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Abstract

Theoretical and practical aspects of model order reduction techniques for use in the
context of circuit simulation are investigated, with particular attention to problems in-
volving clocked analog circuitry and to interconnect and packaging applications.

First, an algorithm for the efficient simulation of clocked analog circuits is described
and simulation results are presented. Traditional simulation programs, which must ac-
curately solve the associated differential equations with a time discretization method
become extraordinarily computationally expensive when applied to simulating the tran-
sient behavior of clocked analog circuits. These circuits are clocked at a frequency whose
period is typically orders of magnitude smaller than the time interval of interest to the
designer. The nature of the calculations requires that in order to construct the solution
over the time interval of interest, an accurate solution must be computed for every cycle
of the high frequency clock in the interval, and this can involve thousands of cycles. The
algorithm to be described substantially reduces the simulation time without compromis-
ing accuracy by exploiting the property that the behavior of such a circuits in a given
high frequency clock cycle is similar, but not identical, to the behavior in the preceding
and following cycles. This algorithm is in itself a model order reduction technique, since
it simplifies the understanding of the problem and reduces its computational cost. Fur-
ther model order reduction is possible which allows for significant speedups in circuits
containing digital control circuitry.

Next, we describe an algorithm for efficient PICE-level simulation of frequency-
dependent elements, such as transmission lines with arbitrary scattering parameter de-
scriptions, or complicated 3-D interconnect with nonlinear transistor drivers and re-
ceivers. The elements can be represented in the form of a frequency-domain model or
a table of measured frequency-domain data. Our approach initially uses a forced stable
decade-by-decade 2 minimization approach to construct a sum of rational functions ap-
proximation, which may have dozens of poles and zeros. This unnecessarily high-order
model is then reduced using a guaranteed stable model order reduction scheme based on
balanced realizations. Once the reduced-order model is derived, an impulse response can
easily be generated. Finally, the impulse response can be efficiently incorporated into
a circuit simulator using recursive convolution. Examples including a transmission line
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with skin-effect and a system with a set of package pins connecting on-chip drivers to
off-chip receivers, are examined to both demonstrate the effectiveness of the approach
and to show its generality.

The results from both applications are encouraging and demonstrate that model order
reduction techniques can be an extremely useful tool for circuit simulation problems and
can lead to substantial savings in the simulation of many types of circuits.

Thesis Supervisor: Jacob K. White
Title: Associate Professor of Electrical Engineering and Computer Science
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To my wife Jzilia, with all my love
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Experience is the name everyone gives to their mistakes

- Oscar Wilde, "Lady Windermere's Fan"

Patience: a minor form of despair disguised as a virtue

- Ambroise Pierce, "The Devil's Dictionary"

7

- ----



a8

8 a0



Acknowledgments

First and foremost I must acknowledge the guidance, help, motivation and expertise
of my thesis adviser Prof. Jacob K. White. Throughout my years at MIT he always
impressed me with his knowledge and his ability and willingness to share it with others.
Not only did he supervise my work, ensuring its progress, quality and relevance, but he
also encouraged and taught me how to supervise myself and others.

I am also grateful to my thesis readers, Profs. Jonathan Allen and Steven Leeb for
all the help and consideration they extended to me during the course of this work. Prof.
Leeb did much of the ground work for Chapter 3 and was always available for discussions
on the matter. Prof. Allen has been a constant source of encouragement since my arrival
at MIT. In large part through his efforts and perseverance, the CAD group at the
Research Laboratory of Electronics remains a first-rate research environment of which I
had the privilege to be a member.

Several other members of my research group have contributed directly or indirectly to
the work described in this thesis. Ricardo Telichevesky and Keith Nabors were more than
colleagues and friends. Their company and support made the good times better and the
bad times merely forgettable. I had the pleasure of working closely with Ibrahim Elfadel
from whom I received extensive assistance. Abe was always a knowledgeable resource
for any sort of question of a theoretical nature. Andrew Lumsdaine, while at MIT, was
a friend and a companion. We collaborated on several large projects that helped shape
my knowledge in the field. I would also like to acknowledge the help and friendshipness
of Jose Carlos Monteiro, Mattan Kamon, Ignacio McQuirk, Robert Armstrong, Prof.
Srinivas Devadas, and others, too many to mention, students and faculty at the CAD
group at RLE and at other laboratories at MIT.

I am extremely grateful to the Serpa and Brasil families, who received me as one of
them, and helped me throughout the years. Their friendship, their support and their
mere presence was fundamental in keeping my peace of mind.

I would also like to acknowledge the support and consideration I have received over
the years from Professors Luis Vidigal and HorAcio Neto, from my research group at
INESC in Portugal.

For all the support, love and understanding they have given me throughout the years,
I wish to thank my parents, Fernando Augusto and Maria Luisa, my brother Eduardo
and other members of my family.

Finally, completion of this thesis would not have been possible without the love and
the encouragement I received from my wife Jlia. Her patience and support during the

9

- .

------ I---,



course of my graduate program have held us as a family and the joys and pains we went
through together have made us stronger and closer than we thought possible. The recent
birth of our daughter Ana Teresa has filled our lives with more happiness than we ever
imagined.

During the course of this work I was fortunate to receive the support of several
agencies at various times. I would like to thank IBM, the Fullbright Committee and
the I.I.E., the Portuguese INVOTAN committee and the Portuguese "Junta Nacional
de Investigagao Cientifica e Tecnolo6gica".

10



Contents

1 Introduction

2 Review of Numerical Techniques for Circuit
2.1 Introduction ..................
2.2 Formulation of System Equations ......
2.3 Standard Circuit Simulation Solution ....
2.4 Relaxation-Based Circuit Simulation ...
2.5 Device Evaluation Issues ...........

Simulation

3 Clocked Analog Circuit Simulation
3.1 Introduction
3.2 The Envelope-Following Method ..................

3.2.1 Computing the Envelope .................
3.2.2 Stability Issues in Envelope-Following Formulation . . .
3.2.3 Solution by Newton ....................
3.2.4 Sensitivity Computation .................

3.3 Envelope-Following Modeling of Clocked Analog Circuits ....
3.3.1 Near-Linearity of the State Transition Function .....
3.3.2 Discussion of Experimental Results ............

3.4 Model Order Reduction for Envelope-Following Algorithms . . .
3.4.1 Removing Quasi-Algebraic Variables ...........
3.4.2 Experimental Results ...................

3.5 Autonomous Circuits and Multiple Frequency Circuits .....
3.5.1 Autonomous Circuits: Period Detection and Extraction .
3.5.2 Multiple Frequency Circuits ...............

3.6 Conclusions .............................

4 Frequency-Domain Model Order Reduction
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .. . . .
4.2 Background .............................

4.2.1 Pad6 Approximations ...................
4.2.2 Shifted Pad6 Approximations ...............

4.3 Interpolation of Frequency-Domain Data .............
4.3.1 Computing Section-by-Section Approximants ......

11

21

25
25
25
26
30
34

39
.... 39
.... 41
.... 44
.... 47
.... 52
.... 53
.... 56
.... 57
.... 60
.... 65
.... 66
.... 72
.... 73
.... 73
... 74
.... 79

83
.... 83

.... 85
.... 89
.... 96

.... 100

.... 101



4.3.2 Section-by-Section Approximant: numerical example ...... . . 104
4.4 State-Space Systems Realization . . . . . . . . . . . . . . . . . . . . . . . 104
4.5 System Balancing and Model Order Reduction .............. ...... . 109

4.5.1 Balanced Realization . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5.2 Truncated Balanced Realization . . . . . . . . . . . . . . . . . . . 119
4.5.3 Time-Domain Constraints . . . . . . . . . . . . . . . . . . . . . . 126
4.5.4 Truncated Balanced Realization: numerical example ....... . 126

4.6 Time Domain Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.6.1 Recursive Convolution ........................ 134
4.6.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . 139

4.7 Experimental Results ...................................... 144
4.7.1 Transient Simulation of Circuits and Interconnect ........... . 145
4.7.2 Transient Simulation of Circuits and Coupling 3-D Packaging . 146

4.8 Conclusions .................................. 154

5 Conclusions 161

12



List of Figures

3-1 Open-loop buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3-2 Buck converter switch and output nodes in steady-state ............ . 43
3-3 Buck converter output voltage during power-up transient .......... 43
3-4 Envelope definition ............................... 44
3-5 Forward-Euler -like scheme for the Envelope-Following algorithm ..... 46
3-6 Integrating the circuit equations for one high-frequency cycle ...... . 46
3-7 Backward-Euler -like scheme for the Envelope-Following algorithm. ... . 48
3-8 Switched-capacitor filter circuit clocked by two non-overlapping clock phases. 51
3-9 Transient start-up Envelope-Following simulation of a switched-capacitor

circuit for Forward- and Backward-Euler alignment schemes ........ 51
3-10 Graphical description of the implicit scheme Envelope-Following Algorithm. 55
3-11 Switched-capacitor circuit clocked by two non-overlapping clock phases.. 59
3-12 Envelope-Following simulation of the buck converter output voltage during

power-up transient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3-13 Envelope-Following simulation of the switched-capacitor filter output volt-

age during transient start-up . . . . . . . . . . . . . . . . . . . . . . . . . 62
3-14 Closed-loop buck converter ......................... .......... . 63
3-15 Closed-loop buck converter output node during power-up transient ob-

tained with the standard envelope-following technique .......... . 64
3-16 Closed-loop buck converter control node during power-up transient ob-

tained with the standard envelope-following technique .......... . 65
3-17 Example circuit showing the difference between state-variables and quasi-

algebraic variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3-18 Updating the quasi-algebraic nodes of a circuit ............... 70
3-19 Closed-Loop buck converter output node during power-up transient ob-

tained with the modified envelope-following technique .......... . 71
3-20 Phase-locked loop ............................... 75
3-21 Phase-locked loop signal at beat frequency ................. 78

4-1 Bode plots for example transfer function and its approximant ...... . 87
4-2 Impulse responses for example transfer function and its approximant. . 88
4-3 Uniform lumped model of interconnection segment ............. 94
4-4 Comparing the exact step response with those obtained with low and

medium order Pad6 approximations ..................... 94

13



4-5 Applying the sectioning algorithm to measured or tabulated frequency data. 103
4-6 Accuracy of the section-by-section fit for the magnitude of the transmission

line coefficient measuring incident and reflected waves .......... . 105
4-7 Accuracy of the section-by-section fit for the magnitude of the character-

istic admittance function of the transmission line ................... . 106
4-8 Controller Canonical form realization ..................... 108
4-9 Sum, or Parallel or Diagonal realization ................... 110
4-10 Curve of constant condition number for the product matrix of the control-

lability and observability gramians indicating the optimum precondition-
ing situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4-11 General linear system ............................. 119
4-12 State variable partition corresponding to internal dominance of a set of

variables ............................................... 121
4-13 Accuracy of reduced-order model fit for the magnitude of the transmission

line coefficient measuring incident and reflected waves .......... . 127
4-14 Accuracy of reduced-order model fit for the magnitude of the characteristic

admittance function of the transmission line ................. 128
4-15 Magnitude plots of the fitting errors for the transmission line coefficient

measuring incident and reflected waves ................... 129
4-16 Magnitude plots of the fitting errors for the characteristic admittance func-

tion of the transmission line .................................. 130
4-17 Comparing the exact step response with that obtained with low-order Pad

and reduced-order model approximants .................... 132
4-18 Comparing the exact step response with the response obtained with medium

order Pade and reduced-order model approximants ............. 133
4-19 Procedure for incorporating a frequency-described device into an electrical

circuit simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4-20 Convolution of a nearly constant waveform with a fast-decaying impulse

response ..................................... 142
4-21 Time response of a resistively terminated transmission line ......... 147
4-22 CMOS driver and load connected by a transmission line with skin-effect. 147
4-23 Time response of a nonlinear circuit with a transmission line connecting

driver and load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4-24 Seven pins of a cerquad pin package ..................... 149
4-25 General configuration for the connection between received and driver chips. 150
4-26 Detailed view of the connection between driving and receiving chips .... 151
4-27 Magnitude of self-admittance data and its approximation ........ . 152
4-28 Magnitude of mutual admittance data and its approximation . .. 153
4-29 Results of the timing simulation of a receiver pin in the presence of changes

on other adjacent pins ............................. 154
4-30 Results of the timing simulation of a receiver pin in the presence of changes

on other adjacent pins. Alternate configuration .............. 155

14

�AW



List of Tables

3-1 Parameters used for the computation of the Envelope truncation error and
the selection of new cycle-steps by the Envelope-Following Algorithm. .. 57

3-2 CPU time comparisons for Classical versus Envelope-Following Simulation
algorithms ................................... 61

3-3 CPU time comparisons for Classical and Standard Envelope-Following
Simulation versus Modified Envelope-Following ............. 72

4-1 CPU time comparisons for full convolution versus recursive convolution
methods ..................................... 146

15



16
a



List of Acronyms

GE
GJ
GS
EF

KCL
KVL

LR
MIMO

MOS
MOSFET

NLR
ODE
PDE
SISO
TBR
VLSI

VCCS
WR

Gaussian elimination
Gauss-Jacobi
Gauss-Seidel
Envelope-Following
Kirchoff's Current Law
Kirchoff's Voltage Law
Linear Relaxation
Multiple Input Multiple Output
Metal-Oxide-Semiconductor
MOS Field Effect Transistor
Nonlinear Relaxation
Ordinary Differential Equation
Partial Differential Equation
Single Input Single Output
Truncated Balanced Realization
Very Large Scale Integration
Voltage-Controlled Current Source
Waveform Relaxation

17



S11

18



List of Symbols

Vectors
Members of a vector space are denoted in lower-case with the bold math font, e.g.,
x. The vector space in question may be Rn, or a function space. Components of a
multi-dimensional vector are denoted in the plain math font, with the appropriate
subscript, e.g., xi. Constant vectors are sometimes indicated with a subscript, e.g.,
x0 . The symbols for some particular vectors used in this thesis are:

x The vector of state variables in a linear system.

u The vector of inputs to a linear system.

y The vector of outputs of a linear system.

r Residual vector

e Error vector. The elementary basis vectors for R are denoted e, . . ., en.

Matrices
Matrices are denoted in upper-case with the bold math font, e.g., A. Components
of a matrix are denoted in upper- or lower-case with the plain math font, using the
appropriate subscript, e.g., Aij or aij. The algebraic or Hermitian transpose of a
matrix is denoted as AT. The identity matrix is denoted by I or by I indicating
the matrix size.

Operators
Operators are denoted in upper-case with the script font, e.g., F.

Spaces
Spaces are denoted with the blackboard bold math font, e.g., Rn. The symbols for
some particular spaces used in this thesis are:

L1 ([0, T], R n ) Function space of modulo-integrable functions (in the Lebesgue sense)
mapping from the interval [0, T] to Rn.

L2 ([0, T], R n ) Function space of square-integrable functions (in the Lebesgue sense)
mapping from the interval [0, T] to Rn.

Cl ([0, T], RW) Function space of continuously differentiable functions mapping from
the interval [0, T] to R7.

N Set of natural numbers, i.e., {1, 2,...}.

19



Rn n-dimensional Euclidean space.

C' n-dimensional complex space.

Complex Functions of Complex Variables
Complex functions of complex variables are denoted in upper-case with the bold-
math font, e.g. H(s). If the function is a rational function, occasionally a subscript
can be used to indicate the order of the denominator polynomial, e.g. Hk(s)

Miscellaneous
The following is a brief description of other miscellaneous nomenclature:

()k The superscript k denotes the kth iterate of the associated quantity, e.g., xk

is the kth iterate of x. Indexing generally begins from k = 0 but sometimes
also from k = 1. Which is the case should be clear from the context.

()k The subscript k denotes the kth component of the associated quantity, as men-
tioned above. Component indexing generally begins from k = 1. Occasionally,
the subscript is also used in reference to the order of an approximation, but
those cases will be clear from the context.

j Denotes the imaginary unit, j = V/T-. The lower-case bold math font is used to
distinguish it from the the letter j.

o Denotes the null vector of appropriate size, that is the vector with all zero com-
ponents.

2Q(.) Lower bound complexity.

(9(.) Upper bound complexity.

20



1

Introduction

The ever increasing size and complexity of today's integrated circuit designs and the

continuous development of processing technologies has led to an increase in the fabrication

costs and development time of such designs. In order to minimize these growing costs,

accurate and reliable verification of each project before fabrication becomes imperative,

so that fabricated circuits function correctly on "first silicon".

As circuits become larger and more complex, design techniques become more elaborate

and innovative in order to fully exploit the available space. Also, the continuing trend

for increasing speeds of operation makes it impossible to discount previously ignored

effects of the interaction between circuits and their surrounding environment. Therefore,

it becomes necessary that accurate circuit simulation methods be applied instead of other

more intuitive but less detailed approaches to verification, such as timing simulation or

functional simulation. For all practical purposes, the general circuit simulation problem

is considered as having been solved. Conventional circuit simulators, developed during

the 1970's, like SPICE [1] or ASTAP [2] are capable of simulating virtually any circuit given

enough resources in terms of time and computational power. However, full verification of

the functionality of a system must not only be reliable, but also fast enough to provide

results in an acceptable time interval. This implies that the computational resources that

must be allocated for the simulation task also increase dramatically and in some cases

the amount of resources needed becomes inadmissibly expensive.

One way to address this problem is through the usage of faster computer hardware.

While this may be as simple as using a faster mainframe computer or a new generation

workstation, it can also be viewed in the context of parallel computation. Parallel circuit

simulation has been successfully applied to specific classes of circuits with very encourag-

ing results [3]. With some degree of confidence it is believed that this is true whenever the
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sheer size of the circuit or the nature of the computation it performs make it amenable

to parallel simulation. However, it is also recognized that for the most part, the circuit

simulation paradigm does not contain enough structure for efficient parallelization [4]. In

fact in many cases the nature of the difficulty may not be related to the size of the circuit

itself but merely to the length of the simulation interval, or to the complexity of the

models of the elements involved. In such cases it is believed that improving the efficiency

of the simulation process can only be accomplished by devising specific algorithms that

exploit the characteristic features of the particular problem to be solved.

Transient circuit simulation involves forming the system of nonlinear ordinary dif-

ferential equations (ODE) that describes the dynamics of a circuit, and solving them

numerically. The typical approach is to first discretize the set of ODE's in time with

an integration method. Since stiff ODE systems require the use of implicit integration

schemes, the time discretization generates a sequence of nonlinear algebraic problems

which are solved with an iterative method, usually some variant of the Newton-Raphson

algorithm. The sequence of linear algebraic systems generated at each iteration of the

nonlinear solution method are then solved via Gaussian elimination or possibly some

iterative linear solution algorithm.

Two possible computational bottlenecks are usually identified in standard circuit

simulation. One is the function evaluations necessary to compute the components of

the Jacobian and right hand side vector used at each Newton-Raphson iteration. These

function evaluations correspond to the computation of the device's constitutive relations

and their derivatives. The cost of these evaluations is general dominated by the Jacobian

computations. For a circuit with n nodes, that cost can be as low as O(n) or as high

as 0(n 2 ) depending on the degree of connectivity of the circuit. The other usual bot-

tleneck is the linear system solution performed at each Newton-Raphson iteration. The

complexity of direct elimination methods for solving systems of equations is polynomial

in n, typically from O(n' 5) for sparse problems to 0(n 3 ) for dense problems.

Which of these bottlenecks will dominate depends on the particular problem. If the

circuit is very large, then eventually the linear solution task will dominate the total

complexity. On the other hand, if the circuit is small or only moderately large, then

the device evaluation task will in general dominate. However, one should be very careful

when weighting the costs associated with the circuit simulation process using complexity

issues alone as this can sometimes lead to erroneous conclusions. In fact, even assuming

the number of circuit nodes to be small, the real cost of each Newton iteration might

still be extremely large if the evaluation of some or all of the devices is computationally

very expensive. An example of this is the case where the device might be described via
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its frequency response, thus requiring at each timepoint a convolution with the derived

impulse response. Furthermore, even if the device evaluation task has negligible cost, it

may happen that the integration interval is so large that the sheer number of timepoints

necessary for accurate computation of the ODE solution makes the total simulation cost

overwhelming. A simple example of this situation is the case of clocked analog circuits

such as power converters or phase-locked loops. It seems therefore hopeless to expect that

standard circuit simulation algorithms be able to handle every conceivable scenario with

acceptable efficiency. For these reasons, a pertinent question is whether it is possible to

achieve efficient simulation of certain classes of circuits by using algorithms or techniques

specifically tuned to exploit the characteristic features of the particular problem to be

solved and make them more tractable.

One possible answer to this quest is through Model Order Reduction. Model order

reduction is a process by which, given a complex dynamic system, one obtains a simpler

model that approximates the full system in some adequate way. The main reasons for

obtaining lower-order models are twofold: to facilitate an understanding of the system,

or to reduce computational efforts in the simulation process. In this light, model order

reduction is an approximation technique at the system level, and any approximation or

modeling technique leads to the classical dilemma between accuracy and simplicity. Only

knowledge of the specific problem enables the designer to establish reasonable accuracy

criteria for the approximation and allows him to fully understand the nature of the trade-

off involved. In the context of circuit simulation one can envision the application of model

order reduction techniques in many ways, depending on the level at which it is applied.

Macromodeling of a circuit element with a functionally equivalent but simpler circuit

or function is a model order reduction technique. Similarly extracting the important

characteristics of an otherwise complex circuit behavior can be viewed as a model order

reduction technique.

In this thesis we will study some theoretical and practical aspects of model order

reduction techniques for use in the context of circuit simulation. Two different types of

approaches will be considered. One is to look at the model order reduction technique as

a way to simplify the complexity of the computations in an otherwise computationally

expensive problem. In this context, the example studied is that of clocked analog cir-

cuits. Another approach taken is to consider model order reduction as a macromodeling

technique applied in this case to the modeling of frequency-dependent interconnect and

packaging structures.

A review of the circuit simulation problem and the standard techniques and algo-

rithms necessary for its solution are given in Chapter 2. In Chapter 3, algorithms are
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developed for handling the case of clocked analog circuits with high frequency clocks.

These algorithms focus on the slow underlying behavior of the circuit nodes which is

generally what is of interest to the designer. Frequency-dependent elements, either de-

scribed by a functional relationship or by tabulated or measured data are studied in

Chapter 4, where a guaranteed stable algorithm is presented that allows easy incorpora-

tion of the device models into an electrical level circuit simulator. Finally in Chapter 5

some conclusions are drawn and suggestions for further work are offered.
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2

Review of Numerical Techniques
for Circuit Simulation

2.1 Introduction

In this chapter the standard numerical techniques used in the solution of the circuit

simulation problem are reviewed. The presentation is not exhaustive in any conceivable

way, nor is that the intention. The function of this chapter is merely to provide the reader

with enough background to facilitate the understanding of the material in subsequent

chapters.

Electrical circuit simulation begins with the formulation of the system of nonlinear

ordinary differential equations which govern its behavior. These equations are intro-

duced in Section 2.2 and the standard algorithms used to compute their solution are also

described. Direct methods based on some form of sparse Gaussian elimination for the

solution of the linear systems obtained at each timepoint are reviewed in Section 2.3, and

relaxation methods are briefly reviewed in Section 2.4. Finally Section 2.5 debates some

issues concerning the evaluation of circuit devices.

2.2 Formulation of System Equations

The electrical behavior of a circuit in the time domain can be described by a system

of equations involving node voltages, resistive currents, capacitor charges and inductor

fluxes. This system of equations can be constructed from a circuit description using

the Kirchoff current and voltage laws (KCL and KVL) and the constitutive or branch
equations of each circuit element. For simplicity in this chapter we will restrict ourselves
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to noninductive circuits, and present a technique referred to as nodal analysis [1, 2, 3]

used to formulate those equations. It is possible to extend the nodal analysis technique to

include circuits with inductors and voltage sources by using modified nodal analysis [4],

while still preserving the form of many of the equations and algorithms that will follow.

For the most part that would only involve changing the physical meaning of some of

the unknowns to be used. Therefore, almost all the comments made in the following

discussion about these circuits will apply to circuits with inductive elements. Whenever

appropriate, comments will be made regarding the necessary changes to handle more

generic types of circuits.

Let us then assume for simplicity that in the circuits to be studied all resistive ele-

ments, including active devices, are characterized by constitutive equations where volt-

ages are the controlling variables and currents are the controlled variables, that energy

storage elements are represented by voltage-controlled charge devices and that all volt-

age sources have one terminal connected to ground or can be transformed into current

sources with the use of the Norton transformation. Then nodal analysis yields a system

of equations of the form:

dp(v(t), U(t)) + f (v(t), u(t)) = o v(O) = V-. (2.1)

Here p(v(t),u(t)) E Rn is the vector of sums of capacitive charges at each node,

f (v(t), u(t)) E Rn is the vector of sums of resistive currents at each node, u(t) E 

is the vector of input voltages, and v(t) E RE is the vector of node voltages with initial

values v(0) = v0 and n is the number of circuit nodes excluding the reference. Each

equation in this system corresponds to applying KCL to each node in the circuit and

using the constitutive equations of the branch elements to express their currents in terms

of the node voltages. If the circuit contains inductive elements, some of our unknowns

would now be branch currents and some of our equations would be derived from applying

KVL to the branches containing such elements. Nevertheless, the basic form of Eqn. (2.1)
would still be preserved.

2.3 Standard Circuit Simulation Solution

To solve the systems of nonlinear ordinary differential equations (ODE's) in Eqn. (2.1)

in the interval t E [0, T], the interval is discretized and a numerical solution is computed

at each point of the discretization. This is usually accomplished using Linear Multistep
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Formulas [5, 6] which when applied to the first order ordinary differential equation

d
dx(t) = g(x(t), t) x(0) = xo t e [0, T], (2.2)
dt

have the general form

8 $

jiX(tm+.-i) = hm Pig(x((tm+1i), tm+l-i) (2.3)

i=O i=O

where hm = tm+l -tm is the discretization timestep, x(tm) is the estimated value of the

solution at time t = t, g(x((tm+li), tmi+l-i) represents the dynamics of the equation at

the given timepoint using the estimated value, the parameters cai and /i are chosen for

accuracy within stability limits, and s is the order of the formula [5, 7].

If /o0 = 0 in Eqn. (2.3) x(tm+l) can be found explicitly as a function of previous values

of x and g(.) evaluated at previous values of x. For 30 0, an implicit equation in terms

of x(tm+i) and g(x(tm+i), tm+i) must be solved for x(tm+i). Hence, the method is called

an "explicit method" for ,0 = 0 and an "implicit method" for ,0 :- 0.

