
The RESEARCH LABORATORY
of

ELECTRONICS
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

Fault-Tolerant Computation in
Semigroups and Semirings

Christoforos N. Hadjicostis

RLE Technical Report No. 594

May 1995

I

Fault-Tolerant Computation in Semigroups and Semirings

Christoforos N. Hadjicostis

RLE Technical Report No. 594

May 1995

The Research Laboratory of Electronics
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139-4307

This work was supported in part by the Department of the Navy, Office of the Chief of
Naval Research under Grant N00014-93-1-0686 as part of the Advanced Research Projects
Agency's RASSP program.

Fault-Tolerant Computation in Semigroups and Semirings
by

Christoforos N. Hadjicostis

Submitted to the
Department of Electrical Engineering and Computer Science

January 27, 1995

In partial fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

The traditional approach to fault-tolerant computation has been via modular redun-
dancy. Although universal and simple, modular redundancy is inherently expensive
and inefficient. By exploiting particular structural features of a computation or al-
gorithm, recently developed Algorithm-Based Fault Tolerance (ABFT) techniques
manage to offer more efficient fault coverage at the cost of narrower applicability
and harder design. In the special case of arithmetic codes, previous work has shown
that a variety of useful results and constructive procedures can be obtained when the
computations take place in an abelian group. In this thesis, we develop a system-
atic algebraic approach for computations occurring in an abelian semigroup, thereby
extending to a much more general setting many of the results obtained earlier for
the group case. Examples of the application of these results to representative semi-
groups and higher semigroup-based algebraic structures, such as a semiring, are also
included.

Thesis Supervisor: George C. Verghese
Title: Professor of Electrical Engineering

Acknowledgments

I would like thank my thesis supervisor, Professor George Verghese, for the excel-
lent advice and the unlimited help and support that he has provided to me during
my time as a graduate student. The successful completion of this thesis would not
have been possible without his enthusiasm for my work and his encouragement and
patience whenever I reached a point of difficulty.

I am also equally grateful to Professor Alan Oppenheim for his direction and help
over these last two years. Not only did his support and guidance make this thesis
possible, but also, by including me in the Digital Signal Processing Group (DSPG),
he gave me the opportunity to work in an excellent academic environment that helped
me mature both as a graduate student and as a person.

I would like to thank all members of the DSPG for the help and advice they have
given me. Their friendship was also invaluable. My special thanks to Haralambos
Papadopoulos for his patience and guidance at the numerous instances I turned to
him for help.

Contents

1 Introduction 1
1.1 Definitions and Motivation 1
1.2 Main Approaches to Fault Tolerance 2

1.2.1 Modular Redundancy 2
1.2.2 Arithmetic Codes . 3
1.2.3 Algorithm-Based Fault Tolerance 5

1.3 Scope and Major Contributions of the Thesis 8
1.4 Outline of the Thesis 9

2 Group-Theoretic Framework 11
2.1 Introduction . 11
2.2 Computational Model 11

2.2.1 General Model of a Fault-Tolerant System 11
2.2.2 Computation in a Group 13
2.2.3 Computational Model for Group Operations 14

2.3 Group Framework 15
2.3.1 Use of Group Homomorphisms 15
2.3.2 Error Detection and Correction 18
2.3.3 Separate Codes 19

2.4 Applications to Other Algebraic Systems 21
2.5 Summary 22

3 Semigroup-Theoretic Framework 23
3.1 Introduction . 23
3.2 Computation in a Semigroup 23

3.2.1 Introduction to Semigroups 24
3.2.2 Computational Model for Semigroup Operations 25

3.3 Use of Semigroup Homomorphisms 27
3.4 Redundancy Requirements 30
3.5 Separate Codes for Semigroups 32

3.5.1 Description of the Model for the Codes 33
3.5.2 Analysis of the Parity Encoding 33
3.5.3 Determination of Possible Homomorphisms 34
3.5.4 Comparison with the Group Case 37

3.6 Summary 39

i

4 Protecting Semigroup Computations: Some Examples
4.1 Introduction
4.2 Examples of Separate Codes

4.2.1 Separate Codes for (No, +)
4.2.2 Separate Codes for (N, x)
4.2.3 Separate Codes for (ZU {-oo}, MAX)

4.3 Examples of Non-Separate Codes
4.4 Summary

5 Frameworks for Higher Algebraic Structures
5.1 Introduction
5.2 Ring-Theoretic Framework

5.2.1 Computation in a Ring
5.2.2 Use of Ring Homomorphisms
5.2.3 Separate Codes for Rings

5.3 Examples in the Ring-Theoretic Framework . . .
5.3.1 Examples of Non-Separate Codes
5.3.2 Examples of Separate Codes

5.4 Semiring-Theoretic Framework
5.4.1 Computation in a Semiring
5.4.2 Use of Semiring Homomorphisms
5.4.3 Separate Codes for Semirings

5.5 Examples in the Semiring-Theoretic Framework
5.5.1 Separate Codes for (No,+, x)
5.5.2 Separate Codes for (Z U {Ioo}, MIN, MAX)
5.5.3 Separate Codes for (Z U {-oo}, MAX,+)

5.6 Summary

6 Summary of Contributions, and Suggestions for Future
6.1 Contributions and Conclusions
6.2 Future Research Directions

6.2.1 Hardware Implementation and the Error Model .
6.2.2 Non-Abelian Group or Semigroup Computations .
6.2.3 Realizability of Arithmetic Codes
6.2.4 Development of a Probabilistic Framework
6.2.5 Subsystem Decomposition and Machines
6.2.6 Links to the Theory of Error-Correcting Codes . .

Research

A Proofs of Theorems
A.1 Enumerating all Separate Codes for (No, +)
A.2 Equivalence of Semiring Congruence Classes and Semiring Complexes

ii

40
40
40
41
45
48
49
49

51
........... ..51
........... 52
........... 52
........... 54
........... 55
........... 56
. 57
........... 58
........... 58
........... 58
........... 60
........... 61
........... 65
........... 65
........... 68
........... 68
........... 69

70
70
71
71
72
72
72
73
74

76
76
79

List of Figures

1-1 Fault-tolerant system design using Triple Modular Redundancy (TMR). 2
1-2 Protection of operation o through the use of arithmetic codes 3
1-3 A simple example of an aN arithmetic code for protecting integer

addition 5
1-4 ABFT technique for matrix multiplication 7

2-1 Model of a fault-tolerant system as a cascade of three subsystems. . . 12
2-2 Model of a fault-tolerant computation for a group product 14
2-3 Model of a fault-tolerant computation for a group product under an

additive error model . 16
2-4 Fault tolerance in a computation using an abelian group homomorphism. 17
2-5 Structure of the redundant group H for error detection and correction. 19
2-6 A simple example of a separate arithmetic code 20
2-7 Fault-tolerant model for a group operation using a separate code. . . 21

3-1 Fault-tolerant model for a semigroup computation 25
3-2 Structure of the redundant semigroup for error detection and correction. 31
3-3 Model of a fault-tolerant system that uses separate codes 32
3-4 Structure of the parity group in separate codes 37
3-5 Structure of the parity semigroup in separate codes 38

4-1 Example of a parity check code for the group (Z, +) 41
4-2 Example of a parity check code for the semigroup (No, +) 42
4-3 Example of a parity check code for the semigroup (No, +) 44
4-4 Example of a parity check code for the semigroup (N, x). 46
4-5 Example of a parity check code for the semigroup (N, x). 47

5-1 Fault-tolerant model for a ring computation 53
5-2 Fault-tolerant model for a semiring computation 60
5-3 Example of a residue check mod 4 for the semiring (N, +, x) 65
5-4 Example of a parity check code for the semiring (No, +, x) 66

iii

List of Tables

5.1 Defining tables of the operations E and 0 for the parity semiring T..

iv

67

Chapter 1

Introduction

1.1 Definitions and Motivation
A system that performs a complex computational task is subject to many different
kinds of failures, depending on the reliability of its components and the complexity
of their subcomputations. These failures might corrupt the overall computation and
lead to undesirable, erroneous results. A system designed with the ability to detect
and, if possible, correct internal failures is called fault-tolerant.

A fault-tolerant system tolerates internal errors (caused by permanent or tran-
sient physical faults) by preventing these errors from corrupting the final result. This
process is known as error masking. Examples of permanent physical faults would
be manufacturing defects, or irreversible physical damage, whereas examples of tran-
sient physical faults include noise, signal glitches, and environmental factors, such
as overheating. Concurrent error masking, that is detection and correction of errors
concurrently with computation, is the most desirable form of error masking because
no degradation in the overall performance of the system takes place.

A necessary condition for a system to be fault-tolerant is that it exhibits redun-
dancy, to allow it to distinguish between the valid and invalid states or, equivalently,
between the correct and incorrect results. However, redundancy is expensive and
counter-intuitive to the traditional notion of system design. The success of a fault-
tolerant design relies on making efficient use of hardware by adding redundancy in
those parts of the system that are more liable to failures than others.

The design of fault-tolerant systems is motivated by applications that require high
reliability. Examples of such applications are:

* Life-critical applications (such as medical equipment, or aircraft controllers)
where errors can cost human lives.

* Remote applications where repair and monitoring is prohibitively expensive.

* Applications in a hazardous environment where repair is hard to accomplish.

The more intensive a computational task is, the higher is the risk for errors. For
example, computationally intensive signal processing applications and algorithms are

1

I ~~~~~~~~I ncorrentahl Frrnr
Module 1

1 1~~~~~~~~~~~~~~~~~~~~~~~
//- _ Final Output

Module 2 , Voter ,

Figure 1-1: Fault-tolerant system design using Triple Modular Redundancy (TMR).

at high risk for erroneous results. As the complexity of Discrete Signal Processing
(DSP) and other special-purpose integrated circuits increases, their vulnerability to
faults (either permanent or transient) increases as well. By designing fault-tolerant
integrated circuits, we can hope to achieve not only better reliability, but also higher
yield during the manufacturing process since manufacturing defaults (a form of a
permanent fault) can be accepted up to some degree.

All of the above examples show the importance of fault tolerance and underline
the increasing need for fault-tolerant design techniques.

1.2 Main Approaches to Fault Tolerance

1.2.1 Modular Redundancy

The traditional approach for achieving fault tolerance has been modular redundancy.
An example of Triple Modular Redundancy (TMR) is shown in Figure 1-1. Three
identical modules perform the exact same computation separately and in parallel.
Their results are compared by a voter, which chooses the final result based on what
the majority of the modules decide. For example, if all the modules agree on a result,
then the voter outputs that result. If only two of the them agree, then the voter
outputs the result obtained by these two processors and declares the other one faulty.
When all processors disagree, the voter signals an error in the system. It is worth
mentioning that a variety of other approaches towards voting exist.

This methodology can easily be extended to N-Modular Redundancy by using
N different identical modules that operate in parallel, and majority voting to distin-
guish and decide about the correct result. By using majority voting we can detect
(but not correct) D errors and correct C errors (D > C), if N>D + C + 1. In fact, if
the modules are self-checking (that is, they have the ability to detect internal errors),
then we can detect up to N and correct up to N- 1 errors 1].

2

gi gi'
- A,l

4) L I~UUI
* 0t~~

g2

I Uni

rf a r / r r
)La . arm

/Z Z ~~~ ~Error Decoder
g2' Detector/

Corrector

Figure 1-2: Protection of operation o through the use of arithmetic codes.

N-Modular Redundancy has traditionally been the primary methodology for fault-
tolerant system design, mainly because it can be applied in a very simple and straight-
forward way to any kind of computational (or other) system. A very desirable feature
of modular redundancy is that it effectively decouples the system design from the fault
tolerance design. However, it is usually prohibitively expensive because it involves
replicating the system N times. For this reason, a variety of hybrid methods has
evolved, involving hierarchical levels of modular redundancy: only the parts of the
system that are more vulnerable to faults are replicated. When time delay is not an
issue, we can afford to repeat a computation. Therefore, another approach is possible:
rather than having N different modules perform the same computation at the same
time, we can afford to have one system that repeats the same computation N times.
The effect is exactly the same as N-Modular redundancy as long as no permanent
faults have taken place.

Examples of commercial and other systems that use modular redundancy tech-
niques are referenced in [1].

1.2.2 Arithmetic Codes

While universally applicable and simple to implement, modular redundancy is inher-
ently expensive and inefficient. For example, in a TMR implementation we triplicate
the whole system in order to detect and correct a single error. This is prohibitively
expensive. A more efficient approach towards fault-tolerant computation is the use
of arithmetic codes, although this is more limited in applicability and possibly harder
to implement.

Arithmetic codes are used to protect simple operations on integer data, such as
addition and multiplication. They can be thought of as a class of error-correcting
codes whose properties remain invariant under the operation that needs to be made
robust. Figure 1-2 provides a graphical illustration of the general operation of an
arithmetic code. In this case, the desired, error-free result is: r = 1 o 92. In order
to achieve this result, while protecting the operation o, the following major steps are

3

taken:

* Encoding: First, we add redundancy to the representation of the data by using
a suitable and efficient encoding:

gi = (g1)
92' = (92)

* Operation: The operation on the encoded data does not necessarily have to be
the same as the desired operation on the original data. In terms of Figure 1-2,
this modified operation is denoted by <:

r - gI Ir' =g1 92

where r' is the actual result that the modified operation give under fault-free
conditions. In reality, one or more errors {ei} can take place, and the result of
the computation of the encoded data is a possibly faulty result rf, which is a
function of the encoded data and the errors that took place:

r = f(g',g 92', e)

* Error Detection and Correction: If enough redundancy exists in the encoding
of the data, we hope to be able to correct the error(s) by analyzing the way
in which the properties of the encoding have been modified. In such a case, rf
can be masked back to r'. In Figure 1-2, this is done by the error correcting
mapping a:

r' = c(rf)

* Decoding: The final, error-free result r can be obtained using 86- 1 as an inverse
mapping. Note that the use of q - 1 is a possibility if is a one-to-one mapping;
however, in general, there are a lot of other alternatives since the result r does
not necessarily lie in the same space as the operands g and g2. Therefore, in
order to have a more general model of arithmetic codes we denote the inverse
mapping as O-l:

r = '(r ')

An arithmetic code that can be formulated in the above four steps is not necessarily
a useful one. Two further requirements need to be satisfied: first, it must provide
sufficient protection for the faults that are likely to occur in the specific application,
and second, it must be easy to encode and decode. If the above requirements are not
met, then the code is not practical. It is either insufficient, or it is computationally
intensive.

'An extreme example would be an encoding that is three times more complicated than the actual
operation we would like to protect. In such a case, it would be more convenient to use TMR rather
than this complicated arithmetic code.

4

-xlO
x ~ ~~ \ ~~Error Detection

U+V
' 0 PI

-- X10

Errore Error

Figure 1-3: A simple example of an aN arithmetic code for protecting integer addi-
tion.

A very simple example of an arithmetic code is presented in Figure 1-3. In this
case, we are trying to protect integer addition. The encoding simply involves multi-
plication of the operands {u, v} by a factor of 10. The operation on the encoded data
is again addition. Error detection is simply division by 10: if the result is corrupted,
we hope that it will not be divisible by 10, in which case we will be able to detect
that an error took place2. However, error correction is impossible under this kind
of arithmetic coding, unless a more detailed error model is available. Decoding is
performed at the same time as we perform error detection. This specific example is
an instance of an aN code [2] where a = 10. Under certain conditions and certain
choices of a, aN codes can be used to correct a single error. Note that in the case
of aN codes, redundancy is added into the computational system by increasing the
dynamic range of the system (by a factor of ca).

Arithmetic codes do not always have the simple structure of the example above.
More advanced and more complicated schemes do exist. In fact, there exist arithmetic
codes that are able to protect real or complex data (which is not true in the above
example) and more elaborate computations than simply addition. Methods to protect
entire arrays (sequences) of data have been developed as well. This more advanced
form of arithmetic coding is usually referred to as Algorithm-Based Fault Tolerance,
and is discussed briefly in the following section.

1.2.3 Algorithm-Based Fault Tolerance

Algorithm-Based Fault Tolerance (ABFT) schemes are highly involved arithmetic
coding techniques that usually deal with real/complex arrays of data in multiprocessor
concurrent systems. The term was introduced by J. Abraham and coworkers [3]-[9] in
1984. Since then, a variety of signal processing and other computationally intensive

2 Note that an error under which the result remains a multiple of 10 is undetectable.

5

algorithms have been adapted to the requirements of ABFT.
As described in [5], there are three key steps involved in ABFT:

1. Encode the input data for the algorithm (just as in the general case of arithmetic
coding).

2. Reformulate the algorithm so that it can operate on the encoded data and
produce decodable results.

3. Distribute the computational tasks among different parts of the system so that
any errors occurring within those subsystems can be detected and, hopefully,
corrected.

A classic example of ABFT is the protection of N x N matrix multiplication on
an N x N multiprocessor array [3]. The ABFT scheme detects and corrects any
single (local) error using an extra checksum row and an extra checksum column.
The resulting multiprocessor system is an (N + 1) x (N + 1) multiprocessor array.
Therefore, the hardware overhead is minimal (it is of 0 (N)) compared to the naive
use of TMR, which offers similar fault protection but triplicates the system ((1)
hardware overhead). The execution time for the algorithm is slowed down negligibly:
it now takes 3N steps, instead of 3N - 1. The time overhead is only O(k).

Figure 1-4 is an illustration of the above ABFT method for the case when N = 3.
At the top of the figure, we see how unprotected computation of the product of two
3 x 3 square matrices A and B takes place in a 3 x 3 multiprocessor array. The data
enters the multiprocessor system in the fashion illustrated by the arrows in the figure.
Element aij corresponds to the element in the i-th row and j-th column of the matrix
A, whereas bij is the corresponding element of the B matrix. At each time step n,
each processor pij (the processor on the i-th row and j-th column of the 2D array)
does the following:

1. It receives two pieces of data, one from the processor on the left and one from
the processor on top. From the processor on the left (Pi(j-1)), it gets b(n-(j+i-1))i

whereas from the processor on top it gets a(n-(j+i-)). Note that if (n-(j+i-1))
is negative, no data has been received yet.

2. It multiplies the data received and adds the result to an accumulative sum
stored in its memory. Note that s is initialized to 0. If no data was received in
the previous step, nothing is done at this step.

3. It passes the data received from the left to the processor on the right, and the
data received from top to the processor below.

It is not hard to see that after 3N - 1 steps, the value of sji is:

S, 3N-1
sji = Zn=O 1 ai(n-(j+i-l)) b(n-(j+i-1))j = Cij,

where akl, bkL are 0 for k,l < 0 or k, 1 > N . Note that Cij is the element in the
i-th row and j-th column of the matrix C = A x B. Therefore, after 3N- 1 steps,
processor pji contains the value Cij.

