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Abstract

This thesis provides a theoretical framework for haptics, the study of exploration and ma-
nipulation using hands. Be it human or robotic research, an understanding of the nature of
contact, grasp, exploration, and manipulation is of singular importance. In human haptics the
objective is to understand the mechanics of hand actions, sensory information processing, and
motor control. \While robots have lagged behind their human counterparts in dexterity, recent
developments in tactile sensing technology have made it possible to build sensor arrays that in
some way mimic human performance. We believe that a computational theory of haptics, that
investigates what kind of sensory information is necessary and how it has to be processed is
beneficial to both human and robotic research.

Human and robot tactile sensing can be accomplished by arrays of mechanosensors embed-
ded in a deformable medium. XWhen an object comes in contact with the surface of the medium.,
information about the shape of the surface of the medium and the force distribution on the
surface is encoded in the sensor signals. The problem for the central processor is to reliably
and efficiently infer the object properties and the contact state from these signals. In the first
part of the thesis w e discuss the surface signal identification problem: the processing of sensor
signals resulting in algorithms and guidelines for sensor design that give optimal estimates of
the loading and displacement distributions on the surface of the fingerpad.

In the second part of the thesis we focus on how the information obtained from such optimal
sensing can be used for exploration of objects. \Ve argue that an accurate reconstruction
of object properties can occur using two basic building blocks of Exploration Strategy and
Finger Control. Exploration Strategy pertains to the problem of inferring object properties
such as shape, texture and compliance and interface properties such as state of contact, from
the estimated surface signals. This involves determining, in each case, what kind of sensor
information and what kind of action is needed. Finger Control refers to the transformation of the
action needed into a command trajectory for the fingerpad, which defines the desired direction
of movement for manipulation. We define and anlyze the components of both these blocks,
provide explicit mathematical formulation, and give numerical examples where appropriate.
Our formulation of this computational theory of haptics is independent of implementation so
that it is applicable to both robots and humans.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Associate Professor
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Chapter 1

Introduction

Compared to vision and hearing, we might attach less importance to the sense of touch, pri-

marily because the former senses can easily be temporarily occluded and we are therefore more

aware of their presence. We therefore tend to underestimate the importance of the sense of

touch but on second thought we realize that without it, our life would be much harder and pos-

sibly more difficult. than without vision or hearing [48]. We apply touch for almost any activity

involving direct interaction with our environment and in robotic research it has been observed

that controlling this interaction is very difficult without tactile information. The research into

the nature of tactile sensing has been conducted more or less separately in the fields of robotics

and physiology, but the primary difference between these fields lies only the implementation.

\We however believe that a common framework and theory can be constructed, revealing the

limitations and possibilities of touch and manipulation and further explicitly formulating the

information processing involved.

The use of the word Haptics used in the title of this thesis is primarily confined to a circle

of people working on tactile sensing research and in other related areas. The term refers to

the mechanics and the information processing involved in tactual exploration, manipulation

and perception, and it is used in robotic as well as physiological circles. A computational

theory of haptics is then a formulation of the relevant information transfer and processing and

will necessary include mechanistic as well as signal processing models. This formulation is the

primary subject of this thesis. The problems we concentrate on, are (i) the mechanical modeling

of compliant fingerpads, (ii) the information processing of signals from strain or stress sensors

embedded in the fingerpad, (iii) the inference of object and environment properties from these

signals, and finally (iv) the relation of the above to the movement of hands and fingers during

haptic exploration.

The contributions of this thesis can be summarized as the presentation of a computational
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theory of touch, which we can itemize as:

1. A complete solution for a 3D linear model of the fingerpad with general normal and shear

loading distributions, also including elastic, viscous and inertial effects.

2. Transfer function formulation of the above solution, an approach that provides access to

well developed and effective signal processing tools such as the Fast Fourier Transform

(FFT) and the Kalman and Wiener filters which we evoke to decode surface signals from

subsurface sensor signals.

3. 'We present an optimal set of sensors selected from all linear strains and stresses. So as

to obtain maximum spatial bandwidth in the sensor signals without a directional bias.

4. A detailed framework delineating definitions and providing consistent formulation of ex-

ploratory procedures and control strategies that can be used for the identification of object

properties such as shape, texture and compliance.

The thesis is composed of four, largely independent chapters in addition to appendices,

each discussing a specific aspect of the above problem. The chapters are designed so that

they can read as independent papers. Therefore, a more detailed introduction and background

information such as literature review, are to be found in the introduction part of each chapter,

and we refer the reader to those sections for that information. Chapter 2 is slightly different,

in that it concentrates on giving tutorial information, primarily on the mathematical methods

and tools used in subsequent chapters. Some parts of that chapter may therefore be repeated

later in the thesis, but then in order to preserve the continuity within and independence of each

chapter.