For problems such as (2.2), explicit methods have a potentially significant advantage

over implicit methods because there is no need to perform a nonlinear system solution.

This results in in a substantial reduction in computation as well as storage. However,

explicit methods are far less stable than their implicit counterparts. For problems hav-

ing eigenvalues that differ by several orders of magnitude (i.e., stiff problems), implicit

methods are computationally superior to explicit methods. The stability of the implicit

methods allows for substantially larger timesteps, resulting in lower overall computa-

tional work for the simulation. Explicit integration methods also lose their advantages

when the differential portion of the initial value problem is itself implicit, as is the case

with generic circuit simulation as denoted by Eqn.(2.1). A linear multistep integration

formula applied to solving (2.1) results in:

s s

ip ((tm+-ij)) + hm / if (V(tm+l-i), tm+l-i) = 0. (2.4)

i=o i=O

Even if an explicit integration method is used, i.e., by choosing /o30 = 0, (2.4) is still

implicit in v(tm+l). Therefore, a nonlinear solution step would be required, but without

gaining the stability inherent to an implicit integration method. In special cases, some

advantage can be gained because p may be easier to invert than f, but in general this

advantage is not enough to compensate for the lack of the strong stability properties of

implicit integration methods.
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In circuit simulation, the trapezoidal formula, a 2 nd order implicit linear multistep

formula, is frequently used to approximate the system of Eqn. (2.1) by a sequence of

implicit algebraic equations. Given a timestep, h, the trapezoidal integration algorithm

is defined as:

X(tm+i) = X(tm) + 2 (g(X (tm+), tm+1) + g(X(tm), tin)) (2.5)

When applied to Eqn. (2.1) the trapezoidal formula yields:

p (v(t + h), u(t + h)) - p (v(t), u(t)) + 2 [f (v(t + h), u(t + h)) + f (v(t), u(t))] = o

(2.6)

where v(t) is known, and the equation must be solved to compute v(t + h).

Using a linear multistep formula to discretize the system ODE's has replaced the

problem of solving a system of first-order differential equation with that of solving a

system of nonlinear algebraic equations at every timepoint in the discretization interval.

The usual way to solve Eqn. (2.6) is to use an iterative nonlinear solver. The most

popular of such methods is Newton's method or one of its variants. If the standard

multidimensional Newton method is used to solve Eqn. (2.6), the new iterate vk+l (t + h)

is derived from vk(t + h) by solving the linear system of equations

JF (k( t + h)) AVk(t + h) = -F(vk(t + h)) (2.7)

where

AVk(t + h) = Vk+1 (t + h) - Vk(t + h). (2.8)

Solution of Eqn. (2.7) involvs the computation of the residue at the kth step, F (vk(t + h)),

