaluated at the origin is given by

J(0) =

-a f 0 0 0 OT 0 0

r 1 -1 0 0 0 T 0 0

0 0 -(b - Dll) D12 C 0 0

0 0 D21 -(b 2 - D 22) C 2 0 0

0 0 B1 B 2 A 0 0

0 0 0 0 T 1 r 2

0 0 0 0 OT a -a
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The two columns of B are denoted by B1 and B 2, and the two rows of C are denoted

by C1 and C 2. The elements of the 2 x 2 matrix D are denoted by Dij, accordingly.

A convenient form for J(O) results by reordering the states. Specifically, the upper

2 x 2 block of J(O) corresponds to states in oscillator 1, whereas the lower 2 x 2 block

corresponds to states in oscillator 2. The central (N + 2) x (N + 2) block corresponds

to states from both oscillators and from the linear system. This block defines the

coupling between the two oscillators.

The block diagonal structure of J(O) makes it easy to determine a sufficient con-

dition for the instability of the origin. Evaluating the characteristic polynomial for

the upper 2 x 2 block we obtain

A2 +(a + 1) + a(1-r l ) = 0

Both eigenvalues are in the left-half plane for r < 1. For r > 1, one eigenvalue is

in the right-half plane and the origin is unstable. Similar statements hold true for

the lower 2 x 2 block. For r2 < 1, both eigenvalues are in the left-half plane whereas

one eigenvalue is in the right-half plane for r 2 > 1. If the central block of J(O) is

stable, then the stability of the origin is controlled by the modes of the upper and

lower 2 x 2 blocks. From this analysis, we see that the parameters r and r2 act as

bifurcation parameters because they affect the stability of the origin. We note that it

is straightforward to extend this analysis to arrays which contain K coupled Lorenz

oscillators.

Type 2 Fixed Points: (y* = 0, w* = r2- 1)

Type 2 fixed points arise by choosing y* = 0 and w* = r2-1 in equations (7.7) and

(7.8), respectively. Loosely speaking, these fixed points represent a "cross-product"

of the fixed point at the origin for oscillator 1 and the fixed point pair for oscillator

2.

To solve for the remaining components of these fixed points, we substitute y* = 0
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into equation 3 and w* = r2 - 1 into equation 7, and then solve for z* to obtain

/ H12 (0)
z* = (r2 - )b H1 (0) (7.11)

The scalars Hij(O) = -CiA-1 Bj + Dij in (7.11) correspond to the transfer function

between the jth input and ith output of the linear system evaluated at the origin.

Using equations 4 and 6, we can then solve for u* to obtain

u* = (r2-1) [b2 -(H 2 2 (0)+ 1 () ))] (7.12)

The remaining components x*, v*, and * are determined as

X* y*

V = U*,

1' =1* = -A - xB [ z*
r2 -

Focusing on equation (7.12), we see that type 2 fixed points exist as a symmetric

pair when the term under the radical is positive. This can occur when either:

( +H12(0)H21 (0)1. r2 > 1 and b2 > H22(0) + bH-H2(O);°r

2. r 2 < 1 and b2 < H 22 (0) + -H12 (0)H21(O)

The existence of type 2 fixed points is controlled by r 2 because b, b2, and the linear

system are assumed to be fixed. At the critical value of r 2 = 1, a bifurcation occurs

and a pair of type 2 fixed points are created. Previously, we showed that this same

critical value of r2 produced an unstable mode at the origin. The coincidence of the

birth of the fixed point pair with the loss of stability at the origin suggests that a

pitchfork bifurcation occurs when r 2 = 1. This type of behavior is reminiscent of

what occurs at the origin in the Lorenz system and the LFBCSs studied in Chapter

6. Now that we better understand the mechanism which creates the type 2 fixed

points, we turn our attention to examining their stability.
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Evaluating the Jacobian matrix at the state space location of the type 2 fixed

points we obtain

J(vO) =

-a (y

r* -1

0 0

0 0

0 0

0 0

0 0

0

0

-(bh- Dll)

D21

B 1

0'

0

0

0

D12

-(b2 - D2 2 )

B 2

::Fu*

0

oT

oT

C1

C2

A

oT

oT

0

0

0

0

-1

'

0

0

0

-0Iu*0
1C

where the scalar r* is given by

H12 (0)r* = r - (r2 - 1b n0

Inspection of J(v') suggests a simple condition which guarantees that these fixed

points are unstable. The upper 2 x 2 block is decoupled from the remaining states,

therefore, an unstable mode exists if r* > 1. From this analysis, we conclude that

type 2 fixed points are unstable if the inequality

r1 > H1+ (r- 1 2)b l -Hl(0) (7.13)

is satisfied. Note that this inequality defines a half-plane in (r 1 , r2) parameter space.

Type 3 Fixed Points: (v* = 0, z* = rl- 1)

Type 3 fixed points arise by choosing z* = r - 1 and v* = 0 in equations (7.7)

and (7.8), respectively. They are analogous to type 2 fixed points. For conciseness,

we present only the essential existence and stability results below.
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The stationarity equations determine w* as

w* = (r 1 )b - H2 () ' (7.14)

and subsequently x* can be determined as

H 2 (0) H21 (0)
x*= j(r -1) [b -(Hi (0) + Hi2(0)I21?))] (7.15)

Once these components have been obtained, the remaining components y*, u*, and l*

are determined as

y* = x*,

u* -v*'

1* = -A-1B1
W*

Focusing on equation (7.15), we see that type 3 fixed points exist as a symmetric

pair when the term under the radical is positive. This can occur when either:

1. r > and b > H11(0) + H12 (0)H 2 1 ()b2 -H 22(0) ;or

2. r < 1 and b < H, (O) + H12 (0)H 21(0)2-H 22 (0)

The existence of type 3 fixed points is controlled by r1 because bl, b2, and the linear

system are assumed to be fixed. At the critical value of r = 1, a bifurcation occurs

and a pair of type 3 fixed points are created. This behavior is similar to that which

occurs for type 2 fixed points and suggests that a pitchfork bifurcation takes place

when r = 1. As shown below, linear stability analysis of the type 3 fixed points

will define a half-plane in (r 1 ,r 2 ) parameter space for which these fixed points are

unstable.

Evaluating the Jacobian matrix at the state space location of the type 3 fixed
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points we obtain

J(vO) =

-(a

1

Ax*

0

0

0

0

o'

-1

x*

0

0

0

0

0

Fx*

-(b - Dil)

D21

B 1

0

0

0

0

D12

-(b2- D22)

B 2

0

0

oT 0

0 T 0

Cl 0

C2 0

A 0

oT _-1

oT a

0

0

0

0

0

-*

-a0

where the scalar r* is given by

r* = r - ( - )b H2 (0) 
b2-H 2 2(0)

Because the lower 2 x 2 block is decoupled from the remaining states, it is clear

that an unstable mode exists if r* > 1. From this analysis, we conclude that type 3

fixed points are unstable if the inequality

r 2 > I1+ (r-1) b2H 2 (0) (7.16)

is satisfied. This inequality also defines a half-plane in (rl, r 2) parameter space. One

might conjecture that the type 4 fixed points exist within the region of (r l , r2 ) pa-

rameter space for which both type 2 and type 3 fixed points are unstable. This turns

out to be the case as we now show below.

Type 4 Fixed Points: (z* = rl- 1, w* = r2- 1)

Type 4 fixed points arise by choosing z* = rl- 1 and w* = r2- 1 in equations

(7.7) and (7.8), respectively. They represent a generalization of the fixed point pair

for a single Lorenz oscillator. Conceptually, we can view these fixed points as a

"cross-product" of the fixed point pairs for each Lorenz oscillator.
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To solve for the remaining components of these fixed points, we need to consider

the existence of solutions to equation (7.9), which we reproduced below for conve-

nience.

Fx*2 E - Hi (O) -H 1 2 (0) iF 1 , (7.17)

u*2 -H 2 (0) b2 - H22(0) r 2 1 7

From (7.17), we see that type 4 fixed points exist as quadruplicates (because both

x* and u* appear quadratically on the left-hand side of (7.17)). As a result, these

fixed points will exist if the following two inequalities are satisfied.

(bl - Hll())(rl- 1) - H1 2(0)(r 2 - 1) > 0

-H2l(0)(r - 1) + (b2 - H2 2 (O))(r2 - 1) > 0

Solving these inequalities for r and r 2 we obtain

> h 1 H 12(0) (7.18)

2 1 + - )b-H 2 2(0) (7.19)b2-H2(0)

assuming that both b - H 11(O) > 0 and b2 - H 22(0) > 0. If it turns out that either

of these assumptions is incorrect, then the direction of the inequality signs ">" in

(7.18) and (7.19) will need to be appropriately reversed.

Inequalities (7.18) and (7.19) represent half-planes in (r 1 , r 2) space. In the region

where these half-planes overlap, four type 4 fixed points will exist. Comparing (7.18)

and (7.19) with the instability conditions for type 2 (inequality (7.13)) and type

3 (inequality (7.16)) fixed points shows an exact correspondence. Specifically, the

region in (r1 , r 2) parameter space for which type 4 fixed points exist is exactly the

same region for which the type 2 and type 3 fixed points are unstable.

The final step in our analysis of the fixed points is to examine the stability of

type 4 fixed points. This is most easily accomplished numerically by evaluating the

corresponding Jacobian matrix and computing the resulting eigenvalues. In typical
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cases, we observe that the type 4 fixed points are unstable for r and r 2 sufficiently

large. This comes as no surprise since all of the fixed points in the uncoupled Lorenz

oscillators lose stability for r > rHopf. We will demonstrate the behavior of a low-

order chaotic array numerically in the next section.

7.5 Numerical Example

For the purpose of demonstration, consider the following 7-dimensional transmitter

array.

x = o(y-x)

= rlx-y-xz

z = xy -blz v

u = o(v-u)

v = r 2 u-v-uw

w = uv-b 2w+v 2

i = -l+ -. 36 .97 Z

][ ][ ]WV1 ~ E.36 .87 -. 10 = l][+
-. 97 -. 10 .66 w

This array consists of two Lorenz oscillators and a one-dimensional linear system.

Following the synthesis procedure outlined in Section 7.3, we chose A = -1, Q = 2,

and randomly selected the elements of B and D from the normal distribution N(0, 1).

We then set C = -BT and verified that Ab- D is positive definite. For the numerical

experiments presented below, the Lorenz parameters a = 16, b1 = 4, and b2 = 4 are

fixed while the bifurcation parameters r and r 2 are varied.