Chapterwise the thesis is organized as follows: Chapter 2 contains a tutorial on the math-

enmatical methods applied in the subsequent chapters. In chapter 3 we present a model valid

under static or quasi-static conditions and where we further show how our methods can be

applied to predict the onset of slip before the finger starts to slide. In chapter 4 we delineate a

dynamic version of the fingerpad model including viscoelastic and inertial effects. NWe further

analyze the solution and derive conditions, under which the inertial effects can be ignored but

that considerably simplifies the solution. In chapter 5 we discuss exploration strategies, con-

necting object properties, sensors, signal processing and hand or fingerpad movements. Finally,

in appendices A-F we give detailed derivations as well as some mathematical manipulations

and observations regarding the solutions presented in the chapters delineated above.

14



Chapter 2

Mathematical Preliminaries

1. Introduction

Most people working on mechanical systems are aware of integral transforms, such as Fourier

and Laplace transforms, as tools used to solve differential equations or the analysis of measure-

ment data. The general attitude however differs widely, depending mostly on the discipline

people belong to. Control engineers work extensively with integral transforms and are in gen-

eral quite comfortable in expressing the solutions in the form of a transform. In many cases the

answer would be a transfer function describing a system without the input being prescribed. A

mechanics engineer, on the other hand, is more likely to bring the solution one step further by

prescribing some specific input (boundary conditions) and then go through effort of obtaining

the actual solution to that input. Both approaches have their merit, but ideally one would

apply both and use specific solutions as well as transfer functions to explain or predict the

systems response to generic inputs.

In this chapter we will attempt to bring these two above-mentioned disciplines closer to-

gether in the application of integral transforms to contact problems. We will first give the basic

theory of integral transforms and then apply it to several structures of differing complexity.

The structures we will analyze, will vary from the statically loaded spring (Winkler) founda-

tion to the dynamic loading of the semi-infinite elastic halfspace. By going from the simple

structures to the more complex and by looking at static loading before dynamic, we hope to

introduce various modeling details and their consequences separately. Through the analysis of

the transfer function solution for each structure and by comparing that solution to some of the

available solutions we hope that in the end, the reader will be well acquainted and comfortable

with both forms of solutions.
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The use of integral transforms in contact mechanics has mainly been promoted by Sneddon

and for a detailed discussion cf. [70, 71], but more applications, models, and solution methods

are given in [15, 61, 51]. Finally, for a general reference on contact mechanics cf. [36], but on

viscoelasticity cf. [83].

This chapter is organized as follows: In section 2, we give the definition and some basic

properties of Fourier (1D and 2D), and Laplace transforms. We also discuss briefly, some

variants of the Fourier transforms, namely the finite and discrete Fourier transforms. Section

3 is devoted to static contact problems, and section 4 to dynamic problems. We conclude by

summarizing our conclusions in section 5.

2. Integral Transforms

The use of integral transforms for the solution of partial differential equations (PDE) is based

on the method of separation of variables introduced by d'Alembert, Bernoulli and Euler in the

mid-eighteenth century [71]. The transform concept becomes convenient when the solutions are

parameterized by the separation constants that characterize the method.

Example: When using the method of separation of variables to obtain a solution of Laplace's

equation in Cartesian coordinates

00 a 20 a20a2+ &2f ___ =O (2.1)
OZ2 + 2 + = 

the usual procedure is to assume that the solution can be expressed as

= X(x)Y(y)Z(-)

Substituting this into Eq. (2.1) and dividing by X(x)Y(y)Z(z) we obtain

X(x) Y"(y) Z"(z)
X + + = 0.
X(x) Y(y) Z(z)

W'e observe that the first term is a function of x only, the second of y only and the third of only

z. They must therefore each be a constant. Let

X" YI" Z"
=-a y - -ay then = a + ay,

where axl. and ay can be any constants, complex or real. Wte then have that

X = e±jxva Y' = e±jyV" 'a Z = e±z aL +ay
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and that

= e±jxV-sjyv ae±zvax-a

is a solution of Eq. (2.1) for all ax, a.

This solution method can be applied to a wide variety of PDEs and we will now discuss

how it can generally be developed to solve PDEs with prescribed boundary conditions.

Suppose that we have to determine a displacement field u, the solution of a homogeneous

PDE of the form

L[u(r)] = r D

in which r = (l, 2, 3) is the position vector of a field point in a domain D, and L[.] is a

linear differential operator in the variables zl, x2, and 3. The set which the domain D is a

part of is in most cases prescribed by the geometry and we will assume here, for the sake of

clarity, that D C IR 3 and the operator therefore given in Cartesian coordinates. The discussion

given here will also apply to other coordinate systems, such as cylindrical, spherical and others

and we will, where applicable, give special comments regarding to them.