defined as

F (Vk(t + h)) = p (Vk(t + h), u(t + h)) - p (v(t), u(t)) -

~~~~h [f (Vk~~~~~~~~~~(2.9)

[f (Vk(t + h), u(t + h)) + f (v(t), u(t))]2 

and the Jacobian of F (vk(t + h)), JF (k( t + h)) which is given by

JF (k(t + h)) ap (vk(t + h), u(t + h)) h Of (vk(t + h), u(t + h)) 2.10)

Ov 2 Ov

The Newton iteration is continued until j k+1(t + h)-Vk(t + h) < , where > 0 is

a small number and F (vk(t + h)) is close enough to zero. Newton's method converges
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quadratically, provided the initial guess, x° , is sufficiently close to the exact solution [8].

Eqn. (2.7) is now a system of linear equations of the form

Ax= b (2.11)

which must be solved at each iteration of the Newton method.

The standard Newton method has some potential drawbacks. First, a linear system

solution step is required at each iteration, which can be expensive in terms of computation

and in terms of storage, especially if a direct factorization method is used. Second,

global convergence can be problematic if the initial guess is not close enough to the exact

solution. Both of these difficulties have been addressed extensively in the literature and

modified versions of Newton's method as well as other algorithmic solution methods are

known to exist [8, 9, 10, 11, 12, 13].

The standard algorithm for solving the linear system of equations derived from

Eqn. (2.7) is sparse Gaussian elimination (GE), typically implemented with standard

LU-factorization techniques. This algorithm decomposes the matrix A into lower and

upper triangular factors L and U, respectively, such that A = LU. The solution x to

Eqn. (2.11) is computed by first solving Ly = b with a forward elimination process and

then solving Ux = y with backward substitution.

A discussion of direct methods can be found in most linear algebra or numerical

methods texts [14, 15, 16]. The main advantage of direct methods is reliability. With

exact arithmetic, the solution x can be computed exactly in a fixed number of steps.

However, direct methods present two major drawbacks: computational complexity and

storage. The complexity of direct elimination methods for solving linear systems of

equations is polynomial in n, the size of the matrix, typically from O(nl'5) for sparse

problems to 0(n 3 ) for dense problems (it is actually known that the commonly cited

complexity of 0(n3 ) for dense matrix problems is not optimal; algorithms are known

that have better complexity, as low as O(n2 8) [17]).

Since the matrices that describe the linear systems in circuit simulation problems are

usually sparse as a consequence of the sparse connectivity pattern of most circuits, most of

the matrix entries are zero. It is therefore possible to obtain substantial memory savings

by storing only those nonzero matrix entries. However, direct methods also require

storage for the fill-in elements, i.e., matrix zero locations which become non-zero as the

elimination process proceeds. Clever data structures and careful reordering algorithms

have been used to reduce the complexity of Gaussian elimination for sparse matrices

associated with circuit problems to a range of from O(n) to O(nl'5 ) [18]. However,

sparse matrix techniques based on Gaussian elimination still grow superlinearly with the
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Algorithm 2.3.1 (Direct Method Circuit Simulation).

number of unknowns, and therefore other solution methods have been attempted which

address this problem. In the next section we will mention briefly alternatives to some of

these methods.

The standard circuit simulation outlined in this section is known as the Direct Method

for solving Eqn. (2.1) and is summarized in Algorithm 2.3.1. As shown, the algorithm

indicates that at every timepoint a new timestep is chosen. The timestep selection is

in general done automatically based on a number of parameters which may include the

number of iterations required for Newton convergence, the local truncation error estimate

and other accuracy-related parameters. It may happen that at some timepoint, the

Newton will either fail to converge or produce a solution which does not satisfy the users'

accuracy requirements. In this case the timestep must be rejected and a new, smaller

timestep chosen. Automatic timestep selection is a fuzzy area, generally implementation

dependent, in which considerable work has been done [19, 20].

2.4 Relaxation-Based Circuit Simulation

Relaxation methods comprise one class of iterative solution methods for systems of

equations which grow more slowly with problem size than the standard direct methods,
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simulate()

{
t=O ;
formulate the circuit equations ;
while (t < SimulationTime) {

select h ;

repeat {
use Newton's method to solve the nonlinear algebraic

equations;

solve the resulting linear algebraic system with sparse
Gaussian elimination

} until (converged) ;

t=t+h ;

}
}
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that is Newton's method followed by sparse Gaussian elimination. In particular, the

computation per iteration grows linearly with the number of nonzero jacobian matrix en-

tries. The disadvantage of relaxation is that each iteration only produces an approximate

solution to a linear system, and repeated relaxation iterations do not necessarily improve

that approximation. For some circuit simulation problems, relaxation methods work well

because repeated relaxation iterations converge rapidly to the exact solution [21].

Relaxation methods can be used to solve Eqn. (2.1) in a number of ways. Applying

relaxation to the solution of Eqn. (2.1) has in general a simple circuit interpretation. For

instance, when updating the voltage at a particular node, one could consider all the other

nodes in the circuit as constant voltages sources. One could then solve the corresponding

scalar equation for that node voltage and afterwards use the same procedure for the other

nodes. If this is performed in an iterative fashion, then one could hope that after a certain

number of iterations a convergent set of node voltages would be obtained. Viewed in this

way, relaxation methods perform a decoupling of the circuit equations or equivalently

a partitioning of the circuit nodes. The simplest relaxation method is the Richardson

iteration [22, 23], but by far the two most common relaxation methods used in electrical

circuit simulation are the Gauss-Jacobi method and the Gauss-Seidel Method [8]. The

interpretation above describes both of these methods fairly well. They differ only in the

fact that at each relaxation iteration the Gauss-Jacobi method only uses values from

previous iterations, while the Gauss-Seidel method uses the most recent updates for

each node's voltage, which is the reason why Gauss-Seidel has a faster convergence than

Gauss-Jacobi for most problems.

Relaxation methods can be applied at different stages of the solution process. If ap-

plied to the linear equation (2.7) these methods are known as Linear Relaxation (LR) [23].

If applied to the nonlinear equation (2.6) they are called Nonlinear Relaxation (NLR) [8]

and if applied to the differential equation (2.1) directly they are known as Waveform Re-

laxation (WR) [24, 25]. Under very mild conditions, relaxations algorithms can be proven

to be convergent[23, 25, 26, 27].

For completeness, and also to give the reader a flavor for iterative methods and

relaxation methods in particular we include more detailed descriptions for the Gauss-

Jacobi versions of the linear and nonlinear relaxation methods mentioned.

Linear Relaxation can be used in lieu of sparse Gaussian elimination in the solution of

the linear problem of Eqn. (2.7). More generally, when applied to a linear system of the

form Ax-b = 0 where x (1, ... , xn)T, b = (bl, ... , bn)T, xi, bi E R, and A = (aij), A E

Rn
X

n , the Gauss-Jacobi relaxation method attempts to solve it by solving the equations

one row at time, using for the other variables the values from previous iterations. This
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Algorithm 2.4.1 (Linear Gauss-Jacobi Relaxation for solving A x - b = 0).

is shown in Algorithm 2.4.1, where the superscript k is the iteration count and E is a

small positive number. The Gauss-Jacobi and Gauss-Seidel iterations can be described

compactly in matrix form. Let L, U, and D be the strictly lower triangular, strictly

upper triangular, and diagonal of A, respectively. Then, the Gauss-Jacobi and Gauss-

Seidel algorithms can be expressed as

Dxk+l = b- (L + U)xk,

and

(L + D)xk+l = b- Uxk,

respectively [15].

For a result on the necessary conditions for convergence regardless of the initial guess

see [15, 25]. In terms of circuit topology, sufficient conditions for convergence are met if

there is a capacitor to ground at each node, an assumption that is reasonable in VLSI

designs. For an equivalent result in the case of Nonlinear Relaxation see [8, 25].

The point Gauss-Jacobi Nonlinear Relaxation method applied at the nonlinear equa-

tion (2.6) is shown in Algorithm 2.4.2. The superscript k represents the iteration counter,

the subscript i represents the node index in the vector of voltages, and e is a small positive

number. The function Fi(.) is the i th component of equation (2.6), that is

F (i)(t + h)) = (vi)(t + h)) - pi (v(t)) + 2 v(i) + h)) + f (v(t))] o
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linearGaussJacobirelaxation()

{
k = 0;

guess some xO

repeat {
k = k + 1;
for (i= 1; 1 < n; i++) {

in

xi ai

j=' =i+l

}
} until | k 1• )

}



Algorithm 2.4.2 (Nonlinear Gauss-Jacobi Relaxation).
Algorithm 2.4.2 (Nonlinear Gauss-Jacobi Relaxation).

using the notation

vk = (Vkl .. ,k- vk vk- . k-1)

k~ ~~~~~~'' i-1 th''~

where, vk is the ith component of v(t + h) at the kth relaxation iteration, and dependence

on u(.) was dropped for clarity.

It is possible to use the Newton-Raphson algorithm to solve the algebraic equation

F kv ) kF -1( 1, l k k1, k -) = 0
(, (i)) = F, (V ,, I. , I1 Vivi+1 -) 1)

accurately at each step, but this is not necessary. In fact it has been proved that only

one iteration of the Newton-Raphson method is required to maintain the convergence

of the relaxation iteration due to the quadratic convergence of the Newton-Raphson

method [21]. After the relaxation iteration has converged, vk becomes the new voltage

vector at time t + h, and one advances to the next timepoint.
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nonlinearGaussJacobirelaxation()

{
t = 0;

while (t < SimulationTime) {
select h ;
k = 0;
guess v°

repeat {
k = k + 1;
for (i=1 1n; i++) {

solve Fi (v - 1 vk...V-1,vvk-+1 ... vk-1) = for vk

k-i 
given v3 j i

}
} until (]v/ - vik- 1 e)

update waveforms ;

t=t+h;

}
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2.5 Device Evaluation Issues

As mentioned in chapter 1, function or device evaluation is one of the bottlenecks

in standard electrical circuit simulation. Evaluation of a device's constitutive relation is

necessary for the computation of KCL or KVL. If the device has a nonlinear characteristic,

then it will also be necessary to compute its derivatives in order to obtain the jacobian

entries for the underlying Newton method. Even if the device is linear, computing its

characteristic can be a computationally expensive task. Furthermore, these computations

have to be carried out at every Newton iteration for every timestep simulated. In some

cases, however, it is possible to bypass some the computations of certain elements at

certain times, thus saving computation time [19, 20].

Obtaining accurate models that describe the behavior of nonlinear devices is in itself

a difficult problem. The models must be accurate and general enough for application

in a wide variety of situation. Traditionally, modeling of semi-conductor devices has

received much attention, and current simulators such as SPICE contain fairly accurate

and general-purpose device models for almost every conceivable device type that one

would find in traditional discrete system or VLSI circuits. In recent years, as a result

of increasing signal and clock speeds, interconnections are rapidly becoming a dominant

factor in electronic circuit and system performance. It is now widely accepted that for

accurate circuit simulation the combined electrical and magnetic effects of the packaging

and interconnect and the nonlinear drivers and loads must be simulated during some

stage of the verification process. However, accurate modeling of packaging and intercon-

nects results in general in large, linear circuit models that can dramatically slow down

a circuit simulation [28, 29]. Considerable research has therefore been dedicated to the

study of efficient and accurate simulation techniques to analyze circuits dominated by

packaging and interconnect effects. The fundamental difficulty encountered in integrating

interconnect and packaging effects into a transient circuit simulator has to do with the

fact that circuits containing nonlinear devices or time-dependent characteristics must be

characterized in the time domain, while most of the important effects due to interconnect

and packaging are best characterized in the frequency domain. System-level descriptions

of interconnect have been introduced in recent years [30, 31, 32] and incorporated into

popular circuit simulators [33, 34, 35].

To understand how such models can be incorporated into a circuit simulator, con-

sider for example the case of a transmission line with skin effect which may be used to

model interconnect effects at the chip level as well as at the package, multi-chip module,

board and backplane level. Two systematic approaches have been succesfully used to
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incorporate transmission line models into circuit simulators. The first one is the ana-

lytical approach. SPICE3, for instance has an analytical model of a lossless as well as

a lossy transmission line [19, 33]. While this analytical model is quite accurate, it is

not very general. For instance, the model used does not consider skin-effects or any

other frequency dependent characteristic whose effects the designer might wish to verify.

The transmission-line equations are hard-coded into the simulator and even though it

is possible to modify the characteristics of the line by appropriately chosing the values

of some of the model parameters, it is impossible to go beyond the changes allowed by

those parameters.

Another approach, pioneered in [34, 35] is based on directly incorporating a frequency

dependent model into a simulator. In general, a transmission line can be described in

the frequency domain using scattering parameters, in which case

Yo(jW)Va(jW) + Ia(jW) 1 = [0 S12 (jW) 1 [Y(jw)V (jw) - Ia(jW)1

Yo(jw)Vb(jWJ) + Ib(jw) J S 12(jWa) 0 Yo(jw)Vb(jw) -Ib(jW) 
(2.12)

where Va(jw), Ia(jw) and Vb(jw), Ib(jw) are the voltages and currents at terminals a

and b of the transmission line, Yo(jw) is its characteristic admittance, and S 12 (jw) is the

relation between the incident and reflected waves on opposite ends of the transmission

line. Note, the nonstandard choice of Yo(jw) instead of Z(jw) = 1/Y(jw) is that for

a line with no shunt loss, Zo(O) = oo, which may cause numerical difficulties in many

situations. It should be noted that any ideal delay resulting from propagation along the

transmission line and which reflects itself on S12 (jw) or (YoS1 2 )(jw) is usually handled

separately and cancelled from the above frequency dependent measurements or model

before they are incorporated into the simulator. This is in general easily accomplished

by multiplying by the associated exponentials [31, 36].

To incorporate such a general transmission line representation into a circuit simulator,

it is necessary to compute the inverse transforms of S 1 2(jw), Y(jw), and (YoS12)(jw)

so as to determine the impulse responses s1 2(t), y(t), and (yoS 12 )(t). Then (2.12) becomes

(Yo * va) (t) + i.(t) = ((yos12) * vb) (t - td) - (s1 2 * ib) (t - td)

(Yo * Vb) (t) + ib(t) = ((yos12) * Va) (t - td) - (S1 2 * ia) (t -td)

where * is used to denote convolution and td is the propagation delay which was extracted

from the frequency dependent model and is now explicitely introduced into the time-

domain equations. If for instance frequency data is available either as measured or
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tabulated data then we can derive s12 (t), yo(t) and(yoSl 2)(t) by applying the inverse Fast

Fourier Transform to S 12 (jw), Y(jw), and (YoS1 2)(jw). Once the impulse response

is known, then the circuit equation can be solved at any timepoint t by numerically

computing the necessary convolution integrals,which involves an impulse response and

some voltage or current waveform.

The ability to incorporate complex models such as the one described makes a simulator

more general and therefore increases its usefulness.

References

[1] C. A. Desoer and E. S. Kuh, Basic Circuit Theory. New York: McGraw-Hill, 1969.

[2] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits. Circuits
and Systems, New York: McGraw-Hill, 1987.

[3] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design. Berk-
shire, England: Van Nostrand Reinhold, 1983.

[4] C. W. Ho, A. E. Ruehli, and P. A. Brennan, "The modified nodal approach to net-
work analysis," IEEE Transactions on Circuits and Systems, vol. CAS-22, pp. 504-
509, June 1975.

[5] G. Dahlquist and A. Bj6rck, Numerical Methods. Automatic Computation, Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1974.

[6] L. N. Trefethen, "Finite-difference and spectral methods." Lecture notes, Mas-
sachusetts Institute of Technology. Unpublished, 1989.

[7] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations.
Automatic Computation, Englewood Cliffs, New Jersey: Prentice-Hall, 1971.

[8] J. M. Ortega and W. C. Rheinbolt, Iterative Solution of Nonlinear Equations in Sev-
eral Variables. Computer Science and Applied Mathematics, New York: Academic
Press, 1970.

[9] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, "Inexact Newton methods," SIAM
J. Numer. Anal., vol. 19, pp. 400-408, April 1982.

[10] C. W. Gear and Y. Saad, "Iterative solution of linear equations in ODE codes,"
SIAM J. Sci. Statist. Comput., vol. 4, pp. 583-601, December 1983.

[11] P. N. Brown and A. C. Hindmarsh, "Matrix-free methods for stiff systems of ODE's,"
SIAM J. Numer. Anal., vol. 23, pp. 610-638, June 1986.

[12] P. N. Brown and A. C. Hindmarsh, "Reduced storage methods in stiff ODE systems,"
J. Appl. Math. Comput., vol. 31, pp. 40-91, 1989.

36 .0.



[13] P. Brown and Y. Saad, "Hybrid Krylov methods for nonlinear systems of equations,"
SIAM J. Sci. Statist. Comput., vol. 11, pp. 450-481, May 1990.

[14] G. Strang, Linear Algebra and Its Applications. New York: Academic Press, 1980.

[15] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, Maryland: The
John Hopkins University Press, 1983.

[16] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices.
Oxford: Clarendon Press, 1986.

[17] V. Strassen, "Gaussian elimination is not optimal," Numer. Math., vol. 13, pp. 354-
356, 1968.

[18] K. S. Kundert, "Sparse matrix techniques," in Circuit Analysis, Simulation and
Design (A. E. Ruehli, ed.), pp. 281-324, North-Holland, 1986.

[19] T. L. Quarles, "The SPICE3 Implementation Guide," Tech. Rep. ERL M89/44, Elec-
tronics Research Laboratory Report, University of California at Berkeley, Berkeley,
California, April 1989.

[20] A. L. Sangiovanni-Vincentelli, "Circuit simulation," in Computer Design Aids for
VLSI Circuits (P. Antognetti, D. O. Pederson, and H. de Man, eds.), NATO ASI
Series, pp. 19-112, Dordrecht, Germany: Martinus Nijhoff Publishers, 1986.

[21] A. R. Newton and A. L. Sangiovanni-Vincentelli, "Relaxation- Based circuit simula-
tion," IEEE Transactions on Electron Devices, vol. ED-30, pp. 1184-1207, Septem-
ber 1983.

[22] L. F. Richardson, "The approximate arithmetical solution by finite differences of
physical problems involving differential equations,with applications to the stress in
a masonry dam," Philos. Trans. Roy. Soc. London, vol. Ser. A210, pp. 307-357,
1910.

[23] R. S. Varga, Matrix Iterative Analysis. Automatic Computation Series, Englewood
Cliffs, New Jersey: Prentice-Hall Inc, 1962.

[24] E. Lelarasmee, A. E. Ruehli, and A. L. Sangiovanni-Vincentelli, "The waveform
relaxation method for time domain analysis of large scale integrated circuits," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 1,
pp. 131-145, July 1982.

[25] J. K. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the Simu-
lation of VLSI Circuits. Engineering and Computer Science Series, Norwell, Mas-
sachusetts: Kluwer Academic Publishers, 1986.

[26] A. R. Newton and S. L. Sangiovanni-Vincentelli, "Relaxation-based electrical sim-
ulation," IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 3, March 1984.

37



[27] D. Dumlugol, The Segmented Waveform Relaxation Method for Mixed-Mode Simu-
lation of Digital MOS Circuits. PhD thesis, Katholieke Universiteit Leuven, October
1986.

[28] A. E. Ruehli and P. A. Brennan, "Efficient Capacitance Calculations for Three-
Dimensional Multiconductor Systems," IEEE Transactions on Microwave Theory
and Techniques, vol. 21, pp. 76-82, February 1973.

[29] A. E. Ruehli, "Survey of Computer-Aided Electrical Analysis of Integrated Circuit
Interconnections," IBM Journal of Research and Development, vol. 23, pp. 626-639,
November 1979.

[30] J. S. Roychowdhury, A. R. Newton, and D. O. Pederson, "An Impulse-Response
based Linear Time-Complexity Algorithm for Lossy Interconnect Simulation," in
International Conference on Computer Aided-Design, pp. 62-65, November 1991.

[31] J. E. Bracken, V. Raghavan, and R. A. Rohrer, "Interconnect Simulation with
Asymptotic Waveform Evaluation," IEEE Trans. Circuits Syst., vol. 39, pp. 869-
878, November 1992.

[32] J. R. Griffith and M. S. Nakhla, "Time-Domain Analysis of Lossy Coupled Trans-
mission Lines," IEEE Transactions on Microwave Theory and Techniques, vol. 38,
pp. 1480-1487, October 1990.

[33] J. S. Roychowdhury and D. O. Pederson, "Efficient Transient Simulation of Lossy
Interconnect," in 2 8 th ACM/IEEE Design Automation Conference, pp. 740-745,
June 1991.

[34] V. Raghavan, J. E. Bracken, and R. A. Rohrer, "AWESpice: A General Tool for the
Accurate and Efficient Simulation of Interconnect Problems," in 2 9 th ACM/IEEE
Design Automation Conference, (Anaheim, California), pp. 87-92, June 1992.

[35] T. K. Tang and M. S. Nakhla, "Analysis of High-Speed VLSI Interconnects using
the Asymptotic Waveform Evaluation Technique," in International Conference on
Computer Aided-Design, (Santa Clara, California), pp. 542-544, November 1990.

[36] S. Lin and E. S. Kuh, "Transient Simulation of Lossy Interconnects Based on the
Recursive Convolution Formulation," IEEE Trans. Circuits Syst., vol. 39, pp. 879-
892, November 1992.

38



3

Clocked Analog Circuit Simulation

3.1 Introduction

In general, clocked analog circuit designers rely heavily on circuit simulation programs

like SPICE [1] or ASTAP [2] to verify the correctness and to determine the performance

of their designs. As we saw in chapter 2, these programs simulate a circuit by first

constructing the system of differential equations that describes the circuit, and then

solving that system numerically with a time discretization method such as backward-

Euler. When applied to clocked analog circuits such as switching power converters,

switched-capacitor circuits or phase-locked loops, such classical circuit simulation algo-

rithms become extraordinarily computationally expensive. This is because these circuits

use high-frequency clocks whose periods are typically orders of magnitude smaller than

the time intervals of interest to a designer. The nature of the calculations used in a

circuit simulator implies that to construct the solution over the time interval of interest,

an accurate solution must be computed for every cycle of the high-frequency clock in the

interval and therefore the circuit simulation timesteps are constrained to be much smaller

than a clock period. This implies that to compute the solution over the time interval of

interest to a designer may require hundreds of thousands of timepoints.

The infeasibility of simulating such circuits with classical techniques has led design-

ers to explore a variety of simulation alternatives, approaching each problem differently

and producing solution methods that are usually tuned to specific problems and can

only be used for a specific class of problems. For example, to simulate switching power

converters the alternatives exploited include the development of specialized dynamically

reconfigurable analog computers [3]. This approach has the usual drawbacks associated

with breadboarding, that is parasitics are not well controlled, arbitrary nonlinearities are
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hard to add, and performance sensitivities can not be easily examined. More popular are

fast approximate simulation techniques, based on assuming some ideal characteristic of

the switching, such that shortly after the beginning of each clock cycle, the equilibrium

point is achieved. A system of difference equations that represent the switching power

converter as changing from one equilibrium point to the next is then constructed and

solved. This approach treats the switching converter's switches as ideal, and the remain-

ing circuitry as linear [4, 5]. In addition, it is sometimes possible to further simplify the
converter circuit by eliminating certain state variables that do not contribute significantly

to the output of interest [6]. Approximate techniques such as these can reduce the cost

of computing the behavior of a switching converter circuit over one high-frequency clock

cycle to the point where it becomes computationally feasible to simulate the circuit for

the hundreds of cycles needed to construct a complete transient.

The most common approach to simulating switched-capacitor filters is to break the

circuit up into functional blocks such as operational amplifiers and switches. Each func-

tional bock is simulated, using a traditional circuit simulator, for some short period. The

simulations of the functional blocks are used to construct extremely simple macromodels,

which replace the functional blocks in the circuit. The result is a much simplified circuit

that can be simulated easily. It is then assumed that after each clock transition, every

node in the circuit reaches its equilibrium point before another transition occurs. This

assumption, known as the "slow-clock" approximation, along with the use of algebraic

macromodels, allows the filter to be treated as a discrete-time system with one time

point per clock transition. A set of difference equations is then used to describe the

filter, whose solution for hundreds of clock cycles can be computed quickly. Simulators of

this macromodeling sort have been formalized in programs like DIANA [7] and SWITCAP

[8]. Although these programs have served designers well, a macromodeling approach is

only as good as the macromodel. If a second order effect in a functional block changes

overall performance, but this effect is not included in the macromodel, the effect will

never be seen in the simulation.

Although programs based on the above techniques are reasonably efficient, they are

based on idealizations of the circuits involved which may eliminate behavior that is

important to a designer. Another approach to simulating clocked analog circuits which

does not involve any idealization of the behavior is the method referred to as Envelope-

Following [9]. This method exploits the fact that a designer typically is not interested

in the details of the node voltage behavior in every clock cycle, but rather is interested in

the "envelope" of that behavior. The method also exploits the property of such circuits

that the node voltage waveforms over a given high frequency clock cycle are similar, but
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not exact duplicates, of the node voltages waveforms in proceeding or following cycles.

This suggests that it is possible to construct a solution accurate over many high frequency

clock cycles by calculating the solution accurately for a few selected cycles. The envelope-

following method can be therefore considered as an order reduction technique in itself,

given that it provides to the designer the ability to obtain accurate information regarding

the "enveloping" behavior of the node voltages while hiding from him/her the unnecessary

details of the voltage waveforms evolution. The envelope-following approach, has been

found to be extremely efficient for the simulating the power-up transient of open-loop

switching power-converters [10]. However the method was shown to perform poorly for

closed-loop switching power converters [11].

In the next section the Envelope-Following algorithm is introduced. We will make the

definition of envelope more precise and derive a simple method for computing envelopes

which involves solving a sequence of two-point boundary value problems. Stability issues

regarding the formulation of these equations are studied in section 3.2.2. The two-point

boundary value problems are solved with a "shooting" or Newton method, as described

in section 3.2.3. The computations involved are explained in detail in section 3.2.4. In

section 3.3 we will show that the standard algorithm has problems dealing with circuits for

which there are states in the system which change rapidly due to small changes in other

slowly changing states. Given that, as mentioned, the designer is not in general interested

in these fast transients but is in fact more concerned with those slower characteristics

of the circuit, it would seem reasonable to obtain a reduced-order model of the circuit

that would encapsulate the important enveloping behavior of the response, without need

to consider the faster transients. In section 3.4.1 we start by showing how it is possible

to modify the standard envelope-following algorithm to circumvent the above problems.

In the remainder of section 3.4 we will outline the proposed solution to the problems

described and and present computational results we have obtained with this modified

technique. In section 3.5 we discuss our experience and ideas regarding issues related to

extending the envelope-following techniques described to other types of circuits, including

autonomous circuit and circuits containing multiple frequencies. Finally, conclusions and

suggestions for further work are contained in section 3.6.

3.2 The Envelope-Following Method

The type of clocked analog circuits with which we are concerned have the property

that the circuit to be simulated has as an input clock with period, T, that is much

smaller than the simulation interval. For example, consider the simplified "buck" DC-DC
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Figure 3-1: Open-loop buck converter.

converter circuit in Fig. 3-1 [4]. This circuit's behavior in steady-state is roughly that of

a modulator followed by a low-pass filter. The modulator converts the input DC source

into a periodic pulse waveform and the low-pass filter time-averages the pulse waveform

to produce a DC voltage at the output. In the circuit in Fig. 3-1, the N-channel MOS

transistor combined with a diode act as the modulator, and are controlled by the input

clock connected to the MOS transistor's gate. The DC output voltage of the converter

is given approximately by DVi,,, where D is the duty-cycle of the input clock waveform

and Vi/ is the input voltage.

The voltage waveforms in steady state for the switch and output nodes of the "buck"-

converter of Fig. 3-1 were computed numerically using a standard backward-Euler inte-

gration scheme; the computed timepoints for a portion of the simulation interval are

plotted in Fig. 3-2 (for the simulation, the DC input was 10 volts, the clock was a 100

kHz square wave and R = 140Q, L = 420ph and C = 38/if). The backward-Euler inte-

gration scheme used for this simulation required more than twenty timepoints for each

simulated clock cycle, because of the rapid variation of the voltage at the switch node.

This implies that simulating a power converter transient, which can span hundreds of

clock cycles because of the low-pass filtering, will be computationally very expensive. For

example, the plot in Fig. 3-3 is of the output voltage waveform for the power-up transient

of the buck converter in Fig. 3-1. In this case the power-up transient waveforms is made

up of more than 1000 cycles of the input clock, and the total simulation used about

55,000 timepoints. The reasons for this large amount of computations lie mainly with

the fact that the input clock period T is much smaller than the simulation interval.

As mentioned before, the number of timepoints computed during a switching converter
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Figure 3-2: Buck converter switch and output nodes in steady-state.
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Figure 3-3: Buck converter output voltage during power-up transient.
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Figure 3-4: Envelope definition.

transient simulation can be reduced by exploiting the fact that a designer typically is not

interested in the details of the node voltage behavior in every clock cycle, but rather is

interested in the "envelope" of that behavior. Specifically, we define the "envelope" to

be a continuous function derived by interpolating the sequence formed by sampling the

state every clock period T (See Fig. 3-4). Note our use of "envelope" is not standard.

Here, the envelope is not unique given x(t); the envelope generated by interpolating the

sequence x(O+r), x(T+T), x(2T+r),... depends on T. The key advantage of considering

just the envelope is that if the sequence formed by sampling the state at the beginning

of each clock cycle, x(O),x(T),x(2T),...,x(mT),..., changes slowly as a function of

m, the clock cycle number, then the envelope can be accurately computed by detailed

simulation of only every Ith clock cycle, where 1, referred to as the cycle-step, is large.

3.2.1 Computing the Envelope

As described in Chapter 2, most circuits can be described by a system of differential

equations of the form

dtd-p(x(t), u(t)) + f (x(t), u(t)) = 0, (3.1)

where x(t) RN, the state, is the vector of capacitor voltages and inductor currents,

u(t) RM is the vector of input sources, p (x(t), u(t)) RN is the vector of capacitor

charges and inductor fluxes, and f (x(t), u(t)) E RN is the vector of resistive currents

and inductor voltages.

If the state x is known at some time to, it is possible to solve Eqn. (3.1) and compute

the state at some later time t. In general, one can write

x(tl) = (x(to),t tl) (3.2)
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where : IRN x R x R - RN is a state transition function for the differential equation.

However, if t > to this may be computationally very expensive. Consider an alternate

situation where the state is know not only at a single time but at a collection of timepoints

0, T, 2T,..., mT, .... In this case, the value of the state at any other timepoint x(ts), can

again by obtained by solving Eqn. (3.1). However, since we can now determine m such

that mT < t < (m + 1)T, we can use v(mT) as an initial condition to the differential

equation. This in turn implies that to obtain the state at any timepoint it is enough to

integrate the differential equation for an interval no longer than T. In other words, the

knowledge of the state at the given set of timepoints, reduces the problem of computation

of the state at any timepoint to that of an integration in an interval no longer than T,

which has obvious computational advantages. Then question we now address is how to

compute the state at that particular set of timepoints, or in other words, how to compute

the envelope of the state x.

The straight-forward approach to computing the envelope of the solution to Eqn. (3.1)

is to numerically compute x(t) for all t and then to sample this computed solution at x(0),

x(T), x(2T),... to construct the envelope. If the envelope is smooth enough, then it will

be possible to approximately represent an interval of sample points, x ((m - 1)T), x(mT),

... , x ((m + )T) with a low order polynomial in the cycle number. For example, if over

1 + 1 cycles the envelope is well approximated by a straight line, then

x ((m + )T) - x (mT) I [x ((m + 1)T) - x (mT)]. (3.3)

The term [x(mT)- x ((m- 1)T)] can be thought of, imprecisely, as the derivative of

the envelope at x(mT), in which case Eqn. (3.3) is loosely analogous to solving a differ-

ential equation by forward-Euler. Following that analogy, is then the cycle-step for the

integration method. Graphically this approximation corresponds to aligning the values

of the state at the beginning and end of a cycle and then extrapolating cycles ahead to

obtain the new starting point of a cycle. This is shown in Fig. 3-5.

To compute the envelope of a system with period T using a fixed cycle-step version of

the above forward-Euler style envelope-following algorithm, a simple repetitive two-step

process can be used. The first step is to compute x(T), given x(0), by solving Eqn. (3.1)

over the interval [0, T], as shown graphically in Fig. 3-6. Then the second step is to

set x ((1 + )T) = x(T) + I [x(T)- x(0)]. This process can be repeated to compute

x ((2 + 21)T), x ((3 + 31)T), et cetera. Note that calculating the envelope over a long

interval then requires solving Eqn. (3.1) for one out of every cycles.
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X((m+1 )T)

x(mT)

Figure 3-5: Forward-Euler -like extrapolation for the Envelope-Following algorithm indi-
cating alignment necessary to obtain starting values at the beginning of a cycle cycles
away.

((m+1 )T)

x(mT)
Figure 3-6: Integrating the circuit equations for one high-frequency cycle takes us from
the beginning point of a cycle to the endpoint of the same cycle.
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3.2.2 Stability Issues in Envelope-Following Formulation

Although simple to describe, a forward-Euler based approach to computing envelopes

is inefficient for simulating switching converter circuits. Maintaining stability severely

limits the size of the cycle-step 1, just as in the standard forward-Euler algorithm. To

see that this is indeed the case we analyze a simple linear system of the form

x= Ax. (3.4)

for which the state transition function is readily obtained as

q (x (mT), mT, (m + 1)T) = eATx (mT). (3.5)

Applying the forward-Euler style envelope-following algorithm in Eqn. (3.3) to Eqn. (3.4)

leads to

x ((m + )T) - x (mT) = I [eATx(mT) - x(mT)].

With some algebraic manipulation one obtains

x ((m + )T) = [I +I (eAT-I)] x(mT) (3.6)

If we now consider the repeated application of Eqn (3.6) using a fixed cycle-step of we

obtain

x ((m + nl)T) = [I +1 (eAT - i)] x(mT). (3.7)

The forward-Euler Envelope-Following algorithm will be considered stable if the solutions

to Eqn. (3.7) remain bounded as n goes to infinity. In this case, this implies that the

spectral radius of the iteration matrix M = I + 1 (eAT - I) is smaller than one, that

is

p(M)= P (I + (eAT I)) <1.

If for simplicity A is assumed to be diagonalizable, i.e. it has a full set of linearly

independent eigenvalues it is possible to perform a spectral decomposition on A. One

obtains A = S-1AS, where S is a matrix whose columns are the eigenvectors of A and

A is a diagonal matrix whose elements are the eigenvalues of A, that is Aii = Ai (A).

Furthermore, from the definition of matrix exponential

eAT = eS -1 AST = S-leATS.

Therefore

p(M) = max [ + 1 (eiT- 1)1 < 1. (3.8)
Ai
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x(mT)

x((m-1 )T)

Figure 3-7: Backward-Euler -like extrapolation for the Envelope-Following algorithm
indicating alignment necessary to obtain starting values at the beginning of a cycle I
cycles away.

If we assume that the system in Eqn. (3.4) is stable, thus implying that all eigenvalues

of A are in the left half complex, that is Real[Ai] < 0, Vi then eiT < 1 which in turn

implies that

I1 + I (e' ~ - 1)1 = 1- (1 -e) I.
>0

For stability we must therefore ensure that Vi, 11 - (1- eAiT) < 1 or equivalently
1 - (1 - eAiT) > -1 which leads to

1 < 2 (3.9)
1 -eAminT

This overly limiting condition implies that if a forward-Euler style envelope-following

algorithm is used, in many cases it will be impossible to use large cycle-steps, which
means that the efficiency increase with this algorithm will be minimal if any at all.

A more stable algorithm is to approximate the value of x ((m + )T) by

x ((m + )T) - x(mT) I [x ((m + )T) - x ((m + - 1)T)] (3.10)

which is analogous to the backward-Euler algorithm. Graphically this corresponds to

aligning the end-point of a cycle with the beginning and end point of a cycle I cycles into

the future, as shown in Fig. 3-7.
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This approach allows for larger cycle-steps than the forward-Euler based approach,

just as in the case of numerical integration. To see that this is indeed the case, we apply

this formula to our test example from Eqn. (3.4). Recalling the semigroup property of

the state-transition function [12] which establishes that

(X(tl), tl, t2) (X(tl),t l ,t 3 ) (x(t 3 ),t 3 , t 2 )

a special case of which is

4 - 1 ((tl),tl 1,t 2) = 4(x(t2),t 2, t)

and noting that

x ((m + - 1)T) = - 1 (x ((m + )T), (m + l)T, (m +l - 1)T) = e-ATx ((m + l)T),

we can rewrite Eqn.(3.10) as follows

x ((m + )T) - x(mT) = 1 [x ((m + )T) - e-ATx ((m + l)T)] .

With some algebraic manipulation one obtains

[I-I(I-eAT) ] x ((m + )T) =x(mT)

and therefore

x ((m + I)T) = [i- ( - eAT)] x(mT).

In this case the iteration matrix for a fixed cycle-step scheme would be

M= [I-I (I-e-AT)]_

whose spectral radius equals,

p(M) = p ([I-I (I-e-AT)] -) = max 11-1(1 -e-hi)L-

Ai

Enforcing, for stability, that p (M) < 1 then leads to the condition

min 11-I (1-e-i)I > 1.

Since by hypothesis Vi, Real[Ai] <0 = e i > 1 = 1 - e- i < 0. Therefore

1-/ (1- ehi)l = 1 + lei - 11 > 1, 1.
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which shows that there are no limitations on the value of the cycle-step if the backward-

Euler style of the Envelope-Following algorithm is used. This property can be shown to

be shared by any "implicit"-like formula.

A simple example circuit will show how dramatic the issue of stability can become.

Consider the switched capacitor filter in Fig. 3-8, where the circuit input is a sine wave

of frequency 10KHz, and is being clocked by two non-overlapping clocks 01 and 02

at a frequency of 1MHz. Figure 3-9 shows the transient start-up of this circuit when

computed with the forward-Euler and backward-Euler styles of Envelope Following. In

the figure, the waveform denoted as FE(2) shows the transient of the output node when

computed with the forward-Euler equation using a fixed cycle-step of = 2. It should