6

Unprotected Computation
for a 3x3 Matrix
Multiplication
on a 3x3 Processor Array

+ + +
b31 b21 bil -*O 0

b32 b22 b12 _

b33 b23 b13 -_ _

ABFT Scheme
Protected Computation
for a 3x3 Matrix
Multiplication
on a 4x4 Processor Array
Ci4 are Row Checksums

C4j are Column Checksums

b31 b21 bil

b32 b2 b12

b3 b23 b13

C34 C24 C14

a23

a=ia22WI

a13

a12

a,,

a33

as32
a3l

C43

C42

C41

+ + 4
+

Figure 1-4: ABFT technique for matrix multiplication.

7

a33

a32

a31
a23

a13 a22

a12 a2 +

Protected computation is illustrated at the bottom of Figure 1-4. It uses a (3 +
1) x (3 + 1) multiprocessor array. Both matrices A and B are encoded into two new
matrices, A' and B' respectively, in the following fashion:

* An extra row is added to matrix A, consisting of column sums, that is:

C4j = 1 aij

A' is now an (N + 1) x N matrix.

* An extra column is added to matrix B, consisting of row sums, that is:

= 3
Ci4 = bij

B' is now an N x (N + 1) matrix.

The computation is executed in the usual way on a 4 x 4 multiprocessor array.
The resulting matrix C' = A' x B' is a 4 x 4 matrix. If we exclude the last row and
the last column from C', we get the original result C = A x B. Moreover, the last
row and column of C' consists of column and row checksums respectively. If one of
the processors malfunctions, we can detect and correct the error by using the row and
column checksums to first pinpoint the location of the error and then correct it. The
basic assumption here is that no error propagates or, equivalently, the propagation
of the data in the system is flawless. This is where TMR offers more coverage than
this scheme: a single data propagation error will be caught by a TMR system, but
not by this ABFT scheme.

The above example shows the superiority of ABFT over naive modular redundancy
methods. By exploiting particular structural features of an algorithm or a computa-
tional system, ABFT achieves efficient fault protection at a much lower cost. Other
examples of ABFT techniques involve other matrix arithmetic and signal processing
applications [3] [4], fault-tolerant FFT computational systems [6], A/D conversion
[10], and digital convolution [11].

1.3 Scope and Major Contributions of the Thesis

Arithmetic codes and ABFT techniques have been studied extensively by a lot of
researchers for a variety of applications, such as those presented in [3]-[14]. All these
cases involve efficient fault-tolerant schemes for protecting the specific application
that was under consideration. However, until recently, no systematic and general
way for developing arithmetic codes and ABFT techniques had been developed. The
detection of exploitable structure in an algorithm, in a way that can provide efficient
fault coverage, was more of a "black magic" technique than an engineering discipline.

In [1], an attempt to unify all of the above mentioned methods was made by
developing a general framework that is extremely useful in analyzing, constructing
and using arithmetic codes as a tool for protection against computational faults. Most

8

known arithmetic codes and ABFT techniques can be encompassed in this framework.
What is required by [1] is that the operation (or, more generally, the computational
task) can be modeled as an abelian group operation3.

The framework extends naturally to other algebraic structures that have the un-
derlying characteristics of an abelian group, such as rings, fields, modules and vector
spaces. Therefore, even though the analysis started with a seemingly limited set of
computational tasks that could be modeled using this framework, it has now been
extended enough to include many of the examples of arithmetic codes and ABFT
techniques that have been mentioned earlier and have been developed on an individ-
ual basis, for instance aN codes, matrix multiplication in the ring of matrices, and so
on. A more detailed discussion of the results obtained in [1] is presented in Chapter 2
as an introduction to the topic of this thesis.

In this thesis, we extend the results obtained in [1]. We relax the requirement
that the computation occurs in an abelian group, to the less strict requirement of an
underlying abelian semigroup structure. The result is a much more general framework
for investigating fault-tolerant systems in a mathematically rigorous and complete
way. Important results from group and semigroup theory can directly be applied
in systems of interest that comply to our requirements. Moreover, we manage to
rigorously extend this framework to higher algebraic systems with an underlying
group or semigroup structure, namely the ring and semiring structures.

Detailed connection to actual hardware realizations and their failure modes is not
addressed in this thesis. There are many research issues that arise in making this
hardware connection in a systematic and general way, and we intend to pursue these
questions in follow-on work.

1.4 Outline of the Thesis
This thesis is organized as follows:

Chapter 2 provides an overview of the basic assumptions, techniques and results
that were used in [1]. This chapter not only serves as a valuable introduction, but
also provides the basic definitions that we need, the descriptions of the models that
we use, and the assumptions that we make.

Chapter 3 rigorously extends the results of Chapter 2 to the semigroup setting.
The analysis starts by defining the error and computational models that we use, and
then proceeds to analyze arithmetic coding as a semigroup mapping. This analysis ar-
rives at the important conclusion that the arithmetic code corresponds to a semigroup
homomorphism. Thus, it provides us with a variety of algebraic tools that we can use
in our subsequent analysis. The redundancy conditions for the mapping to provide
sufficient fault tolerance under an additive error model4 are derived next. A brief
comparison with the corresponding conditions for the group case follows. Finally, a
constructive procedure for the special case of separate codes' is presented.

3The definition of a group is given later in Chapter 2.
4The definition of the additive error model is given in Chapters 2 and 3.
5Separate codes are also known as "systematic separate codes". However, since a separate code

9

Chapter 4 demonstrates the use of the semigroup-theoretic framework that is de-
veloped in Chapter 3 by presenting a variety of examples of arithmetic codes for
simple semigroup-based computations. In some cases, we achieve a complete charac-
terization of all possible separate codes for a semigroup.

The results are extended in Chapter 5 to higher algebraic structures that admit
two operations, namely the ring and semiring structures. In order to demonstrate the
use of the framework, we also present a variety of examples of arithmetic codes for
these structures.

Chapter 6 concludes the thesis with a summary of its major contributions and
results. Moreover, we make suggestions for possible future directions and potentially
interesting areas where research could be made.

is necessarily systematic [2], we will simply refer to them as "separate codes".

10

Chapter 2

Group-Theoretic Framework

2.1 Introduction

The development of a suitable arithmetic code for a given computational task can be
very difficult, or even impossible. Arithmetic codes and ABFT techniques have been
constructed for particular algorithms, but a systematic and mathematically rigorous
way of addressing the design of arithmetic codes for a general computational task still
needs to be developed.

A considerable step in this direction has been taken in [1]. By concentrating
on computational tasks that can be modeled as abelian group operations, one can
impose sufficient structure upon the computations to allow accurate characterization
of the possible arithmetic codes and the form of redundancy that is needed. For
example, it turns out that the encoding has to be an algebraic homomorphism that
maps the computation from the original group to a homomorphic computation in a
larger group, thereby adding redundancy into the system.

Computational tasks with an underlying abelian group structure are not a limited
set of computational tasks, since many arithmetic operations are, in fact, abelian
group operations. Moreover, once the framework for group-like operations is available,
we can extend the domain of applications to algebraic systems with an underlying
group structure, such as rings, fields, modules, and vector spaces.

In what follows, we give a brief introduction to the above results. We also describe
the computational model and the basic assumptions that were made.

2.2 Computational Model

2.2.1 General Model of a Fault-Tolerant System

In [1], a general fault-tolerant system is modeled as shown in Figure 2-1. It consists
of three major subsystems:

* Redundant Computation Unit: The actual computation takes place here in a way
that incorporates redundancy. By redundancy we mean that the computation

11

Reduntant Error
Computation - Corrector/ Decoder
Unit Detector

Actual Actual
Operants Results

Terrore Fault-Tolerant Unit

Figure 2-1: Model of a fault-tolerant system as a cascade of three subsystems.

unit involves extra states that only arise when an error occurs. Under fault-free
operation these states are never involved; thus, we call them redundant.

* Error Detector/Corrector: By examining the state of the system after the out-
put is produced, we can decide whether the output is valid or not. If the output
is invalid, we might be able to use information about the particular state of the
system to correct the error. However, this may not be always the case.

* Decoder: Once the result is corrected, all that remains is to map it to its non-
redundant form. This is done at the decoder stage.

For example, in terms of this model, the aN arithmetic coding example of Fig-
ure 1-3 consists of the following subsystems:

* The units that perform the multiplication by 10 and the unit that performs the
addition comprise the redundant computation unit.

* The unit that divides by 10 performs the error detection and/or correction; at
the same time, it performs decoding.

Another example that can be viewed in terms of this model is the TMR system
shown in Figure 1-1. The 3 copies of the system form the redundant computation
unit, whereas the voter forms the error detector/corrector and the result decoder.

As can be seen in the above examples, some of the subsystems shown in Figure 2-1
might end up being indistinguishably combined. However, the model clearly presents
the basic idea of a fault-tolerant system: at the point where the error takes place,
the representation of the result involves redundancy. This redundancy gives us the
ability to detect and/or correct the error in later stages.

An implicit assumption in the model is that no error takes place during error
correcting and decoding. In a real system, we would need to protect the error correc-
tor/detector and the result decoder using modular redundancy, or by making these
subsystems extremely reliable. This is a reasonable assumption as long as the error

12

detector/corrector and the result decoder are simple enough compared to the compu-
tational unit, so that replicating them will not add a significant amount to the overall
cost of the system. In fact, in the opposite case, when these units are expensive, it
is probably preferable not to follow the approach outlined here and to simply use
modular redundancy for the overall system' .

2.2.2 Computation in a Group

For the rest of this chapter, we will focus on computational tasks that have an under-
lying group structure. The computation takes place in a set of elements that forms a
group under the operation of interest. We start by the definition of a group (as given
in [15]):

Definition: A non-empty subset of elements G is said to form a group g = (G, o)
if on G there is a defined binary operation, called the product and denoted by o, such
that

1. a, b E G implies aob E G (closure).

2. a, b, c E G implies that ao(boc) = (aob)oc (associativity).

3. There exists an element e E G such that aoe = eoa = a for all a E G (e is called
the identity element).

4. For every a E G there exists an element a - 1 E G such that aoa- 1 = a-loa = e
(the element a -1 is called the inverse of a).

Furthermore, if the group operation o of G is commutative (for all a,b E G,
aob = boa), then G is called an abelian group [15]. In an abelian group, because of
the associativity and commutativity, the order in which a series of group products is
taken does not matter:

9192o...p = gi ogi2 ... ogiP

where {ik} for k E {1,2,...,p} is any permutation of {1,2,...,p}.
A simple example of a group is the set integers under addition, usually denoted by

(Z, +). The four properties denoted above can be verified very easily. Specifically, in
this case, the identity element is 0, and the inverse of an integer a is the integer -a.
Another example, of a group is the set of non-zero rational numbers under multiplica-
tion, usually denoted by (Q- {0}, x). The identity element in this case is 1 and the
inverse of a rational number q = n (where n, d are integers) is the rational number

-1 = d
n

1The voter circuitry, which performs error detection and correction in the modular redundancy
case, is usually simple enough to allow us to make it reliable easily.

13

Operands

-4 1 1

I

4 l

I::C

I

Error Detected

Error Result
Corrector/ Decoder l
DetectorResult

Result

errors { e)

Figure 2-2: Model of a fault-tolerant computation for a group product.

2.2.3 Computational Model for Group Operations

Assume that the computation we want to protect can be modeled as an abelian group
operation o with operands {g, g9,..., gp}. Then, the desired result r is:

r = glog2o ... ogp

(any order of the {gi} will do). The fault-tolerant system for protecting this group
product can be described as shown in Figure 2-2. The error corrector and the result
decoder are exactly the same as in Figure 2-1. We assume that these units and the
encoders {q>} are error-free. The redundant computation unit decomposes into a set
of encoders (encoder bi corresponds to operand gi), and a unit that performs a new
redundant group product.

Essentially, as shown in [1] and discussed here later, this amounts to mapping the
computation in the abelian group (G, o) to another abelian group (H, o) of higher
order, so that we are able to incorporate redundancy in our system. Note that the
operation of the redundant group is not necessarily the same as the operation of the
original one.

The desired result r is given by decoding (using a decoding mapping denoted by a)

14

g
* ox P

g2

g9P

l Al

I

I

L
:--------------------------------I

the result rH of a redundant computation that took place in H:

r=gl 09g2 ... p = (rH)

where rH = 1(91)02(92)o...<>p(gp)
In [1] an additive error model is assumed. Errors {ei} are modeled as elements

of H and are assumed to corrupt r in an additive 2 fashion. The possibly corrupted
redundant result r is given by:

rH - ¢l(9l)02((2)...0p(gp)oeloe2...e,

= rHoeloe20... oeA

The underlying assumptions of the additive error model are that errors are inde-
pendent of the operands (which is a very realistic assumption for reasons explained
in [1]), and that the effect of any error on the overall result is independent of which
stage in the computation it occurs in. This last assumption is realistic because we
have limited ourselves to associative and abelian operations. In such a case, the ex-
pression above is well-defined and its result is the same, irrespective of the order and
the position in which the operands are evaluated.

We can simplify notation if we define the error e = elce 2o...<ex:

!r H = rH e

where e E £(') = £ o £ o ... £ (A times). If no error took place, e is the identity
element.

Note that we can view the errors el, e2, ... , e} as regular operands that corrupt
the product when a fault takes place during the computation. The computational
model then becomes as shown in Figure 2-3. Under fault-free computation:

el = e2 = ... = eA = 0

where 0o is the identity element of the redundant group.

2.3 Group Framework

2.3.1 Use of Group Homomorphisms
Once we have defined the computational and error models, we are ready to proceed
with the analysis of the system. The subset of valid results Hv, which is obtained
under error-free computation, can be defined by

H = (g1) o 02(92) o ... o p(9pg) 91, 92, ,9p E G}
2 The term "additive" makes more sense if the group operation o is addition.

15

Operands

gi-

g2

Cu' n ' 2ELS~~0(

9<LS

e, e

e2 - ,o .

ex

Error Detected

Error Result
/ Corrector/ Decoder

Detector Result
Result

Figure 2-3: Model of a fault-tolerant computation for a group product under an
additive error model.

16

Figure 2-4: Fault tolerance in a computation using an abelian group homomorphism.

Recalling that : Hv ,-+ G denotes the mapping used by the decoder unit to map
the set of valid results in Hv to elements of G, we have:

r = gl 0 92 0 ... 0 p = '(1l(91) 0 2(92) 0 ... 0 p(gp)) (2.1)

If we require this mapping to be one-to-one 3 , then a - 1 is a well-defined mapping and,
as shown in [1], all encoders {} have to be the same and satisfy

where the symbol will be used from now on to denote the encoding function. Equa-
tion (2.1) then reduces easily to:

¢(9 92) = (g91) o 4(g2)

which is the defining property of a group homomorphism. This establishes a one-to-
one correspondence between arithmetic codes for groups and group homomorphisms.
Therefore, the study of group homomorphisms can greatly facilitate the development
of fault-tolerant systems when the computations have an underlying abelian group
structure.

In Figure 2-4, we visualize schematically how fault tolerance is achieved: the
group homomorphism adds redundancy to the computation by mapping the abelian
group G, in which the original operation took place, to a subgroup G' of a larger
(redundant) group H. (It is interesting to note here that G' is exactly the subset of

3 This is a very reasonable assumption, because it corresponds to efficient use of the elements in
the redundant group H.

17

valid results defined earlier as Hv.) Any error e will be detected, as long as it takes us
out of the subgroup G' to an element h not in G'. If enough redundancy exists in H,
the error might be correctable. Details about the error detection and error correction
procedure are presented in the next section.

2.3.2 Error Detection and Correction

In order to be able to detect an error ed E £() C H, we need every possible valid
result g' e G' C H to be an invalid result when corrupted by ed y 0,. Mathematically,
this can be expressed by:

{g' o ed I g' e G'} n G' =0

If we use the set notation G' o ed = {g' o ed I g' G'}, then the above equation
becomes:

(G' o ed) n G' = 0 (2.2)

Similarly, for an error e E £(A) (ecyO0,) to be correctable (and a fortiori de-
tectable), we require that it satisfies the following:

(G' ec) n (G'o e) = 0 V e 7 e E E(>) (2.3)

In group theory ([15] or any other standard textbook can be used as a reference),
the sets (G' o e) for any e E H are known as cosets of the subgroup G' in H. Two
cosets are either identical or have no elements in common. Therefore, they form an
equivalence class decomposition (partitioning) of H into subsets4 . This collection of
cosets is denoted by H/G' and it forms a group, called the "quotient group of H
under G' ", under the operation:

A B = {a o b a E A, bE B}

where A and B now denote sets of elements of H rather than single elements of H.
Since two cosets are either identical or have no elements in common, Equations

(2.2) and (2.3) become

(G'o ed) G', for edy#0o
(G'oec) (G'oe) V e ec E E(A)

4 In [15], an equivalence relation on a subset A of a set H is defined as a binary relation that
satisfies the identity, reflexivity, and transitivity properties, that is, for all elements a, b, c E A the
following hold:

a a (identity)

a b implies b a (reflexivity)

a b and b c implies a c (transitivity)

The subset A is called an equivalence class.

18

Figure 2-5: Structure of the redundant group H for error detection and correction.

Therefore, error detection and correction can proceed as shown in Figure 2-5. Any
error, such as el, e2, and e3 in the figure, that takes us out of the subgroup G' to
an element hi (i = 1,2,3) of the redundant group, will be detected. Furthermore, if
enough redundancy exists in H, some errors can be corrected. For example, the error
e1 that takes us to hi is correctable because the coset G' o e1 is not shared with any
of the other errors ei. Once we realize that h lies in the coset of e1, we can get the
uncorrupted result r' E G' by performing the operation h1 o e-1 . If hi lies in a coset
shared by more than one error (which is the case for h2 and h3), the corresponding
errors are detectable but not correctable. Errors that let the result stay within G',
such as e4, are not detectable.

To summarize, the correctable errors are those that force the result into distinct
non-zero cosets5 . In order for an error to be detectable, it only has to force the result
into a non-zero coset.

2.3.3 Separate Codes

If we focus on the so-called separate codes, we can obtain some extremely useful re-
sults. Separate codes [2] are arithmetic codes in which redundancy is added in a
separate "parity" channel. Error detection and correction are performed by appro-
priately comparing the results of the main computational channel, which performs
the original operation, with the results of the parity channel, which performs a parity
computation. No interaction between the operands and the parity occurs.

A simple example of a separate code is presented in Figure 2-6. The operation that
we would like to protect here is integer addition. The main computational channel

5By a non-zero coset we mean a coset other than G'.

19

Main Computational Channel

I, I

gi g'=g + g2

g2

Parity Channel

gi mod 4

t'(gl+g2)mod4

M g2mod4 +mod4
no

C..

II4011

0
E

0

YES
9

i i i i~1Jl------------------------------.. N O

Error Detected

Figure 2-6: A simple example of a separate arithmetic code.

performs integer addition, whereas the parity channel performs addition modulo 4.
The results of these two channels, g' and t respectively, are compared. If they agree
modulo 4, then the result of the computational channel is accepted as fault-free. If
they do not agree, then an error has been detected. This figure also shows one of the
important advantages of separate codes over other codes, such as the aN code shown
in Figure 1-3, namely that if we know the result to be error-free then we can output
it without any further processing or decoding.