In figure 7-2, we show the stability diagram for this system. The stability dia-

gram illustrates several regions in (r 1 , r2) parameter space where the chaotic array

exhibits qualitatively different behavior. For example, the line segments (p,q) and
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(p', q') correspond to the boundaries where an abrupt change in the stability of type

2 and type 3 fixed points occurs. These same line segments also correspond to the

boundaries where type 4 fixed points are either created or destroyed. The linear

stability analysis performed in Section 7.4 provides an exact mathematical represen-

tation of these boundaries (inequalities (7.18) and (7.19)). The shaded regions of the

stability diagram indicate where chaotic motion occurs. The array exhibits a single

positive Lyapunov exponent in the regions denoted "CHAOS," whereas two positive

Lyapunov exponents exist in the regions denoted "HYPERCHAOS."

To visualize the dependence of the Lyapunov exponents on r, we show in figure

7-3 the Lyapunov spectrum as r is varied over the range 20 < r < 80. The pa-

rameter r 2 in this experiment is held fixed-at the value r 2 = 60. For r > 33, two

positive exponents exist (hyperchaos region); one corresponds to oscillator 1 and the

other corresponds to oscillator 2. Several other important features of the Lyapunov

spectrum are listed below.

* An exponent equal to -1 is apparent. This exponent corresponds to the pole

of the linear system.

* Two large negative exponents are apparent. These exponents are due to the

highly dissipative nature of the chaotic array.

* Two zero exponents are apparent. These exponents correspond to motion tan-

gent to the flow.

For comparison purposes, the computed Lyapunov exponents for a single Lorenz

oscillator (dashed lines) are also shown in this figure. Comparing these exponents

with the corresponding exponents for the chaotic array suggests a close relationship

among them. When an individual Lorenz oscillator is linearly coupled to a second

Lorenz oscillator, the Lyapunov exponents show little change.

In figure 7-4, we show the computed Lyapunov dimension as r is varied over

the range 20 < r < 80. Note that there is an abrupt increase in the Lyapunov

dimension as the chaotic array enters the hyperchaotic region. As r is increased, the

Lyapunov dimension remains nearly constant at a value approximately equal to 5.06.
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Bifurcation Parameter, r1

.. ~ 9 Unstable Fixed Points, 1 Positive Lyapunov Exponent

_~ 9 Unstable Fixed Points, 2 Positive Lyapunov Exponents

[ \ 9 Fixed Points, 5 Unstable, 4 Stable

5 Fixed Points, 3 Unstable, 2 Stable

Figure 7-2: Stability Diagram for a 7-Dimensional Chaotic Array.
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5 I-- Hyperchaos Region-

0

- - - - Lorenz System

Chaotic Array
From Linear
System Pole

Coefficients
ca1 =16 b =4

2 = 16 b2 =4

r 2 60

2040608

20 40 60 80
Bifurcation Parameter, r1

Figure 7-3: Lyapunov Exponents for a 7-Dimensional Chaotic Array.

[ ~ ' Hyperchaos Region' 

DL - 5.06

Lorenz System

Chaotic Array

I…

I
I
I
II
I
I
I 

40

Coefficients

1 = 16 b1 = 4 

a 2 =16 b2 =4

r2 =60

DL- 2.06
, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

60
Bifurcation Parameter, rl

Figure 7-4: Lyapunov Dimension for a 7-Dimensional Chaotic Array.
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This relatively large value suggests that the two oscillators in the transmitter array

are not synchronized. A numerical calculation of mutual information [4] confirms

that the oscillators are operating nearly independent of each other. The Lyapunov

dimension of the chaotic array could be increased by adding additional states to the

linear system or by adding additional Lorenz oscillators. Using more oscillators has

the advantage of introducing additional positive Lyapunov exponents and significantly

increasing the complexity of the dynamics, although the implementation would also

be more complex.

In figure 7-5, we demonstrate that the transmitter and receiver arrays rapidly

synchronize when the receiver is driven by the transmitter signals x(t) and u(t).

The curve measures the distance in state space between the transmitter and receiver

trajectory when the receiver is initialized in the zero state. In an informal experiment,

the transmitter and receiver arrays did not synchronize when only one of the drive

links was established.

7.6 Summary

The development of a systematic procedure for synthesizing self-synchronizing chaotic

arrays may serve a useful purpose for future communication applications. The meth-

ods and results of this chapter, however, could have wider potential. Many physical

processes can be modeled by large groups of mutually coupled oscillators [8]. The

dynamics within a group can be very complex while the group as a whole can syn-

chronize with other similar groups. The Lorenz-based chaotic arrays investigated in

this chapter may lead to models useful for helping us to understand these processes.

Some conjectures and insights gained from this work are listed below.

* The individual Lorenz oscillators in a chaotic array seem to operate nearly

independent of each other. This conjecture is supported by the linear stability

analysis, the Lyapunov spectrum, and the Lyapunov dimension for a low-order

chaotic array.
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0 2 4 6 

Time (s)

Figure 7-5: Self-Synchronization in a 7-Dimensional Chaotic Array.

* It is possible for an array consisting of K Lorenz oscillators to exhibit K positive

Lyapunov exponents. This conjecture is based on limited numerical experiments

with low-order chaotic arrays.

* If communicating multiple drive signals is not an issue, then the recommended

approach for synthesizing a complex transmitter and receiver array is to use as

many Lorenz oscillators as possible and to couple them with a first-order linear

system. This will produce an array with the most complex dynamics for a given

state space dimension.

* If communicating multiple drive signals is a problem, then the dynamics of the

transmitter and receiver arrays can be made more complex by using a larger

linear system. In the single drive case, the chaotic array reduces to a z-input/z-
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output LFBCS.

* Hardware implementations of chaotic arrays should be straightforward because

of their modular structure.

We conclude this chapter by forming a more abstract view of the classes of chaotic

systems that we have considered so far. The LFBCSs introduced in Chapter 6 can

be viewed as a class of systems which have a linear system and a chaotic system

embedded within the same state space. The chaotic arrays developed in this chapter

are a generalization of this concept and allow for multiple chaotic systems to be

embedded within the system's state space. A further generalization of these concepts

would eliminate the necessity of the linear system and allow the chaotic system to

occupy the entire state space. In the next chapter, we examine this issue in detail

and develop a systematic procedure for synthesizing a more general class of self-

synchronizing chaotic systems.
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Chapter 8

Synthesizing a General Class of

Synchronizing Chaotic Systems

Linear feedback chaotic systems, as discussed in Chapter 6, use a single drive signal

for synchronization. The complexity of the dynamics, however, is limited because the

nonlinear system component is only three-dimensional. Chaotic arrays, as discussed

in Chapter 7, can exhibit more complex dynamics than LFBCSs but multiple drive

signals are required for synchronization. This chapter provides a third alternative: a

systematic synthesis procedure for chaotic systems that synchronize via a single drive

signal and exhibit more complex dynamics than LFBCSs, although somewhat less

than chaotic arrays [44].

To develop this new synthesis capability, we begin with a general class of nonlinear

systems. For both practical and theoretical simplicity, we will limit consideration to

nonlinear systems that can be represented by a set of first-order ordinary differen-

tial equations having a quadratic vector field defined on RN. While this limitation

makes the problem more amenable to analysis, it also has the practical advantage

of restricting the class of nonlinear systems to those which are relatively easy to

implement. Systems having a quadratic term in the vector field can be realized us-

ing a single analog multiplier, whereas a cubic or higher-order term would require

additional components.
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CHAOTIC
TRANSMITTER

Xl (t) x1 (t) (Drive Signal)

X2 (t)

0N (t)
XN t

SYNCHRONIZING
RECEIVER

Xlr(t) XI (t)

X2r(t) X2 (t)

*r xN (t 0
*~ 0 N 

Figure 8-1: Communicating with a General Class of Synchronizing Chaotic Systems.

A general nonlinear system with a quadratic vector field is given by

: = Ax + (xTQ1x, ... , XTQNX) (8.1)

The vector x denotes the N states (x1 , ..., XN), the A matrix is N x N, and the Q,

for i = 1, ...,N, are symmetric N x N matrices. Equation (8.1) will be interpreted

as the transmitter system that communicates with the self-synchronizing receiver(s)

through the drive signal x 1 (t). Figure 8-1 illustrates the approach.

Although our previous synthesis procedures are specific to the Lorenz system, the

methodology used in their development is clearly broader. Our approach to synthesis

has consistently followed the three step process listed below.

- Determine conditions for the global self-synchronization of the transmitter and

receiver systems.

- Determine conditions for the global stability of the transmitter.

- Determine conditions which ensure that the transmitter's fixed points are un-

stable.

For the classes of chaotic systems considered in Chapters 6 and 7, these steps could

be performed in any order. Performing them in the order indicated will, however,

considerably simplify our subsequent development of a more general synthesis proce-

dure.
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In Section 8.1, we develop sufficient conditions for the transmitter and receiver

systems to possess the global self-synchronization property. In Section 8.2, we develop

additional conditions to guarantee that the transmitter is globally stable. In Section

8.3, we summarize these conditions and suggest a systematic synthesis procedure.

In Section 8.4, we suggest a numerical procedure for studying the stability of the

fixed points for this class of systems. In Section 8.5, we demonstrate the synthesis

procedure with several numerical examples. In Section 8.6, the results of this chapter

are summarized.

8.1 Conditions for Global Self-Synchronization

In our subsequent analysis, we express the transmitter equations (8.1) in the form

x = Aox + a x1 + (xTQix, XTQ x, ... , XTQX) + 2A1xlx + s°x2 . (8.2)

This form results by decomposing the A matrix into A = A 0 + a°elT, where

all

0

0

a1 2

a2 2

aN2

... alN

... a2N

... aNN

*-- a.NN

a0 =

0

a21

aNl

el =

1

0

L0

Also, the matrices Qi, for i = 2, ... , N, have been decomposed into

Qi = Qi + qe + el q + eeq

where

0 0

o q22

0 q)N2

0

· (i)
... q2N

q(i).. NN

I q =

0

q(i)
q2l

qWl

(i)q = l -
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For notational simplicity, the vectors q, for i = 2, ... , N are collected in the matrix

Al = [0, q0, ..., qO]T and the scalars qi, for i = 2, ... , N, are collected in the vector

so = (0, q2, .. ., qN). -

The transmitter equations have a total of N 2 (N + 1)/2 free parameters corre-

sponding to the nonlinear terms. If these parameters were selected at random, it is

unlikely that the resulting system would possess the self-synchronization property. As

we show below, by requiring that a globally self-synchronizing receiver exists, many

of the free parameters in the transmitter equations will vanish. Also, a significant

analytical simplification is obtained by requiring the transmitter/receiver error dy-

namics to be linear.