be obvious that even with such a small cycle-step the computed waveform is completely

inaccurate and furthermore, instability is beginning to develop at the later stages of

simulation interval. We point out that = 2 would be the smallest cycle-step for which

the envelope-following algorithm could provide any speedup, which clearly implies that

this formulation is not usable when simulating real circuits. While using a fixed cycle-step

is unlikely to be a good strategy in many situations, it is nevertheless a good indication

of the behavior of the underlying algorithm. In the same figure, two other waveforms are

shown for comparison purposes. The waveform denoted as BE(5) indicates the transient

start-up obtained using using the backward-Euler formulation and a fixed cycle-step of

I = 5. Clearly this waveform indicates a stable algorithm and it is in fact quite accurate.

The third waveform, denoted as BE(20) is the output transient computed again using the

backward-Euler style of formulation, but now with a fixed cycle-step of I = 20. While this

waveform is not very accurate (compare with BE(5)), and would probably not satisfy any

reasonable accuracy criteria, it nevertheless shows that this formulation is indeed stable

and can withstand the usage of large cycle-steps, accuracy permitting.

As we have shown, the backward-Euler style algorithm allows for larger cycle-steps

than the forward-Euler based approach. However, it leads to a more difficult to solve

equation for each cycle-step. To see this, consider computing x(IT) given x(0) based

on Eqn. (3.10). An x ((1- 1)T) must be determined such that when used as an initial

condition for Eqn. (3.1), the x(IT) computed with standard discretization techniques

satisfies x(/T) - x(0) = [x(lT) - x ((1 - 1)T)]. This is a boundary value problem, and

is in general difficult to solve. For the case of switching power or filter circuits, the above

boundary value problem can be solved efficiently using a Newton or shooting method

[10], and this is presented in the next section.

50



1

Vin

I

01 6 1

ut

pF

- Gnd

Figure 3-8: Switched-capacitor filter circuit with input sine wave at 10KHz being clocked
by two non-overlapping clock phases of frequency 1MHz.
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Figure 3-9: Comparison of the transient start-up Envelope-Following simulation of a
switched-capacitor circuit for Forward- and Backward-Euler alignment schemes. Shown
in the plot are three waveforms, obtained by using the forward-Euler formulation with a
fixed cycle-step of 2 (FE(2)), and the backward-Euler formulation with fixed cycle-steps
of 5 (BE(5)) and 20 (BE(20)).

51

r.



3.2.3 Solution by Newton

As mentioned in the previous section, each cycle-step of a backward-Euler envelope-

following algorithm applied to Eqn. (3.1) involves finding an x ((m + 1 - 1)T) which

satisfies

x ((m + )T) - x(mT) = I [x ((m + I)T) - x ((m + l - 1)T)] (3.11)

where x(mT) is known from the previous cycle-step and x ((m + )T) is determined

from x ((m + - 1)T) by solving Eqn. (3.1) over one cycle. Using the state transition

function defined in Eqn. (3.2), the relation between x ((m + )T) and x ((m + - 1)T)

can be written as

x((m+I)T) = (x((m+i-1)T),(m+l-1)T,(m+I)T). (3.12)

Using this relation in Eqn. (3.11) yields the nonlinear algebraic equation

45(x((m + l- 1)T),(m + l- 1)T,(m + +l)T) -x(mT) = (3-13)
(3.13)

[(x((m+l- 1)T),(m+Il- 1)T,(m+l)T)-x((m+l- 1)T)]

from which x ((m + - 1)T) can be determined given x(mT).

An iterative Newton's method can be applied to solving Eqn. (3.13) for x ((m + - 1)T)

In general, the Newton method applied to the problem of finding an x E RN such that

F(x) = 0, F: R - R, yields the iteration equation

JF(X ) Ixk+1 - xk] = -F(xk), (3.14)

where k is the Newton iteration count and JF E RNXN is the Jacobian of F. Reorganizing

Eqn. (3.13) into a form to apply Newton's method leads to

F (x ((m + l - 1)T)) = (x((m + l - 1)T), (m + l - 1)T, (m + )T)

-1 x((m + -1)T)+ x (mT) = o. (3.15)

In this case, JF is given by

JF ( ((m +lI-1)T)) = e (x ( (m + l - 1) T) , (m + 1 - 1) T , ( m + l) T ) 1I NJF (x ((imn+l-l-T)VT)) IN
Ox ((m + - 1)T))

(3.16)

where IN is the identity matrix of size N.

The most time-consuming computation in this Newton iteration is evaluating JF

and F(), which involves computing the state transition function and its derivative. The

state transition function can be evaluated by numerically integrating Eqn. (3.1) from
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(m + - 1)T to (m + )T given x ((m + - 1)T). The derivative of the state transition

function, referred to as the sensitivity matrix, represents the sensitivity of x ((m + )T) to

perturbations in x ((m + - 1)T) and can be computed with a small amount of additional

work during the numerical integration, as is described in the following section.

3.2.4 Sensitivity Computation

To see how the computation of the state transition function and its derivative fit

together, consider numerically integrating Eqn. (3.1) with backward-Euler, which we

chose for its simplicity and because it is effective for problems with rapidly varying

inputs, like clocks. Given some initial time to and some initial condition x(to), applying

backward-Euler to Eqn. (3.1) results in the algebraic equation

g (x(to + h))= (p (x(to + h)) - p (x(to))) + f (x(to + h)) = 0, (3.17)

where h E R is the timestep. Note we have dropped explicitly denoting the dependence

of p and f on the input u for simplicity.
Equation (3.17) is usually solved with Newton's method, for which the iteration equa-

tion is

Jg (x(k) (to + h)) (X(k+l)(to + h) - X(k)(to + h))

-g ((k)(to + h), x(to)) (3.18)

where k is the Newton iteration index, and Jg (x(t)) E RNXN is the Frechet derivative
of the nonlinear equation (3.17) and is given by

Jg (x(t)) = g9 (x(t)) 1 p (x(t)) Of ((t)(3.19)
ax (t) -h o (t) + (t)

Solving Eqn. (3.17) yields an approximation to x(to + h) = (x(to), to, to + h). Im-

plicitly differentiating Eqn. (3.17) for x(to + h) with respect to x(to) yields

Ox(to + h) 1 Op (x(to))
Jg ( (to + h)) (to) = h ao (to) (3.20)

Given an x(to), Eqn. (3.17) can be repeatedly applied to approximately compute

x(to+T) = O(x(to), to, to+T), using Newton's method and Eqn. (3.18) at every timepoint

in the interval [to, to + T].

Similarly Eqn. (3.20) can be repeatedly applied to approximately compute the sensi-

tivity matrix
Ox(to + T) a (x (to), to, to + T)

aox(to) ax(to)

53



As mentioned previously, this can be accomplished with only a small amount of additional

work during the numerical integration [13]. To understand the process, note that direct

application of Eqn. 3.20 provides the sensitivity matrix

o9 (to + h)=
(O(t + h) ((to), to, to + h).

ox(to)

Assuming then that x(tl) = x(to + h) has been computed by application of Eqn. (3.17)

the sensitivity matrix can be readily updated by noting that

(x(to) t, tx + h) x(tl + h) X(tl + h) 0x(tl) (3.21)
((to),xto +h)= ix(to) Ox(tl) &x(to) (3.21)

and therefore
x(t + h) c9x(t + h) x(ti) -1 22
Ox(tl) &x(to) ox(to) (3.22)

which when plugged into Eqn. (3.20) finally leads to

Jg (x(t,+htlt(tj)) (t+ h) - 1ap (x(ti)) x(tl) (3.23)
&x(to) h x(ti) Ox(to) (3.23)

Therefore repeated application of Eqn. (3.23) leads to an approximate computation of

the sensitivity matrix
&x(to + T) _O(x(to), to, to + T)

ox (to) ox (to)

Furthermore, note that at any timepoint Jg is required in both Eqn. (3.18) and Eqn. (3.20),

and thus the sensitivity matrix update can be made very efficient by factoring Jg once

and using it for both computations. For large problems, though, computing the dense

N x N sensitivity matrix can become expensive since its update requires N back-solves,

each of which cost at least N effort.

The standard envelope-following algorithm as described is shown in Algorithm 3.2.1.

Only two of the steps mentioned in the algorithm were not already discussed. These are

the selection of the cycle step and the prediction of a first guess for the state I cycle-steps

ahead. These steps are very similar to equivalent steps one takes when performing the

timepoint per timepoint simulation. The guess used for the state is obtained with an

explicit low-order predictor using previously computed values. The selection of the cycle-

step is done in a manner very similar to that of the selection of a new timestep at every

timepoint, using some approximation to what now should be seen as the local envelope

truncation error. Both of these techniques will be further discussed in section 3.3 ahead.

Graphically Algorithm 3.2.1 can be described as shown in Fig. 3-10.

Computational procedures based on this algorithm are particularly efficient when used

to simulate simplified switching power converters [10, 11]. The method is not effective,
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Algorithm 3.2.1 (Standard Envelope-Following Algorithm).

Compute

x((m+l-1)T)

x((m+l)T)

Correct

x((m-1 )T)
Figure 3-10: Graphical description of the implicit scheme standard Envelope-Following
Algorithm, showing how the cycle integration and the alignment equation are fit together
to provide a consistent extrapolation of the behavior of the envelope cycles ahead.
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m=O
While mT < STOPTIME {

Select the cycle-step 
Predict a first guess, x°((m+l - 1)T)
Numerically integrate Eqn. (3.1) from (m+l-1)T to (m+I)T to

8X°((m+O))compute x°((m + I)T) and OXZ((m+-)T)

Compute JF(x°((m+l - 1)T) as in Eqn. (3.16)
Set k=O

Until Newton Converges {
Solve the Newton update equation for xk+l((m +l- 1)T).

Numerically integrate Eqn. (3.1) from (m+l-1)T to (m+l)T
to compute xk+l((m + I)T)

}
m- =rmqI

}

Predi

x(mT)



however, if there are states in the system which change rapidly and dramatically due

to small changes in much more slowly changing states [11], as we shall see in the next

section.

3.3 Envelope-Following Modeling of Clocked Ana-

log Circuits

An envelope-following method has been implemented in the NITSWIT [10] simulation

program. The program is written in "C", and runs under the UNIX operating system.

The program uses a trapezoidal-rule based envelope-following algorithm for which the

cycle-step update equation is

x ((m + I - 1)T) - x(mT)

1-1
1 [x ((m + )T) - x ((m + - 1)T)] + 2 [x(mT) - x ((m- 1)T)] (3.24)2~~~~~~~~~~~~~~~

The terms [x ((m + 1)T) - x ((m + I - 1)T)] and [x(mT) - x ((m - 1)T)] in Eqn. (3.24)

can be thought of as envelope derivatives at x ((m + 1)T) and x(mT) respectively. Just

as in the classical trapezoidal-rule, the average of these two "derivatives" is used in the

cycle-step update equation.

The Newton method described above is used to solve for the cycle-step update and as

in standard integrators, the cycle-steps for the follower are selected automatically, based

on examining both the envelope truncation error and the iteration count for the Newton

method. The automatic cycle-step algorithm is shown in pseudo-code in Algorithm 3.3.1.

It takes the last few cycle-steps and two input vectors, namely the guess or predictor

used for the state and the newly computed state value and returns a new cycle-step. The

predictor for the value of the state at the beginning of a cycle is obtained with an explicit

low-order polynomial using values of the states computed at previous cycle boundaries.

The computation of the envelope truncation error reflects the fact that a trapezoidal-rule

based envelope-following algorithm was used. Also, as you can see from the algorithm

there are several parameters and fudge factors which either must be set based on the

desired accuracy or are dependent upon the integration-like method used for formulating

the alignment equation. For our computations, the values shown in Table 3.3 were found

to be fairly adequate in most circumstances. At the end of each Newton iteration if

convergence was not achieved, the cyclestep is immediately halved and a new integration

is performed. If the Newton iteration was convergent, then the the algorithm is invoked

and an estimate of the envelope truncation error is computed. If this error satisfies the
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desired envelope computation accuracy, the newly computed values are accepted and a

new cycle-step is selected automatically. If on the other hand the envelope truncation

error does not satisfy the accuracy criteria, the step is rejected, a smaller cycle-step is

computed and a new integration is performed.

Parameter value

ETErel = 0.01
ETEabs = 0.005

kl = 10

k2 = 64
k 3 = 0.75
k4 = 8
k5 = 1.2
k6 = 0.9

Table 3-1: Parameters used for the computation of the Envelope truncation error and
the selection of new cycle-steps by the Envelope-Following Algorithm.

3.3.1 Near-Linearity of the State Transition Function

For the envelope-following approach to be more efficient than classical methods for

a given problem, it must be possible to accurately represent the envelope of interest

with a small fraction of the clock cycles. In addition, the Newton method used to solve

the envelope update equations must converge rapidly, as each Newton iteration involves

numerically simulating an entire converter clock cycle. If the problem is simulating

a switched capacitor filter or an "open-loop" converter, that is a circuit in which the

frequency and duty cycle of the input clock are not functions of the filter or circuit state,

the Newton method does converge very rapidly.

That the shooting Newton method should converge rapidly is clear for the case where

an open-loop converter is constructed from clock-controlled ideal switches and other linear

circuit elements. For such a converter the state transition function is affine (linear plus a

constant) [14] and JF in Eqn. (3.16) is a constant. This implies that the Newton method

will always converge in one iteration.

A simple example will make this point more clear. Consider the simple switched-

capacitor circuit in Fig. 3-11, which is clocked by two non-overlapping clocks with period

T, as indicated. Assume that the MOS switches are ideal. It is relatively easy to

determine the value of the output at end of a cycle. During the 01 phase the capacitor
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Algorithm 3.3.1 (Automatic Cycle-Step Selection).

check.select-cyclestep(lm_2, Im-l, In, predictor, state)

{
Compute the desired accuracy for envelope truncation error:

MAXETE = (ETEre,, state l + ETEab,) k,
Compute the predictor error: PTE = predictor - statell
/* Envelope truncation error is ETE - PTE */
Compute ratio of envelope truncation error to desired

accuracy: ETEratio = MAXETE 2(1m-lIm-2 )

if (ETEratio > 1) { /* reject cycle-step */
if (ETEratio > k 2)

recompute with m = lm/k 2
else

recompute with lm = k 3 m/ ~ETEratio

lm = [LimJ /* cycle-step is an integer */

im = max(lm, 1)
return(REJECT)

} else { /* accept cycle-step; select new cycle-step */
if (k 4 ETEratio < 1)

recompute with Im = 2 lm
else if (k 5 /; < 1)

use lm = (lm - I-l) [1 + k 6 ((ETEratio)- 1 - ks)]

else
use the same lm

Im = [ImJ /* cycle-step is an integer */

Im = min(lm, MAXstep)

m = max(lm, 1)
return(ACCEPT)

}

58



0 t I 2 T

Vin C1 V7 V, .+

C 2

Figure 3-11: Switched-capacitor circuit being clocked by two non-overlapping clock
phases of frequency 1T. The MOS switches are assumed to be ideal.
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C is charged to the value of vin, while the capacitor C2 is disconnected from the circuit.

At the end of the q51 the switches controlled by that phase op.en. At this point the charge

in Cl equals Ql(t1 ) = C vin(tl) where t is the time at which the switches opened.

Meanwhile the charge in C2 has not changed and it is equal to Q 2(tl) = C2 vot(O).

When 02 is high, the switches 02 controls are closed and the two capacitors are placed

in parallel. At this point charge will be shared between C1 and C2 such that the total

charge equals Q(T) = Q 1(T) + Q 2 (T) = (C1 + C2) vut(T) at the end of the cycle when

02 ends and node 2 is again separated from the rest of the circuit. Since the charge is

conserved, we can write

Q1 (tl) + Q 2 (tl) = Q1 (T) + Q 2(T)

C1 vin(t1 ) + C2 vot(O) = (Cl + C2) ut(T)

Solving for the value of the output node at the end of the cycle, we get:

Vout(T) = C2 rout(O) + C1 C Vin(tl)v0~~() =C1 + 02 vCtO) 1 + 02

or in other words the state transition matrix

(0, T, vout(0)) = k1 vout(O) + k 2

is affine as stated. Therefore, as previously mentioned, the Newton method applied to

the alignment equation will converge in one iteration.

For realistic circuits in which switches are implemented by transistors and diodes, the

state transition function over one cycle will still be nearly affine, and in our experience,

the Newton method typically converges in three or fewer iterations at each cycle-step.

It is possible to further exploit the nearly affine property of the open-loop converter

state transition function by only computing JF for the first Newton iteration in each

cycle-step. This is a significant savings, as it avoids recomputing the sensitivity matrix

and usually doesn't slow the Newton method's convergence.

3.3.2 Discussion of Experimental Results

Exactly how the envelope-following method behaves can be seen by examining Fig-

ures 3-12 and 3-13. Figure 3-12 shows the output voltage of the buck converter intro-

duced in Fig. 3-1, during a power-up transient. This simulation was obtained using the

Envelope-Following algorithm as described in section 3.2, and the thicker sections indicate

where cycles were in fact computed. As can be seen in the figure, the envelope-following

method computes only occasional cycles, shown in the figure with marks, but the output
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Figure 3-12: Envelope-Following simulation of the buck converter output voltage during
power-up transient.

voltage for the computed cycles are within a few percent of those computed with the

classical method. Similarly, Fig. 3-13 shows the start-up transient of the switched capac-

itor filter introduced in Fig. 3-8, where again the circuit input is a sine wave of frequency

10KHz, and is being clocked by two non-overlapping clocks 01 and 02 at a frequency of

1MHz. The CPU times obtained simulating these circuits with the envelope following

approach are quite encouraging. The results are shown in Table 3-2 where the open-loop

buck converter is called dbuck, and the switched capacitor filter is called scop.

Circuit N Total Cycles Classical (sec) EF (sec) I EF (cycles) I

scop 13 500 390 162.5 75
dbuck 4 1000 359 34.5 50

Table 3-2: CPU time comparisons for Classical versus Envelope-Following Simulation
algorithms. The number of cycles shown corresponds to the simulation interval divided
by the clock period. For the envelope-following approach, the number of effectively
simulated cycles is also shown. Times are in seconds on a SUN4/260.

Such encouraging results are not always obtained however. Consider a similar "buck"
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Figure 3-13: Envelope-Following simulation of the switched-capacitor filter output volt-
age during transient start-up.
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Figure 3-14: Closed-loop buck converter.

DC-DC converter circuit in a closed loop configuration as shown in Fig. 3-14. In the

closed-loop configuration, the input clock duty cycle is a function of the converter's out-

put voltage, which is fed back and compared to a reference voltage. In principle, this

converter should be able to be simulated with the envelope-following method as imple-

mented in NITSWIT, and the same type of quantitative results was expected. However, the
results obtained (again, shown in Table 3-3) are not that encouraging. Experiments with

NITSWIT indicate that the obvious explanation for the poorer efficiency, that closed-loop

converters have state transition functions which are more nonlinear, is not the dominant

problem [11].

Figure 3-15 show the output of the closed-loop buck converter during a power-up

transient as obtained with the standard envelope-following algorithm. As expected, dur-
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Figure 3-15: Closed-loop buck converter output node during power-up transient obtained
with the standard envelope-following technique.

ing the initial phase of the transient power-up the algorithm computes only occasional

cycles (again shown with plus marks on the figure). As the converter output approaches

steady-state, one would expect the number of computed cycles to decrease, as the en-

velope of the solution changes only slightly. However, as shown, a surprising number

of cycles are in fact being computed when the converter output is close to steady-state.

A more detailed look into what is happening during the simulation process reveals that

even though a few instances of non-convergence of the Newton algorithm are seen, for

the most part it is the local truncation error control mechanism, which is not allowing

the cycle step to become very large.

The difficulty simulating closed-loop loop converters, such as the one presented, is

that they typically include control circuitry which produce large, very rapid responses

to small changes in the converter output. In this case, a closer look at the behavior of

some of the control nodes shows that as we approach steady state, these nodes still have

wildly varying behavior. Figure. 3-16 shows the behavior of the intermediate control

node (denoted as Vcontrol in Fig 3-14) during the power-up transient interval. As shown,

this controlling node changes rapidly as the converter approaches steady-state and, if

envelope-followed, will restrict the length of the cycle step, or equivalently allow few
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Figure 3-16: Closed-loop buck converter Vcontro, node
with the standard envelope-following technique.

0.8 1

x 103

during power-up transient obtained

cycles to be skipped. This undesirable behavior strongly limits the applicability of the

standard envelope-following algorithm.

3.4 Model Order Reduction for Envelope-Following

Algorithms

If the envelope-following algorithm, as described in section 3.2, is used unmodified, the

cycle-step will be constrained by the component of x with the fastest changing envelope.

This can be unnecessarily conservative, as components of x which have rapidly changing

envelopes are likely to be nearly algebraic functions of other, more slowly changing com-

ponents, at least over the time scale of one clock period. That is, these nearly algebraic,

or quasi-algebraic components of x can be computed from a subset of the present state,

and therefore envelopes associated with quasi-algebraic nodes need not be computed with

a formula like Eqn. (3.11).

To clarify the above claim consider, for example, the circuit in Figure 3-17 where

the driving source is assumed to be periodic with period T. Further assume that rs -
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Figure 3-17: Example circuit showing the difference between state-variables and quasi-
algebraic variables.

RsmaliCsmal < T and that T = RargeClarge > T. Let v(O),vl(T),...,vj(nT) and

v2 (0), v2 (T), ... , v 2 (nT) be the envelope of, respectively, nodes 1 and 2. These envelopes

are obtained by sampling the voltage at those nodes at intervals of T, the clock period.

Clearly in this circuit, the value of v (t) is almost independent of the value of vl (t - T).

However, the value of v 2(t) is very dependent upon the value of v2 (t- T). This is due

to the time-constants associated with the behavior of each node. In other words, to be

able to know the state of node 2 at the end of a cycle, we need to know its value at the

beginning of the cycle. To indicate this fact, we say that v2 is a state variable. On the

other hand, to know the voltage at node 1 at any point during a cycle, it is enough to

know the current values of node 2 and the value of the source. For that reason, we call

v a quasi-algebraic variable. Therefore we can claim that the value of a quasi-algebraic

variable at the end of a cycle is nearly independent of it's values at the beginning of a

cycle, while the same does not hold for state variables.

Returning to the closed-loop buck-converter in Figure 3-14, we saw that some of

the variables in the controlling feedback loop experience rapid changes as the converter's

output approaches steady-state. That these controller variables are nearly algebraic func-

tions of other system states implies that they are independent of their own past, and need

not be envelope-followed. Eliminating these variables from the envelope computation will

allow larger cycle-steps and provide for a faster simulation.

3.4.1 Removing Quasi-Algebraic Variables

We now precisely define a Quasi-Algebraic variable.

Definition 3.4.1. (Quasi-Algebraic Variable) We say that a component xa of a
vector x E RN is a quasi-algebraic variable if all the components of
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ax(T) [Ox 1(T) xaN(T)1
ax.a(O) a() a . a(O) x ()

are negligible. The set of all quasi-algebraic variables is denoted as xa. Those components

of x which are not quasi-algebraic are called state variables, and denoted as x s.

In others words, the value of any quasi-algebraic component xa of x at the end of cycle

is nearly independent of its value at the beginning of the cycle, and it is also independent
of the value of any other quasi-algebraic variable at the beginning of the cycle. Similarly
the value of any state variable xs at the end of a cycle is also nearly independent of the

value of any quasi-algebraic variable at the beginning of the cycle.

Determining which components of x are quasi-algebraic can be accomplished using

the data in the sensitivity matrix already required to solve Eqn. (3.13) with Newton's
method. To see this, note that a component xi in x is quasi-algebraic in one clock period

if all components of x are insensitive to xi's value at the beginning of a period. By

definition, entry (i, j) in the sensitivity matrix represents the sensitivity of xi((m + l)T)

to perturbations in xj((m + - 1)T). Therefore, xi is a quasi-algebraic component if
every element in ith column of the sensitivity matrix is nearly zero.

Now let the components of x be divided into two vectors, as outlined above: xs, the

vector of true states, and xa, the quasi-algebraic vector. Then the sensitivity matrix can

be reordered so that

/0(xs(T), X:a(T)) [ (oX(T) 8x(o) 1= 0X.(O) OX.((3.25)
t9(x8 (O), Xa(O)) OX(T) OXa(T) (3.OX,(O) ax.(O)

Therefore, by the definition of a quasi-algebraic component, every element of the second

block column of the sensitivity matrix, a(X.(oT),x0 (T)) is nearly zero.a(xo(o),x.(o))
This implies that the standard envelope-following algorithm can then be applied to a

subset of the circuit variables, using as the sensitivity matrix the block diagonal submatrix

corresponding to the state variable,

x, (T)
OX, (0)

As the sensitivity matrix is updated every cycle, that

Oa(T) and ax,(T)

OXa(O) a:a(o)
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remain small can be verified, and a decision can be made about which variables should

be considered quasi-algebraic for subsequent cycle computations. This provides an auto-

matic algorithm for determining quasi-algebraic components. However this is somewhat

inefficient because variables which are consistently quasi-algebraic should not have their

sensitivities computed at all. A simple improvement would be to recompute the full

sensitivity matrix only every few cycles in order to check that any node currently in

the set of quasi-algebraic variables remains in that set, and equivalently that every node

considered as a state also remains a state. Experience seems to indicate that once a node

is considered either a state or a quasi-algebraic variable, it is unlikely to be switched to

the other set.

Summarizing, at the beginning of each computed cycle we have computed the sensi-

tivity matrix and symbolically divided the system variables into state variables, x, and

quasi-algebraic variables, xa. We compute the quasi-algebraic variables from the state

variables and then integrate for a cycle and use the newton iteration update to ensure

that the state variables satisfy the alignment equation

e (xs((m + I- 1)T), xa((m + - 1)T)) - x(mT) =

[ (Xs((m +- 1)T), xa((m + - 1)T)) - xs((m + - 1)T)]

where some of the arguments for qb(.) are omitted for brevity. In Algorithm 3.4.1, we
give the complete modified envelope-following algorithm.

Note that in Algorithm 3.4.1, at the beginning of every cycle-step, the quasi-algebraic

components, xa, are computed from the state components, x. This can be done by

ensuring that KCL is satisfied at the algebraic nodes. This corresponds to solving the

circuit shown in Figure 3-18, where the state variables are replaced with voltage sources

and the unknowns are the voltages at the nodes corresponding to the quasi-algebraic

variables. In other words xa is computed by solving

G (xa,,((m + - 1)T), xs((m + - 1)T)) = 0. (3.26)

where G(.) corresponds to the KCL equations for quasi-algebraic nodes.

Another approach to solving Eqn. (3.26) coupled with the alignment equation is to

use a nonlinear Gauss-Seidel Relaxation loop such as shown in Algorithm 3.4.2. This

nonlinear-relaxation algorithm converges quickly if

(, Zxa, T) 
Oax
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Algorithm 3.4.1 (Nitswit Modified Envelope-Follower).

Divide z into xs (States) and za (Quasi-Algebraic) using the
latest Sensitivity matrix.

m= 

While mT < STOPTIME {
Select the cycle-step 

Predict a first guess, z°x((m+l- 1)T)

Compute x°((m+l - 1)T) from x°((m+l - 1)T).

Numerically integrate Eqn. (3.1) from (m+l-1)T to (m+l)T to

compute x°((m + l)T) and 8X((m+l-1)T)
O9X((m+1- 1)T)

Compute JF(x°((m+l-1)T) as in Eqn. (3.16)

Redivide z into xzs (states) and Xa (quasi-algebraic) using
the newly computed Sensitivity matrix.

Set k=O

Until Newton Converges {
Compute xk+l((m +1- 1)T) from xk+1 ((m + - 1)T).

Solve the Newton update equation for xk+l((m + l-1)T).

Numerically integrate Eqn. (3.1) from (m+l-1)T to (m+l)T
to compute xk+l((m + I)T)

}
m=m+l

}
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Figure 3-18: Computing the values of the quasi-algebraic variables, assuming the state
variables have fixed values, and enforcing KCL at the algebraic nodes.
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Algorithm 3.4.2 (Gauss-Seidel Nonlinear Relaxation Envelope-Following).

For k = 1,2,...

Compute xk+l((m+l- 1)T) from

G k +l((m +l - 1)T), x((m + - 1)T)) = O.

Compute xk+l((m +I - 1)T) from the alignment equation

(xs((m + 1- l)T), xa((m + - 1)T)) - xs(mT) =

I [ (xs((m + I - 1)T),xa((m + - 1)T)) - xs((m + I - 1)T)]

X., ((m+1-1)T)



time (s) x10

Figure 3-19: Closed-Loop buck converter output node during power-up transient obtained
with the modified envelope-following technique.

Figure 3-19 shows the output of the closed-loop buck converter during a power-up

transient as obtained with the modified envelope-following algorithm. As with the stan-

dard formulation, we can see that during the initial phase of the transient power-up the

algorithm computes only occasional cycles (again shown as thicker sections). As the con-

verter output approaches steady-state, only a few cycles are now being simulated, unlike

the Standard Envelope-Following algorithm. The introduction of the concept of quasi-

algebraic variables allowed us to isolate the variable which contain state information and

envelope-follow only those, providing for a much more efficient simulation.

This modified envelope-following algorithm is an example of a model order reduction

technique applied to circuit simulation. Basically the states associated with the fastest

dynamics are being neglected in favor of the states that contain the low-pass frequency

information, i.e., the envelope. The technique described presents us with a simple way

to perform this automatic dynamic splitting of the circuit states, based on their relevant

frequency contents.
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3.4.2 Experimental Results

Both the standard and a modified version of the envelope-following method have

been implemented in the NITSWIT simulation program. As mentioned, the program uses

a trapezoidal-rule based envelope-following algorithm with local-truncation error cycle-

step control. In Table 3-3, we compare the CPU times required to simulate the start-up

transient from four different circuits by classical direct methods, the standard envelope-

following algorithm and our modified algorithm. The circuits presented are: a resonant

converter quasi [15], an open-loop buck converter circuits, dbuck, a closed loop converter,

closed and a switched capacitor filter, scop. In each case, the clocking is provided by a

user-defined source. As can be seen from the table, the envelope-following method can

be very efficient, particularly when the simulation interval is long compared to the clock

period. In particular, from the results presented it is clear that the standard envelope-

following algorithm is very efficient when simulating open-loop circuits.

Circuit J N I Cycles Classical Std EF Mod EF]
quasi 7 200 188 69.4 (33) 16.5 (13)
scop 13 200 156 65 (30) 27.6 (15)
dbuck 4 1000 359 34.5 (50) 29.0 (48)
closed 5 600 79 47 (124) 10.8 (31)

Table 3-3: CPU time comparisons for Classical and Standard Envelope-Following Sim-
ulation versus Modified Envelope-Following. The number of cycles shown corresponds
to the simulation interval divided by the clock period. For the envelope-following ap-
proaches, the number of effectively simulated cycles is also shown. Times are in seconds
on a SUN4/260.

The results obtained when comparing envelope-following to classical methods for
a closed-loop buck converter closed does not produce equally encouraging results. As
discussed, the difficulty simulating the closed-loop converter is that it includes control
circuitry which rapidly responds to small changes in the converter output. However,
variables associated with the controller are quasi-algebraic, and therefore the modified
algorithm performs substantially better. Note also that the results in Table 3-3 show that
modified envelope-following is always faster than the standard envelope-following, due to
the reduction in the number of computed cycles. Most noticeably, for the most difficult
example, namely the closed loop converter, a speedup of a factor of over four is ob-
tained over standard envelope-following, and this makes the modified envelope following
algorithm almost eight times faster than the classical direct approach.
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3.5 Autonomous Circuits and Multiple Frequency

Circuits

In this section we will detail our efforts in extending the applicability of the envelope-

following algorithm to handle circuits that contain either a clock of unknown frequency, or

multiple clocks or frequencies. Each of these types of circuits are important on their own

and each present new challenges in terms of efficient simulation. However, they share the

important characteristics of most of the circuits that the envelope-following algorithm is

already able to deal with, namely the fact that the period of their high-frequency clocks

are typically orders of magnitude smaller than the time intervals of interest to a designer.

It would seem therefore plausible that the envelope-following algorithm, possibly with

slight modifications, would be able to simulate them in an efficient manner, similar to

what was accomplished with the single frequency, externally clocked circuit studied in

the previous sections.

3.5.1 Autonomous Circuits: Period Detection and Extraction

Autonomous circuits are circuits that contain internal clock generators, i.e. circuits

for which the frequency of operation is generated internally instead of being supplied ex-

ternally. Typical examples of such circuits are oscillators. The difficulty with simulating

autonomous circuits in terms of applying the envelope-following algorithm directly, lies

in the fact that the clock period is unknown a-priori, which makes it hard to determine

the cycle boundaries and furthermore, the cycle length. Furthermore, some autonomous

circuits may have clock frequencies that change with time, which implies that an adaptive

detection method would have to be implemented. There has been some work done in

this area and the results reported were extremely encouraging [16, 17]. In [17] heuris-

tic methods are developed that allow one to detect and extract the period of a highly

oscillatory differential equation. When applied in our setting, these involve the auto-

matic and adaptive detection of cycle boundaries. Some preliminary studies that we

have conducted have shown that it is possible to adapt the algorithm to work with such

autonomous circuits. In fact we have tried a modified version of our algorithm with a

simple voltage-controlled oscillator and were able to detect its period based on simple

heuristic reasonings. This modified algorithm was based upon the detection of either

changes in the sign of the derivative of certain nodes voltages or zero crossovers and use

that information to guess at the clock period. These preliminary results indicate that a

robust detection and adaptive method could be incorporated into the envelope-following
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framework. This is however beyond the scope of this thesis. One should note nonetheless,

that for such circuits the efficiency of the envelope-following algorithms will expectedly

be lower, given that initially some complete cycles will have to be simulated so that

the detection algorithm can extract the circuit natural clock frequency. The situation

will worsen if this natural clock frequency changes with time, as in oscillator start-up

or voltage-controlled oscillators. In that situation the number of cycles to be skipped

will depend upon the rate at which the frequency changes. Further research and work

into devising a robust detection algorithm would certainly extend the importance and

applicability of such algorithms.

3.5.2 Multiple Frequency Circuits

Phase-locked loops (PLL'S) are becoming more commonly used in analog and digital

applications. Phase-locked loops are extremely challenging to simulate because their

capture transient may be extremely slow compared to PLL free-running period. Therefore,

the existence of an algorithm that could efficiently and accurately simulate the behavior

of a PLL while at the same time giving the designer the high degree of accuracy he expects

from an electrical-level simulation would be very desirable.

In terms of simulation, PLL'S share all the characteristics of the clocked analog cir-
cuits we dealt with in previous sections but they also present new problems. To better

understand the source of difficulties that are involved, consider the simplified PLL model

in Fig. 3-20. This circuit is composed of three main building blocks: a frequency/phase

discriminator, a low-pass filter and a voltage controlled oscillator.

The output signal of a voltage-controlled oscillator (vco) has a frequency, fco, which
is proportional to the input signal voltage vot. Every vco has associated with it a range

of voltages that it can accept as input and for which the corresponding output frequency

changes proportionally. Changes in the input voltage outside this limits cause the vco
output frequency to saturate and the device will not behave as expected. Also associated
with a vco is what is called the central or natural frequency, which corresponds to a zero

input. The phase detector compares two inputs and generates an output that is a measure
of their phase difference. If vi,, and v,,vco are in phase, then ve = 0, and fo, will be equal to
the center frequency. If on the other hand fin does not equal fo, there will be a nonzero
phase-error which, after being filtered and amplified, causes the vco frequency to deviate
in the direction of fi,, in order to reduce the phase difference. The PLL structure suggests
therefore that the relevant phase error must be contained in the low-frequency content of

the phase-error signal e. With generality the functionality of the phase detector implies
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Figure 3-20: Phase-locked loop.

some sort of multiplicative action between its two inputs in order to obtain the phase

difference as part of its low-frequency content. This multiplicative action implies that

the the phase error signal signal ve will have frequency components at Ifin - fvcol and

fin + fvco. If the difference frequency is small, then the vco is close to locking into the
incoming frequency. The high-frequency component will get filtered out by the low-pass

filter ahead and therefore the filtered signal, before or after amplification will contain

only the low-frequency part of that error. If proper conditions are met, the vco will

eventually "lock" to fin, meaning that its frequency fco will become such as to maintain
a fixed phase relationship with the input signal. The process by which this happens

is as follows: as the phase error signal brings the vco frequency closer to the reference

input frequency, the error waveform varies more slowly. So the error signal is asymmetric,

varying more slowly over the part of the cycle during which the two frequencies are closer.

The net result is a nonzero average, i.e. a DC component that brings the PLL into lock.

That is, the filtered output of the phase detector will basically consist of a DC signal, and

therefore the control input to the vco will a measure of the input frequency. In other

words, the vco output is a locally generated, clean replica of fin-

There are several fundamental characteristics associated with a PLL: its free-running

or fundamental frequency, its lock-up time, its capture range and lock ranges, etc. Con-

sider for instance a simulation run that would enable a designer to determine the lock

range of a PLL, defined as the range of frequencies over which the loop will remain in lock.

Typically in such a simulation the input frequency to the PLL would be either the same,

75

Vin

Voltage
. .. I

Controlled
Oscillator

V

,W ! _ i . -I I . - _



if known, or very close to the PLL fundamental frequency, that is fin - fco. Presumably
the input frequency would then be varied slowly such that lock is not lost. If the input

frequency wanders outside the range of frequencies that the vco was designed to handle,

then lock will be lost and the lock range can be effectively determined. In terms of the

envelope following algorithm, this type of simulation presents only one problem which is

the fact that the input frequency is known but not fixed. In fact in this particular type of

simulation, the beat frequency fin - fvco is by definition zero, since the loop is assumed to

be in lock, and the phase error signal consists of a DC component plus a high-frequency

signal which is filtered away by the low-pass filter. Therefore the question of which sam-