When we restrict ourselves to separate codes, the computational model of Figure 2-
2 reduces to the model shown in Figure 2-7. For simplicity, only two operands are
shown in this figure, but the discussion that follows analyses the general case of p
operands.

In the case of separate codes, the group homomorphism 4 maps the computation
in the group G to a redundant group H which is the artesian product of G and a
parity set that we call T, that is

H = G x T

The homomorphic mapping satisfies q0(g) = [g, 0(g)], where 0 is the mapping that
creates the parity information from the operands (refer to Figure 2-7). The set of
valid results Hv is now the set of elements of the form [g, 0(g)]. In [1], it is shown
that T is a group and that 0 is a group homomorphism from G to T.

If we require that 0 is onto T6 , then the problem of finding suitable separate

6 This is a very reasonable assumption because it corresponds to efficient use of the parity symbols

20

Main Computational Channel

g2*

eG

Panty Channel

~g2-tT

~eT

Error
Detection
and
Correction

9
0

Figure 2-7: Fault-tolerant model for a group operation using a separate code.

codes reduces to the problem of finding suitable epimorphisms7 0 from G onto T.
A theorem from group theory [15] states that there is a one-to-one correspondence
between epimorphisms 0 of the abelian group G onto T and subgroups N of G. In
fact, the quotient group G/N, constructed from G using N as a subgroup, provides
an isomorphic image of T. Therefore, by finding all possible subgroups of G, we can
find all possible epimorphisms 0 from G onto T, and hence all possible parity checks.

Finding the subgroups of a group is not a trivial task but it is relatively easy
for most of the groups we are interested in protecting. By finding all subgroups
of a given group, we are guaranteed to find all possible separate arithmetic codes
that can protect a given group computation. This is the first systematic procedure
that can construct arithmetic codes in the group setting. It results in a complete
characterization of the possible separate codes for a given abelian group. The result
is a generalization of one proved by Peterson for the case of integer addition and
multiplication [16], [17].

2.4 Applications to Other Algebraic Systems

The analysis presented so far for the group setting extends naturally to other algebraic
systems with the underlying structure of a group, such as rings, fields and vector
spaces [1]. By exploiting the abelian group structure in each of these other structures,
and by assuming an error model that is "additive" with respect to the group operation,
we can place the construction of arithmetic codes for computations in them into the

in the group T.
7In the group case, an epimorphism is equivalent to a surjective homomorphism.

21

group framework that we have developed.
Therefore, even though the analysis in [1] starts with a seemingly limited set of

computational tasks, it can be extended sufficiently to include a variety of previously
studied examples, such as Integer Residue Codes, Real Residue Codes, Multiplication
of Non-Zero Real Numbers, Linear Transformation, and Gaussian Elimination [1].

A complete development of the ring-theoretic framework for computations that
have an underlying ring structure as well as examples can be found in Chapter 5.

2.5 Summary

This chapter presented the group-theoretic framework that was developed in [1] for
the analysis of arithmetic codes. We discussed the assumptions that were made, the
error and computational models that were used, and the results that were obtained.
An one-to-one correspondence between arithmetic codes and group homomorphisms
was established first. Since algebraic homomorphisms are a well-studied topic in
algebra, this facilitated the study of arithmetic codes and helped define a natural
error detection and correction procedure, based on the construction of cosets in the
redundant group. Then, a procedure for constructing separate codes for a given
computation was developed, and finally, the results were extended to higher algebraic
systems with an underlying abelian group structure, such as rings, fields and vector
spaces.

In the next chapter, we show how the results obtained for the group case extend
naturally, under the same model and assumptions, to the less constrained setting of
semigroup operations.

22

Chapter 3

Semigroup-Theoretic Framework

3.1 Introduction

The framework developed in Chapter 2 deals with computations that have an un-
derlying abelian group structure. In this chapter, we show how the results obtained
there can be extended in a very natural way to computations with an abelian semi-
group structure. We thereby relax the requirements that the computations need to
satisfy, and have available a framework that provides a systematic algebraic approach
to arithmetic coding and ABFT for a much broader class of computations.

Our analysis follows closely the analysis for the group case in [1] that was explained
briefly in Chapter 2. We develop our framework in the following way. In Section 3.2,
we describe the model of the semigroup computation. Then, in Section 3.3, we derive
the conditions under which the mapping from the original computation to the fault-
tolerant computation will correspond to a semigroup homomorphism. This places the
analysis in a well defined algebraic framework. In Section 3.4 we adopt the additive
error model, and proceed to analyze the requirements for redundancy in the semigroup
case and compare the results with the corresponding results in the group case. A
framework for separate codes is developed in Section 3.5 and then a constructive
procedure that generates all separate codes for a semigroup computation is presented.
A comparison of the constructive procedure for such codes between the semigroup
and the group case is also made. Finally, Section 3.6 provides a summary of the
results that were obtained and discusses the tradeoffs that emerged in transitioning
from computations with an abelian group structure to computations with an abelian
semigroup structure. The treatment of specific classes of semigroups is deferred to
Chapter 4.

3.2 Computation in a Semigroup
This section defines the model that we use for performing a computation with an
underlying semigroup structure. We first provide an introduction to the notion of a
semigroup and then proceed to the computational and error models.

23

3.2.1 Introduction to Semigroups

The following is the definition of a semigroup (taken from [18]):
Definition: A semigroup S = (S, o) is an algebraic system that consists of a

set of elements S, and a binary operation o, called the semigroup product, such that
the following properties are satisfied:

1. For all sl, s2 E S, si o 2 E S (closure).

2. For all sx, 2, 3 E S (0 S2) 0 S3 = S 0 (2 0 3) (associativity).

If the binary operation o is obvious from the context, then we usually denote the
semigroup simply by S. If the operation o is commutative, that is:

sl o 2 = s2 o si for all sl,s2 E S

then the semigroup is called an abelian (or commutative) semigroup.
A familiar example of a semigroup that is not a group is the set of positive integers

under the operation of addition, usually denoted by (N, +). The two properties above
can be verified easily since addition is an associative operation. In fact (N, +) is an
abelian semigroup (since addition is a commutative operation). Other examples of
abelian semigroups that are not groups are the set of integers under multiplication
(usually denoted by (Z, x)), and the set of polynomials with real coefficients under
the operation of polynomial multiplication. Examples of non-abelian semigroups are
the set of N x N matrices under matrix multiplication, and the set of polynomials
with real coefficients under the operation of polynomial substitution. More examples
of semigroups can be found in [18].

From the above definition and examples, one sees that a semigroup, unlike a
group, is an algebraic structure with minimal requirements: other than closure and
associativity, there is not any other requirement. However, under certain assumptions,
this minimal structure allows us to achieve extremely useful results. In order to
proceed to the examination of these results we will need some more terminology.

If an element 00 E S exists such that:

s o 00 = 00 o = ss for all s E S

then the element 0 is called the identity element and the semigroup is called a
monoid. For example, the semigroup (N U {0}, +) (usually denoted by (No, +))
is a monoid with 0 as the identity element. In fact, any semigroup that does not
possess an identity element can be made artificially into a monoid simply by adding
an element 00 to it, and defining that element to behave just like an identity element.
The union of the original semigroup S with this identity element is a monoid. Note
that the identity can easily be shown to be unique (see for example [18]) and therefore
the addition of an identity element is well-defined and it is only possible when the
semigroup is not a monoid.

Since any semigroup can be easily modified to be a monoid, we will assume without
loss of generality that we are dealing with a monoid. For the rest of this chapter we
restrict our attention specifically to abelian monoids.

24

Operands

Detectable or
si Irreversible Error

s2
+ Error Resuft

E . H Corretor rH eoe r

' (a(.) Result

9~~~~~~' ~. t.cc co

Errors {ei)

Figure 3-1: Fault-tolerant model for a semigroup computation.

3.2.2 Computational Model for Semigroup Operations
We assume that the computation we want to protect can be modeled as a semigroup
operation with p operands:

r = S1 0 S2 0 ... O Sp

where r is the desired fault-free result. The model of the fault-tolerant computational
unit can be seen in Figure 3-1. The operands S1, s 2 , ... , sp are encoded via the encoders
{i}, which map the operands to a higher order monoid (H, o). The computation
takes place in the redundant computational unit where additive (or other) errors {ei}
might be introduced.

The output of the redundant computation unit is a possibly corrupted result
which we denote by r. The error corrector, through the use of the error correcting
mapping a, tries to map r' to the fault-free redundant result rH. However, this might
not be always possible, as for example when the error that took place is irreversible.
In such a case, the error corrector signals that a detectable or an irreversible error took
place. Finally, the decoder maps the fault-free redundant result rH to its desirable,
unencoded form r. The decoding mapping is denoted by a: Hv - > S and maps the
elements in the set of valid results (which we call Hv) back to the original monoid S,
that is

r = 0 S2 0 ... p = (rH)

where r = 01(S1) 2(S2)...°p(Sp)
Just like the model for the group case, an implicit assumption in this diagram

is that the encoders, the error corrector and the result decoder are fault-free. If
necessary, they have to be protected using modular redundancy.

If we adopt the additive error model that was introduced in Chapter 2, the errors

25

{ei} will be elements of H. We assume that they corrupt r in an additive fashion.
The possibly corrupted redundant result r is given by:

rH = 1(1)2(2)...p(p)ee2...oe

-= rHoeloe2 o...oeA

The underlying assumptions of the additive error model are that errors are in-
dependent of the operands, and that the effect of any error on the overall result is
independent of the point in time where it took place during the computation. This last
assumption is realistic because we have limited ourselves to associative and abelian
operations. As mentioned in Chapter 2, in such a case, the above expression is well-
defined and its result is the same, irrespective of the order and the position in which
the operands are evaluated.

At this point, we would like to make an important distinction between the actual
faults that influence the result of the computation and the modeled errors {ei} that
we use in our additive error model. An actual fault is a hardware failure and can
have any effect on the result. More specifically, it need not affect the result in an
inherently "additive" way. However, as long as we can model the effect of a fault on
the result as an additive error, then we expect the additive error model to be valid.
As an example, consider a computation unit that performs addition modulo 64. It
represents each valid result as a 6-bit binary number. Furthermore, assume that a
single fault forces a 1 ("high") at one of the six binary digits. Then, a single fault
produces an additive error of the form 2i for i E {O, 1, 2, 3, 4, 5}. If our additive error
model protects against errors of the above form, then it effectively protects against
any single fault that takes place during the computation. Of course, the more closely
we can exploit the actual error structure, the more efficient our fault-tolerant scheme
will be.

The error correcting mapping a in Figure 3-1 should map r to rH, so that
rH = ca(rb) (except when this is not possible). We can simplify notation if we define
the overall error e = eloe2 o...oex

rH = rH ° e

where e e = £ o £ o ... o £ (A times). If no error took place, e is the identity
element.

We draw attention now to the important distinction between the group and the
semigroup cases. In a semigroup setting, inverses are not guaranteed 1. If an error e
occurs, then the result is not necessarily correctable. Even if we identify the error e
that occurred, we might not be able to correct the corrupted result r/. In the group
case this was not a problem; since e was invertible, all we needed to do after identifying
the exact error that occurred was to compose the corrupted result r' with the inverse

1An element s - 1 E S is the inverse of s E S if and only if s o s - 1 = s - 1 o s = 00. Of course, this
can only be defined in the monoid case.

26

e- 1 of the error:
t e-1rH = rHo e

However, when the error is not invertible, we cannot in general expect anything more
than detecting that error. If the error is invertible, then we can correct it provided
that enough redundancy exists in our coding.

Other Error Models

Throughout our analysis in this chapter, we adopt the additive error model which
was used in [1] and was presented in Chapter 2. However, it is important to clarify
at this point that the error model does not really impact most of the results that
we obtain in the group- and semigroup-theoretic frameworks. For example, the use
of algebraic homomorphisms in these frameworks does not depend in any way on
whether the error model is additive or not. In fact, the only point where the error
model enters the analysis is when we consider the redundancy requirements and the
error-correcting capabilities of our codes (refer to Section 3.4).

The additive error model has some advantages when considering the redundancy
requirements in the group case (see [1], as well as the brief discussion in Section 3.4),
but it is not clear that this is the best choice, especially when we move to higher
algebraic structures with additive as well as multiplicative operations. Moreover,
hardware considerations might make the choice of a different error model more sen-
sible.

3.3 Use of Semigroup Homomorphisms

The computational model described in the previous section achieves fault tolerance
by mapping (through the {i} mappings) the computation in the original abelian
monoid S = (S, o) to a redundant computation in a larger monoid 7h = (H, o). The
additional elements of H will be used to detect and correct erroneous results. Under
the additive error model, faults introduce errors that have an additive effect on the
result.

The analysis in this section investigates the properties that the set of mappings
{4i} needs to have in order to satisfy the computational model that we have adopted.
We show that under a few reasonable assumptions, all mappings have to be the same.
Furthermore, this mapping is a semigroup homomorphism.

Let {1, 02, ... , Op} be the set of mappings used to map elements of S to elements
of H (refer to Figure 3-1):

41' S H

02 SA H

27

Then the computation of the product 5 10520 ... OSp in S takes place in H in the fol-
lowing form:

r = 0,(S1)02(S2)o...op(Sp)Oe

where r is a possibly corrupted result in H and e E (>).
When r is not corrupted (let us denote the uncorrupted result in H by rH), we

require that it maps back to the correct result in the original set S via the mapping
o (refer again to Figure 3-1):

r = Sl10oS20 ... Osp = (rH) = O'(l(s1) 2 (S2) O ... 'O Op(sp)) (3.1)

Now we have the tools to prove the following claim:
Claim: When S and H are monoids, under the assumptions that:

1. The mapping a is one-to-one, and

2. ;b(O.) = ¢ 2(0 0) = ... = ;p(Oo) = 0 (that is, all encodings map the identity of
S to the identity of H),

all qi's have to be equal to the same semigroup homomorphism q$. Moreover for all
s E S,

r-~l(s= (S) = 12(S) = () = ... = ()(S)

Proof: The mapping a maps elements of Hv to S:

ao: Hv - S

where Hv is the set of valid results in H defined as:

HV = { 1 (S 1)0(2 (S 2)0...0p(Sp) I 1,$2,...,Sp e S} (3.2)

By our first assumption, a is one-to-one; therefore, its inverse function:

a - 1 S -+ Hv

is well-defined. Moreover, from (3.1):

,'(s 1,S oo2 ... oSp) = O1(S1)o2(S2)o... op(sp) (3.3)

When si = 0 for all i except i = 1 we have:

O-'(s1) = O 1(S1)o02(0o)... (0)

-'(s) = ~(s), E S

since i(0) = was part of our second assumption.
Similarly, we get:

a'(s) = (s), for all s S i= 1,2,...,p

28

Therefore, a-'(s) = 41 (s) = +2(s) = ... = 0p(s), for all s S. Let cT- a 1 = 1 =
2 = ... = p. Then, from (3.3) we get:

O(slos2 o...osp) = (s 1)0+(s2)0...o(sV)

If we let si = 0o for i = 3,4, ... ,p , we have the defining property of an algebraic
homomorphism:

O(Slos2) = O(S1)0(S2)

Therefore, all {,i} are equal to the semigroup homomorphism (or, equivalently, to

We have shown that, under the assumptions that the decoding mapping is
one-to-one, and that each encoding mapping Xi maps the identity element of S to
the identity element of H, the mappings {i} turn out to be the same semigroup
homomorphism, which we will call . Moreover, is simply the inverse of . Note
that the derivation requires neither the error model to be additive nor the operation o
to be abelian.

The question that still remains to be answered is whether these assumptions are
reasonable:

* By requiring that the decoding mapping a be one-to-one, we essentially require
that it is not many-to-one (since it does not make sense to have one-to-many
or many-to-many "decoding" mappings). If a was many-to-one, then different
operands that arrive at the same result s (s E S) would produce different results
rH (rH E Hv, where Hv is the set of valid results). In such a case, redundancy
would be utilized in an inefficient way, since each way of arriving at a result
would involve different redundancy conditions. Therefore, the requirement that
a is a one-to-one mapping is essentially a requirement that the fault-tolerant
arithmetic code is efficient.

* Now suppose that we need to operate on less than p operands. We would like
to treat such a calculation in exactly the same way as a calculation with p
operands. The natural way to do that would be to use the identity element
for operands that do not appear in the calculation. For example, if we want to
operate on only 3 operands, we would actually be calculating the following:

S1 0 S203 0 o 00 o 0 ... O o

Therefore, it seems reasonable to require that

'C1(Sl) ° q02 (s2) ° ... °i 5b(si) = 0(Sl) ° 0 2 (s2) ° ... ° gi (si) ° 'i+1(0o) ° ... c MO')

for each i e { 1,2, ... , p}. A stronger requirement (but one that simplifies things
a lot) would be Oji(o) = o. This requirement does restrict the number of
mappings; on the other hand, however, it is efficient because the redundancy in
the mapping is independent of the number of operands.

29

3.4 Redundancy Requirements

In this section we adopt the additive error model in order to analyze the redundancy
requirements on the encoding mapping. The elements of the original semigroup S are
mapped through b to elements of the redundant semigroup H. We denote detectable
errors by ed E Ed and correctable errors by e E Ec. Note that correctable errors are
also detectable.

Using the same approach as the approach in Chapter 2 and in [1], we conclude
that in order for an error ed to be detectable, we need the following condition to be
satisfied:

rHed $ h for all h5rH, h, rH E Hv, ed E Ed

which essentially requires that any detectable error ed corrupts the actual result rH
in an additive fashion such that it takes us out of the set of valid results (otherwise,
we would think that no error took place). In order for an error e to be correctable,
the following condition needs to be satisfied:

rHeC hed for all hrH, h, rH E H, ec E Ec, ed E Ed

which essentially requires that any correctable error corrupts the actual result in
a unique way that no other error shares (remember that detectable errors are also
correctable).

Now, suppose that £ = {ei} is the set of possible single errors (including the
identity 0o) and that our objective is to detect a total number of D errors and to
correct a total number of C errors (C < D). Then, ed e g(D) and e e E(C). The
above redundancy conditions can then be combined into one:

Redundancy Condition: In order to detect D errors and correct C errors, the
structure of the redundant semigroup H has to satisfy the following requirement:

hl<ed # h2oeC, for all h1 #h 2, h, h2 E Hv, e E £(C), ed E (D)

where Hv (defined in (3.2)) is a subsemigroup of H 2.
If we use the set notation x o A = {xa I a E A}, we can simplify the above

expression:
(hiO£(D)) n (h 2<e(C)) = 0 for all h1#h 2, hi, h 2 E Hv (3.4)

Because semigroups have a weaker structure than groups, the analysis cannot
follow the exact same path as the analysis for the group case in [1]. In particular,
the coset-based error detection and correction that was developed in the group case
(Figure 2-5) is typically not possible now. However, under the assumption that both
detectable and correctable errors are invertible, we can transform the above into a

2The fact that Hv is a subsemigroup of H can be proved easily. The proof is straightforward
and uses the fact that the mapping 0 is a homomorphism.