Assuming that the method of separation of variables enables us to find a solution 7(r, o:l, a2)

involving 2 arbitrary (separation) constants (al, a2), whose values are taken from a set Q. Since

the operator L[.] is linear, the function

It(r?) = j 1(rT, a1, a2 )F(al, a2 )dal da 2

will also be a solution for a class of functions F(.). If we in addition have the boundary

condition I

L(X1, 2, x3 = X 3 ) = f(xI, 2)

X 3 being a constant, then we must choose f(ai, a 2) such that

f(l,x 2 )= / K(X1 , 2, l, a 2)f(al, a2)dalda2 (X1, 2) E Dn(- {3 = X3}

where K(xl, x2, al, aQ2) = q(Xl, x2, x3 = X 3 , a'1, a2). We now adopt the convention of saying

that f(-) is the integral transform of the function f(.) by the kernel K(.). The factors that

determine the form of the kernel and hence the type of transform are differential operator L

and the coordinate system, which in turn is in most cases determined by the geometry of the

boundary. The problems we are interested in here, is in mechanics and then L [] is, in general,

l\'e assume simple boundary conditions, where only u is prescribed at the boundary. Other types of boundary
conditions, involving derivatives of u can be treated similarly.
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the Navier's operator:

L[u] = ( + )Au + V x V x u - pii = u E D, (2 2)

where A,p, and p are material constants defined later. We restrict us now to homogeneous

materials and for the time being make the following assumptions on boundary conditions:

1. The boundary conditions are static, so dynamical effects can be ignored, (ii = 0).

2. They are prescribed in Cartesian coordinates, then L[.] will have constant coefficients,

and we write (x 1 , x2, x 3 ) = (x, y, z), .

3. Specifically, let the boundary conditions be u(x,y,O) = f(x,y) and z E R°+ , i.e. the

problem of a semi-infinite solid or a halfspace loaded on the boundary.

The method of separation of variables then gives us that Eq. 2.2 has a solution u = exp(j(wxx+

wyy) exp (-;Z /~Vx2 ) which is valid for all real (wx, wy). From which we obtain the kernel

K = exp (j(wx + wy)) and hence recognize the integral transform as being the inverse Fourier

transform and the separation constants (yX, Wy) as being the corresponding spatial frequencies.

\We will now explore some the properties of the Fourier transform and some of its relatives.

2.1 The Fourier Transform

The Fourier transform is useful when when the DE has constant coefficients and the domain of

the solution extends to infinity in both directions (D = IR). It is defined as

f(W) = [f] = f(x)e-i'xdx. (2.3)
-oo

Its inverse is,

f(x)= ' 1 [f _ 2 J_ f(wx)e3)"xdwx. (2.4)

Convolution Theorem

The convolution theorem is a powerful theorem which states that the transform of a convolution

of two functions is the product of the transforms of each function, i.e.

T [J (u)g(x - u)du = [f(x)] F[g(x)] = f(w)(wx) (2.5)

18



Transfer Functions: This theorem is very useful when applied in conjunction with the su-

perposition principle. Convolution can be viewed as a expression that is obtained when the

principle is applied to a shift invariant system in order to obtain the solution for a general

boundary condition from a solution obtained by describing the boundary conditions as an

Dirac's impulse function 6(x). The power of this concept lies in the fact that one only has to

solve the problem for one type of boundary conditions, the impulse function, which is often

relatively simple. A general solution can then be obtained from the impulse response using

convolution, which becomes a simple product in the frequency domain. The Fourier transform

of the impulse response is defined as being a Transfer Function2 a term which we will use

frequently.

Properties

The relation between the behavior of a function and its Fourier transform is in many ways

interesting and several theorems exist describing that. However, here we will only detail the

relations most relevant to subsequent analysis.

Oddness and Evenness: The function symmetry properties around the origin have some

significance as for real functions the following applies,

If f(x) is real and even f(wx) is real and even

If f(x) is real and odd X f(wx) is imaginary and odd

Derivatives: Differentiating Eq (2.4) wrt. x, a relation for the Fourier transform of derivatives

is obtained as

F [- ] = (jwx)F [f] = (jW) f(wx) (2.6)

Scaling: The similarity theorem describes how scaling of original function's variable translates

into frequency space, and it states that

J[f (ax)]= f( ) (2.7)
a a

In plain english this means that a function that is 'flat' has a Fourier transform that is 'sharp'

in frequency space, and reverse, as is illustrated in Fig. 2-1.