pling frequency to use is immediately answered since assuming that the sum frequency

gets filtered out, there really is only one frequency in the circuit. Therefore simulation of

the lock range of a PLL is a process analogous to the simulation of an autonomous circuit

with a varying frequency. Furthermore, in this case the frequency that is being varied is

the input frequency and its rate of change will be known beforehand, which may used

to help the simulator keep its synchronism. If the rate of change of the input frequency

is small, then it is likely that the envelope-following algorithm will be able to perform

efficiently and therefore we believe that determination of the lock range of a PLL can be

accomplished by efficient and accurate simulation.

Consider now a dual situation in which one is interested in determining the PLL

capture range, defined as the range of input frequencies for which the PLL is able to

acquire lock, and the lock-up time defined as the transient time required for the lock

to be established. To accomplish this goal one might consider a simulation run where a

signal is input to the PLL such that its frequency is different from the loop's free-running

frequency. Note that in general the capture range is smaller than the lock range because

of the selectivity afforded by the loop filter. Still, a PLL should typically be able to

lock onto frequencies that are within 20% of its free-running frequency, and therefore

the capture range is in general a fairly large frequency range around the free-running

frequency. Unfortunately in this case such a simulation will become a source of difficulty

for an algorithm such as the envelope-following algorithm.

From the point of view of the envelope-following algorithm, PLL's as described above

may violate many of the standard requirements of the algorithm. One problem is that

the vco output signal, v,,vco has a frequency fvco which is not fixed. However we have

already mentioned that with slight modification in the algorithm, envelope-following

can efficiently simulate such circuits. The main problem in fact lies elsewhere, and is

related to the fact that in problems such as the determination of the capture range, the

PLL is a multiple frequency circuit. We recall that the main reason for the efficiency
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of the envelope-following algorithm lies in its ability to exploit the property of clocked

analog circuits that the node voltage waveforms over a given high frequency clock cycle

are similar, but not exact duplicates, of the node voltages waveforms in proceeding or

following cycles. This property is based on the fact that the envelope of the solution

obtained by sampling the node voltage waveforms at multiples of some high-frequency

clock is a smooth and slow function of time. This fact was essential is devising an

algorithm that enabled us to construct a solution accurate over many high frequency

clock cycles by computing the solution accurately for a few selected cycles. In the case

of a circuit with multiple frequencies, the first difficulty that one is faced with is in fact

how to define a cycle.

To understand this situation consider the functionality of the phase detector. As

mentioned before, in order to obtain the phase error, the phase detector generates a

signal ve which has frequency components at I fin-fvco and fin + fvco. The high-frequency

component will get filtered out by the low-pass filter ahead so we will discard it as it

is not relevant for this analysis. The first question to address in this situation is which

sampling frequency to use, that is how to define the duration of a cycle. The following

periods/frequencies are observable at some of the circuit nodes:

Tin = 1/fin

TVCo = 1/o

T = 1/(fin + fvco)

Td = 1/fin- fvcol.

The first of these choices would be the natural candidate, that is, to choose the period

of the external excitation as the underlying frequency of the envelope to be computed.

One of the reasons for making that choice is the fact that is the only known value of

the set above. In the lock range problem the beat frequency fin- f,,ol is essentially

zero and therefore approximately constant if sampled at multiples of Tin = Tv,,o. So,

in this situation using the input frequency in order to define the duration of a cycle

seems an acceptable choice. However, in the capture range determination problem, this

beat frequency may be as large as 20% of fin which is by no means a smooth frequency

in comparison with the high frequency input. In this case nodes ve and vout are not

necessarily periodic with period Tin and it is likely that the alignment equation will

at multiples of Tin fail for these nodes. Similar objections can be raised if any of the

remaining frequencies are chosen. Consider for instance Figure 3-21 which could be

obtained by simulating a PLL with a free-running frequency of 100KHz using a 110KHz

input signal. Shown in the figure is the beat frequency signal Ifin- fo = 10KHZ
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and its samples obtained at intervals of Tin = 10/rs. Clearly these samples do NOT

constitute a smooth function. In fact consider for instance that the samples on the

bottom left corner of the figure marked as "sl" and "s2" constitute the beginning and

end of some high-frequency cycle. It is obvious from the figure that it will be impossible

to align the beginning and end points of this cycle with those of any cycle in the future.

On the other hand it might be possible to align samples "s3" with "s4" and "s5", but

this avoids simulating just one or two cycles. Therefore applying the envelope-following

algorithm to the simulation of this circuit will result in numerous failures of the Newton

envelope iteration and, as a consequence, almost every other cycle will be simulated.

This immediately translates into poor performance of the algorithm.

Considerable effort was spent in trying to redefine the envelope of every node in

a circuit in terms of a single underlying period, but it does not seem likely that such

method will meet with success. It quickly becomes clear that it would be impossible

to impose an alignment on all variables using a single period, T. Using the modified

envelope-following algorithm described in section 3.4 on a simple implementation of a

PLL, it was possible to determine that very few nodes in the circuit are what we have

called states. Namely, there is a state associated with the energy conserving element in
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the low-pass filter, and there is some state associated with the vco. Every other node

in the circuit can be considered a quasi-algebraic node for most purposes, because its

value can be computed given the value of those few other states. Therefore, for the most

part the problem did not reside in the determination of the quasi-algebraic constraint

or in rapid changes occuring at those nodes. However, the both the vco output and the

filter output nodes have voltage waveforms that over a given high frequency clock cycle

are similar to the node voltages waveforms in proceeding or following cycles. The length

of the cycle in each case is however very different. The vco state node has most of its

frequency contents around f,,co,, while the low-pass filter state node has most of its energy
around the slower beat frequency. And neither node will satisfy alignment equations if

any other period T is chosen.

At this point it is unclear whether the envelope-following algorithm can be modified to

handle circuits with multiple frequencies in a straightforward and efficient manner. This

topic deserves further research which is nonetheless outside the scope of this thesis.

3.6 Conclusions

Simulating the transient behavior of Clocked Analog Circuits like switching power

converters, switched-capacitor filters and phase-locked loops, is computationally expen-

sive because these circuits are clocked at a frequency whose period is orders of magnitude

smaller than the time interval of interest to the designer. We have seen that it is pos-

sible to reduce the simulation time without compromising much accuracy by exploiting

the property that the behavior of switching converters in a given high-frequency clock

cycle is similar, but not identical, to the behavior in the preceding and following cycles.

In particular, the "envelope" of the high-frequency clock can be followed by accurately

computing the circuit behavior over occasional cycles. Faster simulation can be achieved

if the state variables of the circuit are isolated and those variables which contain no state

information are not envelope-followed.

Several aspects of the modified method could be improved and further investigated.

Of particular importance is finding faster techniques for updating the variables when

leaping over some cycles. It has been verified that the extrapolation of the state vari-

ables when skipping cycles can be quite inaccurate. This is troublesome as it may lead

the simulator to believe the circuit is in a totally different state. Ways of improving the

extrapolation procedure are of great importance. For the quasi-algebraic variables, this

is currently done by computing a DC solution with the state components held fixed, but
other, more efficient possibilities may lead to more accurate results. Also, faster ways of
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identifying quasi-algebraic variables could lead to substantial speed improvements, partic-

ularly if they would circumvent the need to compute the full sensitivity matrix. Variables

which are consistently quasi-algebraic should not have their sensitivities computed at all.

A simple improvement would be to recompute the full sensitivity matrix only every few

cycles in order to check that any node currently in the set of quasi-algebraic variables

remains in that set, and equivalently that every node considered as a state also remains

a state. Experience seems to indicate that once a node is considered either a state or a

quasi-algebraic variable, it is unlikely to be switched to the other set. It has also been

observed that most of the entries in the sensitivity matrix remain close to zero, and ways

to exploit this should be considered. Faster and more efficient ways of computing and

updating the sensitivity matrix would be welcome and deserve further study.

Modifying the method to be independent of the placement of cycle boundaries appears

to be possible. This could provide for substantial improvement, as the effectiveness of the

envelope-following is somewhat dependent on where the cycle boundaries are placed, and

an automatic selection method is desirable. A simple technique to achieve the desired

result would be to move the cycle boundary over, if it is found that large circuit activity

is centered around the current boundaries. This can happen for instance if the current

boundary coincides or is close to a quick change in the clock variable.

Finally, our difficulties in handling multiple frequency circuits should be addressed

given that efficient simulators for such class of circuits are so much sought after. It is

unclear at this point whether the Envelope-Following methods can be extended to handle

circuits with more than one frequency.
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4

Frequency-Domain Model Order
Reduction

4.1 Introduction

As a result of the ever-lasting trend for increasing system complexity, shrinking de-

vice sizes, and faster signal and clock speeds, interconnections are rapidly becoming the

dominant factor in electronic circuit and system performance. In many of today's high

performance digital electronic system designs, interconnect delay either dominates or is

a non-negligible component of the system delay. Furthermore, previously ignored effects

such as ringing, coupling and transmission line effects in interconnections have begun

to affect signal integrity. These problems manifest themselves at the chip level as well

as at the package, multi-chip module, board and backplane level. Magnetic interactions

such as those produced by the dense three-dimensional packaging now commonly used

in compact electronic systems will also interfere with system performance. Such effects

are difficult to simulate because they occur only as a result of an interaction between the

field distribution in a complicated geometry of conductors, and the circuitry connected

to those conductors.

Irrespective of the design style or methodology, the combined electrical and magnetic

effects of the packaging and interconnect and the nonlinear drivers and loads must be

simulated during some stage of the verification process. More accurate modeling of pack-

aging and interconnects results in large, linear circuit models that can dramatically slow

down a circuit simulation. Thus, there exists a need for efficient and accurate simulation

techniques to analyze circuits dominated by packaging and interconnect effects. This

demand is particularly evident all the way from the extraction to the system-level verifi-
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cation of high-speed physical interconnect. It is believed that even for integrated circuits,

interconnect behavior will present itself as the the major limitation on the performances

of future high-speed, sub-micron technologies.

The fundamental difficulty encountered in integrating interconnect and packaging ef-

fects into a transient circuit simulator has to do with the fact that circuits containing

nonlinear devices or time-dependent characteristics must be characterized in the time

domain, while most of the important effects due to interconnect and packaging are best

characterized in the frequency domain. In fact, stripline and microstrip printed circuit

board traces, interchip connections on multi-chip modules, and coaxial cable connections

all have nonidealities in their frequency response, many of which cannot be represented

using a frequency-independent model. Therefore in order to accurately model the effects

of packaging and interconnect in the signal integrity and performance, it becomes nec-

essary to develop frequency dependent models that can be efficiently incorporated into

circuit simulation programs.

The most straight-forward approach to including general frequency-domain models in

a circuit simulator is to calculate the associated impulse response using for instance an

inverse fast Fourier transform [1]. Then, the response of the device at any given time can

be determined by convolving the impulse response with an excitation waveform. Such

an approach is too computationally inefficient for use in general circuit simulation, as it

requires that at every simulator timestep, the impulse response be convolved with the

entire computed excitation waveform as discussed in Chapter 2. An alternative approach

is to approximate the frequency-domain representation with a rational function, in which

case the associated convolution can be accelerated using a recursive algorithm [2].

In this chapter algorithms are presented that allow efficient and accurate SPICE-level

simulation of interconnect and packaging effects described by arbitrary frequency-domain

representations, including measured and tabulated data. The emphasis is placed not

only on efficiency but also on accuracy and generality. The approach to be presented is

a combination of several reasonably well-known techniques that together form a robust

algorithm that guarantees some fundamental numerical properties. The algorithms are

based on a two step procedure: first, a decade-by-decade 2 minimization approach is

used to construct a collection of forced stable rational functions whose sum, after a

final global £2 minimization, approximates the original frequency-domain data. This

algorithm is described in section 4.3. In many cases the resulting approximation, though

extremely accurate, can be of too high an order for efficient computation. Therefore,

as described in section 4.5, a second step is performed whereby the unnecessarily high-

order model is reduced using a guaranteed stable model order reduction scheme based on
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balanced realizations [3, 4]. Finally an impulse response can easily be generated from this

reduced-order model and efficiently incorporated into the circuit simulator SPICE using

recursive convolution. In Section 4.7, we present results derived from the application of

this algorithm to a number of circuits and packaging structures. The examples are meant

to demonstrate the efficiency of the approach as well as its generality.

4.2 Background

Simulating the effects of interconnect and packaging on systems performance and

signal integrity requires the modeling of frequency response nonidealities. In order to ac-

curately model such effects it is necessary to develop algorithms that can handle devices

described in the frequency domain. These algorithms must then be efficiently incorpo-

rated into circuit simulation programs.

In order to cope with this problem, four generic types of approaches have been pro-

posed in the past. One is to use networks of linear elements and ideal elements that

approximate the frequency response of the device in question [5]. While these models are

suited to existing circuit simulator programs, their addition to the circuits implies that

the amount of computations will increase because a large number of extra nodes and

elements may be introduced [6]. Since the cost of simulation grows superlinearly with

the number of nodes, this method can quickly become too expensive and is therefore

not regarded as very general. Another type of approach involves the use of convolution

techniques. Using inverse Fourier transformation of frequency parameters [1] or numer-

ical inversion of the Laplace transform [7], or even explicit analytical expressions [6] an

impulse response can be computed. If the device is described by tabulated or measured

frequency domain data, a straight-forward approach to accomplish this task is to apply an

inverse fast Fourier (FFT) transform and compute the associated impulse response [8].

Once the impulse response is known, the device's response at any given time can be

determined by convolving that impulse response with an excitation waveform. Unfortu-

nately for many applications such an approach becomes computationally too inefficient

for use in general circuit simulation. The reason for this difficulty was already reviewed in

Chapter 2 and is directly related to the fact that at every simulator timestep, the impulse

response must be convolved with the entire computed excitation waveform. The compu-

tation required at the Nth time point is then proportional to N, that is O(N); therefore

the convolutions at large values of N will become very time-consuming. Furthermore,

the Fourier techniques require special attention in order to avoid aliasing effects which

may affect the accuracy of the computed impulse response. Also, in many cases accuracy
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considerations alone make it necessary to use many frequency points which makes the

transformations costly.

Two other approaches of note have been proposed which try to avoid the time-

consuming convolution integrations. One is the state-based approach [9] which uses

information about the internal states of a device at a given timepoint in order to solve

for the next time point. The necessary voltages and currents are considered as the state

variables and their values kept as the states of the system. Simple assumptions such

as piecewise-linearity between sample points are made, which allow computation of the

state with simple integrations in space, thus avoiding convolutions. However the effi-

ciency of this approach is questionable in situations where sharp edges are present in

the state's waveforms, since accurate simulation of these edges will require dense placing

of sample points in the regions where the waveforms are fast-varying. This same prob-

lem is seen in implementation of the waveform relaxation based approach [5, 10]. The

waveform relaxation based approach works in the frequency domain and uses the FFT

to transform the results back and forth between the frequency and time domains. Hence,

time-domain convolutions are avoided by performing frequency domain multiplications.

Since this FFT takes into account the whole waveform, the amount of data involved in

the FFT can clearly become overwhelming if fast-rising signals are involved. For that

reason this approach has also met with limited success.

An alternative approach to the ones presented above is to approximate the frequency-

domain representation with a rational function, hopefully of low order. The advantage

of this approach has to do with the fact that convolution with the associated impulse

response can be performed very efficiently. This will be discussed in section 4.6.

Rational function approximation is not without its shortcomings. However attractive

in terms of computational efficiency, the approximations must also be accurate not only

in the frequency domain but also in the time domain. Unfortunately accuracy in the

frequency domain does not necessarily translate into accuracy in the time domain. A

simple example will illustrate this point in dramatic fashion. Consider the following

transfer function,
s 1.1 x o,1

H(s) =(s + 105)(s + 2 x 105) ' (4.1)

For the sake of argument let us assume that an approximation to this function is computed

as
s - 1.1 x 105

G(s):= (4.2)G(s) (s- 105)(s + 2 x 105) ' (4.2)

The Bode plots for both the function and its approximation are shown in Fig. 4-1.

Other than a small phase error in the vicinity of w ~ 105j, this frequency domain
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Impulse responses

Figure 4-2: Impulse responses for the

approximant G(s)= s- x105(s-10 5)(s+2x105 )

.5
Time (s) x10

transfer functions HI(s)= s+1x105 and its(s+1o 5)(s + 2 xO 5)

approximation would probably be considered sufficiently accurate. At first sight, it may

seem strange that a second order function is being approximated by a function of the same

order. Note however that the function to be approximated might be given by tabulated

data, in which case the exact form is not known. Either way, the example demonstrates

that accuracy in the frequency-domain does not necessarily translate to accuracy in the

time-domain. This is easily seen by computing the associated impulse responses, which

in this case are:

exact:

approximation

h(t) = kl e - 105t +

g(t) = k 3 e 105 t +

where the constants k, k2, k3 and k4 are a function of

and are relatively unimportant for our discussion. The

function and its approximation are shown in Fig. 4-2.

The term k3 elo° t in g(t) grows with t, and therefore

lim g(t) = 00oo
t-o00
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whereas

lim h(t) = 0. (4.5)
t-oo

Eventually this term will dominate the response which implies that for large t the error

will increase very quickly. Clearly this demonstrates that even though the approximation

is very accurate in the frequency domain, it is totally unacceptable as an approximation

in the time-domain. We should note however that while accuracy in the frequency domain

does not translate necessarily into accuracy or even stability in the time-domain, it is

true that if the frequency-domain approximation has all its poles in the left half-plane,

then the corresponding impulse response will not only be stable but will also approach

the exact impulse response whenever the frequency-domain error tends to zero, that is:

liF(s)- H(s)II 0 If(t)- h(t)I - 0. (4.6)

The downside of this result is that it being a limiting result, provides us with no time-

domain error estimation even in the face of a given frequency-domain error. The upside,

however is that it indicates that if the frequency error is small and the approximation is

stable, it is likely that the time-domain error will also be small, and moreover decreasing

the frequency-domain error will also decrease the time-domain error.

Unfortunately many of the commonly used techniques, have no guarantee of stability

and in practice do generate unstable approximations. Due to their simplicity they are

nonetheless widely popular. In the following section we review some of these techniques.

4.2.1 Pade Approximations

Moment-matching techniques have become widely used and accepted for the model-

ing and simulation of VLSI interconnections and packaging [11]. These techniques, known

and studied for some time [12, 13, 14, 15, 16] were made popular in recent years with

the appearance of Asymptotic Waveform Relaxation (AWE) [17], and the family of sim-

ulators derived from it. Moment-matching techniques are known to be a form of Pad6

approximation.

Pad6 approximations are approximations to complex function by the usage of gen-

eral rational fractions expansions. In Pade approximations, a given function, F(s) is

approximated by a low-order rational fraction expansion such as

H(s () upsP + *+ uls + oH(s) = (4.7)
V(S) Sq + Vq_..S-l + + VjS + VO

by matching the various order Taylor series coefficients of that function. The reason

why this procedure is also known as moment-matching can by seen by noting that by
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definition, we have

F(s) = f(t)e-*tdt = (4.8)00
1 2 2 _3

- , f(t) [1-st+ - 2t2-s3t +..] dt=
2oo 6

f(t)dt- s tf(t)dt + s2 t 2 f(t)dt--.

The coefficients multiplying the various powers of s in Eqn. (4.9) are analogous to the

moments of a probability density function. They are referred to as the time-moments

of the approximation. Moment-matching approximation is therefore equivalent to using

our rational fraction expansion H(s) to match the values of the function F(s) and its

derivatives at s = 0, that is:

UpSp +.. + US + U 2
q + + m. + + mo ±O+ ml s + m 2 s2 + ... + mp+qsP+q (4.9)

Sq + Vq_l Sq - 1 + .. + Vl + o

where

m = F(s)l[=0 = F(0) and m = djF(s) (4.10)
dsi S=O

As such, Pade approximations are clearly local approximations capturing the behavior

of F(s) around s = 0.

It is possible to obtain the moments directly from a state realization of the system

by simple solution of a number of systems with the same matrix and different right-hand

sides and a matrix vector product. That is, assuming that [A, B, C, D] is the state

space representation of F(s), that is F(s) = C (sI- A) -1 B + D, then the moments

are defined by as the coefficients of the following expansion, where the direct term D is

neglected because it can always be computed separately:

Fo(s) = -CA-1B - CA-2Bs -
00

= Zmjsj (4.11)

j=O

where

mj =-CA-j-'B, j > 0. (4.12)

Once the moments are known, enforcing Eqn. (4.9) leads, for the case p = q- 1, to

the following system of equations:
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UO

Ul

U2

e.,.

Uq.-1

0

0

= movo

= mlvO + mov

= m2 vO + mlvl + mOv 2

(4.13)= mq-lvo + mq-2Vl + mlVq-2 + moVq-1

= mqVo + mq-lVl + -+ m2Vq-2 + mlVq-l + mO

= M+lVO + q+ mVqVl + -** + m3Vq-2 + m2Vq-l + ml

0 = m2q-lVO + m2q-2vl + · + mq+lVq-2 + mqVql + mq-1

The standard way of obtaining the coefficients of the approximation is to solve the

last q equations of (4.13) to obtain the denominator coefficients and then use these values

to obtain the numerator coefficients from the first q equations of (4.13). Rewriting the

last q equations in matrix form leads to the following Hankel matrix:

ml m 2 m 3 ... mq Vq-l

m2 .· ·Vq_2

m3 .

· ·.- ·m2q-2 V1

_mq . ... m2q-2 m2q-1 V O

Once the coefficients of the denominator polynomial are

a partial fraction expansion is computed leading to:

mq-2

mq-1

(4.14)

obtained by solving Eqn. (4.14)

q

H(s) = U(s) _ UqlS -' + + uls + Uo ri (4.15)

V(s) sq +vqls1q-1 + +vis+v - V o ( s-Pi
i=1

where pi, the poles of the approximation, are the roots of the denominator polynomial.

The residues, ri are computed directly by noting that the moments of the Pad6 approxi-

mations (4.15) match the first 2p- 1 moments of the function F(s). Using Eqn. (4.10)

to compute the moments of the approximation, we get that:
q

djH(s) s| = ri 
dsi 8=0~~r (s - pi)j s=Os-o~~~(

i=1

Matching the first q moments leads to

(4.16)

E ri pi-(j+l) -- m
i= 1

i=1

j E [0,q - 1],
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which in matrix form looks like:

p-2 p~2 . p2 r2 ml
p-1 P2 ... P - -

1 2 72][ml 1(4.18)
pl q p-q ... p-1 rq mq

2 p ql rq mq

and therefore the residues can be obtained by inverting a q x q Vandermonde matrix.

Algorithm 4.2.1 summarizes the operations performed to obtain a Pad6 approximation

using the standard moment-matching procedure.

In recent years the convergence of rational interpolation with free poles, that is poles

determined by interpolation conditions, has received much attention [18, 19, 20, 21, 22].

One of the most vexing features of such interpolation is the appearance of spurious poles,

that is, some poles of the interpolating rational function need not reflect the analytical

behavior of the approximated functions [23]. It has been shown that in the presence of

branch points, most poles have an asymptotic behavior determined by the approximated

function [24, 25]. However, in many cases such results are not possible and spurious

unstable poles do appear [26].

The moment-matching techniques that have become very popular recently, while com-

putationally very efficient and accurate for low-order expansions, suffer from stability

problems whenever high-order approximations are attempted. Consider for instance the

circuit in Figure 4-3 which can regarded as a uniform lumped model for an interconnect

segment. The state-space representation of this system can be constructed directly from

inspection of the circuit. Once a state-space representation is obtained the moments of

the system can be computed and a Pad6 approximation of any order can easily derived,

using Algorithm 4.2.1.

Figure 4-4 compares the exact step response of this circuit with that obtained with

Pad6 approximations of order 2 and 8.

As can be seen from Figure 4-4 the Pade approximation of 2 nd order is stable but not
very accurate. Increasing the order of the approximation will, in many cases, increase the

accuracy, but for certain orders, unstable poles may appear, and instability may develop

as is the case with the 8 th order approximation shown. Unfortunately there is no way

to know a-priori which approximation orders will lead to stable solutions. Furthermore

there is also no a-priori measure of accuracy for the approximation at any order.

For systems that are very large with on the order of thousands of nodes the simplicity

of such a method is hard to ignore and in such cases most people are willing to trade

some of that instability for the extra effort necessary to in some sense "stabilize" the
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Algorithm 4.2.1 (Moment-Matching Approximations).

pade (A, B, C, q)

{
for (i=l;i<=q;i++)

compute the ith moment as

compute the
solving

mi -CA-i-'B

coefficients of the denominator polynomial by

ml m 2 m 3

mq

... mq

... ... m2q-2

m2q-2

m2q-1

Vq-1

Vq-2

V1

VO

mO

ml

mq_2

mq-1

compute the roots pi, i = 1,---, q of the denominator polynomial

q + VqlSq - 1 + - + V1 S + VO = 0

compute the
solving

residues of the partial fraction expansion by

P1
P1

_p q

-1P2
-2P2

. . .

_-q
P 2

... p-l rl MOi F 1 [~m o 1
... p 2 Ml r2 _ 

· pq m... ... m.
... pq rq _mq_

return the Pade approximation

q

H(s) = r
-Pi

i=1

}
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Figure 4-3:
Rj = .02Q,

Uniform lumped model of
C j = 0.21pF,Lj = nH,R

interconnection segment; component values are:
= 25Q, C = 0.71pF.

Exact step response and 2nd and 8th order Pade approximation

time
5

x 10 9

Figure 4-4: Comparing the exact step response with those obtained using respectively a
2 nd and an 8 th order Pad6 approximation.
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approximation. Therefore, at least for large systems, Pad6-type approximations are the

most popular choice and are considered the state of the art. It is only for smaller cir-

cuits that it becomes interesting whether other techniques, possibly less computationally

efficient, exist that would get around the stability problem.

It is known that for many examples the widespread range of frequencies involved

causes the moments to diverge very quickly thus leading to ill-conditioned Hankel ma-

trices and to numerical instability in the coefficients computation. This is due to the

recursive nature of the computation of the moments which involves powers of the system

matrix A. This problem was noticed early on, and as a remedy it was proposed to use

scaling [27], that is to replace the original moments mj by (Jmj, where ( is a suitably

chosen scaling factor. Unfortunately, while scaling reduces the ill-conditioning somewhat,

it does not solve the problem, and for increasing values of q, numerical difficulties still

occur. Is has also been conjectured that some pole-zero configurations cannot be mod-

eled at certain moment-matching orders, which is thought to be caused by the effects

of very high frequency poles that are not strongly stimulated, or due to the close pres-

ence of masking high-frequency zeros [28]. However the matter of the fact is that these

approximations may in certain cases become inadequate and other approaches must be

pursued. Mathematicians have also explored other types of alternatives, such as Pad&-

Chebyshev approximations [29], which are supposed to have better convergence prop-

erties, or Caratheodory-Fejer approximations [30], which are H approximation with

important stability guarantees on the poles.

If one considers that moment-matching techniques are based exclusively on informa-

tion obtained at s = 0 it is not surprising that these stability problems reveal themselves,

and furthermore it is indeed remarkable that in many cases so much information can in

fact be obtained from a single expansion. In general it is known that the larger the

frequency range the more difficult it is to obtain stable and accurate approximations.

However it is also known that the order of such approximations must be small for sta-

bility to be kept. The balance between these contradicting issues is difficult and at the

moment there does not seem to be a systematic way to solve this problem. Interestingly,

it has been noticed by many researchers, that even when unstable poles are obtained, the

approximation minus these instabilities is generally still quite accurate. In certain cases

even, the absolute values of these unstable poles is such that the magnitude error is kept

extremely small, which has led to the conjecture that simply moving the unstable poles

over to the right half plane leads to an accurate and stable approximation.

Based on these observations, it would seem necessary and desirable to look for ap-

proximations built on a set in the complex plane rather than just at a single point.

95



4.2.2 Shifted Pad6 Approximations

A natural extension to the moment-matching methods is to compute the coefficients

of the Pad6 approximant using a collocation procedure. This corresponds to computing

multiple expansions at various frequency points and matching the values of the function

and maybe its derivatives at those points. This approach extends the line of thought

that has led to the development of moment-matching methods, in that it tries to capture

information regarding the behavior of the function by using expansions around several

values of s. Such techniques have in fact been studied and recent results indicate that

this approach can be very valuable [31].

By computing expansions around sl, s2,* , sI one can obtain a set of poles which is

likely to provide accurate information about the local behavior of the function we are

trying to approximate. However questions still remain on how one effectively incorporates

the information gathered from all these matching expansions into a single accurate low

order approximation.

In [31] a rational fraction is matched to the values of F(s) and its derivatives computed

at S1 ,S2,... , sl, where the number of expansion points and the points themselves are
determined automatically with some heuristic algorithm. At each point a shifted Pad6

approximation is computed and some of the dynamics of this approximation are kept,

according to a criteria which involves an a-priori guess regarding the accuracy of the

approximation. Preference is given also to poles which appear in multiple expansions

thus indicating that they are poles of the function and not artifacts of the matching

process. The algorithm uses as many expansions as necessary to obtain an approximation

of the desired order [31]. A problem with this method is that if an approximation of low

order is initially required, then the number of expansions attempted will be equally

small. Since the information related by each expansion is local in essence, that means

that the expansion points must be carefully chosen. Unfortunately, correct placement of

the expansion points is a case-dependent procedure and any systematic way to choose

the frequency points is not likely to be very general. In some cases important detailed

information about some frequency range, may be overlooked thus leading one to neglect

important frequency behavior.

A simple extension to this method would be to use more expansions than necessary.

The basic idea is that one would like to use as many expansions as necessary in order to

capture information regarding the overall behavior of F(s), the system transfer function,

over the whole frequency range. Given our low-order rational function approximant and a

significant set of frequency values {S1 , s2, ... , s M}, we would like to satisfy, as accurately
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as possible, the following set of equations:

H(sj) = F(sj) j = 1,2,-..,m (4.19)

where H U(s) P_ US p + + Ulso (4.20)+ U
H(s)- = -~=(.0V(s) S +... + V1S + Vo0

is the low-order approximation. This approach may in fact be necessary in the case

that only measured or tabulated data is available. In that situation moment-matching

methods are not applicable since it is not easy to obtain or compute the values of the

various moments or the expansions at the various points.

Clearly, the system in (4.19) will be over-determined if the number of frequency

points exceeds the number of unknown coefficients in the approximation (4.20), that is if

m > p + q + 1, which is the usual case. In that situation there will be, in general, no exact

solution, and the best that we can expect is that the approximation error be minimal in

some sense. That is, we can perform some minimization on the over-determined system

that will make sure that our approximation minimizes the global error in some normed

sense, instead of just being very accurate around s = 0. For instance we can force

the 2-norm of the error to be minimized, that is, make sure that the coefficients of the

polynomials U(s) and V(s) are chosen such that

_U(s)

11H(s) - F(s)112 = V(s) F(s) (4.21)
2

is minimized for all s E {1, S2,.. , sm}. In general, the solution of the nonlinear mini-

mization problem in Eqn. (4.21) is too expensive, and instead the cost function is refor-

mulated and the solution of the derived linear system

min lU(sj)- V(sj)F(sj)112 j = 1,..., m. (4.22)
U,V

is computed instead. Note that the solution to (4.22) is not equal to the solution of (4.21),

but is instead a weighted £2 minimization.

This £2 solution of the over-determined system will make sure that our approximation

minimizes the global error in the £2 sense, instead of just being very accurate around s = 0

or at any of the various expansion points. However in general that may be problematic

given the intended application of our model. While the £2 minimization does indeed

minimize the global error, it does not guarantee any specific bound on the error at any

particular frequency. In many instances this could be unacceptable because the reduced-

order approximation might be used as a model for interconnect or packaging delay inside
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a circuit simulator for time-domain computations. In that case the model should certainly

be accurate along the whole frequency range but in particular one wants it to be very

accurate for instance when computing the DC operating point and the steady state. A

solution to this problem is to constrain the minimization problem. For instance, one

can ensure that the steady-state value is satisfied by introducing the constraint that

U(O) = V(O)F(O). Similar constraints can be imposed at high frequencies if necessary.

The solution of this constrained minimization will then allow us to obtain the coeffi-

cients of our low-order rational function approximation,

U(O) = F(O)
V(O)
min IIU(sj)-V(sj)F(sj) 2 j =1, ,m (4.23)
U,V

lim V(s) - lim F(s)
-.oo V(s) sOO

This constrained linear £2-minimization has two major drawbacks, namely the large

dynamic range of the numbers involved and the over-emphasizing of high-frequency er-

rors. The dynamic range of the number in the equation presents a difficulty especially

in the case when the natural frequencies of the problem span a wide range, as is usual in

interconnect problems. In that situation this minimization can easily become extremely

ill-conditioned. It is easy to see this by looking at the structure of the matrix one obtains

from the minimization portion of (4.23), which can be written as:

SP .. S1 1 -Fis -1 ... -F.sl -F 1

... ... ... ... ... ... ...

sjP ... sj 1 -Fjs q - ' ... -Fjsj -Fj
s[ x -Fm3

... ... ... ... ... ... ...

SP ... SM 1 -Fmsqm 1 * * _-F s - Fm

Up

U1

UO

Vq-1

V1

Vo -

F 1sq

Fjsj
F35:

LF.m -

(4.24)

Each row of this matrix corresponds to computing U(sj)- V(sj)F(sj) at some fre-

quency value sj. The matrix is therefore a transposed Vandermonde-like matrix in the

sense that the entries along each row are simple powers of the corresponding frequency

value. If the span of frequencies being considered is large, then the magnitude of the

entries on those rows will be much larger than those in rows corresponding to low fre-

quency values. Not only may this cause overflow in the computation, but in general it

may lead to an ill-conditioned matrix.
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Furthermore even if the conditioning of the matrix is tolerable, another important

issue comes into place. Since the 42 minimization will try to minimize the sum of the

squares of the errors, it is likely to weight more heavily those values of frequency that

produce larger entries in the matrix because the sensitivity of the solution to those entries

is larger in the £2 sense. To understand this problem consider the case p = q - 1, and

recall that an £2 minimization attempts to minimize the sums of the squares of the error

at each point, that is:
m

e = 2e + e +*** + e2, (4.25)

i=1

where

ej IIU(sj)- V(sj)F(sj)112 = (4.26)