Requirement 1 The transmitter equations must allow for the existence of a single-

input globally self-synchronizing receiver. Moreover, the error dynamics between the

transmitter and receiver must be linear.

By renaming variables in the transmitter (8.2) from x - xr, an appropriate

receiver system can be defined as

xCr = Aoxr + a0 x1 + (XTQIXr, xTQ1xr, ... XTQ Xr) + 2AllXr + S0X (8.3)X r 2 Xr, .N -

Sufficient conditions for the synchronization of the transmitter (8.2) and receiver

(8.3) can be determined by forming the error system. The error system is obtained

by defining e = x - xr and subtracting (8.3) from (8.2) to obtain

e = (Ao +2Aixl)e+

xTQlx - XTQlXr

XT Q 2 -X rTQ2Xr

x T QNx -r QNr
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If we now make the substitution xr = x - e, we obtain

e = (Ao + 2Aixl)e+

x T (Ql + QT)e - e T QIe

x T (Q. + QqT)e - e T Q e

x T (QN + QT)e - eT Q'Ne

Observe that for linear error dynamics, the matrices Q1 and Q', for i = 2,...N, must

be skew-symmetric. Since these matrices are also symmetric by definition, they must

be identically zero for linear error dynamics.

Under these requirements, equation (8.4) reduces to

e = (A0 + 2A 1xl)e . (8.5)

Equation (8.5) is linear in e, but has a time-dependent coefficient x1(t). A sufficient

condition for this system to be globally asymptotically stable at the origin can be

obtained by considering a Lyapunov function of the form

E(e) = eTRe
2

where R is a symmetric N x N positive definite matrix. The time rate of change of

E(e) along trajectories is given by

E(e) = eT (RA + A R) e + xieT(RA + ATR)e
2

Observe that E is negative definite if the following two conditions are satisfied.

* RA 1 =-ATR.

* RAo + AT R is negative definite.

Because the first row and column of A1 is the zero vector, the first condition can be

satisfied by choosing R to be a diagonal matrix of the form R = diag(p, 1, ... , l),p >

0, and restricting Al to be skew-symmetric. This restriction results in a further
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reduction in the number of free parameters in the transmitter equations. The second

condition can be satisfied by choosing a stable matrix A0 such that RAo + AoTR is

negative definite.

8.2 Conditions for Global Stability

Requirement 1 reduces the transmitter equations to the form

x = A 0x + a°xl + 2Alx l x + s0x 2 (8.6)

By requiring the transmitter to be globally stable, further constraints on the algebraic

structure of the transmitter can be obtained.

Requirement 2 All trajectories of the transmitter equations must remain bounded

fort > O.

A sufficient condition for which all trajectories of (8.6) remain bounded can be deter-

mined by defining a family of ellipsoids

V(x) = (x - c)TP(x - c) = k , (8.7)
2

where P is a symmetric N x N positive definite matrix, c is a vector which defines the

center of the ellipsoids, and k is a positive scalar. As we show below, for k sufficiently

large, V(x) will determine a trapping region for the N-dimensional flow.

If we restrict PA1 to be skew-symmetric, then V(x) can be written in the form

V(x) = (x- 1)T (PAO + AP) (x -1) _ 1T(PAO + ATP)l +
2 2

xT [(Pao - 2AfPc)x1 + PsOx2] - cT(PaOx, + Psx2)
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where the vector 1 is given by

1 = (PAo + ATP)-'AoTpc

Sufficient conditions for V = 0 to define an ellipsoid in state space are given below.

* PA1 = -A P.

* PAo + A P is negative definite.

sO = O.

a =-2Alc.

The first condition is simply the skew-symmetry restriction on PA1 . The second

condition can be satisfied by choosing a stable matrix A0 such that PAo + ATP is

negative definite. Note that the first two conditions are consistent with the self-

synchronization conditions. The third condition excludes the quadratic drive term,

x2(t), from the transmitter/receiver equations and reduces the number of free param-

eters which correspond to nonlinear terms to only (N- 1)(N- 2)/2. The fourth

condition uniquely determines a ° in terms of Al and c.

If these conditions are satisfied, then V' = 0 reduces to

(x- )T(PAo + AgTP)(x- l) 
1TPA TAp)1l - 1 (8.8)1T(PAo + AoP)l

Because PAo + Ao TP is restricted to be negative definite, equation (8.8) defines an

ellipsoid in state space. Since V < 0 for all x outside of the ellipsoid (8.8), any

ellipsoid from the family (8.7) which contains (8.8) will suffice as a trapping region

for the N-dimensional flow.

It is also important to determine the conditions which ensure that the transmitter

equations (8.6) are dissipative. The divergence of the vector field corresponding to

(8.6) is given by

V .x = tr(A) + 2xtr(Al)
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The condition tr(Al) = 0 ensures that (8.6) has a constant divergence. The condition

tr(A) < 0, together with tr(A1 ) = 0, ensures that (8.6) is dissipative with a constant

negative divergence. This implies that all volume elements in the transmitter's state

space will go to zero exponentially fast at every point in RN. The practical signifi-

cance of this property motivates us to add a constant negative divergence requirement.

Requirement 3 The transmitter equations must have a constant negative diver-

gence.

As discussed above, this requirement is satisfied if

* tr(Al) = 0,

* tr(A) < 0.

In the next section, we summarize the various self-synchronization and global

stability conditions and suggest a straightforward synthesis procedure.

8.3 A Systematic Synthesis Procedure

In Sections 8.1 and 8.2, we determined sufficient conditions on the algebraic structure

of an N-dimensional nonlinear system to ensure that Requirements 1 through 3 are

satisfied. These conditions prohibit nonlinearities in the drive equation and require

that all remaining nonlinearities consist of cross product terms which include the

drive variable. The resulting transmitter can be conveniently expressed as

x = (A + 2Alxl)x , (8.9)

and the self-synchronizing receiver can be expressed as

x = (Ao + 2Aixl)xr + a°l. (8.10)
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Furthermore, if the conditions:

Self-Synchronization

Global Stability

Constant Negative Divergence

{
1.

2.

3.

4.

5.

6.

7.

RA = -ATR, for some N x N positive

definite matrix R,

RAo + AoTR is negative definite,

PA = -ATP, for some N x N positive

definite matrix P,

PAo + AoTP is negative definite,

a° = -2Alc,

tr(Al) = 0,

tr(A) < 0,

are satisfied, then the transmitter equations are dissipative and globally stable, and

the receiver system will possess the global self-synchronization property. Although

satisfying each of these conditions may seem difficult, the conditions can be signifi-

cantly reduced by making two simplifying assumptions.

If we choose P = cR, where c is a positive scalar, then conditions 1 and 3 and

conditions 2 and 4 are equivalent. Furthermore, if we choose R = diag(p, 1...,),

where p is a positive scalar, then condition 1 implies that A is skew-symmetric

and condition 2 implies that A is stable. In this case, conditions 6 and 7 will

be automatically satisfied. In light of these simplifications, the following synthesis

procedure is suggested.

Synthesis Procedure

1. Choose R = diag(p, 1,...,1),p > 0, and set P = cR, c > O.

2. Choose A 1 to be skew-symmetric, where the first row and column of A 1 is the

zero vector.

3. Choose any stable A 0 such that RAo + ATR is negative definite.

4. Choose the vector c arbitrarily and set a = -2A 1c.
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With A = Ao + a°eT, the transmitter and receiver equations are given by (8.9) and

(8.10), respectively.

The stability of the equilibrium points should also be addressed. All of the trans-

mitter's fixed points must be unstable to ensure non-trivial motion. In the next

section, linear stability analysis suggests a numerical procedure for studying the sta-

bility of the transmitter's fixed points.

8.4 Linear Stability Analysis

Linearizing the vector field of (8.9) about the fixed point xo we obtain

x _ (A + 2Alxlo)xo + J(xo)(x- xo) , (8.11)

where the Jacobian matrix, J(xo), is given by

J(xo) = A + 2Ai(xoI + x0e) . (8.12)

While an analytical determination of the fixed points may not be possible, equation

(8.11) provides an approach for determining them numerically, e.g., by applying the

Newton-Raphson iteration

xn+l = x - J(xo)-l(A + 2Alxlo)xo (8.13)
0 --

In practice, convergence to the fixed points is usually rapid. A large number of initial

conditions should be tested, however, to ensure that all of the fixed points have been

found. Once found, their stability is determined from the eigenvalues of J(xo). For

example, the origin of (8.9) is always a fixed point and, from (8.12), we observe that

the origin's stability is determined by the eigenvalues of A. This provides a simple

condition on the eigenvalues of A to ensure that the origin is unstable. The origin of

the transmitter equations (8.9) is unstable if A is an unstable matrix.

If any of the remaining fixed points are stable, we must adjust the free parameters
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in the transmitter equations and observe whether chaotic motion occurs. Fortunately,

there is a simple way to vary the transmitter parameters without violating any of the

self-synchronization and global stability conditions. We observe that by writing J(xo)

in the form

J(xo) = Ao + a ° eT + 2A,(xoI + xoe ) ,

and fixing Ao and A 1, the eigenvalues of J(xo) can be affected by varying a ° . Since

a° = -2A 1 c, we can adjust a° by varying the c vector. In typical cases, we have

observed numerically that by increasing the magnitude of c all of the fixed points

eventually become unstable. Since the trajectories are bounded, either limit cycles

or chaotic motion will result. Furthermore, invariant tori are not possible because

of the constant negative divergence requirement. Using specific examples, we will

demonstrate this behavior numerically in the next section.

8.5 Numerical Examples

For our first example, we will utilize the synthesis procedure to obtain the Lorenz

equations, simultaneously demonstrating that the Lorenz system is only one mem-

ber of a general class of three-dimensional chaotic systems which possess the self-

synchronization property. Subsequent examples will demonstrate the synthesis of

higher dimensional chaotic systems.

8.5.1 The Lorenz System

To begin, we must choose the state space dimension N, define R = diag(p, 1, ..., 1),p >

0, and select an appropriate A 1. There are exactly (N- 1)(N-2)/2 independent free

parameters in Al, reducing to one free parameter for a three-dimensional system.