2 For spatial systems (not dynamic) the impulse response is frequently called point spread function and the
Fourier transform of that the modulation transfer function [27].
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Frequency domain a=3

0.

x

Spatial domain a=1/3

0.5

a
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1

-1 0 1 2
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-1 0 1
o1/(2t)

Frequency domain a=1/3

2

-1 0 1 2
o/(27r)

Figure 2-1: Illustrating the effects of scaling on the relationship between a function and its Fourier
transform. The figures on the left are the scaled functions in the spatial domain, i.e. f(ax) where
f(x) = exp(-7rx 2 ) and the figures on the right and side are the corresponding Fourier transforms, which
are obtained using, F(f)= exp(-7rw2). The Fourier transform is then scaled in the frequency domain

according to Eq. (2.6), which gives us that F(f(ax)) = a - 1
f(wl/ aj) = la-' exp(-7r(wx/a) 2 ).

2.2 The 2-D Fourier Transform

The 2-D Fourier transform is a generalization of the 1-D version above, and is mainly applicable

to partial differential equations (PDE). It and its inverse are defined as

f(wx,w y) = Jf2D [If] =J

f X = LFJ [f] = 4 2 JJ
l 03ff, 

f ' f (x, y)e-j("xx+Yoy)dxdy
-00

f(Wp, wy)ej(w'x+xyy)dWxdWy.

Properties

The theorems and properties delineated for the 1-D Fourier transform above can be generalized

for the 2-D transform and are in brief:

Oddness and Evenness:

20
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Frequency domain a=3/2 b=2/3

1

- .

4 0.5

:3 1

3

I0.5

-

I"_- f-2 0 "-2

-2 2 -2 2

x o/(27)

Figure 2-2: Illustrating the relationship between an asymmetric distribution and its 2D-Fourier trans-
form. The figure on the left is the distribution in the spatial domain, i.e. f(x, y) = exp(-7r(a2.x2 + b2y2 ))
wlith a = 3/2 and b = 2/3. The figure on the right hand side is the corresponding Fourier transform,
Vwhich is EjD(f) = exp(-Tr(w2 /a 2 + W2/b 2 ))/ labl.

If f(x,y) is real and even X f(wx,Wy) is real and even

If f(x,y) is real and odd X f(wx, Wy) is imaginary and odd

Derivatives:

[zn0' /m ] (jg) (jaw) OF[f = (j 3y)(j )mf(x ~) (2.9)' 2 D y
m , j -- (j=)(jwy)m-T'[f] = x (2.9)

Scaling: The two-dimensional version of the Similarity theorem states that

F2 D [f(ax,by)] = lf( (2.10)
j( a b2.10)

Again, this means that a function which is concentrated along some preferred direction has a

Fourier transform, which preferred direction in frequency space, is generally at right angles to

that direction (see Fig. 2-2).

2.3 The Laplace Transform

Related to the Fourier transform is the Laplace transform, and it is applicable when the domain

D of the solution extends to infinity in only one direction, i.e. D = RO+ and it is primarily

3 By 'odd' we mean that f(x, y) has the same sign as xy, i.e. positive in 1st and 3rd quadrants but negative
in 2nd and 4th quadrants.
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used on dynamic DE when the effects of transients are included. It is defined as

F(s) = £ [f] = j f(t)e-Stdt (2.11)

Its inverse is,

f (t) = -1 [F] = F(s)est ds (2.12)

Properties

The only property of the Laplace transform that we will detail here is how derivatives get

transformed, which assuming zero initial conditions is:

Derivatives:

L [dtn ] = s If] = snF(s). (2.13)

2.4 Other Transforms

Finite and Discrete Fourier Transform

One of the properties of the semi-infinite halfspace is that the frequency spectrum4 of its

solutions is continuous. Conversely, if the domain D is finite, say x E [-L/2, L/2], the spectrum

becomes discrete as then the solution will only be valid for discrete values of wx. The inversion

formula (Eq. 2.4) therefore becomes

+00

f(x) = 2 f(n2r/L) e L (2.14)
1 =-00

and the limits of integration in Eq. (2.3) become finite ([-L/2, L/2]).

If we, additionally, assume that we have only available sampled values , i.e. discrete in x,

the transform in Eq. (2.3) becomes a finite series and the series in Eq. (2.14) also becomes

finite, i.e.
N-1 N-i

f(kds) = f(n/ds) ej2 N fX(n/d) = E f (kd) e-J 23 (2.15)
n=O k=O

where d is the sampling period.