~~~~-1= |Uq-1S .- + ***+ ulsj + O - s.Fj -* + visjFj- oFj|=_-sFj + (Uq--Vq-lFj) s- + + (l-vF j )sj(uo-voFj)I
- O3 LVuqi p I

is the error for the jth equation, corresponding to the frequency value Sj.

From Eqn. (4.27) one can immediately see that the sensitivity of the error for the jth

equation, ej with respect to any coefficient is a polynomial in sj. Hence, the contribution

of an error at sj to the global cost function is a polynomial in sj. This implies that, for a

high frequency value sj, small changes in the values of the coefficients translate into large

errors and ej will be large. Therefore minimizing the total error requires that the error

components ej corresponding to higher frequencies be carefully minimized, while those

corresponding to lower frequencies, which have less impact on the global error, will not

deserve so much attention. The end result of this situation is that the high frequency

content of our function tends to be weighted more heavily than the low frequency content

and the resulting rational function approximant is usually inaccurate in the low frequency

range.

It is possible to introduce constraints in the minimization process such as using a

weighting function that minimizes the high-frequency predominance effect. For instance

one could multiply both sides of 4.22 with a low-pass transfer function in an attempt to

decrease the importance of the high-frequency values. Care must be taken to make sure

that the high-frequency content is not completely ignored, otherwise the solution one

obtains may end up being accurate only at low frequency. Although substantial research

has been conducted on this problem by many researchers from different fields, such

weighting techniques remain very much case-dependent, and there is still no systematic
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way for finding an appropriate weighting function. One should point out however that

the weighting problems are significant only when the range of frequencies used is large.

4.3 Interpolation of Frequency-Domain Data

In this section we describe a sectioned approach to the problem of approximating the

transfer function of a system by a forced stable rational function. With this approach,

we replace the problem of directly computing a low order rational function that is an

accurate approximation over a wide frequency range with that of repeatedly computing

local approximations over narrower ranges. These local approximations can then be

summed to create an accurate approximation over the whole frequency range. This

approach avoids, or at least minimizes the ill-conditioning of the global approximation

problem. If the data available is a table of values measured at certain frequencies, any

global approach of the Pad6 kind will clearly be ineffective, as derivative information

at s = 0 or at any other point is not known. The approach described in this section

is similar in spirit to the moment methods generalization that uses multiple expansions

around other values of s to gather more global information [31].

The observation that the computation of global approximants leads in general to

numerical difficulties, seems to indicate that instead of computing a low order rational

function expansion that is an accurate approximation over the whole range of frequencies

one would fare better by limiting oneselve to a smaller range. On one hand we can expect

that a Pad6 approximation of a function over a smaller range will likely be easier to

obtain. Furthermore, if unstable poles are obtained from the approximation algorithm,

it is likely that discarding them will not have a profound effect on the accuracy over

that small range and even less of an effect over far away frequencies. In other words, it

is possible that a very low-order approximation is accurate enough to capture the local

behavior of F(s) without instability, numerical or otherwise, playing a significant role.

There seems to be two obvious ways to compute these local approximations: either one

could use a shifted moment-matching or one could use an £2 minimization over a set

of frequencies in the small range in question. Since with generality the function we are

trying to approximate may not be known in closed form and the information one may have

about it may be just a set of measurements, we chose to concentrate on the minimization

approach. For this case we note that the problems regarding the ill-conditioning of the

£2 minimization or those derived from any undesirable weighting are minimal, given the

small range of frequencies in question. The local or sectioning approach to be described

leads in general to extremely simple and accurate local approximations but it also raises
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the additional question of how to incorporate all the local information resulting from the

various expansions into a global approximant which is still desirably of low order. This

question will be studied in later sections.

4.3.1 Computing Section-by-Section Approximants

In order to avoid the numerical ill-conditioning and the uneven frequency weighting, it

is desirable to limit the frequency range for the £2 minimization. Computing a low-order

local approximation has the added advantage that the orders of the polynomials in the

rational function approximation may in general be chosen small without compromising

the accuracy of the approximation for that small frequency range. Moreover, if unstable

poles are obtained from the local minimization procedure it is likely that using some

simple heuristic, such as simply discarding them, will not have a profound effect on the

accuracy over the small range of frequencies involved. In other words, it is possible that

a very low-order approximation is accurate enough to capture the local behavior of F(s)

without instability, numerical or otherwise, playing a significant role.

The idea of computing local approximations leads to a sectioning algorithm in which

only accurate local approximations are computed. The remaining problem is how to

incorporate all the local information resulting from the various approximations into a

global approximant.

Our proposed solution is to perform the local approximations in a repeated fashion

using a collocation procedure. Initially, the frequency range of interest, = [Wmin, Wmax],

is partitioned into small sections, Q1, 02, , DM, such that f = Ui= i, where each

£i = [il,c wimi] is a decade or two long. Then, starting with the lowest frequency range

D1, with frequency values F(wn), F(w12),..- -, F(wlml), a constrained £2 minimization

is performed and a local approximant is computed. Once the first local approxima-

tion, L 1 (s), is obtained in the form of a collection of poles and their corresponding

residues, it is examined and the stable poles are retained while the unstable ones are

discarded, leaving us with a forced stable approximation, Hi(s). Since the fit at the

lower frequencies has captured the low frequency dynamics, F(s) - H(s) will contain

primarily the higher-frequency error information and is then approximated. To this end,

frequency values in the second section 22 are approximated. The value of H 1 (s) at

every point W21,w 22 ,- ,W2m 2 is computed, subtracted from the corresponding values

F(w21), F(w 22 ), ..- , F(W2m2) and the resulting data is again then fit using a constrained

weighted £2 minimization. This results in a new local approximant L 2(s), from which

a stable approximation, H 2 (s) can be obtained. H 2 (s) is then a new approximant to
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Algorithm 4.3.1 (Section-by-Section Approximations).

sectioned (Wmin, Wmax, F)

{
partition the frequency range into sections 01,*-**, M
with associated frequencies {wil,. ,Wim}, = 1,...,M, and

function values

for (k=1; k<=M; k++) {
if (k > 1) {

subtract previous approximants from exact data:
k-1

Fk(skj) F(Sk) - H(sj) = F(skj) -H(sk)

1=1
j = 1,***, mk, Skj = jWkj

} else {
=F(sj) F(sij)

}
compute local approximant at the k-th section, Lk(s) using

the corrected data Fk(si,j)

examine the approximation and keep the stable poles and

residues of Lk(s) in Hk(s)

add the new stable approximation to the current global

approximant H(s) - H(s) + Hk(s)

}
while keeping the locally computed dynamics, perform a final

global constrained £2 minimization over the whole frequency

range to recompute the residues

.

F(s)- Hi(s) on Ql U Q 2, and therefore F(s) - Hi(s) + H 2 (s) on that frequency

interval. The procedure is repeated until data in the last frequency section, OQM, is ap-

proximated. A simplified form of this sectioning algorithm is shown in pseudo-code form

as Algorithm 4.3.1. Figure 4-5 tries to convey visually how the algorithm works.

When the procedure terminates we are left with a forced stable global approximation

which consists of all the stable poles and their corresponding residues obtained in all the

iterated local minimizations. We should point out that our iterative sectioning algorithm

is aimed at computing approximations which match successively higher frequency ranges.

However, while subtracting the already computed approximations from the exact data,
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for second section

Figure 4-5: Applying the sectioning algorithm to measured or tabulated frequency data.
The example tries to illustrate the sequence of operations that are performed to compute
a global approximation, add it to the current global approximation and recompute the
current error function.
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some erroneous dynamics may be introduced at low frequency. To solve this problem, a

final constrained global £2 minimization is performed in which the computed poles are

used to recalculate their residues in order to match the exact data points. This final

step does not in general suffer from the numerical problems mentioned in Section 4.2.1

regarding the global £2 minimization. In fact, the matrix one obtains in this case is better

behaved because its (i, j) entries are of the form (si - pj)- and therefore the matrix is

not necessarily ill-conditioned.

The algorithm just described reliably obtains a stable collection of pole-residue pairs

which form an accurate approximation to F(s). Unfortunately since H(s) is represented

as a sum of local approximations the approach introduces redundancies resulting in many

more poles than necessary. With such a large number of terms, even fast recursive

convolution, to be described in section 4.6, may prove to be inefficient. However it

is possible to further reduce the order of the approximation using robust model order

reduction techniques, which are described in section 4.5.

4.3.2 Section-by-Section Approximant: numerical example

In order to test the accuracy of the approximant obtained with our section-by-section

algorithm, consider the example of a transmission line where skin effects are significant.

The transmission lines equations were introduced as an example in section 2.5. The

section-by-section algorithm was then applied to the frequency data obtained from the

transmission line model after removing the ideal delay. These approximations have re-

spectively 21 and 24 poles. In Figures 4-6 and 4-7 we compare the magnitude plots of

the transfer functions of, respectively, the section-by-section approximations to S 1 2 (jw)

and Yo(jw), with the transmission line data points for the same functions.

As one can see, the match is almost perfect, and the error is smaller than 0.5%.

Moreover the low-frequency error is nearly zero.

4.4 State-Space Systems Realization

The frequency-domain data fitting method described in the previous section resulted

in a stable transfer function H(s) with a large number of poles. Incorporating such

a model (or equivalently its impulse response) directly in a circuit simulator will be

computationally expensive. Instead, we will use a model order reduction approach which

has three main steps. First, we find a well-conditioned state-space realization of the full

frequency-domain model. Second, we use a state-space transformation to balance the
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Figure 4-6: Accuracy of the section-by-section fit for the magnitude of the S 12 transfer
function with respect to the transmission line data points. The two curves are almost
indistinguishable.
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Figure 4-7: Accuracy of the section-by-section fit for the magnitude of the Y transfer
function with respect to the transmission line data points. The two curves are almost
indistinguishable.
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state-space realization. Third, we truncate the balanced realization in a way consistent

with the achievable accuracy at each reduced model order. In this section we discuss

the issue of obtaining a well-conditioned state-space realization of the frequency-domain

model.

The task of determining a state-state realization for a given transfer function is one

that has been the target of extensive study and is now considered fairly standard. The

transfer function that one is given can be in a pole-residue form, pole-zero form, or as a

set of numerator and denominator polynomial coefficients. This can be written as

n

H(s) = r-i = K (s - Zi) ... (s - Zn) bn-1S n- 1 + - * + bis + bo (4.27)
s - Pi (s - P) * (s - P) Sn + an_lsn- 1 + *+ as + ao

i=1

whose state-space representation can be written as

x = Ax + Bu, x E Rn, u E R, A E RnXn, B E R n (4.28)
y = Cx, yER, CER

such that H(s) = C(sI- A)-'B.

Converting H(s) in a pole-residual form to a state-space form is a standard prob-

lem [32], and it is tempting to use one of the common techniques (canonical controllability

realization, canonical observability realization, etc.) to find the matrices A, B, and C.

However, these approaches can result in a system matrix A which is poorly scaled and

therefore unsuitable for computations.

An example will illustrate this problem. Consider the a controller canonical realization

for H(s) which is shown in Fig. 4-8. For this canonical realization the system matrix

has the following pattern

-an-1 -an-2 ... -a, -ao

1 0 ... 0 0

0 1 *... 0 0

... ... ... ... ...

0 0 ... 1 0

(4.29)

For medium to large n this matrix can quickly become ill-conditioned. To see this
n

note from Eqn. (4.27) that a = J Pi. For systems with even a moderate number of

i=1
high-frequency poles this may be beyond the largest representable number and even if

that is not the case, the matrix thus formed is easily ill-conditioned. Similar situations
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Figure 4-8: Controller Canonical form realization for H(s) = b-sn -+.+bls+b
s'+as- 1 +...+als+ao '
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happen if other canonical realizations, such as observer, controllability or observability

are used.

Instead of using a standard realization scheme, when all the poles are simple and

real, the matrix A can be chosen equal to a diagonal matrix having the real poles as

diagonal coefficients [32]. The control and observation matrices B and C can then be

chosen based on the residues of the poles. More explicitly, given
n

H(s) = Z i (4.30)
- Pi

i=1

where all the poles are negative reals and all the residues are real,

A = diag(pl,.. ,pn) (4.31)

B = ( Iril,..., IrnI)T

C = (sign(rl) I", " * sign(rn) X Irn

This realization can be seen in Fig. 4-9.

When H(s) has pairs of complex conjugate poles, a block diagonal matrix A can be

constructed where the blocks are all either of size 1 x 1, corresponding to real poles, or

2 x 2 corresponding to pairing the complex conjugate poles in state-space realizations

of order 2. It is also possible to find suitable state-space realizations when some of the

poles are repeated. However, if the circuit simulator one is using or writing can handle

complex numbers representation and arithmetic, then the realization show in Eqn. (4.32)

is absolutely general.

4.5 System Balancing and Model Order Reduction

In the previous section we described a numerically sound realization for the frequency-

domain data fitting approximation obtained in section 4.3. It was pointed out at the

time that this approximation may have a large number of poles. Incorporating such a

model, or equivalently its impulse response, directly in a circuit simulator can become

computationally expensive. A model order reduction approach is then sought which

can provide a lower-order stable plant while maintaining the overall accuracy within

acceptable bounds.

Given a linear state-space model for a multiple input multiple output (MIMO) system

= Ax+Bu, x ER ue, (4.32)
y = Cx, y E Rp
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Figure 4-9: Sum, or Parallel or Diagonal realization for H(s) = A-. -
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with corresponding transfer function

H(s) = C(sI-A)-1B,

a reduced-order model of this system is a system of the form

xr = Arxr + Bru, XERr, uR (433)

y = CrXr, y E P

where r < n. Similarly, the transfer function of the reduced-order model is given by

H,(s) = Cr(Ir - Ar)-'Br

which therefore contains fewer poles than the original model.

Given a system realization [A, B, C, D], the simplest technique for order reduction

would be to truncate and discard some of the system dynamics. The simplest of such

operations can be accomplished by what is referred to as spectral truncation. Spectral

truncation corresponds to discarding a portion of the system dynamics by truncating a

part of the system A matrix and removing the corresponding columns and rows of the

B, C and D matrix. In general, this is preceded by a reordering of modes of the A

matrix such that truncation will effectively discard the modes that do not significantely

affect the system response. Typically this truncation is based on neglecting the "fast"

modes, which implies that the reordering performed transforms the A matrix into a block

diagonal form where blocks correspond to eigenvalues of increasing magnitude. There are

two main reasons why this truncation can result in an innacurate reduced-order model.

The first one is that by truncating the fast modes, the resulting model will only be

accurate at low frequency. As a result, the time response may be too slow and the initial

dynamics of the system might be lost. The second reason has to do with the fact that

spectral truncation looks only at the state matrix A without taking into account how

controllable or observable the neglected modes are. In other words, it might be possible

that through pole-zero cancelation the modes that were left were only minimally, or not

at all, present in the output, while the truncated modes might have been responsible for

most of the output energy. In this case the modes with the most energy are left out of

the reduced-order model and the response will most likely be very inaccurate.

More advanced model reduction techniques for stable systems have been studied in the

systems control field. They lead to realizations where the controllability and observability

properties of the modes are taken into account, and therefore reflected in the truncation.
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4.5.1 Balanced Realization

In this section we discuss the theory of balanced realizations. We start by reviewing
some important concepts that are necessary in order to fully understand the model order
reduction algorithm that we will be using.

Consider the map F(t) defined in R " nx m which we assume to be piecewise continuous.
The Gramian matrix is defined as

t00

w 2 = F(t) [F(t)]T dt.

The gramian matrix is a semi-definite positive matrix whose eigenvalues ~1, 2, , , are
non-negative real quantities, and the corresponding unitary eigenvectors V1, v 2, ., Vn

are mutually orthogonal. Then, the map F(t) can be written as

F(t) = VlfT(t) + V2f(t) +... + vnfT(t)

where f(t) = viTF(t), = 1,-.. , n. The vector vi is called the component vector, i
is the component magnitude, fi is the component function vector and finally vifi(t) is
called the principal component. The following relations are known to hold

/000fT(t)f j(t) dt = 0, i $ j Ilf i(t)112 dt = ,2 i = 1,-.. n. (4.34)
o o

Consider the system of the form (4.32) to be a minimal state-space realization. We
will restrict ourselves to systems that are stable because all the systems that we are
interested in fall under that category. The controllability gramian W, and observability
gramian Wo are defined as the solutions of the Lyapunov equations

AW + WAT = -BBT
TW ~~~~~~~~~~~~~(4.35)

ATW + WoA = -CTC.

Since the system is stable, the gramians can also be computed directly as

00

Wc= / eAtBBTeA tdt (4.36)

P00

W = eA TtCTCeAtdt. (4.37)/o
It is known that while the eigenvalues of the gramian matrices W, and Wo are depen-
dent upon the state-space coordinates, those of the product matrix W,.Wo are invariant
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quantities under any state coordinate transformation. The Hankel singular values of the

system transfer function H(s) are directly defined from these quantities as

a,(H(s)) = V (W) i = 1,. , n. (4.38)

For single input single output (SISO) systems, the single equation

W oA + AW = -BC

has the unique solution Wco defined as

Wco0 j (eAtB) (eATtCT) dt

In this case the matrix WcO = WcWO contains double information as regards the degree

of controllability and observability, and its eigenvalues are still invariant quantities, not

dependent upon the state variable representation.

Consider now the controllability problem, that is the problem of choosing a finite

encrgy control signal u(t) in order to bring the state x(t) to o at t = tf. Assuming that

x(to) = xo we get
t

x(t) = eA(t-t°) o + eA(t-r)Bu(T)dr.

to

At t = t f we want to have

rtf

o = eA(tf-to)xo + eA(tf-)Bu(T)dr,

which after some algebra leads to

ltf

- xo = eA(to-T)Bu(r)dr. (4.39)

This is an integral equation in u(t). Defining the operator

rtf

Kc: L 2([to, tf], m ) R n , u , eA(to-T)Bu(r)dr

we can write Eqn. (4.39) as

KCu = -xo.

This is a system with more unknowns than equations. Therefore there will only be a

solution if xo is in the range of the columns of the operator Kc. Given that xo is arbitrary,
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for the system to be controllable over [to, tf], Kc must be subjective, or in other words,

the rows of

F(t): [to, t] R RnX m F(t) = eA(to-t)B

must be linearly independent. Equivalently, the controllability gramian must be invert-

ible. In this case, and after some algebra, the control can be obtained as

u(T) = -BTeA(to - r )W -l xo. (4.40)

For a proof see [32] or any other advanced linear systems textbook. The relevance of

Eqn. (4.40) is that it shows that obtaining u(T) requires the inversion of the controllability

gramian. Clearly, the better conditioned the gramian is, the more numerically stable and

accurate the computation will be.