To illustrate that the Lorenz system is consistent with the synthesis procedure,
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we choose N = 3, R = diag(l/c, 1, 1), and Al as

0

Al = 0

0

Note that Al is skew-symmetric and that

stable matrix Ao such that RAo + Ao TR is

an appropriate choice is

-a

0

0

RA = -ATR. Next, we must choose a

negative definite. For the Lorenz system,

a 0

-1 0 

o -b

where o, b > 0. Clearly A0 is a stable matrix, and it is straightforward to verify that

RAo + Ao'R is negative definite. Finally, we choose the c vector as

0

C = r 0

1

which determines the center of the ellipsoidal trapping region in state space.

We now have enough information to fully specify the transmitter equations. The

vector a ° = -2A1 c is given by

0

0
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The linear coefficient matrix A = Ao + a°eT is given by

-0* U0

A = r -1 0

0 0 -b

The transmitter equations are then written as a set of first-order differential equations

X1 = U(X2-X1)

X2 = rX -X 2 -XlX 3

x3 = X1X2 - bx 3 ,

which is, of course, the well-known Lorenz system. Choosing different parameters in

the synthesis procedure leads to other three-dimensional, non-Lorenz systems. In our

next example, we focus on synthesizing a four-dimensional chaotic system.

8.5.2 A Four-Dimensional Synchronizing Chaotic System

In four dimensions, the matrix Al contains three free parameters. These parameters

may be chosen arbitrarily; suppose that we choose A as

0 0

0 0

o 1/2

0 1/2

0

-1/2

0o

-1/2

0

-1/2

1/2

0

To be consistent with the Lorenz example, Ao is chosen as

-16

0

0

0

16

-1

0

0

0

0

-4

0

0

0

0

-1
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These choices satisfy the synthesis conditions for R = diag(1/16, 1, 1, 1). Finally, the

vector c is chosen as

C = r

0

0

.25

1

where r is treated as a bifurcation parameter. The vector a ° = -2A 1 c is given by

a0
= r

0

1.25

-1

.25

and the linear coefficient matrix A = AO + a°eT is given by

A

0 0

1.25r -1 0 0

-r 0 -b 0

.25r 0 0 -1

The transmitter equations are then written as a set of first-order differential equations

X = 16(x 2 - x1 )

X2 = 1.25rxl - x2 -xlx 3 -xlx 4

x3 = -rx -4x 3 + xIx2 + x 1x 4

x4 = .25rxl - X4 + X1X2 - X1X3 

The nonlinear dynamical behavior of this system is demonstrated in the numerical

experiments below.

In figure 8-2, we show the computed Lyapunov exponents for this system as r is
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Figure 8-2: Lyapunov Exponents for a 4-Dimensional Chaotic System.

varied over the range 20 < r < 100. The onset of chaotic behavior occurs near r = 42,

as evidenced by the existence of a positive Lyapunov exponent. Also, two negative

exponents are apparent as well as the zero exponent. For comparison purposes, the

computed Lyapunov exponents for the Lorenz system are also shown (dashed lines).

In figure 8-3, we show the computed Lyapunov dimension as r is varied over the

same range. Note that the Lyapunov dimension increases significantly as r increases.

This is in contrast to the Lorenz system, where the attractor dimension is approxi-

mately constant at a value near 2.06.

In figure 8-4, we show various projections of the chaotic attractor correspond-

ing to r = 60. The (x 1 ,x 2) projection is similar to the Lorenz attractor as is the

(x 1 ,x3) projection except, in the latter, one of the "wings" is twisted. The remaining

projections illustrate the complicated topology of the chaotic attractor.

The self-synchronizing receiver equations are given by
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Figure 8-3: Lyapunov Dimension for a 4-Dimensional Chaotic System.

Xlr = 16(x2r - Xir)

X2r = 1.25rxl(t) - X2r -Xl(t)X3r - Xl(t)X4r

X3r = -rxl(t) - 4X3r + X l(t)x 2r + xl(t)x4r

X4 = .25rx1 (t) -X4r + X1 (t) X2r - X (t)X3r

In figure 8-5, we illustrate the rapid synchronization between the transmitter and

receiver systems. Synchronization is maintained indefinitely, as expected.

8.5.3 A Five-Dimensional Synchronizing Chaotic System

To further emphasize the simplicity and generality of the synthesis procedure, we

demonstrate the design of a 5-dimensional chaotic system by starting with the matrix
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Figure 8-5: Self-Synchronization in a 4-Dimensional Chaotic System.

A 1 given by

0 0 0 0 0

0 0 -. 56 -. 91 .36

0 .56 0 .36 .87

.91 -. 36

-. 36 -. 87

0 -. 23

.23 0
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In this case, the six free parameters of Al were selected at random from the normal

distribution N(0, 1). Next, we choose the stable matrix A as

-16

0

0

0

0

16

-1

0

0

0

3.66

.06

-4

0

0

0

-. 80

-1.07

-1

0

0

0

1.55

.38

-1

Note that randomly selected elements have been placed above the main diagonal of

A 0. It is straightforward to verify that these choices satisfy the synthesis conditions

for R = diag(1/16, 1, 1,1, 1). Finally, we choose the c vector as

c = r

0

0

.04

.58

-. 82

where r is treated as a bifurcation parameter. The vector a ° = -2Alc is given by

a° = r

0

1.68

1.00

-. 35

-. 20
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and the linear coefficient matrix A = Ao + a°e T is given by

-16 16 3.66 0 0

1.68r -1 .06 -. 08 0

1.00r 0 -4 -1.07 1.55

-. 35r 0 0 -1 .38

-. 20r 0 0 0 -1

The transmitter equations are fully determined, and are of the form x = (A+2A1xl)x.

As an illustration of the nonlinear dynamical behavior exhibited by the transmitter

equations, we show in figure 8-6 the computed Lyapunov exponents as r is varied over

the range 20 < r < 100. Several notable features of figure 8-6 are listed below.

* As r increases, all of the fixed points eventually lose stability and the motion is

confined to stable limit cycles.

* The limit cycles lose stability near r = 70 and a chaotic attractor appears, as

evidenced by the existence of a positive Lyapunov exponent.

* Three negative exponents are evident in the chaotic region.

In figure 8-7, we show the Lyapunov dimension as r is varied over the same range.

This figure clearly shows the presence of the limit cycle region (DL = 1). After a

sequence of bifurcations takes place, the Lyapunov dimension increases sharply as r

enters the chaotic region.

In figure 8-8, we show various projections of the chaotic attractor corresponding

to r = 90. These projections clearly illustrate the extremely complicated topology of

the chaotic attractor.

In figure 8-9, we demonstrate that synchronization takes place between the trans-

mitter and receiver systems. Synchronization is rapid and is maintained indefinitely.

It should be emphasized that it is also straightforward to synthesize significantly

higher dimensional systems. The relatively low-order designs were chosen to illustrate

the synthesis approach, rather than to suggest limitations.
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Figure 8-6: Lyapunov Exponents for a 5-Dimensional Chaotic System.
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Figure 8-7: Lyapunov Dimension for a 5-Dimensional Chaotic System.
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Figure 8-9: Self-Synchronization in a 5-Dimensional Chaotic System.

8.6 Summary

In this chapter, a methodology was developed for synthesizing a general class of

chaotic systems that possess the self-synchronization property. Some insights gained

from this work are listed below.

* The transmitter equations for chaotic systems of this class have the canonical

form representation xc = (A + 2Alxl)x, while the self-synchronizing receiver

equations have the representation ic = (A 0 + 2Alxl)xr + a°x1 . For any appro-

priate choice of A 0, A 1 , and a ° , as specified by the synthesis procedure (Section

8.3), the transmitter equations are dissipative and globally stable, and the re-

ceiver system will possess the global self-synchironization property. We showed

that the Lorenz system is a member of this more general class of nonlinear
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systems.

* While the chaotic behavior exhibited by this class of systems can be very com-

plex, only a single positive Lyapunov exponent has been observed. An interest-

ing future experiment would be to explore the possibility of utilizing the syn-

thesis procedure to obtain a set of transmitter equations which exhibit multiple

positive Lyapunov exponents. If this is possible, then it follows that hyper-

chaotic self-synchronization can be achieved when the receiver is driven by only

one transmitter component.

* LFBCSs (Chapter 6) form a subset of the class of chaotic systems considered in

this chapter. They can be obtained from the synthesis procedure (Section 8.3)

by appropriate choices of A 0, A 1, and c.

* Chaotic arrays (Chapter 7), which contain multiple Lorenz oscillators, do not

form a subset of the class of chaotic systems considered in this chapter. This

follows from the observation that the cross product terms in a chaotic array do

not correspond to a single drive variable.

The various synthesis techniques developed in Chapters 6-8 have demonstrated

that Lyapunov's direct method provides a general mathematical framework for syn-

thesizing dissipative chaotic systems which possess the self-synchronization property.

The flexibility afforded by the various synthesis techniques increases the applicability

of synchronized chaotic systems for communications and signal processing.

Having investigated the synthesis problem in some detail, we now turn our atten-

tion to the important practical issues associated with implementing a self-synchronizing

chaotic system for use in communication applications. In Chapter 9, we discuss the

design and implementation of transmitter and receiver circuits that have dynamics

governed by the Lorenz system. The Lorenz system is chosen for simplicity; it repre-

sents a low-dimensional chaotic system from the general class x = (A + 2Aixl)x. We

also develop and demonstrate two potential approaches to private communications

using the Lorenz-based chaotic circuits.
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Chapter 9

Applications of Self-Synchronizing

Chaotic Systems

In Chapters 4 and 5, we showed that synchronization in the Lorenz system is robust to

wideband perturbation of the drive signal. Chapter 5 also showed that, theoretically, a

low-level speech signal could be added to the synchronizing drive signal and accurately

recovered at the receiver. These results were based on an analysis of the exact Lorenz

transmitter and receiver equations.

It is also important to show that a system which exploits the robustness and

signal recovery properties can be implemented in practice. When implementing syn-

chronized chaotic systems in hardware, the limitations of available circuit components

result in approximations of the defining equations. The resulting system performance

needs to be re-evaluated to assess any hardware-induced effects or limitations and to

ensure that the system is performing within the desired specifications. The purpose

of this chapter is to address these applied aspects of synchronized chaotic systems.