One can also derive derivative, scaling, convolution theorems, similar to Eqs. (2.6), (2.7),

and (2.5) for the finite and discrete Fourier transforms and also a discrete and finite 2D-

4 Spectrum is defined as being the set of frequencies for which a solution is valid.
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Fourier transform [5]. The derivations are straightforward and the behavior is similar, as in the

continuous case, except for the convolution theorem, where the effects of aliasing appear. Care

has to be taken and one has to be aware of the effects of aliasing when results given here are

being implemented or simulated with a computer.

Cylindrical and Spherical Geometries

When the geometry is such that the equilibrium equations are most suitably expressed in

cylindrical or spherical coordinates, the same solution procedure can be applied.

Cylindrical: In the case of cylindrical geometry, the solution can be expressed as a combination

of a Fourier and a finite Fourier transform and a series involving Bessel functions, e.g.

00 +00 j

U(, 0, Z) = E T(r, n, w )JT(wr )f(, wz)ejn+O±Jzzdwz (2.16)
n=O 0

where J,,(.) is a Bessel function of the first kind, of order n, f(.) is determined by the boundary

conditions, and T(.) can be viewed as having the role of a transfer function.

Spherical: When the equilibrium equations are expressed in spherical coordinates (r, 0, 4), the

solution can be expressed as a series involving Legendre polynomials, e.g.

00 OC

,(·r. 0, ) = E E T(r , m,)1)P,7(cos)e "f(1, m) (2.17)
71=0 771=-00

where

P""(', = (1 - ,t2),n/2d
l
+ n ( 2

-
) n

2 n! dltm+

is the Rodriguez's formula for the associated Legendre polynomials and, as before, f(n, mn), is

determined by the boundary conditions and T(-) can similarly be viewed as a transfer function.

3. Static Indentation Problems

In this section we will demonstrate how the mathematical tools developed in the last section can

be applied to obtain solutions for static contact problems. WNTe start by giving examples of simple

system, but gradually make the models more detailed. By this, we hope to give the reader a

feel for the role of each term in the solution and that in turn will make the final solution less

obscure and more believable. Having achieved that, we believe that we have demonstrated the

power of transfer functions and integral transforms to provide understanding of the qualitative

behavior of the solutions to contact problems by viewing them as the output from a system
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x

Figure 2-3: Shows a schematic diagram of the Winkler elastic foundation. The foundation shown, is
being indented with a rigid object with a total load force Fz, resulting in a load distribution fz (x). The
material is modeled as a collection of non-interconnected springs. The loading at each point on the
surface contributes therefore only to the displacement at that location and does not extend beyond the
contact region.

which has the boundary conditions as inputs.

3.1 Winkler Foundation

A very simple way of modeling a compliant material is the Winkler foundation, where the

material is modeled as a collection of non-interconnected identical springs, (see Fig. 2-3) and

the effects of shear are ignored. The force displacement relations we obtain are simply

1 1
D : u(x) = f=(x), 2D : u(x,y)= fz(x,y) (2.18)

where u is the displacement in the z direction, k, the stiffness per unit length (D) or area

(2D) of the foundation, and f is the normal loading per unit length (D) or area (2D). The

relations in transfer function form are identical.
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3.2 Strings and Beams under Tension on a Winkler Foundation

The Winkler foundation model has the advantage of being simple, but the fact that any material

deforms continuously, and that the deformations are therefore not independent is neglected. The

springs should therefore somehow be interconnected. One way to include this effect is to model

the material as a string under tension, S, lying on a Winkler foundation. \Ve assume that the

nature of the string is such that it can only resist load along its length5. The energy stored

is related to the elongation of the string which is related to the first derivative of the surface

deformation and the principle of virtual displacements gives us the equilibrium equation [61]:

d2uz
- S d2 + kwUz = fz (2.19)

which in transfer function form is

U(izw)= t1:F (WX), (2.20)

where S is the string tension. The above can be generalized further to include higher order

derivatives of uiz and if we model the medium as a beam under tension S with bending stiffness

EI, resting on a Winkler foundation; then using similar methods we obtain the transfer function

relation

ii, PA s)= - (2.21)~:(Id) = Eia;4 + S 2 + k,,, ) ( )

3.3 Membranes and Plates under Tension on a Winkler Foundation

The above models can readily be generalized to describe the deformations of a surface sub-

jected to two-dimensional loading where a string corresponds to a stretched membrane, and

a beam corresponds to a plate under tension S, having flexural stiffness NA. In that case the

corresponding equilibrium equations are PDEs in x and y and hence we use Eq. (2.9) to obtain

the solution in a transfer function form.

1
Z(W Wy) = SQ + k fz(x,Wy), (2.22)

and
1

'z(2x, WY) NQ 4 + SQ2 + kw fZ(wX' wy),

wAhere Q = Ah+ w2

5 The string is therefore equivalent to having the load points connected to its nearest neighbor with a spring
in tension.
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Remark: That we express the above results in terms of transfer function enables us to interpret

the relation between the normal loading and displacement as spatial low-pass filtering. The

bandwidth of the filter is then prescribed by the stiffness and the tension; higher stiffness or

tension translating to lower bandwidth and therefore smoother deformations.