30

Figure 3-2: Structure of the redundant semigroup for error detection and correction.

more intuitive form as follows:

hloed ~ h2oec for all hl$h 2 E Hv, e E £(C), ed E £(D)

h1cedoe21 h2 for all hly#h2 E Hv, e E E(C), ed E EC(D)

hloedoec h2 for all h1,h 2 E Hv, e E £(C), ed E g(D) so that edoec'lO0o
hloedoet y h$ for all h1 ,h 2 E Hv, e E £(c), ed E j(D), ecyAed

Using set notation we can write the above expression as:

(Hvoec) n (Hvoed) = 0 for all e E £(C), ed E (D), ey#ed (3.5)

Note that the above equation is quite different from Equation (3.4): under the as-
sumption that all errors are invertible, we only need to check that, for each pair of
different correctable and detectable errors, each error "shifts" the set of valid results
Hv to a different set in the redundant space. In Equation (3.4) we do a similar check
for every pair of different operands. The two situations are quite different since, in
general, we expect that the set of operands contains many more elements than the
set of errors.

Equation (3.5) parallels the result that was shown in Chapter 2 for the group case.
However, since the concept of a coset cannot be extended to the general semigroup
case3, the coset-based error detection and correction cannot be extended to the semi-
group case. Figure 3-2 shows the structure of the redundant semigroup. The major
difference of the semigroup from the group case is that error correction is now based
on disjoint sets of elements (one for each different error), whereas in the group case

3The lack of inverses causes this problem.

31

I Main Computational Channel

Si D 5S1- C S'

S2 P

|es

I Parity Channel

I, , e II
........................ leaT

I -------------------------- ~~

Figure 3-3: Model of a fault-tolerant system that uses separate codes.

error correction is based on having a different coset for each error. This evidently
makes things a lot more complicated in checking for sufficient redundancy require-
ments in the semigroup case. However, as the examples that we present in Chapter 4
show, we now have more flexibility in choosing arithmetic coding schemes.

3.5 Separate Codes for Semigroups
In this section, we focus on the special case of separate codes. We will show that, by
restricting ourselves to these codes, we can obtain extremely interesting results that
parallel the ones obtained for separate codes in the group case:

* A complete characterization of separate codes will be possible.

* Moreover, we will be able to outline a systematic algebraic procedure that can
generate all possible such codes.

As explained in Chapter 2, separate codes are a class of arithmetic codes that
protect computation using an independent "parity" channel. No interaction between
the original codeword and the parity information occurs during computation. Fig-
ure 3-3 shows a typical example of a computational unit that achieves fault tolerance
through a separate scheme. For simplicity of presentation, in this figure, as well as
in the discussion that follows, we focus on separate codes with two operands. The
analysis can be extended easily to the general case of a system with p operands.

32

S
.B

Si

S2

Error
Detection
and
Correction

3.5.1 Description of the Model for the Codes

The codeword of a separate code consists of two parts: the original unencoded data
(which is operated upon by the main computational channel in the exact same way
as the original data) and the "parity" information (which provides the necessary
redundancy for fault tolerance, and which is operated upon by the "parity" channel).
As shown in Figure 3-3, errors can now take place during computation in the main
channel (as for example es), or the parity channel (for example e), or in both4 .
As was the case in the general analysis of a semigroup computation, an implicit
assumption of the system in Figure 3-3 is that the parity encoders (denoted by the
mapping 0), as well as the error detector and corrector, are error-free 5 .

It has already been shown in this chapter, that any arithmetic code for a com-
putation with an underlying semigroup structure corresponds to a homomorphism 4.
For the special case of a separate code, the homomorphism d is as follows:

S 4 H = SxT

where the only difference now is that H is the artesian product of two other semi-
groups, the original semigroup S and the parity semigroup T. Therefore, we can
denote the mapping as the pair:

+(s) = [s,0(s)] (3.6)

where [s, 0(s)] is an element of H (in fact, an element of Hv C H, which was defined
as the subsemigroup of valid results).

3.5.2 Analysis of the Parity Encoding

Let us now analyze the structure of the mapping 0 that is used to construct the
parity of a codeword. We use the symbol o to denote the binary operation in the
semigroup S, the symbol o to denote the binary operation in the semigroup H and the
symbol ® to denote the binary operation in the semigroup T. The relation between
these three binary operations is straightforward. To see this, let

hi = (si) = [1, (Sl)]

h2 = (s2) = [2,9(S2)]

where h,h 2 E H, 1,S2 E S, and (sl),0(s2) E T. By definition of separate codes,
the computations in the main and the parity channels do not interact. Therefore,
under error-free operation we require that

hlh 2 [S1, 0(S1)] [82, (82)] = [os2, (Sl)®0(s2)] (3.7)

4Although the errors in Figure 3-3 are modeled as additive, this assumption is again unnecessary
for the analysis in this section.

5If these subsystems are not reliable enough, we can use N-Modular redundancy to protect them.

33

We now have the necessary tools to prove the following claim:
Claim: If the mapping 0 is a homomorphism, then the mapping 0 has to be a

homomorphism as well.
Proof: Using the fact that the mapping is a homomorphism and the defining

Equation (3.7), we get:

O(5 o 2) = O(S) o (S2)

= [S1 o 2, (S1) 0(s 2)]

Moreover, by definition of 0 in Equation (3.6):

o(81 ° 2) = [OS 2 , 9(SloS2)]

Therefore, for all sl,s2 in S:

9(slos 2) = -(S 1)¢)0(S 2) (3.8)

Equation (3.8) is the defining property of a homomorphism, so we conclude that 0 is
a homomorphism. V/

3.5.3 Determination of Possible Homomorphisms

Having established that 0 is a homomorphism, we realize that in order for the cor-
responding separate code to be efficient, we need to require that is onto T. The
reason is simply to ensure that the arithmetic code makes use of all elements of the
parity semigroup T. Therefore, this essentially requires that efficient use of the parity
symbols is made and none of them is wasted.

An onto homomorphism is called a surjective homomorphism6. When we restrict
0 to be a surjective homomorphism, we have a systematic algebraic way of generating
all possible separate codes. In the process of developing this method, we make use of
the following definitions and theorems7 in [18]:

Definition: An equivalence relation on the elements of a semigroup S is called
a congruence relation if it is compatible with o (the binary operation of S), that is:

For a,b,a',b' ES we have: If a - a',b b' = aob a'ob'

An equivalence class under a congruence relation is called a congruence class. Let
the set S/. denote the set of congruence classes of S under the congruence relation -.

6Many authors, including [18], like to use the name epimorphism for a surjective homomorphism.
However, strictly speaking, an epimorphism from a semigroup S to a semigroup H is a homomor-
phism such that for any two homomorphisms 01 : H '- T and 2 : H -+ T, if for all s E S
61 (q(s)) = 2(c(s)), then 01 = 62. Any surjective homomorphism is an epimorphism, but the con-
verse is false in the semigroup case [19]. A discussion on this issue as well as counterexamples can also
be found in [20]. We will be using the correct term surjective homomorphism instead of epimorphism,
but keep in mind that the two terms are sometimes used interchangeably in the literature.

7In [18], the claim and the theorem that we use and prove here are stated without a proof.

34

For the congruence classes [a], [b] (congruence class [a] is the congruence class that
contains the element a) we define the following binary operation:

[a]®[b] = [aob]

Claim: Operation 0 is well-defined and S/ is a semigroup.
Proof: If [a] = [a'] and [b] = [b'] then a a' and b b'. Therefore, a o b a' ob'

which means that a o b and a' o b' belong to the same congruence class. Moreover,
operation 0 inherits associativity from o. We conclude that S/-. is a semigroup. v /

Theorem: Let 0: S -) T be a surjective homomorphism. Let be defined by:

x-y X O(x) = (y)

Then is a congruence relation and S/I is isomorphic to T. Conversely, if is a
congruence relation on S, then the mapping 7r: S ~-+ S/- such that for s E S

r(s) = [s]

is a surjective homomorphism.
Proof: First, we prove the first

the binary operation in T be 0, and
let:

statement. Let the binary operation in S be o,
the binary operation in S/I-.. be 0. Furthermore,

Xi Y1

e. Y2X2 ~y

From the definition of we have:

9(x2)

9(X2)

= 0(Yi)

= O(y2)

So,

O(X l))O(x 2)

0(XlOX2)

x1 ox 2

= O(y1)(O(Y2)
= O(Y1oy2)

- Y1 Y2

Therefore, . is a congruence relation.
Now, we need to prove that S/- is isomorphic to T. All we need to do is find a

mapping : '/- T that is a bijective (one-to-one and onto) homomorphism. In
fact, the following mapping will do:

0([x]) = (x) for some x [x] (3.9)

Note that this mapping is one-to-one and onto:

35

* Let [x] be an element of S/-'. For all x E [x], 0(x) is the same (by definition of
the congruence relation -), therefore each [x] maps to one element of O(x) E T.

* Since 0 is onto, each element of T has a non-empty inverse image in S. That
is, for all t E T there exists s E S such that t = (s). Therefore, there exists at
least one congruence class, namely [s] E S/- such that 0([s]) = 0(s) = t . The
mapping 0 is onto.

* If [x] and [y] map to the same element of T, then 0(x) = 0(y). Evidently, in
such a case, [x] = [y] (by the definition of -).

Now, we proceed to show that 0 is a homomorphism. For [x], [y] E S/~ we have:

oQxD) 06y = 0() O(y)
= 0(x oy)

= bUx o y])

= x] 0 [y])

where we have used in the first step the definition of / from (3.9), in the second step
the fact that 0 is a homomorphism, in the third step the definition of 0b again, and
in the fourth step the defining property of SI.

We have proved that 0 is a bijective (one-to-one and onto) homomorphism. There-
fore, we may conclude that T S/ .

The proof of the converse is less work. The mapping r is clearly onto: for any
congruence class [x] E S/- we know that 7r(x) = [x], so there is at least one element
that maps to [x]. Moreover, for S1, s2 E S:

7r(Sl) 7r(S 2) = [S1] 0 [2]

-= [S1 0 S2]

= 7r(s 0 S2)

Therefore, r is a surjective homomorphism.
At this point, the proof of the theorem is complete. v/

The above theorem states that all surjective homomorphic images T of an abelian
semigroup S can be found (up to isomorphism) by finding all congruence relations
within S. Therefore, all separate codes that protect a computation in a semigroup
S can be enumerated by finding all congruence relations - that exist within S. In
each case, the semigroup T that provides the parity information is isomorphic to S/-
and H is isomorphic to S x S . Of course, the enumeration of all congruence
relations of a semigroup might not be an easy task. However, we still have a complete
characterization of all separate codes for a computation in a semigroup and, moreover,
we have an algebraic framework that we can use in order to enumerate or search
through all possible such codes for a given semigroup computation. Examples of such
techniques and ways to approach this problem can be seen in Chapter 4.

36

Original
Group G

Homomorphism

Pari
Groi
(-GI

Figure 3-4: Structure of the parity group in separate codes.

3.5.4 Comparison with the Group Case

When comparing the results above with the separate code case for a computation
with an underlying abelian group structure, we see a major difference: in the group
case, finding a (normal8) subgroup N of the original group G completely specifies the
homomorphism 0 in the sense that the inverse images of the elements of the parity
group T are exactly the cosets of G with respect to the subgroup N. Figure 3-4
shows the structure of the parity group T which is isomorphic to G/N. The normal
subgroup N corresponds to the inverse image of the identity of T (defined as the
kernel of the homomorphism 0).

In the more general setting of a semigroup, however, specifying the kernel of
a homomorphism 0 does not completely determine the structure of the parity semi-
group T. In order to define a homomorphism from a semigroup S onto a semigroup T
(or, equivalently, in order to define a congruence relation on a semigroup S) we
need to specify all congruence classes. Each congruence class is the inverse image of
an element of the semigroup T under the homomorphism 0.

In [21], it is shown that congruence classes correspond to (normal) complexes. The
congruence class that is the inverse image of the identity of T (that is, the kernel of the
homomorphism) is a (normal) subsemigroup. The actual definitions of a (normal)

8Since we are dealing with abelian groups and semigroups, the term normal is not really necessary.
We put it in parentheses though, in order to emphasize that in most group and semigroup theory,
these facts are stated for normal subgroups, normal subsemigroups and normal complexes. Note
also that, even in the abelian monoid case we are dealing with, a subsemigroup is not necessarily a
normal subsemigroup.

37

Coset Coset Coset

(Normal)
Coset Subgroup N Coset

(Kemel of 8)

coset. Coe 1
./\ J LIJ

!

\ , , , By, , ,
F__�

Original
Semigroup S

Homc

Figure 3-5: Structure of the parity semigroup in separate codes.

complex and a (normal) subsemigroup, adjusted here from [21] for the abelian monoid
case, provide a clearer picture of what a congruence class is:
Normal Complex: A nonempty subset C of an abelian monoid (S, o) is called a normal
complex if, for any x E S and for any k, k' E C, xok E C always implies xok' E C.
Normal Subsemigroup: A nonempty subset C of an abelian monoid (S, o) is called a
normal subsemigroup if, for any x E S and for any k, k' E C or being empty symbols,
xok C always implies xok' E C.
Note that, in the abelian monoid case we are focusing on, a normal subsemigroup
is simply a normal complex that contains the identity element of the monoid9 [21].
However, as we will see in the examples of Chapter 4, a subsemigroup which is a
normal complex is not necessarily the normal subsemigroup.

Figure 3-5 shows the structure of the parity semigroup. The normal subsemigroup
does not necessarily define the normal complexes; they have to be defined separately.
Clearly, this makes the search for separate codes in the semigroup setting much harder
than the search for such codes in the group setting. However, as some of the examples
that are presented in Chapter 4 show, we actually have a greater variety of possible
separate codes and more freedom to choose the kind of code that we want.

9In fact, we do not need the monoid to be abelian for this.

38

3.6 Summary

In this chapter we developed a semigroup-theoretic framework for studying arithmetic
codes for semigroup computations. We have thereby successfully extended the group-
theoretic framework that was developed in [1] to a much more general setting. The
hope is to be able to use this generality to provide fault tolerance to non-linear
systems, such as non-linear signal processing applications and matrix multiplication.
Due to the lack of inverses, these systems fit more easily into a semigroup, rather
than a group framework.

More specifically, in this chapter we have showed that arithmetic codes that pro-
vide fault tolerance to a semigroup computation need to be a semigroup homomor-
phism. Through this result, we established an algebraic framework for the study
of arithmetic codes not only at the semigroup level (refer to the examples in Chap-
ter 4) but also for higher semigroup-based algebraic structures (refer to the semiring-
theoretic framework of Chapter 5). Moreover, in the special case of separate codes
we were able to construct a procedure that enumerates all such codes for a given
semigroup computation.

As the next chapter shows, there is always a tradeoff. A semigroup is less struc-
tured and allows for more possibilities when developing arithmetic codes. On the other
hand, exactly because of this flexibility, codes are harder to study in the semigroup-
theoretic framework. The examples in the next chapter make this tradeoff more
concrete.

39

Chapter 4

Protecting Semigroup
Computations: Some Examples

4.1 Introduction

The analysis in Chapter 3 produced a framework that can be used for constructing
arithmetic codes for computations with an underlying semigroup structure. Here,
we use the results and methods developed there to construct and analyze arithmetic
codes for some typical semigroups, such as the set of non-negative integers under
addition (No, +), the set of positive integers under multiplication (N, x), and the
set of integers under the MAXIMUM operation (Z, MAX). The objective in studying
these simple semigroups is to gain more insight on arithmetic codes for semigroup
operations.

This chapter is organized as follows. In Section 4.2 we make extensive use of the
results obtained for separate codes in Chapter 3 and give a complete characterization
of all possible separate codes for the (No, +) monoid. We also present an extensive list
of examples for (N, x), as well as a brief (but complete) description of separate codes
for the (, MAX) semigroup. In Section 4.3 we discuss possibilities for non-separate
codes for various semigroups. Finally, Section 4.4 summarizes the conclusions that
we have reached from the study of these examples.

4.2 Examples of Separate Codes
In this section, we develop separate codes for (No, +), (N, x), and (Z, MAX). The
analysis for (No, +) and (, MAX) will be complete in the sense that we get a complete
characterization of all possible separate code for these semigroups. The analysis for
(N, x) results in a variety of examples and possibilities for separate codes.

40

Group (Z, +)

Figure 4-1: Example of a parity check code for the group (Z. +).

4.2.1 Separate Codes for (No, +)

The set of natural integers under the operation of addition forms a very simple abelian
semigroup. This semigroup is cyclic: it is generated by a single element', namely {1}.
In fact, since all other infinite cyclic semigroups have to be isomorphic to it, (N, +)
is the unique infinite cyclic semigroup. If we choose to insert the identity element 0,
we have the (No, +) monoid. In fact, (No, +) is what we will be dealing with for the
rest of this section.

Before focusing on the (No, +) monoid, let us revisit the corresponding group
case: the set of integers (positive and negative) under the operation of addition
forms a cyclic abelian group. This group is usually denoted by (Z, +). Since all
other infinite cyclic groups are isomorphic to it, (Z, +) is the unique infinite cyclic
group [22]. Moreover, as shown in [1] and [22], all possible surjectively homomorphic
images of (Z, +) (other than itself) are finite cyclic groups. A finite cyclic group of
order m is isomorphic to the additive group of integers mod m. Therefore, using the
results obtained in [1] and summarized in Chapter 2 of this thesis, we can achieve
a complete characterization of the separate codes for the (Z, +) group. The parity
group (denoted by T) is isomorphic to the group of integers mod m, where m is an
arbitrary integer. Therefore, the only possible parity channel operations for protecting
addition of integers is addition modulo some integer m. This result was also obtained
by Peterson [17] under a different framework.

Figure 4-1 presents an example of a parity check for (Z, +). (Equivalently, we

1An element a is a generator of a cyclic semigroup (S, o) if S = {a o a o a o ... o a (p times) p E
{1,2,3,...}}.

41

Semigroup (No, +)

Figure 4-2: Example of a parity check code for the semigroup (No, +).

can think of it as an example of a surjective homomorphism for (Z, +).) The parity
group T is simply the set {O, 1,2, 3} under the operation of addition modulo 4, which
is denoted by +mod4 In the figure, we can see which elements of the original group Z
map to which elements of the parity group T. As analyzed in Chapter 2, the (normal 2)
subgroup of multiples of 4, {4k I k e Z}, maps to the identity of the parity group T,
whereas the three cosets that remain map to the remaining elements of T in a regular
way. In terms of the fault-tolerant model, the parity channel simply performs addition
mod 4.

Clearly, addition mod m could also serve as a parity check in the case of the
monoid (No, +). Such an example (for the case when m = 4) can be seen in Figure 4-
2. The (normal) subsemigroup is the set of positive multiples of 4: {4k k E No}
whereas the (normal) complexes consist of "shifted" versions of the subsemigroup:
{i + 4k I k E No} for i = 1,2,3. Clearly, this situation is very similar to the
corresponding group case we have just discussed. The inverses (negative numbers)
are missing; however, the parity semigroup T is still the exact same finite cyclic group
of order 4.