In Section 9.1, we implement the Lorenz transmitter and receiver equations with

analog circuits. The resulting system performance is assessed. In Section 9.2, we

exploit the signal recovery property of the Lorenz system for private communica-

tions. Specifically, the Lorenz circuits are used to demonstrate that an actual speech

waveform can be privately communicated and recovered with the self-synchronizing

receiver circuit. In Section 9.3, we develop an alternative communication approach in-
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volving the ability to privately communicate and recover signals that are represented

by binary-valued bit streams. The chapter is summarized in Section 9.4.

9.1 Lorenz-Based Circuit Implementations

9.1.1 The Transmitter Circuit

It is well-known that the state variables of the Lorenz system vary widely in amplitude,

with values that exceed reasonable power supply limits. To eliminate this problem,

we define a transformation of variables as u = x/10, v = y/10, and w = z/20. With

this scaling, the Lorenz equations are transformed to

u = (v-u)

v = ru - v-20uw (9.1)

w = 5uv-bw .

This system, which we refer to as the circuit equations, can be readily implemented

with an analog circuit; the state variables all have similar dynamic range and circuit

voltages remain well within the range of typical power supply limits.

In our notation for the circuit equations, we have established the convention that

it, , and wb denote du/d-, dv/dT, and dw/dr respectively where r = t/T is normalized

time and T is a time scale factor. This convention provides the flexibility for adjusting

the time scale of the signals. It is also convenient to define the normalized frequency

w = QT, where Q denotes the angular frequency in units of rad/s.

An analog circuit implementation of (9.1) is shown in figure 9-1. The operational

amplifiers (1-8) and associated circuitry perform the operations of addition, subtrac-

tion, and integration. Analog multipliers implement the nonlinear terms in the circuit

equations. A set of state equations which govern the dynamical behavior of the circuit
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Figure 9-1: Lorenz-Based Chaotic Circuit.

is given by

du/dt = R5C1 [R - R2 +R3 (1 R

/vldt = I [ Rlo+ (1 + R + R) (1 + 7) U R2V RUW] (9.2(
R1 5C2 R1 R1I +RU - R8 au (9.2)

dw/dt =R 2 C 1 [R1uv (1 +1 _ )W ]
--0C3 Rzo Rl7+Rls R16

The circuit time scale can be adjusted by changing the values of the three capacitors,

C1, C 2, and C 3, by a common factor. If a factor of B increase in signal bandwidth

is desired, then it can be achieved by dividing the three capacitor values by the

same factor. In addition, the parameters a, r, and b can be independently varied by

adjusting the corresponding resistors R 5, R 11, and R 18 . For the component values

we have chosen (Appendix B), equation (9.2) closely approximates equation (9.1)

after rescaling time by a factor of T = 400 psec. The resulting parameters are

a = 16, r = 45.6, and b = 4.

To illustrate the chaotic behavior of the transmitter circuit, an analog-to-digital

(A/D) data recording system is used to sample the appropriate circuit outputs at a
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48 kHz rate and with 16-bit resolution. In figure 9-2(a) and (b), we show a sample

function and averaged power spectrum for the circuit waveform u(t). Similarly, fig-

ure 9-2(c) and (d) show a sample function of v(t) and its averaged power spectrum.

The power spectra are broadband, which is typical of chaotic signals. Figures 9-2(b)

and (d) also show the corresponding power spectra from a numerical simulation of

the Lorenz equations. As we see, the performance of the circuit and the simulation

are consistent.

In figure 9-3(a) and (b), we show the circuit's chaotic attractor projected onto the

uv-plane and uw-plane, respectively. This data is obtained from the circuit using the

stereo recording capability of the A/D system to simultaneously sample the x-axis

and y-axis signals at a 48 kHz rate and with 16-bit resolution. The circuit's chaotic

attractor is consistent with numerical simulations.

In figure 9-4(a), we show the autocorrelation functions Ru(T) and RVV(T-) corre-

sponding to the circuit waveforms u(t) and v(t), respectively. The autocorrelation

functions are sharply peaked, as expected, by the broadband nature of the chaotic

waveforms. The low-level oscillations in Ru,(7) and RV(r) reflect the oscillatory be-

havior of trajectories on the Lorenz attractor. On average, it takes approximately .15

mnsec for a typical trajectory to make a full rotation around one of the wings of the

circuit's chaotic attractor. This average time period is consistent with the time period

of the oscillations in RU(7) and R,(r). In figure 9-4(b) and (c), we show histograms

for the waveforms u(t) and v(t), respectively. Under certain ergodicity assumptions,

the histograms can be interpreted as probability densities. In this context, the den-

sities represent the steady-state probabilistic behavior of the circuit waveforms. The

densities appear to be unimodal and approximately Gaussian, as indicated by the

dashed curve overlays.

In figure 9-5, we show a Poincark section of the chaotic flow (generated from the

circuit data). The Poincar6 section is defined by w = (r- 1)/20 and corresponds to a

plane which is oriented with its normal parallel to the w-axis. The curves identify the

points of intersection of the Poincar6 section with the flow on the chaotic attractor.
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Figure 9-2: Circuit Data: (a) A sample function of u(t). (b) Averaged power spectrum
of u(t). (c) A sample function of v(t). (d) Averaged power spectrum of v(t).
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Figure 9-3: Circuit Data: (a) Chaotic attractor projected onto uv-plane. (b) Chaotic
attractor projected onto uw-plane.

The shape and orientation of the curves imply that the flow is not on a planar surface.

This is to be expected since the Lorenz attractor is not a simple geometric object.

As a further demonstration of the transmitter circuit, consider the first return map

shown in figure 9-6. Because of the highly dissipative nature of the Lorenz system,

the dynamics can be described by a one-dimensional map of the form Wk+l = f(Wk).

This mapping maintains the essential properties of the chaotic flow and is defined by

graphing the successive maxima of w(t). Since the slope of the curve Wk+1 = f(Wk)

is always greater than unity in magnitude, chaotic behavior will result for any initial

value W 0 .

These circuit experiments illustrate that the performance of the transmitter cir-

cuit is consistent with numerical simulations of the Lorenz equations. The hardware-

induced effects appear to be minimal. In the next section, the Lorenz receiver equa-

tions are implemented with a similar analog circuit.

9.1.2 The Receiver Circuit

The receiver circuit equations are obtained from (9.1) by renaming variables from

(u, v, w) to (u,, vr, wr) and then substituting u(t) for ur(t) in the second and third
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Figure 9-7: Self-Synchronizing Receiver Circuit.

equations. The resulting receiver system is given by

itr = o(vr- Ur)

r, = ru(t) - v, - 20u(t)w, (9.3)

Wr = 5u(t)v, - bw,

The transmitter and receiver circuit equations will synchronize regardless of the initial

conditions, provided that , b > 0 (see [31, 32] for an analytical proof).

An analog circuit implementation of the receiver equations (9.3) is shown in figure

9-7. Comparing the receiver circuit with the transmitter circuit (figure 9-1) shows that

they are virtually identical. The only difference is that the drive signal u(t) replaces

the receiver signal ur(t) at a key point in the circuit. The practical advantage of

this similarity is that the transmitter and receiver circuits are duplicates, which helps

them achieve perfect synchronization.

To illustrate the synchronization performance of the receiver circuit, the appro-

priate transmitter and receiver signals were simultaneously recorded using the stereo

recording capability of the A/D system. In figure 9-8(a), a plot of the actual circuit
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Figure 9-8: Circuit Data: Synchronization of transmitter and receiver signals.

outputs u(t) vs. u(t) is shown. Figure 9-8(b) shows a similar plot for the circuit out-

puts v(t) and vr(t). The 45-degree lines indicate that nearly perfect synchronization

is achieved and maintained between the transmitter and receiver. The circuit out-

puts shown in figure 9-8 reflect a time span of several minutes, indicating considerable

stability of the synchronization.

The ability to accurately implement the Lorenz transmitter and receiver equations

with simple analog circuits demonstrates the practicality of the Lorenz system. We

next address the possibility of utilizing these circuits for practical applications.

9.2 Chaotic Signal Masking and Recovery

In Chapter 5, it was shown that a low-level speech signal could be added to the

synchronizing drive signal and accurately recovered at the receiver by subtracting the

receiver's regenerated drive signal from the received signal. In the context of private

communications, we refer to this concept as chaotic signal masking and recovery

[9, 10, 30, 31, 32, 33, 34, 45]. This section discusses and demonstrates this concept

using the Lorenz circuits.

In Section 9.2.1, we discuss chaotic signal masking and recovery in the context
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Figure 9-9: Chaotic Signal Masking and Recovery System.

of private communications. In Section 9.2.2, we demonstrate this concept using the

Lorenz circuits and evaluate the circuit's performance. In Section 9.2.3, we propose

the use of an extended Kalman filter for improving the quality of the recovered mes-

sage.

9.2.1 Concept

In figure 9-9, we illustrate a communication system that is based on chaotic signal

masking and recovery. In this figure, a chaotic masking signal u(t) is added to the

information-bearing signal p(t) at the transmitter, and at the receiver the masking is

removed. For transmission privacy, we assume that, for all frequencies, the spectral

density of p(t) is significantly less than the spectral density of u(t). The basic idea is

to use the received signal,

s(t) = u(t) +p(t)

at the receiver to recover p(t).

By subtracting the regenerated drive signal ur(t) from the received signal s(t), the

recovered message is

PI(t) = s(t) - Ur(t) = p(t) + [u(t) -u (t)]

In this context, e(t), the error between u(t) and ur(t), corresponds directly to the
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Figure 9-10: Circuit Data: Power spectra of u(t) and p(t) when the perturbation is a
speech signal.

error in the recovered message. In Chapter 5, we showed that although e(t) is not

small compared to the message, the message can be recovered because e(t) is nearly

coherent with the message at low frequencies. In the next section, we demonstrate

this effect and the ability to recover the message with the Lorenz receiver circuit.

9.2.2 Circuit Experiment

In this experiment, p(t) is a low-level speech signal (the message to be transmitted

and recovered). The normalizing time parameter is 400 tusec and the speech signal

is bandlimited to 4 kHz or, equivalently, to a normalized frequency w of 10. Figure

9-10 shows the power spectrum of a representative speech signal and of the circuit

waveform u(t). The overall chaos-to-perturbation ratio (CPR) in this experiment is

approximately 20 dB.