3.4 Infinite Half-space

In the above we have only obtained expressions for the surface deformations of the medium,

subjected to normal load. Since, we will in the chapters to follow need a model that can be used

for the analysis of the response of sub-surface sensors we need to extend our model to include

sub-surface deformations and also take into account tangential or shear loads. \Ve therefore

model the medium now as being homogeneous and extending to infinity6 in the z direction.

In the case of a continuum model, the solution are not obtained as directly and easily as for

the simple foundation problem treated above, and we resort to the following procedure7 :

Solution Procedure

1. The starting point is the equilibrium equations and the stress-strain relations (generalized

Hooke's law).

2. \Ve then combine the two sets of equations to eliminate the stresses and obtain cou-

pled second order PDE's in terms of the displacements only, effectively writing out the

transformed Navier's equation.

3. W'e then transform the PDEs using the Fourier transform with respect to the appropriate

variables (in general x,y). The PDEs are then8 transformed into a system of coupled

ODEs in z.

4. The ODE system is solved using standard methods with prescribed surface loading or

displacements as boundary conditions.

6 The solution method used here can also be extended to aelotropic (layered) and finite thickness materials,
but the solutions quickly become quite complicated and opaque and further discussion will therefore not be given
here.

7 For the sake of simplicity, we assume here that the solution domain is the semi-infinite half-space, and
therefore most easily described using Cartesian coordinates. Solution methods for other domains can be obtained
similarly, e.g. as shown in section (2.4).

sSteps 2 and 3 can be interchanged.
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Plane Strain (Line Load)

Example: IWe will show how the solution for an elastic half-space loaded over a narrow strip, so that

the loading can be considered a distribution of line loads. We choose our coordinate system so that the

boundary surface coincides with the xy plane and the z-axis is directed into the solid. The tractions

(normal and tangential) are assumed not to vary along the y-dimension and hence be functions of x

only. W;e shall assume that that under these conditions, a state of plane strain (,,yy = 0) is produced in
the half-space.

Stepping through the procedure introduced above we obtain:

Step 1: Under the simplifying plane strain assumption, the equilibrium equations become:

+- = 0
Ox Oz

(2.24)
90zx+ Ouzz 0
Ox Oz

and the stress-strain relationships:

a,, = ( + 2/t)Ex + AsE:, azz = (A + 2p,)Ezz + AE, OZz = 2pEzz (2.25)

where
Ev E

X = and I,-E (2.26)
(1 + v)(1 - 2v) 2(1 + v)

are the Lainm constants (bulk and shear modulus) with E and v denoting Young's modulus and the

Poisson ratio, respectively.

Ex= z Oz Ez + O ) (2.27)

Step 2+3 Carrying steps 2 and 3 out simultaneously we get the system of equations

D2 - W2 j(3 2 - 1)Dw U O (2.ux )

j(3 2 _ 1)Dwx 02 D2 _ 2 Ux (

d
nwhere 2 = ( + 2 p)/t and D = d

dz

Step 4: The determinant of the system in Eq. (2.28) is A = o2 (D2 W_ w) 2 , and a non-trivial solution

will therefore be of the form
u = (Ax+Bxz)e- I : Iz

(2.29)
u = (AS + Bz)e- Ilw: Iz,

which has 4 unknown coefficients. Two of them can be eliminated by substituting Eq. (2.29) back into
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Eq. (2.28) which gives:

2 + 1
B. = -jsgn(w,)Bz, Az = jsgn(w,)A, + -2 -B,

where sgn is the sign function with sgn(0) = 0. The two remaining coefficients are decided by the
boundary conditions, which we assume are in the form of prescribed tractions on the boundary surface

(z = 0). The equations relating the coefficients to the tractions are obtained by substituting Eq. (2.29)

into Eqs. (2.25) and (2.27) and identifying a,,(z = 0) as the normal traction and _,z(z = 0) as the

tangential traction. We then get the relations

2/ ((1 - 2v)sgn(w,)Bz - Iwl A.) = fz

2p ((2 - 2v)Bz - jwA,) = fz.

Solving for A4, and Bz and substituting back into Eq. (2.29) gives

1 (2 - 2v - IwI :z) - Il L + 1 (12 I Wz)e
_II lj(1-2y-I~z)¢- I z.: = T,f-+ T,: f. 