Whereas in the (Z, +) case the above parity checks were the only ones possible,
for the semigroup (No, +) other kinds of surjective homomorphisms exist. Because
a semigroup is not as structured as a group, parity checks that protect addition in
(No, +) and differ from the parity checks for (Z, +) can be constructed.

An example of such a parity check can be seen in Figure 4-3. The parity semi-
group (T,) is not a group anymore. It is simply a finite semigroup of order 8. The

2In the abelian case we are dealing with, the term "normal" is redundant.

42

table that defines how the binary operation o of T takes place under all possible pairs
of operands is given in the figure as well3. It can be easily checked that the defining
table implies the operation o is associative and abelian, so that T is indeed an abelian
semigroup. The corresponding surjective homomorphism breaks (No, +) into eight
normal complexes. Four of them (including the normal subsemigroup) consist of a
single element. The other four consist of an infinite number of elements each.

In terms of the fault-tolerant model, the operation of the parity channel can be
explained very simply: if the result of the addition is less than 4, then the parity chan-
nel duplicates the computation of the main channel; otherwise it performs addition
mod 4 (just as in the previous examples we have seen). Duplicating the computa-
tion if the result is less than 4 was a choice made to simplify the example that we
presented. In exactly the same way, we could have duplication of the computation if
the result is less than 8, or 12, or any multiple of 4. Of course, that would correspond
to a parity semigroup T of higher order.

If we try to apply a parity check like the above for addition in the group (Z, +)
we fail. The problem is that, once we have exceeded the threshold and we have
started performing addition mod m (where m is the integer that we chose), we do not
have enough information to return back to duplicating the result of the computation.
However, the existence of the inverses (negative numbers) makes it possible for a
computation that starts with the operands lying outside the threshold to result in
a value less than the threshold. In such a case, we have to duplicate the result in
the parity channel, but we do not have enough information to do so. For example,
suppose that we decide to have a threshold of ±12 and that once the result exceeds
this limit we perform addition mod 4. Then 20 + (-16) = 4 would be represent by
something like (Omod4 + Omod4). Since interaction between the parity and the main
channel is not allowed, there is no way for the parity channel to know whether the
result of this computation should be 0, or 4, or 8, or Omod4-

Enumerating all Separate Codes for (No, +)

Here, we show that all possible parity checks for the (No, +) semigroup are in either
of the two forms (Figures 4-2 and 4-3) that were mentioned above. (The proof is
rather long and is included in Appendix A.)

Specifically, we make the following equivalent claim:
Claim: All possible surjective homomorphisms from the semigroup (No, +)

onto a semigroup T have one of the following two forms:

1. For n E No, (n) = n mod M, where M is any finite integer (if M is infinite,
then 0 can be thought of as an isomorphism). This kind of homomorphisms
map (No, +) onto a finite cyclic group of order M 4.

3A table is the standard method to define finite semigroups. Note that this defining table cannot
be arbitrary: not only has it to imply closedness, but it also has to satisfy the associativity of the
binary operation of the semigroup. Moreover, if the semigroup is abelian, the defining table should
be symmetric along the diagonal that runs from the top left to the bottom right.

4In the special case where M = 0, we get a trivial homomorphism from (No, +) onto the trivial

43

Semigroup (No, +)

I 2 1 0 1 2 3 04 14 24 1 34

0 0 1 2 3 04 14 24 34
1 01 2 3 04 14 24 34 04
12 1 2 3 04 14 24 34 04 14
3 3 04 14 24 134 04 14 24

04 04 14 24 34 04 14 24 34

14 14 24 34 04 14 24 34 04

24 24 34 04 14 24 34 04 14
34 34 04 14 24 34 04 14 24

Figure 4-3: Example of a parity check code for the semigroup (No, +).

44

2. For a finite integer M, for n E No we have:
O(n) = n if n < kM (for a fixed positive integer k)
O(n) = n mod M, otherwise
This kind of homomorphisms map (No, +) to a finite semigroup of order M +
kM = (k + 1)M5.

The proof in Appendix A uses extensively the tools that were developed in Chap-
ter 3 and applies them to the special case of this simple cyclic semigroup. We now
move to a discussion of the more complicated example of (N, x), the set of positive
integers under multiplication.

4.2.2 Separate Codes for (N, x)

The monoid (N, x) is far more complicated than (No, +). It has an infinite number
of generators, namely the set of prime numbers. As a result, a lot more complexity
is involved when attempting to characterize the set of parity check codes for it.

Let us begin our analysis with a simple example of a separate code for (N, x).
In Figure 4-4, we present a naive parity check. The parity semigroup T is a finite
semigroup of order 4 and it is defined by the table in the same figure. We can
easily verify that the operation o, as defined in the table, is associative and abelian,
so that T is indeed an abelian semigroup. The parity check essentially amounts to
checking whether the result is a multiple of 2 or of 3 or of neither. The corresponding
complexes (or, equivalently, the corresponding congruence classes) of (N, x) are also
shown in Figure 4-4. Complex A contains multiples of 2 and 3 (that is, multiples of
6). Complex B contains multiples of 2 but not multiples of 3. Complex C contains
multiples of 3 but not multiples of 2. The (normal) subsemigroup, denoted by I,
contains numbers that are neither multiples of 2 nor multiples of 3. It is interesting
to note here that in the parity semigroup T, the element I is the identity element and
A is the zero element 6. Similar examples that check for more than two factors (not
necessarily co-prime) can easily be constructed.

Another example, perhaps more familiar to the reader, is the parity check mod m
where m is a positive integer. In Figure 4-5, we see such a case for m = 4. The
parity semigroup T is finite (order 4) and its binary operation Xmod4 is defined by
the table in the figure. Note that the elements 0,1,2,3 of the parity semigroup
should be treated as symbols rather than integers. However, this notation is useful
because the elements of T under the binary operation X mod4 behave like integers
under multiplication modulo 4. Although the parity semigroup T looks very similar
to the one that was used in the previous example, it is in fact different. A parity

semigroup of a single identity element.
5When M = 0 the mapping reduces to:

O(n) = n if n < k (for a fixed positive integer k)
O(n) = o00, otherwise
where 00 is an element in the homomorphic image of (No, +) that "almost" behaves as the zero
element.

6A zero element is the unique element z of S (if it exists) such that for all s E S, s o z = z o s = z.

45

Semigroup (N, x)

| o III|A|B C
I I |A B C

A A|A A AA
B BABA
C C A AC

Figure 4-4: Example of a parity check code for the semigroup (N, x).

46

Semigroup (N, x)

X mod4 O | 1 2 12

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 01 3 2 1

Figure 4-5: Example of a parity check code for the semigroup (N, x).

check such as the above can be constructed for any integer m. In such a case, the
parity channel essentially performs multiplication mod m. In the special case when
m is a prime number p, the parity semigroup T has a very special structure: if we
discard the zero element, (T- {0}, x) is a group 7.

Another interesting example is the following. Let P denote the set of prime
numbers, that is, P = {2,3,5,7,11,13,...}. Then, (N, x) can be partitioned into a
set of infinite congruence classes as follows:

Co = {1}
C = P= {2,3,5,...}
C2 = p 2 ={pl XP2 I Plip2 EP}
C3 = P3 {p XP2 xP3 I Pl, P2 , P3 E P}

Ci = pi = {pl Xp 2 X... xpi I pl 2 , P...,i E P}

7In fact, T under integer addition and multiplication mod p is the unique finite field of order m.

47

The corresponding parity semigroup T will be isomorphic to (No, +). The congruence
8class Co maps to 0, C1 maps to 1, and in general Ci '- i. The mapping 0 is clearly a

homomorphism:

0(C iXCj) = O(C(i+j)) = i + j = (C,) + 0(0j)

Essentially, the above parity computation checks the total number of primes that are
used in producing a result (including multiple uses of the same prime).

More examples are possible, including cases when the parity channel performs the
exact same computation if the result is less than a threshold (just like the examples
we presented in the previous section for the (No, +) monoid8). However, it is not our
concern here to enumerate all possible separate codes for (N, x) (although that was
easy for (No, +)). The purpose was rather to demonstrate the use of the framework
developed in Chapter 3 for generating separate codes for (N, x).

4.2.3 Separate Codes for (U {-o}, MAX)

We conclude our examples of separate codes with a brief analysis of codes for (Z U
{-Coo}, MAX), the semigroup of integers under the MAX operation. MAX is the binary
operation that returns the largest of its operands.

We will characterize the various forms that a congruence class in (ZU{-oo}, MAX)
can take, by following similar steps as in the analysis of the separate codes for (No, +).
For ease of notation, we will use the familiar notion of inequalities:

x > y X MAX(x, y) =

From the definition of a congruence class, we can easily conclude the following: If
two elements k, k' (without loss of generality assume k > k') belong to a congruence
class C, then the set {x k > x > k'} is a subset of C. Therefore, we conclude that
any congruence class consists of consecutive integers in an interval. This immediately
yields a complete characterization of the separate codes for (Z U {-oo}, MAX). The
(normal) subsemigroup is, of course, the congruence class that includes the identity
(which in this case is the symbol -oc).

A simple example would be the following pair of congruence classes:

Co = {...,-2,-1} U{-o}
C = {0,1,2,...}

The corresponding parity semigroup T is of order 2 and its operation can be defined
in the following table:

8For example, this can be achieved in exactly the same way for the parity check mod m. See the
analysis for the (No, +, x) semiring in Chapter 5 for a concrete example.

48

0 0 1
111

Intuitively, all that the parity channel is doing is checking that the sign of the result
comes out correctly.

Other examples do exist. In fact, any subdivision of the [-oo, +00oo] interval into
consecutive subintervals will work. For example, consider the following set of congru-
ence classes for some fixed positive integer M:

Ci = {iM, iM + 1,...,iM + (M- 1)} for all i E Z

In this case, the parity semigroup T is isomorphic to the (ZU{-oo}, MAX) semigroup.
However, its "range" and its "precision" are smaller by a factor of M. For example,
if the elements of Z are represented as binary numbers and M = 16, then this parity
test ignores the 4 least significant bits and then performs the same comparison as the
main channel.

Before we move to non-separate codes, let us note that, if we slightly modify
the above analysis, we can arrive at similar results for the (Z U {+oo}, MIN), (R U
{-co}, MAX), and (R U {+oo}, MIN) semigroups.

4.3 Examples of Non-Separate Codes

Just as with the study of non-separate codes for group-based computations, the study
of non-separate codes for semigroup-based computation is hard. There is no way of
associating subgroups or congruence relations to them and, in general, the develop-
ment of non-separate arithmetic codes for these computations is more of an art than
a systematic procedure. Of course, the objective would be to homomorphically map
the original group/semigroup to a larger group/semigroup, but this is not a trivial
task.

For example, the only non-separate codes that are well known for the (Z, +)
group are the aN codes which were mentioned in Chapter 1 (see Figure 1-3). These
codes definitely comprise a class of non-separate codes that can be used for protecting
(No, +), although a natural extension of them for the semigroup case is not clear. A
brief analysis of aN codes can be found in [1] and a more extensive treatment can be
found in [16]. In that case, they are used as arithmetic codes to protect the (Z, +)
group but they can certainly be used in the same way to protect the (No, +) monoid.

4.4 Summary

The main emphasis of this chapter was to demonstrate (through a variety of examples)
the use of the semigroup-theoretic framework for the development of separate codes
for semigroup-based computations. This demonstration focused mainly on simple
semigroups like the semigroup of non-negative integers under addition or multiplica-
tion and the semigroup of integers under the MIN and MAX operations.

49

Having presented a variety of codes for these semigroups (sometimes completely
characterizing all possible separate codes for them), we are now in position to ex-
tend the framework and the tools that we have to higher group- or semigroup-based
structures. In Chapter 5, we develop two such frameworks and use them to analyze
the arithmetic codes for various computations with an underlying ring or semiring
structure9 . Among others, we consider the ring of integers under addition and multi-
plication and the semiring of non-negative integers under addition and multiplication.
The analysis will result in complete characterizations of all possible separate codes
for both of these structures.

50

9 Definitions are provided in Chapter 5.

Chapter 5

Frameworks for Higher Algebraic
Structures

5.1 Introduction

Up to this point, we have dealt exclusively with algebraic structures that permit a
single operation. The focus of the theoretical analysis in Chapters 2 and 3 and of
the examples in Chapter 4 was on group or semigroup computations. In this chapter,
we are concerned with higher algebraic structures that are derived from these simple
ones. Specifically, we rigorously extend the group framework to a ring framework (as
outlined in [1]) and extend the semigroup framework to a semiring framework. Much
of the classical work on fault-tolerant computation is developed for the case of rings,
but the connections to group computations have not been highlighted prior to [1].
Our systematic work on protecting semiring computations appears to be novel.

These extensions to higher structures allow us to protect more complex and more
common computations that comprise two operations associated by some distributive
laws. Moreover, different possibilities are opened up for the resolution of certain
important issues. For example, the error model need not be purely additive anymore;
it can have both an additive and a multiplicative component. By having more options
for modeling the error, we should be able to better approximate the actual faults that
take place in the computational system. This can lead to more efficient arithmetic
codes and to error correction techniques that were not possible in the group/semigroup
case.

In this chapter, we limit ourselves to setting the foundations of a ring/semiring
framework for studying arithmetic codes. We formulate the problem mathematically
and, through examples, we study the design of arithmetic codes. The application
of this framework to the analysis of arithmetic codes, the design of efficient error
correction techniques, and so on, is left to future work.

This chapter is organized as follows. In Section 5.2 we formalize and develop the
ring-theoretic framework that was mentioned in [1]. Then, in Section 5.3, we provide
a few examples that fit in this framework. The semigroup framework is extended to

51

a semiring framework' in Section 5.4. A few examples of separate codes for semirings
are presented in Section 5.5. Finally, Section 5.6 summarizes the results and concludes
the chapter.

5.2 Ring-Theoretic Framework
In this section we extend the results of Chapter 2 for the group case to a higher
group-based structure known as a ring. Because our analysis closely follows the steps
that we took in Chapter 2, we avoid detailed explanations when possible. We begin
with the definition of a ring, and of the associated model for computations in a ring.

5.2.1 Computation in a Ring

The definition of a ring (taken from [23]) is as follows.
Definition: A ring 1Z = (R,+, x) is a non-vacuous set of elements R together

with two binary operations + and x (called addition and multiplication respectively),
and two distinguished elements + and 1 x such that:

* R forms an abelian group under the operation of addition. The identity element
of the group is 0+.

* forms a monoid under the operation of multiplication. The identity element
of the monoid is l x.

* For all a, b, c E R, the following distributive laws are satisfied:

1. a x (b+ c) = (a x b)+ (a x c), and

2. (b+ c) x a = (b x a) + (c x a).

The most familiar example of a ring is the set of integers under the operations
of addition and multiplication (this ring is denoted by (Z, +, x)). Another familiar
example is the ring (R[z], +, x) of polynomials in the indeterminate z. Both of these
rings are abelian rings, because the multiplicative operation is also an abelian oper-
ation. An example of a non-abelian ring, perhaps less familiar, is the set of N x N
matrices under the operations of addition and multiplication (matrix multiplication
is not an abelian operation).

The defining properties of a ring force the additive identity O+ to act like the
multiplicative zero ([15]), that is, for all elements r E R:

r x 0+ = + x r = O+

This is a very important property of a ring. In fact, as we will see later on, this is
what forces the kernel of a homomorphism to have the form of an ideal.

1A semiring is the natural extension of a ring when we relax the requirement that the set forms
a group under the additive operation and, instead, only require it to form a monoid. A formal
definition of the semiring structure is given in Section 5.4.

52

Operands
..............................

-'W 1 -

r2 ' [I
02

rp
X

Detectable or
Irreversible Error

I ~~~~~~~~.
I

|Error Resu r
iH |Corrector H Decodere

a(.) a(.) Result

- y' - R s l

I

Errors {ei}

Figure 5-1: Fault-tolerant model for a ring computation.

Fault-Tolerant Model

The model for fault-tolerant ring computation can be seen in Figure 5-1. Just as
with the previous models we have seen, the operands r, r2 , ... , rp are encoded via the
encoders {i}. The computation takes place in the redundant computational unit
that performs operations in a higher (redundant) ring. Errors {ei} are introduced
during this redundant computation.

The rest of the fault-tolerant system remains exactly the same as the model for
group computations of Chapter 2. The output of the redundant computation unit is
a possibly corrupted result, which we denote by r. The error corrector maps r to
the fault-free redundant result rH. In the case of an error that is irreversible or only
detectable, the error corrector signals so. The decoder maps (through the decoding
mapping a) the fault-free redundant result rH to its desired, unencoded form, r. As
usual, an implicit assumption in this figure is that the encoders, the error corrector
and the result decoder are fault-free.

Error Model

Despite the fact that the choice of error model does not affect the limited analysis
that we present in this thesis, a few remarks on this choice are in order. It should be
clear by now that, in the case of a ring, the additive error model (defined with respect
to the + operation) is not necessarily the best. A multiplicative error model (that
is, an error model that is "additive" with respect to the x operation2), or perhaps a

2The use of a multiplicative error model is more sensible if the ring is abelian, that is, the
multiplicative operation is abelian. If the ring is not abelian, then we should be more careful: we

53

0'6C niz -0
- 2
C a.to
C CM M
-0 E0 Mcc co

combination of a multiplicative and an additive error model, could be a better choice.
Of course, it all depends on the particular computation at hand, the actual hardware
faults that can take place in our computational system, and how efficiently these
faults can be represented by our error model.

Since the choice of the error model does not affect the analysis of arithmetic codes
that we present in the rest of this section, we are content to leave further study of
the error model to future work.

5.2.2 Use of Ring Homomorphisms
Let us now formulate the requirements that emerge from our model in terms of the
original ring (R, +, x), the redundant ring (H, o, o), and the decoding mapping a.
The desired result r is found by decoding the uncorrupted result rH of a fault-free
redundant computation:

r = rl GO r2 ... rp - (rH)

where each ® could independently be either the additive (+) or the multiplicative
(x) operation of the original ring R, and rH = 0j(rj)*,2(r2)*...,*p(rp) with * being
either the additive (o) or the multiplicative () operation of the redundant ring H.

We are now in position to state the following claim:
Claim: When both (R, +, x) and (H, o, <) are rings, under the assumptions that:

1. The mapping a is one-to-one, and

2. b 1(lx) = 2(lx) = ... = p(Xx) = 1o (that is, all encodings map the multiplica-
tive identity of R to the multiplicative identity of H),

all the 4i's have to be the same ring homomorphism b = a - 1.
Proof: By simply considering R as a group under the additive operation, we can

show (Chapter 2) that all the qi have to be the same (i(r) = ar(r) for all r E R)
and satisfy:

qi(r, + r 2) =- (ri) Oi(r 2) for all r, r 2 E R

Moreover, by simply considering R as a monoid under the multiplicative operation,
we can show (Chapter 3) that for each encoding, qi(r) = o'l(r) for all r E R, and
also3:

Oi(rl xr 2) = Oi(rl) < >i(r 2) for all rl, r 2 E R

The above two equations, together with the condition i(lx) = lo, that we have
assumed, are exactly the definition of a ring homomorphism. v /

In arriving at this result, we only had to make the same set of basic assumptions
that we made earlier in Chapters 2 and 3 when considering the simpler group and
semigroup structures. The only extra choice we had was whether to associate the

need to define a left and a right multiplicative error and distinguish between the two.
3 In Chapter 3 we assumed that we were dealing with an abelian monoid. However, the proof of

the following relation does not require the monoid to be abelian.