In figure 9-11, we show the power spectrum of p(t) and P(t), where P3(t) is obtained

from both a simulation and from the circuit. The two spectra for P3(t) are in excel-

lent agreement, indicating that the circuit performs very well. Because P(t) includes

considerable energy beyond the bandwidth of the speech, the speech recovery can be

improved by lowpass filtering P3(t). We denote the lowpass filtered version of P(t) by

pf(t). In figure 9-12(a) and (b), we show a comparison of P3f(t) from both a simulation

196

�___



20

0

-20

-40

-60
0 5 10

Normalized Frequency (o)

Figure 9-11: Circuit Data: Power spectra of p(t) and P(t) when the perturbation is a
speech signal.

and from the circuit, respectively. Clearly, the circuit performs well and, in informal

listening tests, the recovered message is of reasonable quality.

Although f (t) is of reasonable quality, the low frequency components of the

synchronization error cannot be completely removed by lowpass filtering. In the next

section, we propose the use of an extended Kalman filter for "on-line" processing of

P(t); in principle, this can compensate for the message recovery errors, thus improving

the quality of the recovered message. Conceptually, the Kalman filter replaces the

lowpass filter in figure 9-9 with a more sophisticated algorithm.

9.2.3 Model-Based Signal Recovery

The proposed Kalman filtering approach to signal recovery is statistical and model-

based, since it relies on knowledge of an appropriate mathematical description of

the transmitter and receiver equations and on the a priori second-order statistics of

the message waveform. The basic idea is to use the received signal s(t) and known

transmitter/receiver error dynamics to estimate and cancel out the synchronization

errors. In principle, an extended Kalman filter which is tuned to the error dynamics

between the transmitter and receiver and coupled to the synchronizing receiver can

perform the error estimation. The approach is illustrated in figure 9-13. The outputs
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Figure 9-12: (a) Recovered Speech (simulation) (b) Recovered Speech (circuit).

Pi(t) and Pu(t) correspond to the recovered message with and without compensation,

respectively.

The received signal s(t) is given by

s(t) = u(t) + p(t) + n(t) ,

where n(t) is

dynamics are

zero-mean white noise. The corresponding

given by

transmitter/receiver error

o(e, - e)

-e, + [r - 20(e, + Wr)](eu + u,)

5(eu + ur)(ev + vr) - be

0

+ 20wr -r

-5vr

s(t). (9.4)

For notational simplicity, we refer to the error variables collectively by the vector

e = (eu,e,,e.) and to the receiver variables by the vector x = (ur, vr, wr), when
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Figure 9-13: Model-Based Signal Recovery.

convenient.

The error system (9.4) depends on the receiver's state estimates xr and on the

received signal s(t). This system can be written as a probabilistic state model of the

form
e(t)

v(t)

= f(e, Xr) + B(s(t), Xr) + w(t)

= Ce + N(t) ,
(9.5)

where

f(e, x) =

B(s(t),Xr) =

C =[

a(e - e)

-ev + [r - 20(ew, + wr)](e + Ur)

5(e. + Ur)(ev + Vr) - be

0

20wr - rs(t) ,

-5vr

1 0 0], N(t) = p(t) +n(t)

In this formulation, B(s(t), x,) is treated as a deterministic input vector because both
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s(t) and xr are observed quantities and need not be estimated. The EKF observations

are given by v(t) = e (t) +N(t), as indicated in figure 9-13. For simplicity, we assume

that the process noise w(t) is white and uncorrelated with N(t). We also assume that

the message p(t) is a random process with known second-order statistics. With these

assumptions, the second-order statistics of the random processes are given by

E {w(t)wT(T)} = Q(t- T)

E {w(t)N(r)} = 0 ,

E{N(t)N(T)} = Rpp(t,r) +Rnn(t,r)

Because p(t) is temporally correlated, the observation process N(t) = p(t) + n(t)

is also temporally correlated. State estimation techniques can deal with correlated

observations by using augmented state space models to account for the "memory"

of the observation process. The memory can be incorporated into the system model

(9.5) by representing N(t) by a dynamical system of the form

l(t) = F(t)p(t) + J(t)il(t) (9.6)

N(t) = H(t)p(t) + 2 (t) ,

where /, and 2 are uncorrelated zero-mean Gaussian processes and where

E {igi(t)li(r)T} = Si(t)j(t-T)

Combining equations (9.5) and (9.6), the overall state model driven by white noise is

given by

(t) = A(¢,x,) + e(s(t), x,) + (t) (9.7)

V(t) = W(t) + A2(t)

where

(t) = e ,T
((t) = e p 
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A(cXr) = [(ex,) ] (SXT) = [ B(s(t) x) 

[ w(t) 1r1 )F(t)p(t) = L °()
[ J(t)l (t) Wt) [ H(t)

This statistical formulation has reduced the signal recovery problem to an esti-

mation problem. The EKF state estimate and covariance equations for the system

represented by (9.7) are given by

4(t) = A((, xr) + 8(S, xr) + K(t) [ (t) - W(t)(]

P(t) = DA(x,)P(t) + P(t)DA(~,x) T + Q - P(t)WT (t)S-(t)W(t)P(t)

K(t) = P(t)WT (t)S- (t)

where DA(~, x,) is the linearization of A(Q, x,) and where

Q1 Q =
L 0 J(t)Sl(t)JT(t)]

Assuming that the message and noise have been accurately modeled, the EKF can

provide meaningful estimates of the error signals. These error estimates can then be

used to compensate the recovered message Pz(t), yielding P/(t) which has improved

quality.

While the Kalman filtering approach to signal recovery is an untested idea, it seems

promising and merits future research. A limitation, however, is that the presence of

additive channel noise will produce message recovery errors that cannot be completely

removed; there will always be some error in the recovered message. Because the

message and noise are directly added to the synchronizing drive signal, the message-

to-noise ratio should be large enough to allow a faithful recovery of the original

message. This requires a communication channel which is nearly noise free.

To help overcome this limitation, we developed an alternative approach to private

communications based on synchronized chaotic signals and systems. This alternative
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approach allows the information-bearing waveform to be exactly recovered at the

self-synchronizing receiver(s), even when moderate-level channel noise is present.

9.3 Chaotic Binary Communications

In this section, we discuss a private communication technique called chaotic binary

communications. This technique utilizes modulation of a transmitter parameter and

subsequent detection of synchronization error in the receiver to privately communicate

binary-valued bit streams [30, 31, 32, 33, 45].

In Section 9.3.1, we discuss and illustrate the concept. In Section 9.3.2, we per-

form a synchronization error analysis to quantify the sensitivity of synchronization

to parameter modulation at the transmitter. We also propose an optimal detector

for recovering the bit streams. In Section 9.3.3, we utilize the Lorenz circuits to

demonstrate the technique.

9.3.1 Concept

The concept of chaotic binary communications is to modulate a transmitter parameter

with the information-bearing waveform and to transmit the chaotic drive signal. At

the receiver, the parameter modulation will produce a synchronization error between

the received drive signal and the receiver's regenerated drive signal with an error

signal amplitude that depends on the modulation. Using the synchronization error,

the modulation can be detected.

This modulation/detection process is illustrated in figure 9-14 for the specific case

of implementing the Lorenz system at the transmitter and receiver. To communi-

cate information, we modulate a parameter of the transmitter equations with the

information-bearing waveform p(t) while the chaotic drive signal u(t) is transmit-

ted. The noisy received signal s(t) serves as the driving input to the receiver. At

the receiver, the parameter modulation is detected by forming the error signal e(t)

corresponding to the difference between s(t) and the receiver's regenerated drive sig-

nal uT(t). Assuming that the channel noise n(t) is negligible, the error signal e(t)
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(t)
Detection

Figure 9-14: Communicating Binary-valued Bit Streams with Self-Synchronizing
Chaotic Systems.

will have a small average power when the transmitter and receiver parameters are

identical. If, however, p(t) is a binary-valued bit stream, with a "1" representing a

parameter mismatch between the transmitter and receiver, and a "" representing no

parameter mismatch, then e(t) will be relatively large in amplitude during the time

period that a "1" is transmitted and small in amplitude during a "" transmission.

The synchronizing receiver can, therefore, be viewed as a form of matched filter for

the chaotic transmitter signal u(t).

In the next section, we numerically examine the sensitivity of the synchronization

error e(t) to variations in the transmitter parameters. This analysis determines the

preferred Lorenz parameter to modulate with p(t), and suggests an optimal detector

for recovering the "" and "1" transmissions.

9.3.2 Synchronization Error Analysis and Detection

The synchronization error analysis presented in this section focuses on the synchro-

nization properties of the Lorenz transmitter equations

u = t(V - U)

v = rtu-v-20uw (9.8)

wb = 5uv - btw ,
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and the corresponding receiver equations

= Ur(Vr -Ur)

Vr = rrs(t) - Vr - 20s(t)w, (9.9)

b = 5s(t)vr - brWr

The received signal s(t) is given by

s(t) = u(t) + n(t) ,

where u(t) denotes the transmitted drive signal and n(t) denotes the channel noise.

The binary signal p(t) influences u(t) by modulating a transmitter parameter (at, rt,

or bt) while the receiver parameters aUr,rr, and b remain fixed. The resulting syn-

chronization error signals are denoted by

eu (t) = (t)-Ur (t)

e(t) = v(t) - vr(t)

ew (t) = w(t) - Wr(t)

and the parameter mismatch variables are denoted by

A a = t - r

Ar = r t - rr

Ab = bt-br

The sensitivity of the synchronization errors to the parameter mismatch variables

can be examined by forming the error system. By subtracting the receiver equations

204

_ _ _I � __



(9.9) from the transmitter equations (9.8), the following error system is obtained.

eU -a a 0 e° 0 (v- u)A0

=v 0 -1 -20s(t) ev + 20w- rr n(t) + uAr

ew 0 5s(t) -b ew -5v-wLb1 5 -w1)

This error system indicates that if any of the parameter mismatch variables are non-

zero, then chaotic driving terms will exist even when n(t) = 0. Therefore, the syn-

chronization errors will also be non-zero.

In the specific communication scenario illustrated in figure 9-14, we are particu-

larly interested in the sensitivity of e,(t) to the parameter mismatch variables. The

input signal to the detector e(t) is given by

e(t) = e,(t) + n(t)

which shows that e (t) is important for detecting the "0" and "1" transmissions. To

examine this sensitivity, a numerical experiment is performed. All of the receiver

parameters are fixed at their nominal values ar = 16, rr = 45.6, and b = 4. The

transmitter parameters ut, rt, and bt are independently varied over a range corre-

sponding to a 20 percent mismatch from the nominal values implemented at the

receiver. Only one transmitter parameter is varied at a time while the other two

parameters are held fixed at their nominal values. Numerical integration of the error

system is then performed with n(t) = 0.