2 1 -2 1 (2-2+Iwlz) JF, T- f +TI uIfz,
2,z = - 2+ izl 

(2.30)

Nwhere T,,:f and Tuzf, are the transfer function for the displacements u and u, resulting from the
tangential load f, and similarly Tua f and T,,,fz are the transfer functions for the same displacements

displacements, resulting from the normal load f.

We express this solution compactly using a Transfer Function Matrix (TFM), i.e.

= Tff, (2.31)

where u = [u,, Itz]T, f = [f., fz]T, and

Tuf "f2 Tu fz 1
Tuf =

T. z f T.,z f'- 

e-lw Iz

2/t

2 - 2v - Iwx 

.1 - 2v + IWZI z
W-Cwx

Assuming that f(x) is an even function, we observe that the

and odd, indicating that ux(x) is odd and similarly we conclude

an even f is also even.

resulting iiU(w,) is imaginary

that the uz(x) resulting from

Symmetry: The terms in the TFMIs appear similar but there are subtle differences so they

are not completely symmetric in wx and z. This can be expected, mainly because wo is a
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frequency variable but z is a spatial variable. Also since the domains of each are different

(w: E [-o, +oo], but z E [0, +oo]).

The

giving:

strains and stresses can then be obtained using Eqs. (2.25) and (2.27) respectively,

jsgn(w,)(2 - 2v + IaZx z)

jsgn(wz)(2v - IWxl z)

1 - Wl z

1 - 2v - l[:Il z

1 - 2v + Wxl z

-jwzz

and

czx -jsgn(wx)(2 - Iwxl z)

=zz e-
I
W

:
Z -jWxZ

axz I - IxI e

1 - JW.' z

1 + Iwxl z

- j wxZ
[ feJ (2.33)

Mean normal Stress: A stress combination that becomes particularly important for incom-

pressible materials is the mean normal stress, defined as

p l - (axx + ryy + a::)

Its importance lies in that, for incompressible materials, it does not contribute to any strains,

(an incompressible body subjected to uniform pressure does not deform at all). This means that

strains cannot be used solely as a sensor signal, if one wants to use incompressible materials

as a cover for tactile sensors, as then the sensors would not be able to sense the mean normal

stress component of the stress signal.

l+v
For the line-load case we get that p,- = t (oax + oa:) since then ayy = v(axx + aU,) and

using Eq. (2.33) we get the TFM for p, as

2(1 + v)e- l1' I1
Tpnf =2(1 + ) z [-jsgn(wx),

3
1]

Other Structures: Comparing the solution for the z-displacements (u,) on the surface (z =

0) of the halfspace subjected to distributed normal load to those obtained for the Winkler

foundation and the string we observe that:

1
UHalfspace X Ix f

jwW I
1

UString a 2fz
W:
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Filtering characteristics of transfer functions
1
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Figure 2-4: Illustrating the shape of typical terms in the transfer functions. The dash-dot curve (i)
plots T = exp(- IwxI z) = Tp,,fz which has lowpass characteristics. The dashed line (ii) plots T x

z IW 2exp(- ILo z) = T,,Zf which has bandpass characteristics. The solid line (iii) plots these two
added or T = (1 + 1sI z:) exp(- w z) = Trf which has increased bandwidth over (i)

The relative degree of the transfer function, tells us how localized the resulting deformations

will be. The IWinkler foundation deforms only directly under the load and that is reflected

in a flat spectrum, indicating a very sharp impulse response. The surface displacements of

the halfspace spread away from the loading area, because the transfer function goes to zero

for higher frequencies the medium must therefore deform gradually. The string has an even

sharper transfer function so its displacements must spread out even further. The semi-infinite

halfspace therefore behaves, in terms of its surface displacement profile response to distributed

normal loading, as something that is between a Winkler foundation and a string under tension.

Spatial Filtering: The exponential term represents spatial lowpass filtering which bandwidth

decreases exponentially with depth. For the linear strains and stresses, two main variants of

terms can be identified in Eqs (2.32) and (2.33): i) e-lwlIz, (pn) ii) z wl e-lw"-z, (z). The

shapes of each are plotted in Fig. 2-4. There we see that (i) corresponds to a low pass filter

but, (ii) a bandpass filter. The combination of (i) and (ii) (1 + z wxl)e-lIZ is also plotted as

a solid curve and it is seen that it covers both the low and high frequency bands.
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(i) T = exp(-lojz)

. . I
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Figure 2-5: Shows the response in the spatial domain, of each of the transfer functions, (i)-(iii) to uniform
normal loading in x E [-1/2,1/2]. In the leftmost figure is the mean normal pressure p, = -(axx +az )/2
is plotted. It has the transfer function T = exp(- wxzl z). In the middle figure the ezz normal strain is
plotted, it has transfer function T = z wxIl exp(- wxI z). In the rightmost figure the oas normal stress
is plotted. It has transfer function T = (1 + z Iwl) exp(- wxI z).