54

additive operation of R with the multiplicative operation of H (instead of its additive
operation). However, this could not guarantee that the mapping would be compatible
with the associative laws that hold in the original ring R. In fact, the multiplicative
operation in the redundant ring H is not even known to be abelian, whereas the ad-
ditive operation of R is. Therefore, a way to overcome these problems is to associate
the additive (respectively, multiplicative) operation of R with the additive (multi-
plicative) operation of H. Once we decide on this, the mappings {i} are forced to
be the exact same ring homomorphism sb.

By studying ring homomorphisms, we can develop and analyze arithmetic codes
for computational tasks that can be modeled as operations in a ring. Moreover, just
as in the group case, there is a systematic way of studying separate codes for ring
computations. This is the theme of the next section.

5.2.3 Separate Codes for Rings

In the special case of separate codes, the ring homomorphism b maps the original
computation in a ring R to a redundant computation in a higher order ring H, where
H is the cartesian product of R and a parity set (which is also a ring) that we will
call T, that is:

R 4 H=RxT

The homomorphic mapping satisfies (r) = [r, 0(r)], where 0 is the mapping that
creates the parity information from the operands. The set of valid results Hv in H
(that is, the set of results obtained under fault-free computation) is the set of elements
of the form [r, 0(r)], for all r R.

Let us now show that 0 is a ring homomorphism from R to T. Let the symbols
+, x denote the additive and multiplicative operations of R, the symbols o, o denote
the corresponding operations of H, and the symbols , 0 denote the corresponding
operations of the parity ring T. Also let:

h = (ri) = [ri, 0(ri)]

h = (r2) = [r2,0(r2)]

where h,h 2 H, r,r 2 E R, and 0(rl),0(r2) T. Since the computations of the
main and parity channels do not interact, we require that under error-free operation:

h o h2 = (r1) o (r 2) = [rl+r 2,0(r 1)e0(r2)]

h o h2 = (r)o (r 2) = [rixr2 ,0(r 1)00(r2)]

Since the mapping is a homomorphism, we also have:

O(r) o (r 2) = 0(ri + r2) = [rl+r 2 , 0(ri + r2)]
O(r) (r 2) = 4(r xr2) = [rix r2 , (ri xr2)]

55

We conclude that

0(rj)e0(r2) = 0(r, + r2)

0(rj)00(r2) = 0(rxr2)

The above properties, together with (lx) = 1, (a fact that can be shown easily),
establish that the mapping 0 is a ring homomorphism from R to T.

If we require that 0 is onto T, then the problem of finding suitable separate codes
reduces to the problem of finding suitable surjective homomorphisms 0 from R onto
T. Here is where a standard theorem from ring theory (see for example [15]) almost
solves our problem completely. Before we state it, however, we need to define what
an ideal is.

Definition: A nonempty subset U of a ring (R, +, x) is said to be an ideal of R
if4:

1. U is a subgroup of R under the additive operation.

2. For every u E U and r e R, both uxr and rxu are in U.

Theorem: Let R, T be rings and 0 a homomorphism of R onto T with kernel U.
Note that U is an ideal of R. Then T is isomorphic to R/U. Conversely, if U is an
ideal of R, then R/U is a ring and it is a surjectively homomorphic image of R.

The above theorem states that there is an isomorphism between surjective homo-
morphisms 0 of the ring R onto T, and ideals U of R: the quotient ring R/U provides
an isomorphic image of T. Therefore, by finding all possible ideals of R, we can find
all possible surjective homomorphisms 0 of R onto another ring T. Note that once
we decide upon the ideal U, then the construction of the quotient ring R/U only
uses the additive group structure of the ring: R/U is formed by the standard coset
construction for groups. The ring structure is such that the multiplicative operation
only needs to be considered when finding an ideal for the ring R. After that, we only
need to worry about the additive operation.

The problem of finding all possible separate codes for a computation with an
underlying ring structure has been reduced to the well formulated algebraic problem
of finding all possible ideals of a ring. Of course, finding the ideals of a ring is not a
trivial task, but now we at least have a well-defined procedure that can be used to
construct arithmetic codes. Moreover, it results in a complete characterization of the
possible separate codes for computation in a ring.

5.3 Examples in the Ring-Theoretic Framework
In this section we present some examples (taken from [1]) of already existing arith-
metic coding schemes in the ring framework. We start with examples of non-separate
codes and then move to examples of separate ones.

4 Some authors use the term "two-sided ideal" for what we define here as an ideal.

56

5.3.1 Examples of Non-Separate Codes

The dominant example of a non-separate arithmetic code comes from the ring of
N x N matrices. The example was presented in detail in Chapter 1 as an instance of
Algorithm-Based Fault Tolerance (ABFT). The set of NxN matrices forms a group
under the operation of matrix addition. If we include matrix multiplication, it forms
a non-abelian ring (known as the ring of matrices). Assuming an additive error model
(with respect to the additive group operation), errors take place as:

R'= R+E

where R' is the possibly corrupted result, R is the error-free result, and E is a matrix
that represents the additive error.

Under these assumptions, a homomorphism that maps the matrix ring to a
larger redundant ring will correspond to an arithmetic code. Therefore needs to
satisfy the following requirements:

q(A + B) = q(A) o +(B)

q(A xB) = (A) b(B)
4(I) = o

where the symbols o and o have been used to denote the operations that take place
in the homomorphic ring and are not necessarily the same as the operations of the
original ring. The symbol Ix represents the multiplicative identity (identity matrix)
in the original ring, whereas I represents the multiplicative identity in the redundant
ring.

In the ABFT example that was presented in Chapter 1, the homomorphic mapping
q maps the N x N matrix to a larger (N + 1) x (N + 1) matrix by adding to it an extra
checksum row and an extra checksum column5. In order to satisfy the homomorphism
equations above, we need to ensure that we perform the (N + 1) x (N + 1) matrix
product q(A)o4(B) in the following way: we ignore the checksum column of A and the
checksum row of B and then perform regular matrix multiplication of an (N + 1) x N
matrix with an Nx(N + 1) matrix. It can be easily verified that the result will
be an (N + 1) x (N + 1) matrix that satisfies the requirements for the mapping to
be homomorphic. The operation of addition on the homomorphic images o remains
the same as regular matrix addition. The last requirement (that the multiplicative
identity Ix maps to I,) is also satisfied by the mapping q$ and the multiplicative
operation o as defined above.

This scheme was introduced in [3] and provided sufficient error correction as long
as the error matrix E had only a single non-zero entry. When E has more than one
non-zero entry, we need more redundancy. ABFT schemes for exactly this purpose
were developed later in [4]. They were basically a natural extension of the method
described above.

5 The element in the lower right corner of the matrix turns out to simply be the sum of all the
elements of the original N x N matrix.

57

More examples of codes in the ring framework can be found in [1]. Such codes
include linear transformations, codes for finite fields6 and others.

5.3.2 Examples of Separate Codes

Residue codes are separate codes that can be used to protect computation in (Z, +, x),
the ring of integers under addition and multiplication.

The ideals of (Z, +, x) are known to be of the following form:

U = {O0, M, ±2M, 3M,...}

for a non-negative integer M. If M = 0 then U = {Of} and this corresponds to the
surjective homomorphism 0 being an isomorphism that maps (Z, +, x) onto itself, i.e.
the parity information is just a repetition of the element being coded. If M = 1, then
U = Z and 0 corresponds to the trivial homomorphism that maps Z onto the trivial
ring of a single element7 .

However, for all other M > 1 we get a non-trivial separate code. Given our results
in Chapter 4 on separate codes for (Z, +), it is not hard to convince oneself that
when M > 1, the code corresponds to a parity channel that performs addition and
multiplication modulo M. Therefore, we have arrived at the interesting conclusion
that the only possible non-trivial separate codes for protecting computation in the
ring of integers are residue codes that perform operations modulo an integer M. In
fact, this same result was obtained by Peterson [17].

More examples of separate codes for ring-based computations can be found in [1].
They include examples in the ring of polynomials, linear transformations, real residue
codes, and others.

5.4 Semiring-Theoretic Framework

5.4.1 Computation in a Semiring

In this section we are interested in studying higher semigroup-based structures. More
specifically, we study fault-tolerant computation in a semiring, a simple algebraic
structure that admits two operations. We begin with the following definition of a
semiring, which is a slightly altered version of the definition found in [24]:

Definition: A semiring = (R,+, x) is a non-vacuous set of elements R
together with two binary operations + and x (called addition and multiplication
respectively), and two distinguished elements + and 1x such that:

* R forms an abelian monoid under the operation of addition. The identity ele-
ment of the additive monoid is 0+.

6A field is a special case of a ring where the multiplicative operation is abelian and the set of
non-zero elements forms a group under the multiplicative operation.

7Technically speaking, our definition of a ring does not allow for this trivial ring.

58

* R forms a monoid under the operation of multiplication. The identity element
of the multiplicative monoid is 1x

* All a, b, c E R satisfy the distributive laws:

1. a x (b + c)=(a x b) + (a x c),and

2. (b + c) x a = (b x a) + (cx a).

Clearly, every ring is a semiring. The most natural example of a semiring that is
not a ring is the set of non-negative integers under integer addition (additive opera-
tion) and multiplication (multiplicative operation). This semiring is usually denoted
by (No, +, x). One can easily check that the conditions of a semiring are satisfied:
integer addition is abelian and associative, integer multiplication is associative, and
multiplication distributes over addition. In fact, (No, +, x) will be the focus of our
examples in the next section.

Other examples of semirings are (Z U {-oo}, MAX, +), the set of integers under
the operations MAX (additive operation) and + (multiplicative operation)8 , and (R U
{-oo},MAX,+) (the set of real numbers under the same operations). Clearly, we
can replace the MAX operation with MIN (and include the symbol +o instead of
-oc) and still get a semiring. Another interesting example of a semiring is (Z U
{±oo},MAX, MIN) that is, the set of integers under the MAX and MIN operations.
In fact, (Z U {±oo}, MIN, MAX), (R U {i±oo}, MAX, MIN), (R U {'oo}, MIN, MAX) are
also examples of semirings. The reader can verify that these structures satisfy the
requirements of our semiring definition.

Before we present the general framework for protecting computations with an
underlying semiring structure, we make a comment on the definition of a semiring.
Some authors assume that a semiring is a bit more structured, requiring that in a
semiring (R, +, x) the additive cancellation law is satisfied, that is:

For all a, b, c E R, if a + c = b + c then a = b

Interestingly enough, this assumption forces 0+, the additive identity of R, to behave
as a multiplicative zero9 :

For any element r R: r x 0+ = 0+ x r = 0+

Some other authors (including [24] and [25]) simply assume that a semiring satisfies
the equation above (and not necessarily the additive cancellation law). As we will
see in our analysis, this assumption simplifies our task slightly. However, we keep the
definition and the analysis of a semiring as general as possible. We begin the analysis
of the fault-tolerant model in the next section.

8 This is an interesting example because integer addition behaves like a multiplicative operation.
9 The proof makes use of the distributive and additive cancellation laws. We leave it to the reader.

59

Operands

Detectable or
ri Irreversible Error

r2 : ,
-o.¢L -KH Sr' rN~~

C Error Result

rp g~~r

*~~~~~~ E

Errors {ei)

Figure 5-2: Fault-tolerant model for a semiring computation.

Fault-Tolerant Model

In order to protect a computation with an underlying semiring structure, we use the
computational model shown in Figure 5-2. We protect a computation in a semir-
ing R by mapping it to a larger (redundant) semiring H. The operands rl, r2,..., rp
are encoded via the encoders {i} and the redundant computation takes place in
semiring H. Errors ei} might be introduced during this redundant computation.
Onceie again, we assume that the encoders, error corrector and decoder are error-free.

The rest of the fault-tolerant system remains exactly the same as in the model for
semigroup computations n Chapter 3. Let us denote the possibly corrupted output
of the redundant computational unit by r; then the error corrector tries to map rsemiingH. rror {e}mght e itrouce duigtiHeudatcmuain
to the fault-free redundant result rH. In the case of an irreversible or a detectable
error, the error corrector signals so. The decoder, as usual, performs the decoding of
the fault-free redundant result to its original form, which we denote by r.

5.4.2 Use of Semiring Homomorphisms
Before we start our analysis, we make a note on semiring homomorphisms: a semiring
homomorphism from (R, +, x) to (H, o, o) is, by definition, a mapping q5 that satisfies
the following rules:

* For all a, bER:

4(a + b) = ¢(a) o (b)

4(axb) = +(a)qO+(b)

60

* The mapping should also map the additive and multiplicative identities of R to
the additive and multiplicative identities of H respectivelyl°:

+(0+) = 00

¢(lx) = lo

By following the steps of Section 5.2, we can easily arrive at the following conclu-
sion:

Claim: Suppose (R, +, x) and (H, o, o) are both semirings, with identities 0+, lx
and 0 , 1o respectively. Then, under the assumptions that:

1. The mapping a is one-to-one,

2. q0(0+) = 2(0+) = ... = p(0+) = 0o (that is, all encodings map the additive
identity of R to the additive identity of H), and

3. 1l(1x) = 2 (lx) = ... = p(lx) = lo (all encodings map the multiplicative
identity of R to the multiplicative identity of H),

then all Oi's have to be equal and have to be a semiring homomorphism q$ = a - 1 .

Proof: The proof is virtually identical to the proof in Section 5.2 and is left to
the reader. V

At this point we have established that the study of arithmetic codes for a given
semiring computation is equivalent to the study of semiring homomorphisms. In what
follows, we use this result to study separate codes for semirings.

5.4.3 Separate Codes for Semirings
In the ring case that we analyzed in Section 5.2, there was enough structure so that a
simple specification of the kernel of a ring homomorphism (which really corresponds
to what was defined earlier as an ideal) was able to determine completely the whole
homomorphism. In the semiring case, we are not as fortunate. As we will see, the
analysis breaks down at two points:

* The kernel of a semiring homomorphism, being a normal subsemigroup under
the additive operation, is not even strong enough to completely specify the
normal complexes of the semiring under the additive operation.

* Even if we are able to specify all possible ways of partitioning the semiring into
normal complexes under the additive operation (given a kernel for a homomor-
phism), it is not guaranteed that all of these partitions will comply with the
homomorphic requirement on the multiplicative operation.

101f the semiring H satisfies the additive cancellation law, we can easily show that the mapping
has to map the additive identity of R to the additive identity of H. Therefore, in this case, the first
of the two statements is not necessary.

61

The theoretical analysis that follows generalizes the notion of a semigroup con-
gruence relation/class to a semiring congruence relation/class, and the notion of a
normal complex/subsemigroup to the notion of a semiring ideal/complex. The at-
tempt is to provide definitions, tools and methods that enable us to study semiring
homomorphisms.

Parity Encoding for Separate Codes

The model for fault-tolerant computation using separate arithmetic codes remains
exactly the same as the model for a computation that takes place in a ring. By fol-
lowing the steps we followed in Section 5.2, we can show that the encoding mapping 0
has to be a semiring homomorphism from (R, +, x) to (T, ED, o), because it satisfies:

* For alla,bER:

O(a + b) = (a) O(b)

0(axb) = (a) 0 0(b)

* Also:

0(0+) = 0D

0(1x) = 1®

Determination of Possible Homomorphisms

In this section, just as we did in the previous cases, we assume that the semiring
homomorphism is surjective, and outline a systematic approach for enumerating all
such homomorphisms for a given semiring R. In order to achieve that, we look for
semiring congruence relations and attempt to partition the original semiring into
classes based on these relations:

Definition: An equivalence relation on the elements of a semiring (R, +, x) is
called a semiring congruence relation if it is compatible with the two operations
of the semiring in the following sense:

For a,b,a',b' E R we have: If a a',b .. b' =e a+b - a'+b' and axb . a'xb'

Now, let the set R/- denote the set of equivalence classes of the semiring R under
the semiring congruence relation - (we call these classes semiring congruence classes).
For equivalence classes [a], [b] ([a] is the equivalence class that contains element a) we
define the following binary operations:

[a]e[b] = [a+b]

[a]®[b] = [axb]

Claim: Both of the above operations are well-defined and R/- (the set of equiv-
alence classes of R under the congruence relation) is a semiring.

62

Proof: If [a] = [a'] and [b] = [b'] then a - a' and b b'. Therefore, a + b - a' + b'
and a x b a' x b', which means that a + b belongs to the same semiring congruence
class as a' + b', and a x b belongs to the same semiring congruence class as a' x b'.
Therefore, operations D and 0 are well-defined. Operations , 0 are clearly asso-
ciative (they inherit associativity from +, x respectively). Moreover, operation E is
evidently abelian and the distributive laws for operations (ED and 0 are inherited from
the distributive laws of R. The additive identity of R/- is [0+] and its multiplicative
identity is [x]. Therefore, (R/., E, ,) is a semiring. v /

Now, we are ready to state the following theorem:
Theorem: Let : (R, +, x) , - (T, E, 0) be a surjective semiring homomor-

phism. Let relation be defined by:

x-y X 9(x) = a(y)

Then, '- is a semiring congruence relation and R/- is isomorphic to T. Conversely,
if is a semiring congruence relation, then the mapping 0: R |-+ R/- such that for
all r e R

0(r) = [r]

is a surjective semiring homomorphism.
Proof: The proof is exactly the same (other than considering two operations

instead of one) as the proof of the similar statement for a semigroup in Chapter 3.
We leave the details of the proof to the reader. /

The above theorem states that all surjective homomorphic images T of a semir-
ing R can be found (up to isomorphism) by finding all semiring congruence relations
that exist in R. Therefore, all possible separate codes that protect a computation in
a semiring R can be enumerated by finding all semiring congruence relations of R.
In each case, the semiring T that provides the parity information is isomorphic to
R/-. and H is isomorphic to R x R/ . Of course, the enumeration of all semiring
congruence relations might not be an easy task. However, we have obtained a com-
plete characterization of the separate codes for a semiring computation. Moreover,
we have an algebraic framework that can be used to study separate codes for semiring
computations.

The notion of semiring congruence relations in a semiring R investigates surjective
semiring homomorphisms by looking "globally" over the semiring and verifying that
certain equivalence classes satisfy the requirements of a semiring congruence class.
However, sometimes we would like to address more "local" questions: under what
conditions could a given subset of elements of R correspond to a semiring congruence
class (or, equivalently, to the complete preimage of an element under some semiring
homomorphism of R). The remainder of this section answers this question by in-
troducing the concepts of a semiring complex and a semiring ideal (which are really
extensions of the normal complex and normal subsemigroup respectively).