In figure 9-15, we show the normalized synchronization error c/ as a function

of the parameter mismatch (percent),

Transmitter Value - Receiver Value
Percent Mismatch = 100- . (9.10)Receiver Value

Note that the synchronization error is most sensitive to rt and bt. In private com-

munication applications, it is advantageous to modulate the transmitter parameter

with the greatest sensitivity. Small variations in the transmitter parameters are less
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Figure 9-15: Normalized Synchronization Error vs. Parameter Mismatch (percent).

detectable by unintended listeners than large variations. Informal experiments sug-

gested that variations in bt alter the detectable characteristics of the transmitted

chaotic signal less than corresponding variations in rt. This seems plausible because

rt is the bifurcation parameter for the Lorenz system and has a greater influence on

the signal levels than equivalent variations in bt. Based on this synchronization error

analysis, bt was selected as the modulation parameter.

We now turn our attention to detection of the "" and "1" transmissions. Viewing

the detection process as a binary hypothesis testing problem, with H0 denoting a "0"

transmission and H1 denoting a "1" transmission, we define the two possible outcomes

Ho : e(t) = eo(t) + n(t) (9.11)
H1 : e(t) = e)(t)+n(t)HI (t) = e'(t) (t)

206

�_ �



We denote the synchronization error e (t) corresponding to hypothesis H0 by e(t).

Similarly, the synchronization error corresponding to hypothesis Hi is denoted by

e'(t). For simplicity, we will assume that e(t), e(t), and n(t) are zero-mean, Gaus-

sian distributed, and wide-sense stationary. These assumptions are roughly justified

by numerical experiments.

The variance of e(t), over a bit interval of T seconds, is important for detecting

the "0" and "1" transmissions. We denote by ao2 and al the variances of e(t) under

hypotheses Ho and H1, respectively. We define the sufficient statistic L(e, t) as

L(e,t) = T T e (rT)dr

An optimal decision rule for selecting the most likely hypothesis is obtained by apply-

ing the likelihood ratio test. Assuming Guassian statistics for the random processes

and equal a priori probabilities for H0 and H1, we obtain the decision rule

H1

L(e,t) < 2a 1 lo g ) = 7 (9.12)< ,2 ,2 g- =y

H0

Equation (9.12) determines an optimal threshold -y for the detection problem. In

practice, the sufficient statistic can be computed in real time using commercially

available hardware.

In the next section, we utilize the Lorenz transmitter and receiver circuits to

demonstrate chaotic binary communications.

9.3.3 Circuit Experiments

In Section 9.1, we pointed out that the parameters of the Lorenz transmitter equations

(9.1) can be independently varied by altering the values of appropriate resistors in the

circuit implementation. Equation (9.2) indicates that the parameter b is proportional

207

_ ·_ II �_ __ I



to

b R 18 (9.13)
R 17 + R 18

From (9.13), we see that b can be varied by altering either R17 or R 18. For implemen-

tation purposes, it is preferable to alter R 18 because a sensitivity analysis of (9.13)

shows that b is approximately 3.5 times more sensitive to R 18 than to R 1 7. In Ap-

pendix C, we discuss and illustrate a simple voltage-controlled resistor (VCR) circuit

which is used to alter R 18 in proportion to an applied voltage signal p(t). The VCR

circuit is tuned so that for p(t) = ±1 volt, the resulting variation in b is ±10 percent

from its nominal value of 4.

To illustrate the technique, we use a periodic square-wave for p(t) as shown in

figure 9-16(a). The square-wave has a repetition frequency of approximately 110 Hz

with zero volts representing the zero-bit and one volt representing the one-bit. The

square-wave modulates the transmitter parameter b with the zero-bit and one-bit

parameters given by

b(p(t) =0O) = 4

b(p(t) = 1) = 4.4

The resulting drive signal u(t) is transmitted and used as the driving input to the

synchronizing receiver circuit. For transmission privacy, the parameter modulation

should not alter the characteristics of the drive signal in an obvious way. In figure

9-16, we compare the average power spectrum of the drive signal with and without

the parameter modulation. There is little change in the power spectrum after the

parameter modulation is introduced.

In figure 9-17(a), we reproduce the square-wave p(t) and in figure 9-17(b), we show

the synchronization error power e2 (t). The parameter modulation produces significant

synchronization error during a "1" transmission and very little error during a "0"

transmission. It is plausible that a detector based on the average synchronization
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Figure 9-16: Circuit Data: (a) Binary waveform used to modulate the b parameter
of the Lorenz transmitter equations. (b) Averaged power spectrum of the drive signal
with and without parameter modulation.
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error power, followed by a threshold device, could yield reliable performance. A

crude approximation to the likelihood function L(e, t) is obtained by using a low-order

lowpass filter to perform the integration. Using this simple approach, we illustrate in

figure 9-17(c) that the square-wave modulation can be reliably recovered by lowpass

filtering the synchronization error power waveform and applying a threshold test.

The threshold device used in this experiment consisted of a simple analog comparator

circuit.

The allowable data rate of this communication technique is, of course, dependent

on the synchronization response time of the receiver system. Although we have used a

low bit rate to demonstrate the technique, the circuit time scale can be easily adjusted

to allow much faster bit rates. The ability to communicate digital bit streams using

this technique does not depend on the periodic nature of the square-wave used to

demonstrate the approach. The results apply to aperiodic or random bit streams as

well. A similar approach has also been independently shown to work using Chua's

circuit [47].

9.4 Summary

The work presented in this chapter has addressed some applied aspects of self-

synchronizing chaotic systems. The two most important accomplishments are:

* The implementation of the Lorenz transmitter and receiver systems with a sim-

ple analog circuit. The performance of these circuits is excellent, indicating that

synchronized chaotic systems can be built with commercially available hardware

and perform within desired specifications.

* The development and demonstration of two approaches to private communica-

tions using the Lorenz circuit. These results suggest that synchronized chaotic

systems may represent a promising class of nonlinear systems for future com-

munication applications.

210

__



(a) .01 .02 .03 .04

.01 .02 .03 .04

0 (C) .01 .02 .03 .04
0 (~c Time (see)

Figure 9-17:
error power.

Circuit Data: (a) Binary modulation waveform. (b) Synchronization
(c) Recovered binary waveform.
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Chapter 10

Conclusions and Suggestions for

Future Research

Since its discovery in 1990, self-synchronization of chaotic systems has become an

extremely active research area. A substantial amount of literature has been published

in this emerging field, much of which is experimental in nature. While it appears

that potential applications exist for this class of systems, general procedures had

not been developed for analyzing and synthesizing chaotic systems which possess the

self-synchronization property. This thesis has focused on both of these critical areas.

10.1 Summary and Contributions

We first considered the analysis problem. The notions of conditional Lyapunov expo-

nents and stable response subsystems were used to develop a systematic approach for

examining the self-synchronization properties of general nonlinear systems. Although

this approach is useful for decomposing any nonlinear system into its stable and un-

stable components, it has some limitations. Considerable computation is required

to determine the conditional Lyapunov exponents and the approach provides little

insight into the mechanism underlying the synchronization.

To study self-synchronization of chaotic systems within a clear mathematical

framework, we utilized some well-known techniques from nonlinear stability the-
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ory. After identifying an equivalence between the concepts of self-synchronization

in chaotic systems and asymptotically stable error dynamics between the transmitter

and receiver systems, we utilized Lyapunov functions to show that self-synchronization

in the Lorenz system does not depend on chaotic behavior. Rather, it is a result of

stable error dynamics.

To exploit the self-synchronization properties of the Lorenz system in applications,

we examined the sensitivity of synchronization when a perturbation signal is added

to the synchronizing drive signal. We showed numerically that the performance of

the Lorenz receiver as a nonlinear state estimator compared favorably with two well-

known extended Kalman filter algorithms when the perturbation is white noise. Two

key features of the synchronization error curves for the Lorenz receiver were identi-

fied: (i) a threshold effect is evident at a critical value of input chaos-to-perturbation

ratio (CPR), and (ii) above the threshold, the normalized error in synchronization of

each state variable is approximately 10 dB less than the normalized error in the drive

signal. We used stochastic calculus to show that the threshold effect was a result of an

inherent instability of the second moment equation at low input CPRs. In addition,

we developed an equivalent linear time-invariant error model which quantifies and

explains the sensitivity of synchronization in the Lorenz system in terms of the spec-

tral characteristics of the perturbation signal. This model provided an explanation

of why low-level speech signals or other narrowband perturbations can be accurately

recovered at the receiver.

To further enhance the applicability of synchronized chaotic systems for commu-

nications, an approach was needed for creating new chaotic systems with the same

robust synchronization properties as the Lorenz system. Using Lyapunov's direct

method as a basis, we explored various approaches for synthesizing self-synchronizing

chaotic systems. We began with the simplest approach, combining the Lorenz sys-

tem with a linear feedback system. Linear feedback chaotic systems (LFBCSs) allow

for more complex dynamics than the Lorenz system while retaining the same self-

synchronization properties. Having proposed a systematic synthesis procedure for

LFBCSs, we then investigated chaotic arrays consisting of multiple Lorenz oscilla-
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tors. The synthesis procedure for the Lorenz-based chaotic arrays is analogous to the

synthesis procedure for LFBCSs. Although chaotic arrays exhibited more complex

dynamics than LFBCSs, the arrays require multiple drive signals for synchronization

(one for each Lorenz oscillator). This tradeoff suggested that it might be possible to

develop a more general synthesis procedure. To explore this issue, we started with a

very general class of quadratically nonlinear systems and applied the same synthesis

methodology. A result of this investigation was a canonical form for a general class of

chaotic systems that synchronize via a single drive signal and exhibit more complex

dynamics than LFBCSs.

To investigate some applied aspects of self-synchronizing chaotic systems, we im-

plemented the Lorenz system with an analog circuit. We avoided some potential

implementation problems by scaling the state variables in the Lorenz equations. Two

identical circuits, a Lorenz transmitter and synchronizing receiver, were built using

commercially available hardware. After the performance of these circuits was shown

to be consistent with the numerical and theoretical predictions, we demonstrated that

low-level speech could be added to the synchronizing drive signal, privately commu-

nicated, and recovered by the synchronizing receiver. Recognizing a drawback of this

approach in realistic communication scenarios, we investigated a second approach to

private communications. Instead of adding the information to the drive signal, we

investigated the potential for embedding the information in a more abstract way.