Now consider the observability problem. A realization is said to be observable on

[to, tf] if x(to) = x0 can be obtained from y(t), to < t < tf. Since the control is assumed

known, its effects can be eliminated, so without loss of generality consider the case where

u(t) = o. Then

y(t) = ceA(t-to)Xo,

which is a linear equation in x0. Therefore the initial state can be uniquely recovered if

the operator

Ko : -n L 2 ([to, tf],RP): o y(O) = CeA(°-to)xo,

is injective. This requires that the columns of

G(t): [to, tf] R " , G(t) = CeA(t-to° )

must be linearly independent. In this case, and after some algebra, the initial state can

be obtained as
Ate

=o o 1 eAT (r-t)cTy(T)dT. (4.41)

Therefore the observability gramian must be non-singular and in order to obtain x 0 one is

required to invert the observability gramian. Again, the better conditioned the gramian

is, the more numerically stable and accurate the computation will be.

Summarizing, the solution of the controllability problem requires the inversion of the

controllability gramian, while the solution of the observability problem requires inverting

the observability gramian. The question one might ask is how to simultaneously precon-

dition both gramians so as to make the solution of both problems as easy as possible

from a numerical standpoint. Clearly a possible transformation would be to precondition
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one of the gramians to make its condition number as small as possible, since that would

facilitate the process of inversion of the matrix. However, preconditioning only one of the

gramian merely helps the problem for which the inversion of that gramian is required,

that is, one would be in a situation where one would have to trade controllability for

observability or vice-versa. Rather, it would be better if both gramians could be precon-

ditioned simultaneously as that would allow us to make meaningful statements regarding

"less controllable" and "less observable" states which, as we shall see also has important

consequences in terms of model order reduction.

Now that we have debated the controllability and observability problems and have mo-

tivated the interest in performing a state transformation that preconditions both grami-

ans, let us consider how such a transformation can be obtained. Consider again the state

representation in Eqn. (4.32), which corresponds to a robust realization of the section-

by-section approximant obtained in section 4.3. We have alluded in the previous section

to the well-known fact that the choice of the triplet [A, B, C] is not unique [32]. Indeed,

a linear coordinate transformation T in the state space modifies the triplet [A, B, C] to

[A, B, C] without modifying the transfer function, that is the input-output relationship.

A particular state transformation that has important properties from the point of

view or model order reduction is the so-called balanced transformation, which has been

studied in control theory for some time [3, 33]. A balanced transformation leads to a

state-space representation which is said to be internally balanced. The corresponding

triplet [A, B, C] is called a balanced realization of the transfer function H(s). The word

"balanced" refers to the fact that the controllability and observability gramians of the

triplet [A, B, C] are both equal to the same diagonal matrix [3]. As we have seen this

property has important numerical implications. For a balanced realization then, the

following property is satisfied

al 0 ... 0

0 0'2 ... '
W = W = : = (4.42)

0 ... ... Urn

where a > 2 > ... > n > 0 and ai is the i t h Hankel-singular value of the transfer

function of the system, also known as the i t h second-order mode.

It is interesting to note that this transformation is equivalent to preconditioning both

gramians such that their condition number equals that of the the product matrix We.Wo.

We have stated that the eigenvalues of this matrix are invariant under all similarity
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Figure 4-10: Curve of K2 (We) K2 (Wo) constant in the plane {K 2 (We), K2 (Wo)}, indicat-
ing the optimum preconditioning situation.

transformations. If one looks at its condition number, we get

K2~~~~~~~ (wM..o
W2 (1'W 0-) = llW1w 0 l-2 (Wc-W.w 1 2 ai (. W)'

With some algebra

2 2
~ IIv~l2~J 1 1 1211012 I TVY112- M.rna (Wc) U1m (.) (4.43)K (Wc.Wo) < IW112| w IlWoll~ Wo- ~ = W" (W ) 2i( ) mi (W-)

Clearly from Eqn. (4.43) one can see that it is possible to trade-off controllability for
observability by moving along the curve with sK2 (We) K2 (Wo) constant. Figure 4-10

shows a curve of constant 2 (We) K2 (W) in the plane {K 2 (We), K2 (Wo)}. Improving

the solution of the controllability problem implies descending the curve for lower values

of K2 (e) which is seen to imply larger values of K2 (Wo). From the figure it is immediate
to see that the optimum value for the product is obtained in the case when both W, and

Wo are preconditioned to make

K2 (Wc) = K2 - Um (W,,WW)
0min (W,.W)'

The balancing transformation T that takes the state from the representation x to
x = Tx can be computed explicitly for any triplet [A, B, C], and in particular for the
diagonal realization that we have proposed in the previous paragraph. The numerical
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Algorithm 4. 5.1 (Balanced Realization).

1 - obtain the controllability and observability gramians W,
and W 0 by solving the Lyapunov equations

AW + WA = -BBT
ATWO + WoA = -CTC.

2 - perform a Cholesky factorization of W, to obtain

W = LCL T

where Lc is lower triangular

3 - form LTWoLc

4 - solve the symmetric eigenvalue/eigenvector problem

UT (L WOLc) U = A 2

5 - form the transformation matrix T as

T = LcUA- 1/ 2

6 - obtain the internally balanced realization by applying the
transformation x(t) = Tx(t) to get

A = T-'AT

B = T-B

C = CT

7 - return the internally balanced realization [A,B,C]

cost of such a computation is that of solving the matrix Lyapunov equations (4.35)

to obtain the controllability and observability gramians and one symmetric eigenvalue

problem to diagonalize their product and obtain the Hankel singular values and respective

eigenvectors. Algorithm 4.5.1 details a standard procedure used to obtain a balanced

realization [34, 4].

All the steps in the algorithm can be shown to have a cost of O(n3 ) [34], and therefore

the total cost of the algorithm is also O(n3 ). Step 1 of the algorithm requires the solution
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of the Lyapunov equations to determine the controllability and observability gramians.

In the usual situation the gramians are reliably solved by means of the Bartels-Stewart

algorithm [35] at a cost of approximately 15n3 . The remaining steps of the algorithm in-

volve standard linear algebra procedures that can be found in standard numerical analysis

textbooks [36].

Let us backtrack andconsider again the problem of controlling the state x using some

input u. If the state is perturbed to x+ +Ax, then the new control signal can be evaluated

as u + Au and the quantity

may be as large as
c IIzdx112

Unc IIx(t)112

where ac and Unc are respectively the largest and smallest singular values of Wc. The

quotient of these two numbers represents a magnification coefficient that outlines the

input signal necessary to drive the perturbed state. On the other hand, if we suppose

that the state x 0 is derived from input-output measurements, we have the observability

problem. If x 0 is perturbed to xo + Axo, the effect of the state perturbation on the

output, measured as

may be as small as
no 11ax0 112
lo 11xoll2

where now olo and ano are respectively the largest and smallest singular values of Wo.

For strongly observable x 0 , the quotient of these two numbers should not be small.

If the system is internally balanced, we know that clo = ac and ano = o'nc. Therefore,

in the state coordinate representation of the balanced realization the contribution of each

state in terms of controllability and observability can be pointed out. Accordingly, the

balanced realization can be partitioned as

~C 1All 1 [i1 LB 1
A12~ L 2 J+ L 1 44X2 A21 A 22 2 B 2[ .1 ] [11 ] + -1

[ = [ (C!l (C2 ] [ Y2 X2

118



v(t)

u(

Figure 4-11: General linear system.

The contribution of the weak controllable and observable state variables in the input-

output map is given by the state vector x2, while the strongly controllable and observable

variables are given by the state vector x1.

The importance of this fact lies in the observation that for the specific purpose of

extracting stable reduced-order models from the state-space representation, it is desirable

that the new triplet [A, B, C] be in a form that allows such an extraction using some
simple operation on the new state x = Tx. The easiest conceivable such operation would

be simple state truncation. Eqn. (4.44) shows that such a truncation can be accomplished

directly and provides insight into the effect of that truncation on the system.

4.5.2 Truncated Balanced Realization

The main idea underlying model reduction here, is to eliminate any weak subsystem

which contributes little to the impulse response matrix. This implicitly defines the exis-

tence of a "dominant" susbsystem, that is, one whose impulse response matrix is in some

sense very close to that of the full model. We shall now show that balanced realizations

provide an explicit tool for obtaining that "dominant" reduced-order model.

To further motivate the relevance of balanced realizations and their truncations con-

sider the general linear system scheme in Figure 4-11 and the functions F(t) = eAtB and
T

G(t) = eA tCT which as we know are directly related to the concepts of controllability

and observability, as given by Eqns. (4.36) and (4.37). Reporting again to Figure 4-11,

the function F(t) represents the state impulse response to impulses injected in point

P1. In particular the Fij(t) term of F(t) represents the i th state response to an impulse

applied at the jth input, when all the other inputs are considered zero. Equivalently,

G(t) represents the output response to test impulses applied at node P2. Its Gij(t) term
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represents the jth output response for a vector test signal v(t), of which all component

are zero except for the ith, which is an impulse.

If the system is balanced, then the functions F(t) and G(t) become

F(t) = eAtB and G(t) = eA tC T .

Using the principal component analysis, we get

F( = f (t) + 22 (t) + + nft) = )+ 2 (4.45)

G(t) = (t) + 2(t) + + o(t) = +. +2t) (4.46)

Since the system is assumed to be balanced, the gramians are equal and diagonal, and

therefore the orthonormal eigenvectors iP', ·*, n and 1, , /n are such that Pi = i =

ei = 1,. , n,, where ei denotes the ith elementary basis vector for Rn. In Eqns. (4.45)

and (4.46), the terms Vnfn(t) and ing.(t) will therefore make the only contributions
respectively to the nth row of F(t) and G(t). Recalling the physical meaning of F(t) and

G(t), those terms are the contribution of the state variable x. In a reduction procedure

we seek to obtain a reduced-order model of the system, and thus the contribution of some

of the variables will necessary be neglected. The balanced realization, therefore, allows us

to choose the state variable set that is related to a significant amount of information in the

external representation of the system. In fact a criteria for evaluating the possibility of

eliminating Cn from the reduced-order model would be to look at the computed energies

of fj(t) and §T(t), which from (4.34) we know to be

I In(t)| 112dt= I 1(t)12 dt = n

where an is the nth Hankel-singular value of the transfer function of the system, and which

therefore represents the energy contribution of xn to the controllability and observability

maps of the balanced system. Thus the smaller Un is with respect to a1 , 7n-1, the

least significant is the contribution of the state variable .in in comparison with that of

the other state variables in the balanced realization.

The previous derivation leads us to the concept of internal dominance which can

be explained referring to the partitioning in Eqn. (4.44) and to Figure 4-12 [3]. The

subsystem [All, B 1 , C1] is internally dominant if injecting test signals involving u(t) or

v1 (t) will give stronger, i.e. with more energy, components as regards x(t) and y(t)

than corresponding test involving u(t) and v 2 (t) as regards x 2 (t) and y(t). In terms of
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Figure 4-12: State variable partition corresponding to internal dominance of the variables
in the set x 1 (t).
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the controllability and observability maps, our partitioning leads to

fW = fWO= 'r [= E
0 2 

and internal dominance translates to saying that

h111F >> IIE211F (4.47)

where 1.IF denotes the Frobenius norm, defined as

IIMIIF =

Given that the Hankel singular values of the transfer function of the balanced system
are ordered by decreasing magnitude, as shown in Eqn. (4.42), and assuming that All E
Rkxk, Eqn. (4.47) can also be written as

k n

(C1/2 > (/2 1/ 2
E ((J~2) 1/2 B~> (2) 1(4.48)

i=1 i=k+1

If Eqn. (4.47) is satisfied, the subsystem [All, B,, Cl] can be considered as an approxi-
mated model of the full balanced system [A, B, B C].

It can be shown [3, 4] that if the original system in Eqn. (4.32) is a stable system,
then the internally dominant subsystem corresponding to the triplet [All, B1, C 1]l is also
stable and is in fact an internally balanced system itself. In other words, the triplet
[A, B, C] obtained by applying the balancing transformation T to the triplet [A, B, C]
has the remarkable property that truncation of the state vector necessarily produces
stable reduced-order models at any desirable order.

Eqn. (4.47) immediately suggests a model order reduction algorithm based on the
balanced realization of a system. Given a realization, a balancing transformation is
applied and the Hankel-singular values are examined. If Eqn. (4.48) is not satisfied for
any k, then there is no internally dominant subsystem. If (4.48) is satisfied, then the
subsystem corresponding to the first k state variables of the model is internally dominant,
internally balanced and asymptotically stable. This subsystem is then the reduced-order
model that we seek. Algorithm 4.5.2 details an implementation of such a procedure.

Let k be the order of the internally dominant subsystem which is our reduced-order

model. Let [Ak, Bk, Ck] be the reduced-order model with a transfer function Hk(s). It
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Algorithm 4.5.2 (Model Order Reduction by Truncated Balanced Realization).

1 - balance the realization [A,B,C] to obtain [A,B, C]

2 - determine if there is a k, 1 < k < n such that

k n

E (ai1/ > (2 1/2

i=1 i=k+l

3 - if no such k exists, return failure

4 - if such a k exists, compute the L error of the truncation
and make sure it is smaller than the desired accuracy e

Eo = IIEk(s)IIL = IIH(s)- Hk(s)IIL, < 2 (k+1 + . + on) < E

5 - perform the truncation and discard the
n-k less controllable and less observable state to obtain the
reduced-order model

[Ak, Bk, Ck]

6 - return the stable truncated balanced realization [Ak,Bk,Ck]
and the transfer function truncation error Eo
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can be shown [4] that, for the full system

IIH(s)llL < 2 (l + '2 + - o n)

where the Loo norm corresponds to the peak of the magnitude Bode plot of H(s). It

can also be shown that the error transfer function for a kth order truncation, Ek(s) =

H(s) - Hk(s) has an L norm that consistently decreases to zero as k is increased to

n, the order of the original model, that is

lim IIEk(s)IIL. = lim IIH(s) - Hk(s)IL. = 0
k-.n k-n

and moreover that, for any truncation order k, the following error bound holds

IIEk(s)llL, = IIH(s) - Hk(s)llL_ < 2 (k+1 + * + an)- (4.49)

Eqn. (4.49) is not only important in the sense that it provides an estimate for the error

induced in the truncation, but also because it allows the choice of the truncation order

k to be done a-posteriori. For most of the usual approximation methods, such as Pad6

approximation, the order of the approximant has to be chosen a-priori before any com-

putation is done. If after the model is obtained one realizes that the accuracy provided

is not sufficient, the process must be restarted to compute a higher-order model [17].

Furthermore, such methods do not enjoy such an error reduction property because of

the ample experimental evidence that the Pad6 model becomes unstable as the order is

increased. Eqn. (4.49) on the other hand, allows us to obtain the balanced realization

and then determine the necessary order for the model such that the error is within the

desired accuracy.

It has been shown that the Hankel singular values alone do not reflect the full con-

tribution of each state in terms of the L2 magnitude of the impulse response. A new

type of invariants, named balanced gains, have therefore been introduced which allow the

impulse response to be quantified in a new representation in terms of the state variable

energy. In this new representation the balanced gains, V1 ,'., v* , vi _ 0, are used to pa-

rameterize the balanced realization triple [Ak, Bk, Ck]. For the details of the algorithm,

see [37, 38]. Under this representation it is then shown that

00 1/2 n ~~~~~~~~~1/2

[[H(t)1L2 = (If H(t) [H(t)]Tdt = (' v 2

where H(t) is the impulse response matrix corresponding to the transfer function H(s)

and the L2 norm is defined as indicated. Furthermore, it is also shown that a kth order
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truncation of the internally dominant system so-parameterized has an L2 norm given by

k \ 1/2

IlHk(t)llL2 = 2iv (4.50)

i=1

and therefore the truncation error is given by

n k

IIH(t)- Hk(t)IIL2 = E avr + ~ acv -2tr{ikVC } (4.51)

i=1 i=1

where V satisfies
VAT - T.

AkV + VA =-BkB

From Eqn. (4.51), we can show that

IIH(t) - Hk(t)1L2 > iv2 - ( aiv2

i=1 i=1

which clearly indicates how in the parameterized balanced realization the contribution

of the ith state in the L 2 sense is given by a term in ovi2 . Therefore, even if a system is

weakly controllable and observable, the importance in terms of impulse response energy

is essentially associated to the terms acv2. Eqn. (4.51) also provides a criteria for a-

posteriori determination of the order of the reduced model. The accuracy in this case

should be given as a time-domain quantity and not as a frequency-domain parameter as

is the case in Algorithm 4.5.2.

While the ability to work with time-domain accuracy parameters is perhaps more nat-

ural in the context of transient circuit simulation, the parameterization of the balanced

realization requires that the balanced gains be selected beforehand. Unfortunately there

does not seem to be any robust way to perform this selection automatically and in a

case-independent manner. Furthermore, our experience with the truncated balanced ap-

proximations has shown that, for our examples, acceptable time-domain accuracy results

from our frequency-domain approximations. As such, this approach was not followed.

Before we complete our study of state-space techniques for model-order reduction,

we should state that in [4], it is shown that the truncated balanced realization is not

optimal among all possible approximations of order k. It is in fact possible to obtain an

approximation with smaller error, but the cost of its computation increases. Again, our

experience with the truncated balanced approximations seems to indicate that for our

examples such an optimality is not necessary.

125



4.5.3 Time-Domain Constraints

Judging the validity of the reduced-order model depends not only on meeting the Loo
error criterion mentioned above but also on meeting the goals of the circuit simulation
task for which this reduced model is used. Typically, in circuit simulations, it is essential
that the reduced model match the original transfer function at = 0 so that the steady-
state behavior of both the reduced and full models are identical. Moreover, when the
objective is to have a good match between the time-domain responses of the two models,
it is essential that their transfer functions match at s = oo so that their initial behavior
is the same.

In situations where the objective is to match the responses of the interconnect full
and reduced models to a step input, it has been shown that it is possible to build stable
reduced-order model based on balanced truncation that achieves accurate steady-state
and transient behavior [39]. In other situations, where the recovery of the steady-state
behavior is more important, one would apply a least-squares/collocation technique to
match the reduced-order model with the full model at zero frequency [40]. The resulting
reduced-order model should be stable with very few poles, almost identical to the original
model at high frequencies, match it at very low frequencies, and will still meet the
theoretical Loo error criterion. For most circuit simulation applications it will be necessary
to guarantee that both the initial conditions and the steady-state values are satisfied
simultaneously. In this case both constraints are introduced during the minimization
process, as discussed in section 4.3.1.

4.5.4 Truncated Balanced Realization: numerical example

In order to test the accuracy of the order reduction algorithm, we consider two ex-
amples. The first one is the transmission line example whose equations were introduced
as an example in section 2.5. The second example is the RLC uniform lumped model of
interconnect which was introduced in section 4.2.1.

The truncated balanced realization method was applied to the transfer function ob-
tained using the section-by-section procedure on the transmission line data as described
in section 4.3.2. For that purpose a diagonal representation was obtained from the
section-by-section transfer function approximant and that realization was balanced using
the algorithm outlined in section 4.5.1. Truncation of this balanced realization was then
performed. It was found that reduced models with seven poles each were appropriate
to approximate the full transfer functions of both S 12(jw) and Y(jw). In Figures 4-13
and 4-14, we compare the magnitude plots of the reduced transfer functions of, respec-
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Figure 4-13: Accuracy of the reduced-order model fit for the magnitude of the S 12 transfer
function with respect to the transmission line data points.

tively, S 12(jw) and Y(jw) with the transmission line data points. As one can see that

match is very accurate as the error is within 1%. However in contrast to the section-

by-section approximation the low-frequency error can be larger. In Figures 4-15 and

4-16, the magnitude plots of the frequency dependent fitting errors from the section-by-

section approximation and the reduced-order model are shown for S 12 (jw) and Y(jw),

respectively.

In order to incorporate such a transmission line model into a circuit simulator, and

as outlined in section 4.5.3, a constrained minimization is performed after obtaining the

truncated balanced realization. This minimization recomputes the residues of the transfer

function obtained from the truncated system, while keeping its dynamics and therefore

its stability properties.

The following example considers the time-domain step responses for the circuit in

Figure 4-3. Given the simplicity of this circuit, the state-space representation can be

constructed directly from inspection. Once a state-space representation is obtained the

moments of the system can be computed and a Pad6 approximation of any order can

easily derived, according to Algorithm 4.2.1. Similarly, once a state-space representation

of the system is obtained, it can be internally balanced using Algorithm 4.5.1 and a
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Figure 4-15: Magnitude plots of the errors with respect to the transmission line data
points of the section-by-section approximant and the reduced-order transfer function for
the S 12 parameter.
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Magnitude Plots of the Yo=1/Zo Parameter Error
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Figure 4-16: Magnitude plots of the errors with respect to the transmission line data
points of the section-by-section approximant and the reduced-order transfer function for
Yo.
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truncation of any order obtained.

For the purpose of comparing stability and accuracy, we will also present the results

obtained using Pad6 approximations of the same order. Since both the Pade approxima-

tions and the truncated balanced realizations are in the form of rational functions, the

treatment given to each is similar. Given a kth order approximation in the frequency-

domain in the form of a rational function such as

k

ri
Hk(s) =E i (4.52)

i=1

then, an inverse transform can be applied to analytically compute the corresponding time

response as:
k

g(t) = Z repit. (4.53)
i=1

Figures 4-17 compares the exact step response of the circuit in Figure 4-3 with those

obtained with 2 nd order Pad6 and truncated balanced realization models. For this order,

the Pad approximation is stable, as we had seen in section 4.2.1. The truncated balanced

realization model is guaranteed stable irrespective of the order chosen. Furthermore the

reduced-order model approximation is more accurate as the Pad6 approximation seems

to have introduced some delay.

In order to improve the accuracy of the time-domain responses, the order of the

approximations is increased. Figures 4-18 compares the exact step response of the circuit

in Figure 4-3 with those obtained with Pad6 and a truncated balanced realization, both

of order 8. As shown in the figure, the 8th order Pade approximation is unstable, thus

producing a totally inaccurate time-domain response. On the other hand, the truncated

balanced realization model, which is necessarily stable, is also seen to be very accurate

as it produces a response which is almost indistinguishable from the exact response.

4.6 Time Domain Simulation

The usual, though not unique, way to incorporate frequency-described devices into

a circuit simulator is via a convolution process at each timepoint. If for instance some

device's admittance is described in the frequency domain via some transfer function G(s)

or possibly by a collection of frequency measurements G(jwi), then by Laplace inversion

or application of the inverse fast Fourier transform the corresponding impulse response

can be computed. Then, the response of the device at any given time can be determined
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Exact step response and 2nd order Pade and reduced-order approximations
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Figure 4-17: Comparing the exact step response with that obtained using respectively a
2 nd order Pade and a 2 nd order model based on truncating a balanced realization of the
system.
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Exact step response and 8th order Pade and reduced-order approximations
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Figure 4-18: Comparing the exact step response with that obtained using respectively a

8 th order Pad6 and a 8 th order model based on truncating a balanced realization of the

system.
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by convolving the impulse response with an excitation waveform, that is, at any point t

in time the current flowing through the device can be computed as:

i(t) = (v*g)(t) = j v(r)g(t - r)dr (4.54)

where v(t) is the voltage drop along the device and g(t) = -1 [G(s)] (t) (or equivalently

g(t) = F-1 [G(jw)] (t)) is the impulse response of the device. Figure 4-19 shows how

this process is conducted. From the transfer function, the impulse response is obtained,

possibly via inverse fast Fourier transform, and then at each time point this impulse

response is convolved with some other waveform. Numerical computation of the convo-

lution integral in Eqn. (4.54) can be accomplished with a standard quadrature formula,

depending on the desired accuracy. Trapezoidal quadrature or Simpson's rule are fairly

common techniques in this regard.

As can be seen in from. (4.54) or from Fig 4-19, this approach can quickly become very

expensive. In fact, it requires that at every simulator timepoint, the impulse response

be convolved with the entire computed excitation waveform. That is, computing the

convolution integral at time t = tN, where tN is the Nth timepoint used in the simulation

process, involves all the N previously computed values of the excitation and their impulse

response counterparts and therefore has a cost of O(N). If a given simulation run uses

a total of N timepoints, then the total cost of the convolutions required for evaluating

this device will be O(N2 ). This quadratic growth makes the cost very expensive if N

is large and this fact has been a major drawback for convolution based approaches to

incorporating frequency-described models into a simulator.

4.6.1 Recursive Convolution

As mentioned in previous sections, an alternative approach to describe a frequency-

domain model is to approximate the frequency-domain representation with a rational

function. In this case it is possible to dramatically accelerate the convolution process

using a recursive convolution algorithm [2]. This process is indeed. extremely simple to

understand and it is worthwhile going through the necessary computations to grasp its

true benefits. Assume for example that a rational function has been computed that

approximates some device's admittance in the frequency domain within some predeter-

mined accuracy. If a partial fraction expansion is computed for that rational function
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Figure 4-19: Step by step procedure for incorporating a frequency-described device into
an electrical circuit simulator. Given a transfer function or an approximation to measured
or tabulated frequency values, an impulse response is obtained. Then at each timepoint
in the simulation process, that same impulse response is convolved with some waveform
to produce a desired current or voltage. In this example it is assumed that the frequency
model represents the device admittance and therefore the voltage drop along the device
is convolved with the admittance impulse response to obtain the current.
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one obtains
k

G(s = 1 ri
i=l

(4.55)

where the ri,Pi may in general be real or complex numbers and Real{pi} < 0, Vi if the

transfer function represents a stable device. Clearly since the device response in time is

a real function, if some ri or Pi has a nonnegative imaginary part, its complex conjugate

must also be present, that is

If Imag{ri} O 0 or Imag{pi} O 0=- 3 j i: rj = r* and pj =p

where r* represents the complex conjugate of ri.

From this representation, an inverse transform can be applied

the corresponding impulse response as:

k

g(t) = Z riePit.

i=1

to analytically compute

(4.57)

To compute the convolution of a waveform with this impulse response, for example if

i(t) = (v * g)(t), then at time t + h:

= (v*g)(t+h)=
t+h

= v(T)g(t +=
_- jt+h k

~~~~=1
~~~V-r i=1k t+h

= 100 ('

i=1k t

i=1
k t

=l
= pih V(

i=l 

h-7 r)dr =

rieP.(t+h)d T =

)riePi(t+h-~)dT -=

k

ePi(t+h-Or)d +i

i=1
k

T)riePi(t-)dT + 

i=1

t+h

t

v(T)riePi(t+h-T)d r =

t+hI v (T)riePi (t+h-r)dT

t
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Recall now that by definition then

t+h

i(t) = (v * g)(t + h) = v(r)g(t - r)dr =

t+h k

= / v(r) E riePi(t-r)dT- (4.59)

i=1

k pt+h

= / v(T)riePi(t-T)dT.

i=1

If we let

p t+h

Ii(t) = v(T)riePi(t-T)dT. (4.60)

Then
k

ii W ~~~~~~~(4.61)i(t) = E Ii(t). (4.61)

i=1

Using Eqn (4.60) on Eqn (4.58) it becomes evident that:

k k pt+h

i(t + h) = (v * g)(t + h) = E ePih Ii(t) + E v(T)riePi(t+h )dT. (4.62)

i=1 i=1 

The significance of Eqn. (4.62) is that it shows that the convolution of the impulse

response with the waveform v(t) at time t + h can be obtained by adding two terms.