Definition: A non-empty subset N of a semiring (R, +, x) is called a semiring
complex if:

* For any z,l,r R and for any n,n 2 E N,

63

if z+ (I x n x r) EN, then z+ (I x n2 x r) E N. -

The following theorem establishes the equivalence between a semiring complex
and a semiring congruence class.

Theorem: For the subset N of a semiring R to be a complete preimage of one
element under some surjective homomorphism of R, it is necessary and sufficient that
N be a semiring complex.

Proof: The proof is rather long and is deferred to Appendix A. v /

If we look at the special case of the congruence class that contains the additive
identity O+ of R (that is, the kernel of the homomorphism) we get the following:

Definition: A non-empty subset U of a semiring (R, +, x) is called a semiring
ideal if:

* O+ E U.

* For any z, 1, r E R and for any n1 , n2 E U
If z + (x ni x r) E U, then z + (x n2 x r) E U.

Theorem: In order that the subset U of a semiring R should be, under some
surjective semiring homomorphism 0 : R T, the complete preimage of the additive
identity 0 e of T, it is necessary and sufficient that U be a semiring ideal.

Proof: U has to be semiring complex and has to contain the additive identity
(because for any semiring homomorphism 0(0+) = 0f). V/

Before closing this section, let us make an observation about the form of the
semiring ideal in the special case of a semiring in which the additive identity acts as
a multiplicative zero that is, for any element r E R:

O+ x r = r x O+ = 0+

Since 0+ e U we see that for any u1, u2 E U we need:

ul + (lxu 2 x r) E U for all , rER

(this is easy to see - just express u = u + x 0+ x r for any 1, r E R). If we set
r = = 1 x, we see that U is a subsemigroup under the additive operation (in fact,
it has to be a normal subsemigroup, as can be seen easily). If we set u1 = 0+ we see
that for any u E U and all 1, r E R

lxuxrEU

We conclude that in this special case a semiring ideal is a subset U of R such that:

* U is normal subsemigroup that contains 0+ under the additive operation.

* For any1, rERtheset 1 x U x r CU.

Under these circumstances, the concept of a semiring ideal is exactly the same as in
[24] and is very close to the concept of the ideal in the ring case that we studied in
Section 5.2.

64

Semiring (No,+,x)

Figure 5-3: Example of a residue check mod 4 for the semiring (No, +, x).

At this point, we conclude the theoretical analysis for the semiring case. In order
to demonstrate these results and ways to use them, we present a few examples.

5.5 Examples in the Semiring-Theoretic Frame-
work

5.5.1 Separate Codes for (No, +, x)

In this section we present examples of separate codes for (No, +, x), the semiring of
non-negative integers under addition and multiplication. Our analysis results in a
complete characterization of the separate codes for this semiring. However, this is
in some ways an unfortunate example, because the analysis is relatively easy. The
elaborate theoretical analysis in the previous section can be verified, but those results
are not really necessary in finding the possible separate codes.

By comparing (No, +, x) with (Z, +, x) we can easily see that a residue check
can be used to protect computation in this semiring. Such a check corresponds to a
parity channel that performs integer addition and multiplication modulo some positive
integer M. Figure 5-3 shows an example of such a residue check when M = 4. The
semiring congruence classes under this surjective homomorphism are shown in the
figure. The operations $ and 0 that take place in the parity semiring T are simply
addition and multiplication modulo 4.

From the results of the previous section and from the examples in Chapter 4,
we expect that this kind of separate code might not be the whole story. Any par-

65

Semiring (No,+,x)

Figure 5-4: Example of a parity check code for the semiring (No, +, x).

tition of (No, +, x) into semiring congruence classes results in a semiring surjective
homomorphism. We know that the semiring congruence classes for (No, +, x) are
congruence classes under both operations (addition and multiplication), that is, they
are semigroup congruence classes for both (N0 , +) and (No, x). Since we already
have a complete characterization of the congruence classes for (No, +) (Chapter 4),
we know that the semiring congruence classes for (No, +, x) can only correspond to
homomorphic mappings of the form:

1. For n E No, O(n) = n mod M, where M is any finite integer.

2. For fixed finite positive integers M, k, for n E No we have:

O(n) = n if n < kM

O(n) = n mod M, otherwise

Fortunately, the above classes also satisfy the congruence requirements under the
multiplicative operation. Therefore, they can be used as separate codes for protecting
computations in the (No, +, x) semiring. In fact, this is a complete characterization
of all separate codes for this semiring. In Figure 5-4 we present an example of a parity
check code for (No, +, x) that is of the second form mentioned above: if the result is
less than 8, then the parity channel duplicates the computation, otherwise it simply
performs addition or multiplication mod 4. The parity semiring T has operations
e (additive) and 0 (multiplicative). The defining tables for them can be found in
Table 5.1.

66

OPERATION I

[6 1[0 1 2 3 4 1 5 1 6 1 7 104 14124134
0 0 1 2 3 4 5 6 7 04 14 24 34
1 1 2 3 4 5 6 7 04 14 24 34 04

2 2 3 4 5 6 7 04 14 24 34 04 14
3 3 4 5 6 7 04 14 24 34 04 14 24
4 4 5 6 7 04 14 24 34 04 14 24 34
5 5 6 7 04 14 24 34 04 14 24 34 04

6 6 7 0 4 14 24 34 04 14 24 34 04 14
7 7 04 14 24 34 04 14 24 34 04 14 24
04 04 14 24 34 04 14 24 34 04 14 24 34

14 14 24 34 04 14 24 34 04 14 24 34 04
24 24 34 04 14 24 34 04 14 24 34 04 14
34 34 04 14 24 34 04 14 24 34 04 14 24

OPERATION 0

[® ° 0 1 2 3 1 4 5 1 6 1 7 04 14 24 34
0WW ho o YY h 0 0
1 0 1 2 3 4 5 6 7 04 14 24 34

2 0 2 4 6 04 24 04 24 04 24 04 24
3 0 3 6 14 04 34 24 14 04 34 24 14
4 0 40 04 04 04 04 04 04 04 04 04
5 0 5 24 34 04 14 24 34 04 14 24 34
6 0 6 04 24 04 24 04 24 04 24 04 24
7 0 7 24 14 04 34 24 14 04 34 24 14
04 0 04 04 04 04 04 04 04 04 04 04 04
14 0 14 24 34 04 14 24 34 04 14 24 34
24 0 24 04 24 04 24 04 24 04 24 04 24
34 0 34 24 14 04 34 24 14 04 34 24 14

Table 5.1: Defining tables of the operations and for the parity semiring T.

67

In Section 5.3, we saw that the only possible kind of separate code for computa-
tions in (Z, +, x), the ring of integers under addition and multiplication, is a parity
check that performs addition and multiplication modulo M (M being a positive in-
teger) [16] [17] [1]. However, when concentrating on the less structured semiring of
non-negative integers (No, +, x), more possibilities are opened. We hope that, by us-
ing the semigroup framework, we can utilize this extra flexibility to discover efficient
codes that suit our error detecting and correcting requirements.

5.5.2 Separate Codes for (U {too}0, MIN, MAX)

In this section we briefly discuss separate codes for (ZU{I±oo}, MIN, MAX) the semiring
of integers under the operations MIN (additive) and MAX (multiplicative). The same
discussion applies if we switch the two operations (that is we make MAX the additive
operation and MIN the multiplicative one).

We already know from the analysis of (Z, MIN) and (Z, MAX) in Chapter 4 that the
congruence classes for both of these semigroups are intervals of consecutive integers.
Therefore, we conclude that the semiring congruence classes for (ZU{i±oo}, MIN, MAX)
will be of the exact same form, that is consecutive intervals of integers. All of the
examples of separate codes that we saw in Chapter 4 for (Z, MAX/MIN) can be used
without any modification to protect this semiring.

In fact, this is a complete characterization of all possible semiring congruence
classes of (Z U {oo}, MIN, MAX). Clearly, the same results apply to the semirings
(R U {+oo}, MAX, MIN) and (R U {+oo}, MIN, MAX).

5.5.3 Separate Codes for (U {-o}, MAX, +)

If we consider the congruence classes of the semigroups (Z, MAX) and (Z, +) sepa-
rately (both of them were analyzed in Chapter 4), we see that they have no common
intersection (other than the trivial congruence classesll). Therefore, we conclude
that no non-trivial separate codes can be used to protect computation in the semir-
ing (Z U {-oo}, MAX, +). Of course, the same results apply to (Z U {+oo}, MIN, +),
(R U {-oo}, MAX, +), and (R U {+oo}, MIN, +).

It is interesting to note that the above conclusion is false for the semiring (No U
{-o},MAX, +). As we saw in Chapter 4, the semigroup (No, +) allows for more
kinds of surjective homomorphisms than the group (Z, +). This extra freedom
suggests that there might exist non-trivial surjective homomorphisms for the semir-
ing (No U {-oo}, MAX, +). In fact, one such homomorphism (taken from [24]) is the
following:

"Each semigroup/semiring can be partitioned into congruence classes in two trivial ways:

1. Take the whole set of elements as one big congruence class. This corresponds to a surjective
homomorphism that maps everything to the zero element.

2. Make each element a separate congruence class. This corresponds to an isomorphism.

68

Let X, be the finite set {-oo, 0,1, ... , n}, where -oo is assumed to satisfy the condi-
tions -oo < i and -o + i = -X for i E X,. Let o be the operation xoy = MAX(x, y)
and < be the operation x y = MIN(x + y, n). (One can easily check that (X,, o,)
is a finite semiring.) Now, if we let , : (N U {-o}, MAX, +) - > (X., o, o) be the
mapping:

An(i) = i, for i <n

= n, otherwise

for all i E No, we easily conclude that bn is a semiring homomorphism (the verification
is left to the reader). In fact, this mapping is very reminiscent of the homomorphisms
for (No, +) that we saw in Chapter 4, where up to a certain threshold (in this case
n) the homomorphic semigroup duplicates the original one. Once we exceed the
threshold, things get radically different.

5.6 Summary

In this chapter we developed frameworks for higher algebraic structures. More specif-
ically, we extended the work of Chapters 2 and 3 to treat computations with an
underlying ring or semiring structure. Many examples of arithmetic codes that fit
in these frameworks were presented: codes for the ring of matrices, the ring of inte-
gers, the semiring of non-negative integers and other structures were presented. More
importantly, we demonstrated the use of the tools and the results of our theoretical
analysis (for groups/semigroups and rings/semirings) in constructing arithmetic codes
for given computations. However, it is our belief that the potential applications of
this algebraic framework go beyond what we have demonstrated here: it can be used
for developing arithmetic codes that make efficient use of redundancy, for achieving
efficient error correction procedures, and for exploiting more fully the error model.

69

Chapter 6

Summary of Contributions, and
Suggestions for Future Research

In this thesis we have dealt with the problem of systematic design of arithmetic
codes to protect a given computational task. Starting from a very general setting, in
which we assumed that the computation can be modeled as a semigroup operation, we
managed to extend a previous group-theoretic framework to encompass a more general
set of computations. We were also able to extend our results to more complicated
algebraic structures, such as rings and semirings. The end result is to provide an
algebraic framework under which the design of arithmetic codes for semigroup and
semiring computations can be formulated as a mathematical problem and be solved
systematically.

6.1 Contributions and Conclusions

The starting point for this thesis was modeling a fault-tolerant system for a semigroup-
based computation as a composition of three subsystems: a unit that performs com-
putation in a larger redundant semigroup, an error corrector, and a decoder. We
assumed that the error corrector and the decoder were error-free (that is, protected
by modular redundancy or some other means), and concentrated on the redundant
computation unit.

Under a few elementary requirements on the structure of the redundant computa-
tion, we showed that all possible ways of adding redundancy correspond to semigroup
homomorphisms. Therefore, the redundant computation unit essentially performs a
homomorphic computation in a redundant semigroup of higher order. The above is
an important result because it places the problem of designing arithmetic codes into
an algebraic framework.

We then used this framework to characterize the error detection and correction
requirements for our arithmetic codes. Naturally, such a characterization requires
an underlying error model. The choice depends on the actual hardware that is used
to implement the computation. However, in order to demonstrate the use of the
framework, we adopted an additive error model (as used in [1]) and managed to

70

characterize the redundancy requirements with respect to the error detecting and
correcting capabilities of our codes.

In the special case of separate codes (that is, codes that provide fault tolerance
through a completely independent parity channel operating in parallel with the orig-
inal computational unit), we presented a constructive procedure that generates all
possible separate codes for a given semigroup-based computation. This is an interest-
ing result because it generalizes the previous procedure for group-based computations
to a more general set of computations.

Having established the algebraic framework, we presented many examples of arith-
metic codes that we constructed using the methods and the results mentioned above.
The objective was to demonstrate the use of the framework on simple, well-known
semigroup computations.

Finally, the framework was extended to the ring and semiring structures, which
are higher algebraic structures with one group operation and one semigroup operation
respectively. We then presented examples of arithmetic codes for these structures.

6.2 Future Research Directions

This thesis presented an algebraic framework for developing arithmetic codes. The
framework is very general and applies to all computations that can be modeled as
semigroup operations. The framework is also very theoretical, so there is a variety
of practical issues to be considered, as well as a number of directions in which the
framework can be extended.

6.2.1 Hardware Implementation and the Error Model

An arithmetic code can provide fault tolerance to a computational system if it protects
the parts of the system that are liable to fail. Therefore, there is a definite need to map
the abstract semigroup-theoretic formulation to actual hardware implementations, in
order to connect the theoretical results that we obtained in this thesis with the actual
implementation of our computational system. Hardware failure modes need to be
explicitly reflected in our algebraic formulation. This is extremely important: the set
of expected errors depends solely upon the specifics of our implementation, and it is
against this set of errors that the fault-tolerant system should provide protection. As
long as our model for the fault-tolerant computation does not provide direct links to
the actual hardware that is used, the error model cannot be specified with complete
success.

Choosing an error model should really be a tradeoff between simplicity in the
algebraic formulation and effectiveness in reflecting the actual errors that take place
in the system. For example, we have already seen that an additive error model was a
suitable choice for computational tasks with an underlying group structure. Despite
the fact that it might be a somewhat poor or inefficient reflection of the actual faults
that can take place in the system, an additive error model for group-based computa-
tions results in a coset-based error correction procedure, which is not as complicated

71

as the general error correction procedure. However, an additive error model can be
inefficient or intractable in situations where it does not directly reflect the actual er-
ror. For example, while a multiplicative error in a ring can be written as an additive
error, the additive error will be operand-dependent even if the multiplicative error is
not.

For a semigroup-based computation, the additive error model does not even result
in a simplified error correction technique. Therefore, it is not even clear why we
should use by default an additive error model (something that was done in the group
case for the sake of coset-based error correction). An error model that appropriately
reflects the hardware implementation and/or makes the task of error correction well-
defined, systematic, and easy needs to be developed. In order to achieve this, the
first step is to map the algebraic formulation onto an actual implementation. This
was accomplished in the past for some specific computational tasks (for example, for
operations of arithmetic processors in [16]). It is our hope that similar results can be
achieved for the more general setting we have presented in this thesis.

6.2.2 Non-Abelian Group or Semigroup Computations

Our results regarding semigroup homomorphisms, as well as the results on group
homomorphisms in [1], do not really require the underlying semigroup or group op-
erations to be abelian. Therefore, an interesting direction to take is to investigate
possibilities for extending this framework to non-abelian computations. Naturally, the
analysis would get more complicated: we would need to look for normal subgroups
and normal complexes, and we would have to be especially careful about the error
model. For example, a simple additive error model would not be sufficient because a
right error might behave differently than a left error.

6.2.3 Realizability of Arithmetic Codes

A question that was not addressed in this thesis was the realizability of an arithmetic
coding scheme. An arithmetic code needs to be efficient in the sense that encoding and
decoding of the data should be relatively easy to perform. A complicated arithmetic
code is not desirable for the following reasons:

* If such a code is too complicated, then modular redundancy could be more
efficient and much easier to implement.

* Complex coding and decoding is more liable to failures and invalidates our as-
sumption that the encoders, error corrector and decoder are fault-free. This
again reinforces the need for reflecting implementation in the algebraic formu-
lation.

6.2.4 Development of a Probabilistic Framework

An interesting direction is the inclusion of a probabilistic model in our framework.
Under such a model, we would be able to analyze the fault detection and correction

72

capabilities of a fault-tolerant system based on the prior probabilities of each of the
errors. This opens up a number of intriguing possibilities:

* The computational system can be characterized in terms of an average or ex-
pected performance. If error correction is time consuming but errors occur infre-
quently enough, then we could afford to use an arithmetic code once we know
that its overall performance will be adequate.

* Comparisons between fault-tolerant systems can be made on a fair basis.

* When a faulty result originates from more than one valid result, we could use
a number of classic methods of detection and estimation to achieve optimal re-
covery from the error(s). By allowing different errors to reach the same invalid
result in the redundant space, we relax the strict requirements on the redun-
dancy of the arithmetic code, and, by taking advantage of our knowledge about
the prior probability distributions of the errors, we can make efficient use of the
redundancy of the code.

* A hierarchical division of the errors according to their prior likelihoods can make
an important difference in the efficiency of the error correction techniques. If
error correction guarantees fast recovery from the most probable error(s) then
the average performance of the technique could be acceptable, even if certain
(infrequent) errors take a lot of time to be identified.

6.2.5 Subsystem Decomposition and Machines

Depending on how one looks at a computational task, there might be different kinds
of semigroup computations that can be associated with it. Consider the example of
linear time-invariant (LTI) discrete-time (DT) filters of finite order N that operate
on finite sequences. For simplicity, assume that the input sequences and the impulse
responses of the filters take on only integer values. If we look at LTI DT filters as
systems that produce one output at a time, we might think of the operation as a
sequence of N additions and N multiplications in a ring. Alternatively, we could look
at one multiplication and one addition at a time, which sets things up in the group
of integers under addition and the semigroup of integers under multiplication. Yet
another point of view is to consider the outputs of LTI DT filters as sequences, so we
might associate the underlying computation with the semigroup of finite sequences
(with integer values) under the operation of convolution. Similar possibilities exist
for median and other nonlinear DT filters. In fact, most DT filters can be seen as
computations in the semigroup of finite (or, more generally, infinite) sequences under
some desirable operation.

Depending on the level at which we look at the problem, we see that there exists a
variety of different approaches to protecting the given system. It would be interesting
to study the various tradeoffs between these different approaches, as well as the
differences in terms of the hardware overhead and the time delay involved. Since DT
filters are so important in a variety of signal processing applications, investigating

73

ways of providing fault tolerance in such systems seems an extremely interesting
research direction.

In fact, a computational machine can usually be regarded as an operation taking
place in the set of strings: given a collection of strings as an input, there is a rule
that specifies how to produce an output string. Therefore, with the right choice of
an operator, we can model a machine as a semigroup operation taking place in the
set of strings. An interesting future direction would be to investigate if and how
the semigroup-theoretic framework can be used to provide fault tolerance to a given
machine.