By modulating a transmitter parameter with a binary-valued bit stream, we demon-

strated that it was possible to privately transmit and recover the information with the

self-synchronizing receiver circuit. While these results are promising and represent

a starting point for utilizing self-synchronizing chaotic systems in communications,

much work remains before these approaches can be considered secure or practical.

10.2 Future Research Directions

There are several outstanding issues pertaining to the analysis and synthesis of self-

synchronizing chaotic systems which suggest potential future research directions. For
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example, the synthesis procedures developed in Chapters 6-8 have not been fully

explored. Much work remains for utilizing these procedures to synthesize new self-

synchronizing chaotic systems and for examining the chaotic behavior exhibited by

these systems. The synthesis procedures provide considerable potential for design-

ing practical chaotic systems which could be implemented in hardware and used for

various private communication applications. Another interesting problem for future

research is to investigate the potential connections between stability criteria for adap-

tive control systems and the synthesis procedures proposed in Chapters 6-8.

Although we have focused our synthesis efforts on continuous-time chaotic sys-

tems, our methodology is clearly broader. In principle, Lyapunov's direct method

could be used as a basis for synthesizing discrete-time systems as well. From a prac-

tical perspective, discrete-time systems have certain implementation advantages over

their continuous-time counterparts. A related issue for future research involves the

possibility of synthesizing discrete-time systems by replacing the derivatives in a set

of nonlinear differential equations with an appropriate first difference approximation.

This approach has the advantage of allowing the continuous-time theory developed

in this thesis to be used for synthesis. The main issue in this case is to determine

whether the self-synchronization and global stability properties of the chaotic system

are maintained after the discretization. If continuous-time systems can be successfully

converted to equivalent discrete-time systems, then digital hardware can be used for

the implementations.

Another important issue concerns realistic communication applications for this

class of systems. The effects of quantization, gain errors, multipath, and channel fad-

ing on the quality of the synchronization need to be addressed. Clearly, these issues

would arise in realistic scenarios which utilize chaotic synchronization. A final issue

involves transmission privacy. We have not attempted to define optimal communica-

tion schemes for achieving privacy, but rather suggested some possible approaches.

Intuitively, we believe that the use of high-dimensional chaotic systems may be more

private than low-dimensional systems, but much work remains to test this hypothesis.
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Appendix A

Linear Stability Analysis of

z-Input/z-Output LFBCSs

The transmitter equations for LFBCSs of this class are given by

x = a(y-x)

= rx-y-xz

z = xy-bz+v (A.1)

i = Al+Bz

v = C+Dz

where A is N x N, B is N x 1, C is 1 x N, and D is 1 x 1.

Inspection of (A.1) shows that the origin in state space is always a fixed point.

Two additional fixed points can be determined by setting the transmitter's vector

field equal to zero and solving for the non-trivial stationary points. The equations to

be solved are listed below 1.

1. (y* - x*) = 0,

2. rx* - y* - x*z*- = 0,

3. xy* - bz* + C1* + Dz* = 0,

State variables with star "*" superscripts denote fixed points in this analysis.
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4. Al* + Bz* = 0.

Combining equations 1 and 2, we find that z* = r - 1. Equation 4 determines 1* as

1* = -A-lB(r- 1)

and x* is determined from equation 3 as

x* = ±V(r - 1)(CA-lB-D + b)

The scalar H(0) = -CA - l B + D is equivalent to the transfer function of the linear

feedback system evaluated at the origin, and therefore, x* can be conveniently written

as

x* = ±/(r 1)(b -H()) . (A.2)

From equation 1, the component y* is given by y* = x*.

The term under the radical in (A.2) must be positive for these fixed points to exist.

Assuming that b- H(0) > 0, the fixed points will exist for r > r, where r = 1. In

the Lorenz system (without feedback) a pair of fixed points exists for r > 1. This

is also the case for z-input/z-output LFBCSs, assuming that b- H(0) > 0. The

stability analysis presented below will show that the fixed point pair of the LFBCS

is created when the origin loses stability; this is also the case for the Lorenz system

without feedback.

Evaluating the Jacobian matrix corresponding to (A.1) at the origin we obtain

-a a 0 OT

r -1 0 OT
J(O) =

0 0 -(b-D) C

0 0 B A

Note that J(0) is block diagonal. If the lower (N + 1) x (N + 1) block of J(0) is
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stable, then the stability of the origin is controlled by the modes of the upper 2 x 2

block. For r > 1, the upper block is unstable, and therefore, the origin is unstable.

This critical value of r also corresponds to the creation of the fixed point pair. This

analysis suggests that a pitchfork bifurcation occurs at the origin when r = 1.

Evaluating the Jacobian matrix at the fixed point pair we obtain

J(xo) =

-a a 0 O

r-z* -1 -x* 0 T

Y* x* -(b- D) C

0 0 B A

Substituting the coordinates of the fixed point pair into J(xo) allows their stability

to be examined numerically. As we show below, additional insight into the stability

of these fixed points is obtained by examining the eigenvalues of J(xo) analytically.

Using the matrix identity

All A 12 _'A A AA A
A 1 = All- 11A12A22A211 IA221
A21 A22

the characteristic polynomial for J(xo) is determined as

A+o -a 0
N

II-J(xo) = I(A-Ai) -1 A + 1 x = 0. (A.3)

-x* -x* A + b - H(A)

The eigenvalues Ai, for i = 1, ... , N, belong to the A matrix and, therefore, represent

stable modes. As shown below, the presence of unstable modes can be detected by

determining the characteristic polynomial of the 3 x 3 determinant in (A.3).

The characteristic polynomial for the 3 x 3 determinant in (A.3) is given by

A3 + ( + b + 1 - H(A))A2 + (H(O)(1 - r) - (a + 1)H(A) + b(a + r)) (A.4)

+2a(r- 1)(b-H(0)) = 0
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As r is varied, a bifurcation occurs when a root of (A.4) crosses the imaginary axis

in the complex plane. When this occurs, the critical value(s) of r can be determined

by restricting our attention to solutions of (A.4) for values of A = 3f, for f > 0.

Substituting A = jf into (A.4) and introducing the notation H(3f) HR(f)+HI(f),

we obtain

[2c(r - 1)(b - H(O)) + fHI(f)(u + 1) - f 2 (a + b + 1 - HR(f))] +

3 [f(b(u + r) + H(O)(1 - r) - HR(f)(or + 1)) + f 2 H1 (f) - f3] = 0

Setting the imaginary part of this expression equal to zero and solving for f in terms

of HR(f) and Hi(f) we obtain the eigenfrequency equation

f = f3 _ f 2H(f) = G'(f (A.5)
b(a + r) + H(0)(1 - r) - HR(f)(a + 1)

Similarly, by setting the real part equal to zero we obtain an equation for the bifur-

cation parameter

r = 1+ f 2 ( + b + 1- HR(f)) - fH1 (f)(a + 1) (A.6)r = 1 + 2f~-()(A.6)
2u(b - H(0)

The eigenfrequency equation (A.5) is written as f = G'(f), where G'(f) is an

odd function. Because G'(f) is odd and continuous, it follows that G'(O) = 0 and

therefore, f = 0 is always a solution to (A.5). From (A.6), the corresponding value

of r is given by r = 1. Recall that this value of r predicts the pitchfork bifurcation

at the origin when the origin loses stability and the fixed point pair is created. If the

fixed point pair is stable when it is created, then its loss of stability occurs when a

complex conjugate pair of eigenvalues (f > 0) crosses into the right-half plane. In

this case, the loss of stability of the fixed point pair is akin to a Hopf bifurcation. In

typical numerical experiments, we have observed that once the fixed point pair loses

stability, chaotic motion usually occurs.
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Appendix B

Lorenz Transmitter and Receiver

Circuit Components

A list of component values used in the Lorenz transmitter and receiver circuits (Sec-

tion 9.1) are provided below.

Transmitter/Receiver Components

Resistors: (values in kohms, all have 1% precision)

R1= 100

R2 = 100

R3 = 100

Rll = 63.4 (nominal)

R12 = 10

R13 = 100

R4= 100

R5 = 49.9

R6= 100

R7 = 100

R8 = 200

R9= 10

R10 = 49.9

R14 = 100

R15 = 40.2

R16 = 100

R17 = 100

R18 = 66.5 (nominal)

R19 = 100

R20 = 158

Capacitors: (values in picofarads, all have 5% precision)

C1 = 500 (typical) C2 = 500 (typical) C3 = 500 (typical)

Operational Amplifiers: LF353 Analog Multipliers: AD632AD
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Appendix C

Voltage-Controlled Resistor

Circuit

To vary R 18 in the circuit implementation of chaotic binary communications (Section

9.3), we use a simple electronic circuit which functions as a voltage-controlled resistor

(VCR) as shown in figure C-1. The idea behind the operation of this circuit is to

use a voltage-controlled oscillator (VCO) in conjunction with comparators and an

analog switch to alternately toggle between R 10 and R 11 at a fast rate. The fast

switching between R 10 and Rll produces an effective resistance between points a and

b which is equal to a weighted average of these two resistors. The weighting depends

on the relative duty cycle of SW1 and SW2 which in turn depends on the control

voltage p(t). A linear variation in p(t) produces a linear variation in the duty cycle

of SW1 and SW2 and, thus, p(t) and Rab are linearly related. If points a and b of

this circuit replace R18, then b can be electronically controlled by p(t). Resistor R 5

is used to control the gain of the VCR circuit, and is adjusted so that for p(t) = ±1:

volt the resulting deviation in b is 10 percent. A list of components used in the

implementation of the VCR circuit is provided below.

Voltage-Controlled Resistor Components

Resistors: (values in kohms, all have 1% precision)

R1 = 4.7 R7 = 1
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+5

p(t)

Figure C-1: Voltage

R2= 10 R8= 1

R3= 100 R9= 1

R4 = 100 R10 82.5

R5 = variable R1I = 53.6

R6= 5

Capacitors: (values in picofarads, al

C1 = 1200 C2 = 10000

Voltage-Controlled Oscillator

LM566

Comparators

LM311

Analog Switch

CD4066

e-Controlled Resistor Circuit.

.1 have 5% precision)
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