The first term is basically a decayed version of the convolution computed in the previous

simulator timepoint, t. The second term is an integral that does not depend on any

values of the waveform before t. In other words, if at every timepoint the convolution is

computed considering each term of the form riePit separately, and the values Ii = Ii(t)

are stored and saved, then the convolution at the following simulator timepoint becomes

a recursive operation. In fact, assuming that Ii, i = 1, ... k are known at time t, four

simple operations can be performed to obtain the convolution at time t + h. This is

described in Algorithm 4.6.1. Storing the Ii values which have to be kept from timestep

to timestep where they are updated, adds a negligible storage cost, given that this merely

implies storing a vector of size k, where k, the number of poles in the approximation, is

in general a small number.
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Algorithm 4.6.1 (Recursive Convolution).

Assuming that Ii, i = 1,...---k are known at time t where

k

i(t) = (v*g)(t) = E Ii(t)

i=1

t+h

and Ii (t) =| v(()riePi(t-')dT.

1- decay each of the partial integrals: this is the recursive
part

Ji = ePihI

2 - compute the current timepoint contribution to the
convolution considering each exponential separately

t+h

Ci = /

dt

v(-r)riePi(t+h-')dT

3 - recompute the values of Ii, now
relative to time t + h; this sets up the recursion for the next
timepoint

Ii = J +Ci i = 1,. k

4- finally add all contributions together

k

i(t + h) = (v *g)(t + h) = E Ii

i=1
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Clearly steps 1 and 2 require on the order of 0(1) work per timepoint, while steps

3 and 4 require O(k) work where k is the number of poles in the rational function. In

other words, this recursive procedure has a total cost of O(k) per timepoint, where k will,

in general, be small. Therefore if a given simulation run uses a total of N timepoints,

then the total cost of the convolutions required for evaluating this device will be O(kN).

If N > k this results in substantial savings when compared to the O(N 2) cost of the

direct convolution methods. This low complexity has been an important driving force in

the recent success and popularity of rational function approximations implemented via

recursive convolution into circuit simulators.

In the preceding discussion it was assumed that either both the poles pi and residuals

ri of the rational function are real, or the simulator is able to handle complex numbers.

This assumption can be loosened since if this is not the case, it is also possible to derive

equivalent recursive expressions for the convolution in the case of complex conjugate

poles and residuals. Furthermore it is also assumed that there are no repeated poles

in the rational function. In this case this assumption can with generality be accepted

given that the poles are generally computed numerically and the likelihood of obtaining

repeated poles if minimal. If by chance this were to happen one could modify one of the

repeated poles slightly, such that the additional frequency error would be negligible and

the poles would no longer be repeated.

4.6.2 Numerical Integration

While steps 1, 3 and 4 in the algorithm outlined in the previous section involve only

multiplication or addition of known quantities step 2 requires the numerical computation

of the integral
t+h

Ci = v(T)riePi(t+h-r)dT.

dt

Computing this integral could be accomplished using any one of the standard quadrature

techniques, such as trapezoidal quadrature. In this case one would get'

t+hhepih + Vt

v()rie P ( t +h - ) d r ri v t+ h e p ' t
2

dt

Clearly one would like to compute this integral as accurately as possible given that any

error incurred in its computation will not only affect the accuracy of the circuit solution

'We note that vt+h is not a known quantity but is in fact being solved implicitly, as described in

chapter 2, with a nonlinear solution method such as Newton's method. Therefore the most current guess
would be used here.
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at t + h but it will also directly affect all future device evaluations due to the recursive

nature of the algorithm. Unfortunately, given that v(t) is not known exactly, this is

not always possible and some error must be tolerated. Nevertheless using a standard

quadrature formula to compute the above integral is not likely to be the best solution

in this situation. Consider for instance the special case that v(t) is constant throughout

the integration interval. In this particular case, if v(t) = v 8 and given the form of the

integrand function, it is possible to compute the integral exactly to obtain

;t+h rt+h
v(T)riePi(t+h -T)dT -= v,, riePi( t+ h) ePi dr = vssri e - (4.63)

~~~~~~~t 

This value may be somewhat different from the one produced by the trapezoidal quadra-

ture, particularly if h is large which is desirable for simulation efficiency.

The advantage of the approach in (4.63) is related to an issue already discussed in

previous sections. In section 4.5.3 we stated the fact that typically, in circuit simulations

it is essential that the steady-state behavior be computed as accurately as possible. Fail-

ure to do so, introduces a consistent steady-state error in the waveforms and may lead

to erroneous solutions which may cause other problems later in the simulation. In the

frequency-domain, as stated in section 4.5.3 this implies that the reduced model must

match the original transfer function at s = 0 so that the steady-state of both the reduced

and full models are identical. In the time-domain an equivalent requirement would be to

say that if the circuit approaches steady-state, the device characteristics must be com-

puted exactly so that no error is induced in the simulation and the computed waveforms

evaluate to the correct steady-state values. In our frequency-dependent admittance de-

vice this would translate into stating that if the device approaches steady-state then the

convolution integral

(v * g)(t) = j v(T)g(t - )dr

J oo

should be computed exactly. Given that the waveform v(t) was computed with finite

precision and is not known in closed form, it is not in general possible to achieve this

goal. However, it is possible to compute the convolution integral exactly in the special

case where v(t) is constant. In order to motivate why this special case is important

consider the following observation:

Remark. Consider a device whose constitutive relation is described via the convolu-
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tion of an impulse response g(t) E L1 (R, IR) with some controlling variable v(t),

i(t) = (v * g)(t)= j v(r)g(t - T)dT.

Joo

Let i(tk) = I [(-o, tk], i(tk), g(tk - r)] be the algorithm or formula used in the computa-

tion of the convolution integral of the sequence Vk = 0(tk) with g(t) at the kth timepoint,

tk. The interval (-oe, tk indicates which portion of the convolution integral is being com-

puted, and r is the variable taking values in that interval. Assume that this integration

formula satisfies the following usual properties:

1. (Linearity)

I[(-cc,tk],a k + k,g(tk -r)] =

aT I [(-c, tk], Ok, g(tk -T r)] + I [(-c, tk], uk, 9(tk - r)]

2. (Comparison)

If Vk Uk, V kE[kl,k 2],

{- T [[tk1 , tk 2 ], Ok, (tk - T)] < I[[tki, tk], k, 9(tk - T)]

3. (Modulo)

I [[tk, tk], k,g(tk- )]1 < [[tk, tk2], IVkI, 9g(tk - T)1]

4. (Additivity)

I [[tk1 , tk3], k, 9(tk - T)] = - [[tk, tk 2 ], k, 9g(tk - T)] + [[tk2 , tk3], k, (tk - r)]

5. (Zero-Contraction) If V > 0, k e [k1 , k2 ], t E [tk, tk 2 ],

IvkI < e or Ig(tk - r)l <, I [[tk 1 tk 2 ],Ok,g(tk - ')]l < E K

for some K. Since can be arbitrarily small, the computed integral equals zero.

If the convolution integral can be computed exactly in the special case that the controlling

variable is constant then, if the controlling variable is not constant but tends to a constant

in the limit t -- oo, the computed integral also approaches the exact value as t -- . In

other words

If lim v(t) = v, then lim (tk) = lim i(t)
t @00o k-oo t-*0

where i(t) is the exact solution and (tk) is the sequence of computed values during the

simulation run. Figure 4-20 helps visualize the situation that we are considering.
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Figure 4-20: Convolution of a nearly constant waveform with a fast-decaying impulse
response: convolution of v(t) with g(t), where v(t) is approximately constant for t > to
and g(t) - 0 for t > t.

Proof. If v(t) = vss, is constant then, V t

ot rt 0

i(t) = v(t)g(t- r)dTr = vss g(t- r)dr = v , g(t)dt = vssG(O),

where G(s) is the Laplace transform of g(t). By hypothesis, in this case the convolution

integral is computed exactly, that is

i(tk) = I [(-o, tk], (tk), g(tk - )] = I [(-0, tk], V,, g(tk - )] = vG(O).

So the hypothesis basically translates into saying that our integration formula can com-

pute the integral of the impulse response exactly.

Consider now the case where v(t) is not constant but is such that

lim v(t) = vss, (4.64)
t-_oo

where vs is a constant. Then, using the final value theorem, we know that

lim v(t) = lim V(s) = vs,.
t-oo s--O

Therefore the exact integral, as t -+ oo equals

lim i(t) = lim sI(s) = lim sV(s)G(s) = lim sV(s) lim G(s) = vssG(0)
t s oo s-O s- -O s---O s-*O

since both limits exist.

On the other hand, computationally, as t - c, k coo, and k = (tk) becomes
arbitrarily close to a constant, Vk = V.s + Ek, where k is arbitrarily small, that is

V e > 0, 3 to: tk > to ~ lek < . (4.65)
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On the other hand, since g(t) e L (R, IR) that necessarily implies that

3 t: t > t 1g(t)l _< . (4.66)

where is the same as above. Then, for t = tk > to + t, using the additivity of the

integration formula we get

i(tk) = Z [(-oo, tk], k, g(tk - )] =(467)

I [(-oo, to], Vk, g(tk - )] + [[to, tk], Vk, g(tk - T)]. -

The first of these computed values is negligible according to the zero-contraction property

of the integration formula:

r (-oo, to] = tk- > t = 1g(tk--) < (468)

== I I[(-oo, to], k, 9(tk- )]| <e K,

which is arbitrary small. Using the linearity property, the second computed value in

Eqn. (4.67) leads to

I [[to, tk], Vk, 9(tk - r)] = [[to, tk], Vss, 9(tk - 7-)] + I [[to, tk], Ek, 9(tk - )] (4.69)

Again, since for r [t0 , tk] Eqn. (4.65) shows that ekl < and therefore by the zero-

contraction property this integral is negligible. Finally the first value in Eqn. (4.68) leads

to, using the additivity property

I [[t0 , tk], v8 ,, (tk - T)] = I [(-c, tk], 8 , (tk - )] - I [(-ox, to], Vs, g(tk - T)]

where the second value was already shown to be zero in Eqn. (4.68), so

lim (tk) = I [(-oc, tk], k, g(t)] = I [(-oc, tk, , g(t)] = vG(O)
k-*oo

which we know to be the exact final value for i(t), thus implying that

lim (tk) = lim i(t) = vG(O).
k-oo t-oo

It should now be clear why the special case of v(t) being constant is an important
one. Even though in reality there is always a finite simulation interval, this interval might
be long enough that most waveforms will be close to steady-state and will therefore be
in a situation similar to that described in Figure 4-20. It is therefore essential that the

correct steady-state be computed in this case.
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Satisfying the conditions of the previous result has several implications in terms of

how the convolution integral must be implemented and also in terms of how the impulse

response is obtained. If the device's impulse response is given by a collection of samples

obtained via an inverse transform, such as inverse Fourier transform, two conditions

should be satisfied. First we must ensure that the impulse response is in L (RIn, Rn),
that is, that its computed energy integral is finite. This translates into stating that

the last sample must have a value of zero. Furthermore, in order to ensure that the

convolution integral is exactly computed when the controlling variable is a constant, it is

necessary that the DC frequency-value be known and matched exactly. Again recurring

to our frequency-dependent admittance device, this implies that G(O) be known and that

the time-domain samples be such that

j g(t) = G(0). (4.70)

In order to enforce (4.70) correctly, the integration must be performed using the same

quadrature algorithm that will be used to compute the convolution integral. Typically

once the time-domain samples are obtained the quadrature algorithm is used to compute

the integral. Then, in order to guarantee that Eqn. (4.70) is satisfied the time-domain

samples may have to be appropriately scaled.

In the case where the frequency-dependent device is modeled with a rational function

approximation and the recursive convolution algorithm is used to compute the convolu-

tion integral the conditions of the theorem can be satisfied if the following two conditions

are met: first the the DC frequency-value be known and matched exactly and the current

timepoint contribution to the convolution integral (step 2 of Algorithm 4.6.1) must be

computed exactly if v(t) is a constant. The first of these conditions was already discussed

in section 4.5.3: the frequency domain rational function approximation must be exact

at s = 0, which may require a constrained minimization to be performed to recompute

the residues of the approximation. The second condition is satisfied if the integration is

performed as indicated in Eqn. (4.63).

4.7 Experimental Results

In this section, results are presented for an implementation of the algorithms described

applied to efficient time-domain simulation of interconnect and packaging structures. The

implementation is based on a modified version of SPICE3 [41], and uses a combination

of sectioning, reduced-order modeling, and fast recursive convolution. We will consider
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two example setups. First we model and simulate an interconnect problem where drivers

and receivers are connected via transmission lines with arbitrary scattering parameter

descriptions. For completeness we will also apply a more traditional FFT-based method

to this problem and compare the results in terms of accuracy and computational cost.

Then we will consider a packaging example where the frequency dependent data is ac-

quired with FastHenry. The example is an investigation of crosstalk between a small set

of package pins connecting on-chip drivers to off-chip receivers.

4.7.1 Transient Simulation of Circuits and Interconnect

In this section, results are presented for an example involving the time-domain sim-

ulation of transmission lines with arbitrary scattering parameter descriptions. We have

already seen that the reduced-order model obtained in section 4.5.4 with truncated bal-

anced realization has a frequency-domain accuracy comparable to the more complete

sectioning based model obtained in section 4.3.2, but many fewer poles. We will now

show that the reduced-order model produces nearly the same time-domain waveforms

as the sectioning based model and is therefore also comparable in terms of time-domain

accuracy. Then we will present an example with realistic transistor drivers and receivers,

to demonstrate the ability of the method to simulate complete circuit descriptions.

In Figure 4-21 we present the time-domain results of applying a 5 volt step to a 50Q

terminated transmission line with significant skin-effect. The pulse has a 1ns rise time,

is applied at t = 50ns and the delay of the line is 250ns. In the figure, we compare the

time response of the 7-th order reduced-order model with the time response obtained

using the full sectioning based approximant, which has more than twenty poles. The

fact that the two responses are indistinguishable in the figure shows that an excellent

match has been obtained. In the same figure we show the time response obtained using a

full convolution method applied to an impulse response obtained via inverse fast Fourier

transform (iFFT) on 2048 frequency data points. As can be seen from the figure, the

iFFT-derived response is equally accurate as expected since a fairly large number of

frequency points were used. In Table 4-1 we show the CPU times required for obtaining

the three time responses shown. The total number of timesteps required for obtaining

the solution in the interval shown was 1004. From the results in the table, we can see that

simulation of the reduced-order model is most efficient, as expected. Since the cost of

recursive convolution is proportional to the number of poles in the reduced-order model,

the 7-th order model is over one and a half times more efficient than the sectioning

approach. Both of these methods are over an order of magnitude faster than the full
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convolution method which shows that the recursive convolution procedure is extremely

efficient. For a simulation on a longer interval, the difference in CPU times would tend

to increase since, as we saw, the cost of a recursive convolution method is linear on the

number of timesteps while the cost of a full convolution method is quadratic on the

number of timesteps.

Algorithm CPU time (s)
Full convolution 133

Section-by-section 13
Reduced-order model 8

Table 4-1: CPU time comparisons for full convolution versus recursive convolution meth-
ods. Times are in seconds on a SUN IPX.

In Figure 4-23 we present the time-domain results obtained from the circuit in Fig-

ure 4-22, where the transmission line frequency response was shown previously. The

driver and the load are both CMOS inverters, where the transistors are described us-

ing SPICE3's default level 2 model with W/L = 750 for the p-type pull-up devices and

W/L = 400 for the n-type pull-down devices. The simulation results clearly show that

the improper line termination causes reflections to transmit back and forth on the line

and falsely trigger the load inverter.

4.7.2 Transient Simulation of Circuits and Coupling 3-D Pack-

aging

In this section we describe an example that demonstrates the value of using the

reduced-order models with the frequency dependent data obtained from a packaging prob-

lem. The frequency dependent resistance and inductance matrices describing the terminal

behavior of a set of conductors can be rapidly computed with the multipole-accelerated

mesh-formulation approach as implemented in FASTHENRY [42, 43]. FASTHENRY is a

program that allows the efficient computation of frequency dependent inductances and re-

sistances for complex three-dimensional geometries of conductors. It is based on a mesh

analysis equation formulation technique which combined with a multipole-accelerated

Generalized Minimal Residual (GMRES) matrix solution algorithm is used to compute

the inductance and resistance matrices in nearly order n time and memory where n is

the number of volume-filaments. Previous approaches have required order n3 time and

order n2 memory [44]. The example that follows is an investigation of crosstalk between
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Transmission Line Response with Resistive load
. . . . . . . . _ 

0.1 0.2 0.3 0.4 0.5
time

0.6 0.7 0.8 0.9

Figure 4-21: Time response obtained from applying a 5V pulse with a ns rise time at
t = 50ns to a resistively terminated transmission line. The figure shows the response of a
line modeled with a 7 pole reduced-order model and that of a line modeled with the ap-
proximation resulting from our sectioning algorithm, which has more than 20 poles. The
figure also shows the response of the line computed using full convolution with an impulse
response obtained via inverse fast Fourier transform. For this examples 2048 frequency
points were used for the iFFT algorithm. The three waveforms are indistinguishable.
The delay of the transmission line is 250ns.
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Figure 4-22: CMOS driver and load connected by a transmission line with skin-effect.
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Figure 4-23: Time response of a nonlinear circuit with a transmission line connecting
driver and load. The transmission line is modeled with a 7 pole reduced-order model.
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Figure 4-24: Seven pins of a cerquad pin package.

a small set of package pins connecting on-chip drivers to off-chip receivers.

Consider the crosstalk between seven adjacent pins of a 68-pin cerquad package as

shown in Fig. 4-24. Assume the five middle lines carry output signals from the chip and

the two outer pins carry power and ground. The signals are driven and received with

CMOS inverters. The drivers are capable of driving a large current to compensate for the

impedance of the package pins. The inductance of the pins is computed with FastHenry

and the capacitance is assumed to be 8pF. The interconnect from the end of pin to the

receiver is modelled with a capacitance of 5pF. The overall configuration is illustrated

in Fig. 4-25 and a more detailed view for a single pin is given in Fig. 4-26. A O.1F

decoupling capacitor is connected between the driver's power and ground to minimize

supply fluctuations.

To compute the resistance and inductance matrix at each frequency with FastHenry,

the pins were discretized into five filaments along their height and nine along their length.

This allows accurate modeling of changes in resistance and inductance due to skin and

proximity effects. Using FastHenry matrices were generated for the frequency range

1MHz to 10MHz, with three points per decade. For more details see [45].

The frequency dependence of each element in the admittance matrix is fit with a
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Figure 4-25: General configuration for the connection between
All the circuit elements inside the same chip share that chip's

received and driver chips.
power and ground.
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Figure 4-26: Detailed view of the connection between driving and receiving chips, showing
the power and ground connections. Decoupling capacitance between the power and
ground lines are also shown. Pin capacitance and receiver interconnect capacitance are
also modeled as small capacitive loads.

rational approximation using the algorithms described in Section 4.3. First, the section-
by-section approach is used to obtain approximations which have orders in the range

of 12 to 24. Following the section-by-section algorithm a realization is determined and

balanced. We have found that truncated models of 3 rd order are sufficiently accurate to

provide approximation with less than 5% error. The following two figures demonstrate

this fact. Figure 4-27 shows the magnitude of the self-admittance term at pin 4. Shown
in the plot are data points computed with FastHenry, the 1 2th order section-by-section

approximant and the 3 rd order reduced model computed by truncating the balanced re-

alization. As can be seen on the plot, the three curves match each other almost perfectly.

Figure 4-28 shows the magnitude of the mutual admittance term between pins 3 and 4.

Again, shown in the plot are data points computed with FastHenry, a 2 0 th order section-

by-section approximant and the 3 rd order reduced model. As on the previous plot, the

three curves match each other almost perfectly. Similar accuracy is also evident in all of

the remaining matrix entries.

The reduced-order model for each entry in the admittance matrix is incorporated into

SPICE3 as a frequency-dependent voltage-controlled current source vccs. As a sample

time domain simulation, imagine that at time to = 4ns the signal on pin 4 of Fig.4-25 is
to switch from high to low and pins 2, 3, 5, and 6 are to switch from low to high but that

due to delay on chip, pins 2, 3, 5, and 6 switch at t = Sns. In this case, significant current
will suddenly pass through the late pins while pin 4 is in transition. Due to crosstalk,
this large transient of current has significant effects on the input of the receiver on pin
4, as shown in Fig. 4-29. Note that the input does not rise monotonically. Fig. 4-29 also
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Magnitude of self admittance at pin 4
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Figure 4-27: Magnitude of the self-admittance term at pin 4. Shown in the plot are data
points computed with FastHenry, the 12th order section-by-section approximant and the
3 rd order reduced model computed by truncating the balanced realization. The error in
both approximations is less than 0.5%.

152



Magnitude of mutual admittance between pins 3 and 4
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Figure 4-28: Magnitude of the mutual admittance term between pins 3 and 4. Shown
in the plot are data points computed with FastHenry, a 2 0 th order section-by-section
approximant and the 3 rd order reduced model. The error in both approximations is less
than 1%.
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Output from receiver of pin 4
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Figure 4-29: Results of the timing simulation of a receiver pin in the presence of changes
on other adjacent pins. Pin 4's receiver when four adjacent pins switch ns after pin 4.

shows that the bump in the waveform is carried through to the output of receiver, as a

large glitch.

Now consider changing the design by swapping the ground pin, pin 7, with signal pin

5. Now the ground pin sits between signal lines and adds greater separation between pin

4 and the signals which are now on lines 6 and 7. As might be expected, the crosstalk is

significantly reduced and the voltage bump does not exceed 1.5V as shown in Fig.4-30.

4.8 Conclusions

In this chapter, we have proposed a robust algorithm for conjuring up stable, low-

order, accurate, frequency-domain models for transmission lines based on realistic scat-

tering data.

The algorithm described is based on a two-step procedure. In the first step of our

algorithm, a stable, high-order transfer function is fitted to the scattering data using a

section-by-section algorithm. For that purpose The frequency range is sectioned, and a

section-by-section constrained e2 , forced stable rational function approximation is fitted
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Output from receiver of pin 4
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Figure 4-30: Results of the timing simulation of a receiver pin in the presence of changes
on other adjacent pins. Pin 4's receiver with ground pin 7 and signal line 5 swapped.
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to the data in each frequency section. Then the section transfer functions are combined

using a global £2 criterion to obtain a stable, accurate, high order model valid for the

whole frequency range. In the second step of the algorithm, a guaranteed stable, low-order

model is obtained from the high-order model using the method of truncated balanced

realizations. Finally, the DC gain of the low-order model and the correct steady-state are

matched to those of the full model using a constrained global £2 minimization scheme.

We have shown that our section-by-section approximation is very accurate and that

the final stable low-order approximation derived using the truncated balanced realization

has excellent match with the frequency response of the full model. The resulting rational

transfer function was incorporated into a circuit simulator, and the numerical experiments

that we have conducted on several interconnect and packaging example problems have

shown that it produces time-domain responses that match those obtained using the more

computationally expensive convolution procedures currently in use for transmission line

simulations.

Several aspects of the algorithm could be improved and deserve further research. Cur-

rently, in the section-by-section algorithm, a forced stable rational function is obtained

from the local minimization approximation. While this has shown to produce accurate

results in most cases, it would be desirable to devise a more robust sectioning technique

that need not sacrifice accuracy for stability, since the order of the approximation at this

stage is not important. Other points that deserve further attention are related to ensuring

that the correct steady-state is maintained after the truncation of the balanced realiza-

tion. Currently this is done with an a-posteriori global minimization that recomputes

the residues of the approximation. Also, in certain situations, it is necessary to make

sure that the state initial conditions are satisfied, a problem for which a more satisfac-

tory solution than the one used in this thesis should be sought. Another point deserving

further study is to develop an automatic way to parameterize the balanced realization in

order to obtain time-domain error bounds on the approximation. Finally, the study of

methods that could improve the computational cost of obtaining a truncated balanced

realization should be pursued, as this would substantially increase the applicability of the

model order reduction techniques described. Some research has already been conducted

in this area but no definite algorithm exists at this point.
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5

Conclusions

This thesis presents theoretical and practical aspects of model order reduction tech-
niques for use in the context of circuit simulation. The observation was made in the
introductory chapter, that improving the efficiency of the simulation process can only
be accomplished by devising specific algorithms that directly exploit the characteristic
features of each particular problem. To this end two different types of approach were

considered. First, model order reduction techniques were applied to the simulation of
clocked analog circuits. Second, model order reduction was used as a modeling technique
for frequency-dependent interconnect and packaging structures.

Simulating the transient behavior of clocked analog circuits is computationally expen-
sive because these circuits are clocked at a frequency whose period is orders of magnitude

smaller than the time interval of interest to the designer. It is possible to improve simu-

lation efficiency by exploiting the property that the behavior of the circuit state variables
in a given high-frequency clock cycle is similar to the behavior in preceding and following

cycles. The Envelope-Following technique studied in this thesis reduces the simulation

time without compromising accuracy by accurately computing the envelope of the state
variables while simulating the circuit behavior over occasional cycles. Efficiency can be

further improved by close examination of the sensitivity information obtained during the
simulation of one cycle. Based on this data a partitioning of the circuit variables is possi-
ble, such that only those variables that contain state information are envelope-followed.
Speedups of over an order of magnitude over standard circuit simulation are reported for

several classes of clocked analog circuits.

Also, a robust algorithm for conjuring up stable, low-order, accurate, frequency-
domain models for interconnect and packaging problems was presented. This algorithm is
based on a section-by-section fitting of measured or tabulated frequency data, followed by
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a robust guaranteed stable truncation procedure based on the method of balanced realiza-

tions. It was shown that both the original approximant and its reduced-order model have

excellent match with the frequency response of the full models. The resulting rational

transfer function is incorporated into a circuit simulator, and the numerical experiments

conducted on several interconnect and packaging example problems have shown that it

produces accurate time-domain responses. Furthermore, the use of recursive convolution

techniques provides a computational advantage over the more computationally expensive

full convolution procedures currently in use for interconnect simulation.
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