6.2.6 Links to the Theory of Error-Correcting Codes

If we restrict ourselves to a unary identity operation, then the arithmetic coding
scheme essentially reduces to an error-correcting coding scheme, of the sort considered
in communication theory. In fact, if the additive error model is a good description
of the interaction between the codewords and the noise in a communication channel,
then the framework with this error model (discussed in both Chapters 2 and 3) can
be used to generate error-correcting codes.

Considering binary vector spaces as an extension of the group framework, we
quickly arrive at the standard class of linear error-correcting codes [2]. In this case, the
error-correcting code is really a subspace of a higher dimensional space: redundancy is
introduced by mapping the original vector space V (consisting of the set of codewords
that we would like to protect) into a higher-dimensional vector space H. Codewords
from V get mapped to a subspace V' of H. Note that a subspace forms a group under
the operation of addition and functions in the same way as a subgroup in the case
of a group computation (Chapter 2). In fact, since the operation in this case is the
identity operation, we can use any "coset" of H under V' (which, in this case, is the
subspace V' "shifted" by some distance) to map codewords to. Codes created in this
fashion are known as coset codes [2].

Similarly, the semigroup framework can be used to generate error-correcting codes.
However, the additive error model in this case essentially reflects only errors that are
unidirectional. In fact, asymmetric codes that have been already developed in some
other fashion, like the Constantin-Rao single asymmetric error-correcting (SAEC)
codes [2], can be placed in the semigroup framework quite comfortably. The big
difference in this case is that, instead of looking at a subgroup and the cosets that
it creates (all of which are necessarily sets of the same order of elements), we look
at the normal subsemigroup and the corresponding normal complexes (which are not
necessarily sets of the same order).

In recent years, an even broader definition of a coset code is used (see, for example,
[26]). This definition allows almost all known coding techniques for band-limited
channels, such as lattice codes and trellis codes, to be viewed as instances of a coset
code. Under the framework of [26] and [27], a coset code is defined by a lattice

1In [26], a real lattice is defined as a discrete set of vectors (points, N-tuples) in real Euclidean
N-space RN that forms a group under ordinary vector addition.

74

partition A/A' and by a binary encoder C that selects a sequence of cosets in the
lattice A'. Moreover, geometric parameters (determined by the partition A/A' and
the encoder C) can be related quite naturally to fundamental coding parameters, such
as distance and coding gain. An interesting future direction would be to investigate
whether a framework similar to this can also be used for arithmetic codes. Naturally,
this would impose stricter requirements on the framework. However, since the notions
of redundancy and distance of an arithmetic code would immediately have geometrical
interpretations, it seems worthwhile to pursue research in this direction.

75

Appendix A

Proofs of Theorems

A.1 Enumerating all Separate Codes for (No +)

Here, we prove the claim made in Chapter 4 about the form of the parity checks for
(No, +), the semigroup of non-negative integers under the operation of addition.

Specifically, we prove the following claim:
Claim: All possible surjective homomorphisms from the semigroup (No, +)

onto a semigroup T have one of the following two forms:

1. For n E No, (n) = n mod M, where M is any finite integer (if M is infinite,
then 0 can be thought of as an isomorphism). This kind of homomorphisms
map (No, +) onto a finite cyclic group of order M 1 .

2. For a finite integer M, for n E No we have:
O(n) = n if n < kM (for a fixed positive integer k)
O(n) = n mod M, otherwise
This kind of homomorphisms map (No, +) to a finite semigroup of order M +
kM = (k + 1)M 2.

Proof: Let 0: No -+ T be an onto homomorphism and let - be the corresponding
congruence relation defined on the elements of No. Then, 0 maps each of the congru-
ence classes of the semigroup No to an element of the semigroup T. Moreover, since
0 is onto, any element of T has a non-empty preimage under 0 which is a congruence
class.

The following two theorems from [21] (adjusted for the sake of simplicity for the
abelian monoid case) show that congruence classes are equivalent to (normal) com-

'In the special case where M = 0, we get a trivial homomorphism from (No, +) onto the trivial
semigroup of a single identity element.

2When M = 0 the mapping reduces to:
O(n) = n if n < k (for a fixed positive integer k)
O(n) = Oo, otherwise
where 00 is an element in the homomorphic image of (No, +) that "almost" behaves as the zero
element.

76

plexes and (normal) subsemigroups3:
Theorem 1: In order that the subset C of a monoid M should be a complete preimage
of one element under some homomorphism of M, it is necessary and sufficient that
C is a (normal) complex.
Theorem 2: In order that the subset C of a monoid M should, under some homo-
morphism 0, be a complete preimage of the identity element of the monoid 0(M), it
is necessary and sufficient that C is a (normal) subsemigroup 4.

Once we have established an equivalence between the congruence classes of No
under the relation and its (normal) complexes and (normal) subsemigroup, we can
characterize all surjective homomorphisms 0 : No -+ T by characterizing all ways
of partitioning No into sets that comprise the (normal) complexes and the (normal)
subsemigroup.

From the definition of a (normal) complex (the subsemigroup) we can easily con-
clude that there are only two possibilities for a complex (the subsemigroup):

* It consists of a single element (in which case it trivially satisfies the definition
of a normal complex) or,

* It consists of an infinite number of elements and it is of the form:

{k + iM} for fixed positive integers k,M and i E {0, 1,2, ... }

The reason is simple: if a complex C contains at least two elements, say k, k' E C,
then we can always write the "largest" one (that is, the one that is generated using
the generator more times) in terms of the other. For example, if we assume without
loss of generality that k' is the "largest" one, we can write: k = k + M, where M
was chosen accordingly. Then, the definition of a complex forces all elements of the
form k + iM for i E {0, 1,2, ... } to lie in C. This can be proved easily by induction.
Note that M has to be the "smallest difference" between elements in C.

Once the form of the (normal) subsemigroup and the (normal) complexes is known,
all that's left to show to complete the proof is the following:

1. The "step" number M is the same for all infinite complexes.

2. If each infinite complex Ci starts at a value ki, then all ki have to lie in an
interval [AM,..., (AM+ (M-1))] for an appropriately chosen positive integer A.

The first statement can be proved by contradiction: if it is not true, then there
exist two different complexes C1 and C2 such that:

C1 = kl k iM i E {0,1,2,...}}

C2 = {k2 + jM2 j E {0,1,2,...}}

3 These were defined in Chapter 3. A normal complex is a nonempty subset C of an abelian
semigroup S = (S, o), such that for any x E S and for any k,k E C, ok E C always implies
xok' E C. A normal subsemigroup is a nonempty subset C of an abelian semigroup S such that for
any x E S and for any k, k' E C or being empty symbols, ok E C always implies ok' C.

4In the monoid case, this simplifies to a normal complex that contains the identity.

77

where M1 and M2 are different integers.
Let's assume without loss of generality that kl = k2 + d (where d is a non-negative

integer)5 . Then, by the definition of a congruence class (Chapter 3), the set given by:

d =C {d+kl iM l ie{ 0,1,2,...}}

= {k 2 + iM I i E {0,1,2,...}}

has to be a subset of a congruence class. Since it intersects the congruence class C2
(to see this, just let i = j = 0) it has to be a subset of it. So, d + C1 C C2. This can
only hold if M 1 = uM2 where p is a positive integer (for an infinite complex M 0 0).
Therefore, the two congruence classes are as follows:

C = {k + itM i E {0,1,2,...}}
C2 = {k2 + jM I je{0,1,2,...}}

where we have set M _ M 2 for simplicity.
A similar argument can be made the other way: for a large enough positive integer

a, we can find an integer d' such that:

k 2 + d = tM + k,

Then, we can conclude that the set given by:

d'+C2 = {k 2 +d'+ jM I je{0,1,2,...}}
= {k1 + cM + jM jj e {0,1,2,...}}
= {k + (+ j)MI j e {0,1,2,...}}

is a subset of a congruence class. Since it intersects C (for example, let i = 2ca,
j = aji), it has to be a subset of C1. Clearly, this is possible only if y = 1.

Therefore, all infinite congruence classes can only be of the form:

C = {k + jM I j e {0,1,2,...}}

and each of the other congruence classes consists of a single element.
It remains to show that all k E [AM,..., (AM + (M- 1))] for an appropriately

chosen A. The proof is again by contradiction. If the above was not true, then there
would exist two infinite congruence classes C1, C2 such that:

C1 = {ki + iM [i E {0,1,2,...}}
C2 = {k2 +ijM j e {0,1,2,...}}
k2 = kl +aM+d (A.1)

where a is a strictly positive integer, and, without loss of generality, we have assumed

5 Since (No, +) is a cyclic semigroup, we always have either k = k2 + d or k2 = k + d.

78

kl < k2.
Then, for large enough i, the set d + C, intersects the congruence class C2; it is

therefore a subset of it. However, that is impossible unless a = 0.
At this point, the proof of the claim is complete. We have demonstrated that the

only two kinds of separate codes for the (No, +) monoid are as given in the beginning
of this section 6. v/

A.2 Equivalence of Semiring Congruence Classes
and Semiring Complexes

In this section we prove the following theorem from Section 5.4:
Theorem: For the subset N of a semiring R to be a complete preimage of one

element under some surjective homomorphism of R, it is necessary and sufficient that
N be a semiring complex.

Proof: First, we prove that in order for the subset N to be a complete preimage
of some element under some surjective homomorphism of R, it has to be a semiring
complex.

Let N be the complete preimage of some element t E T under a surjective homo-
morphism 0: (R, +, x) i - (T, , ®). Then

0(n) = t for all n E N

For any elements nl, n2 E N and any elements z, 1, r E R, if z + (x nl x r) N
then (z) 0 (0(1) 0 0(n1) 0 O(r)) = t. Since 0(ni) = (n 2) = t , we conclude that
0(z) (0(l) 0 0(n 2) 0 O(r)) = t . Therefore, the element z + (x n2 x r) E N. This
establishes that N is a semiring complex.

Now, we prove the other direction of the theorem: a semiring complex N is the
complete preimage of an element under some (surjective 7) semiring homomorphism 0.
All we need to do is construct a homomorphism 0 under which N is the complete
preimage of an element of 0(R). Equivalently, we can construct a semiring congruence
relation - under which N is a complete congruence class. In fact, we follow the later
approach 8 .

First, we define in R the relation ': for elements rl, r2 E R we say that "r is
related to r2 through -"" (notation rl-'r2) if and only if:

r = r 2 or

* There exist n,n 2 E N and z,l,r E R such that we can write:

r = z + (I x nl x r)

6It is not hard to verify that these two kinds of separate codes in fact work, and we leave that
verification to the reader.

7The proof does not really require the semiring homomorphism to be surjective.
8We basically refine the relations used for semigroups in [21] to account for the fact that we are

dealing with a semiring.

79

r2 = z+(I x n 2 x r)

Note that the above relation is not quite an equivalence relation. It is clearly
reflexive (for all r E R, r'r) and symmetric (for all rl, r2 E R, if r1l'r 2 then r 2 ,'r 1).
To create an equivalence relation, we need the transitivity property. Therefore, we
define the relation as follows: r - r2 if and only if:

E There exists a finite sequence of elements {zl, z2, ... , Zn} E R such that:

rl ,zI 2 · Zn r2

One can easily check that relation ~ is an equivalence relation (it is reflexive, sym-
metric and transitive). Furthermore, it is a semiring congruence relation. To show
that, we need to show two things:

1. For all a,b,c,d E R, if a b and c d then (a + b) (c + d), and

2. For all a,b,c,d R, if a b and c d then (a x b) (c x d)

We start by showing the truth of the first statement. First, we will show that for
all a, b, c, d E R, if a-'b and c'd then (a + b) (c + d). For simplicity of notation, we
assume that multiplication precedes addition whenever parentheses are not used to
indicate the order of operations explicitly. We break the problem into four different
cases:

Case 1: There exist z, 11, r and 2 ,12 , r2 in R and nl,n2,n 3, n4 in N such that:

a = zl + ll x n 1 xr

b = zl+ll xn 2 xrl

= z 2 +12xn 3 x r 2

d = 2 + 12 x n 4 x r 2

By adding a to c and d, we see that:

(a + c) = (z1 + Z2 + lI X ni X r) + l 2 X n3 X r2

= z'+ 1 2 X n3 x r2

(a + d) = (Z + Z2 + x ni x ri) + 12 xn 4 r2

= z'+12 x n4 x r2

wherez'=zl + z2 + 11 x n xrl .
We conclude that (a + c)-'(a + d). Similarly, by adding d to a and b, we conclude

that (a + d),'(b + d). By the transitivity of -, we arrive at the important result
(a + c) - (b + d). By induction, we can easily show that for all a, b, c, d E R, if a b
and c d then (a + c) (b+d).

Case 2: a = b and c, d as above. The proof is basically the same as above (in fact,
easier).

Case 3: c = d and a, b as in case 1. The proof is the same as in case 2.

80

Case 4: a = b and c = d. Clearly a + c = b + d and therefore, (a + c) - (b + d).
Now we show that for all a, b, c, d E R, if a,'b and c-/d then (a x c) - (b x d). If

a-'b and c'd then we have the exact same cases we had above:
Case 1: There exist z, ll,rl and z2,12 ,r 2 in R and nl,n 2, n 3,n 4 in N such that:

a -= z + 11 x n x rl

b = zl+ll xn 2 xrl

= z2+12xn3xr2

d = z2 + 2 n4 x r2

Then, by left multiplying c and d by a we see that:

(a x c) = (zl x 2 + 11 x n x r xz 2) + (1 + 11 x nl x r) X 12 x n3 X r2

= z '+l' X n3 X r2

(a x d) = (z x 2 + 11 x nl x r x 2) + (l + 11 x nl x r) 12 X n4 x r 2

= z'+l' x n4 x r2

where z' = z x Z2 + ll x n1 x r x Z2 and 1' = (zl + ll x nl x r) x 12 .
We conclude that (a x c)-'(a x d). Similarly, by right multiplying a and b by d, we

conclude that (a x d)'(b x d). By the transitivity of -, we arrive at the important
result (a x c) (b x d). By induction, we can easily show that for all a, b, c, d E R, if
a - b and c - d then (a x c) (b x d).

Case 2: a = b and c, d as above. The proof is basically the same as above.
Case 3: c = d and a, b as in case 1. The proof remains the same.
Case 4: a = b and c = d. Clearly a x c = b x d and therefore, (a x c) (b x d)
We conclude that is a semiring congruence relation. The only thing left to do

to complete the proof of the theorem is to show that N is the complete preimage of
an element t E T under 0, the homomorphism corresponding to relation . This is
easy: from the definition of N we see that if n x and n E N then x E N. Therefore,
N is a complete semiring congruence class under .

At this point, the proof of the theorem (both directions) is complete. v /

81

Bibliography

[1] P. E. Beckmann, Fault-Tolerant Computation Using Algebraic Homo-
morphisms. PhD Thesis, EECS, Massachusetts Institute of Technology,
Cambridge, MA, 1992.

[2] T.R.N. Rao and E. Fujiwara, Error-Control Coding for Computer Sys-
tems. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[3] K.-H. Huang and J. A. Abraham, "Algorithm-based fault tolerance for
matrix operations," IEEE Transactions on Computers, vol. 33, pp. 518-
528, June 1984.

[4] J.-Y. Jou and J. A. Abraham, "Fault-tolerant matrix arithmetic and
signal processing on highly concurrent parallel structures," Proceedings
of the IEEE, vol. 74, pp. 732-741, May 1986.

[5] V. S. S. Nair and J. A. Abraham, "Real-number codes for fault-tolerant
matrix operations on processor arrays," IEEE Transactions on Comput-
ers, vol. 39, pp. 426-435, April 1990.

[6] J.-Y. Jou and J. A. Abraham, "Fault-tolerant FFT networks," IEEE
Transactions on Computers, vol. 37, pp. 548-561, May 1988.

[7] J. A. Abraham, "Fault tolerance techniques for highly parallel signal
processing architectures," Proc. of SPIE, vol. 614, pp. 49-65, 1986.

[8] J. A. Abraham, P. Banerjee, C.-Y. Chen, W. K. Fuchs, S.-Y. Kuo, and
A. L. N. Reddy, "Fault tolerance techniques for systolic arrays," IEEE
Computer, pp. 65-75, July 1987.

[9] C.-Y. Chen and J. A. Abraham, "Fault-tolerance systems for the com-
putation of eigenvalues and singular values," Proc. of SPIE, vol. 676, pp.
228-237, August 1986.

[10] P. E. Beckmann and B. R. Musicus, "Fault-tolerant round-robin A/D
converter system," IEEE Transactions on Circuits and Systems, vol. 38,
pp. 1420-1429, December 1991.

82

[11] P. E. Beckmann and B. R. Musicus, "Fast fault-tolerant digital convolu-
tion using a polynomial residue number system," IEEE Transactions on
Signal Processing, vol. 41, pp. 2300-2313, July 1993.

[12] C. J. Anfinson, R. P. Brent, and F. T. Luk, "A theoretical foundation
for the Weighted Checksum scheme," Proc. of SPIE, vol. 975, pp. 10-18,
1988.

[13] H. Park, "Multiple error algorithm-based fault tolerance for matrix tri-
angularizations," Proc. of SPIE, vol. 975, pp. 258-267, 1988.

[14] C. J. Anfinson and B. L. Drake, "Triangular systolic arrays and related
fault tolerance," Proc. of SPIE, vol 826, pp. 41-46, 1987.

[15] I. N. Herstein, Topics in Algebra. Xerox College Publishing, Lexington,
Massachusetts, 1975.

[16] T.R.N. Rao, Error Coding for Arithmetic Processors. Academic Press,
New York, 1974.

[17] W. W. Peterson and E. J. Weldon Jr, Error-Correcting Codes. The MIT
Press, Cambridge, Massachusetts, 1972.

[18] R. Lidl and G. Pilz, Applied Abstract Algebra. Undergraduate Texts in
Mathematics, Springer-Verlag, New York, 1985.

[19] P. M. Higgins, Techniques of Semigroup Theory. Oxford University Press,
New York, 1992.

[20] G. Lallement, Semigroups and Combinatorial Applications. John Wiley
and Sons, New York, 1979.

[21] E. S. Ljapin, Semigroups. Volume Three, Translations of Mathematical
Monographs, American Mathematical Society, Providence, Rhode Island,
1974.

[22] L. Fuchs, Abelian Groups. Pergamon Press, Oxford, New York, 1967.

[23] N. Jacobson, Basic Algebra I. W. H. Freeman and Company, San Fran-
cisco, 1974.

[24] J. S. Golan, The Theory of Semirings with Applications in Mathemat-
ics and Theoretical Computer Science. Longman Scientific & Technical,
Essex, England, 1992.

[25] W. Kuich and A. Salomaa, Semirings, Automata, Languages. Monographs
in Theoretical Computer Science, Springer-Verlag, New York, 1986.

83

[26] G. D. Forney, Jr., "Coset Codes - Part I: Introduction and Geometrical
Classification," IEEE Transactions on Information Theory, vol. 34, pp.
1123-1151, September 1988.

[27] G. D. Forney, Jr., "Coset Codes - Part II: Binary Lattices and related
codes," IEEE Transactions on Information Theory, vol. 34, pp. 1152-
1187, September 1988.

84