For the spatial domain, the effects of the different filtering functions are shown in Fig. 2-5

and there we see that (i) and (iii) are similar, but (i) is more flat. The (ii) terms on the other

hand show typical bandpass characteristics such as sign changes near the edge of the contact

region ( = ±1/2).

Sampling period vs. Sensor Depth: We also note the inverse relationship between z and wx

which becomes quite important when one considers the consequences of using discrete sensors

and hence the effects of sampling. It turns out that it has an equivalent effect on the bandwidth

of the transfer function, to either place the sensors further apart or further beneath the surface.

This indicates a tradeoff between sensor depth and sensor spacing which becomes important

when sensor arrays are designed.

General 3D Solution

Exactly the same procedure can be applied when the plane strain assumption is dropped and

general loading conditions are considered. That the tractions vary also along the y-dimension

is accommodated by using the 2D Fourier transform defined in Eq. (2.8). The solution can

similarly be presented using TFMs with full dimensions of the displacement, traction and
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stress/strain vectors, i.e.

It = [us, Uy, Uz]T = [Ezx , EY zz, Ey, Fxz, Eyx]

f = [fxr , f, f]T, = [xx, Oyy Oz, z, y2]

The details of the TFMs will be omitted here but the full solution can be found in chapter 3.

All the comments made above regarding the plane strain solutions apply directly to the general

3D solution. Although one has to keep in mind, when transferring the concept of bandwidth

over to the 2D transfer functions, that the frequency space is two-dimensional. The bandwidth

of transfer functions will therefore in general be dependent on the direction also.

4. Dynamic Problems

The problems we have discussed so far have assumed static loading, i.e. we have ignored both

the effects of rate dependent material laws (viscosity) and also the effects of inertia, but we

can treat these two phenomena separately. The effects of inertia and wave mechanics will

be discussed separately for each structure and we will also assess when inertial effects can be

ignored. That will simplify our solution significantly, especially in the case of a semi-infinite

solid. The viscoelastic behavior is modeled by modifying the material laws and making them

rate dependent.

The effects of inertia p are included by adding d'Alemberts force fA = piiz to the right

hand side of the equilibrium equations. Using Laplace transform, the double time derivative

can be replaced w ith a multiplication by s2 and the only addition to the static solution for the

foundation models is a extra term of ps 2 in the denominator of the transfer function. We will

discuss the effects of inertia on the solution to the structures analyzed in sections 3.1-3.3 in

the sections 4.1-4.3. The inertia terms have more complex effects on the semi-infinite halfspace

solution and we will take a look at those in section 4.4. How viscoelasticity can be included in

the transfer function formulation will finally be discussed in section 4.5.

4.1 Winkler Foundation

For this simple case the solution now becomes:

1 1 -
= o+_2 f=, (2.34)p w 2 s
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where p is the density, and w2 = kw /p is the resonance frequency of the foundation.

4.2 The String and the Membrane

For the string the solution is:
1 1

U = 2 2 + 2

and for the membrane:
1 1
p C22 + s2

where c2 = TIp is the wave velocity as can be seen if we assume the loading f is a point

load at x = 0 but then the Laplace transform of the solution for the string becomes

c2 if (s)
Uz(x, s) = e 2 

2s T

\We observe that viewed from the point of loading the response of the string is that of a pure

damper. This is a consequence of the string having no transverse or bending stiffness, and

hence all the power injected into the system is transferred away from the source (loading point)

and appears lost. The exponential term indicates that the response away from the origin is a

time-delayed copys of that at the loading point, but delayed by Td = Ix / 2 which is according

to to the well known result of d'Alembert [61], namely that the solution is a wave traveling in

both directions with velocity c2 away from the origin.

For the membrane, we obtain for a time-varying point-load at the origin that

T c2

where KIo(-) is a modified Bessel function of the second kind. Using asymptotic expansions for

the Bessel function we obtain that the steady-state response to a sinusoidal excitation at the

origin for points that are far away from the origin is

uz~,t2 r o X e-j( -2/4 ) sin(wt)
T 7irw

where F o is the total load and w is the excitation frequency. This corresponds to a traveling

wave, with a phase delay of 7r/4 and with amplitude that decreases as A-1/2 where is the

distance from the origin measured in wavelengths 2 = 7rc 2 /vw.
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4.3 String or Membrane on a Winkler Foundation

If the string or the membrane is supported by a Winkler foundation the transfer function

solution becomes
1 1 -

=p pc2 + w 0 + 2

for the string and
1 1

Z= pc2Q2 +w ±S2 fzP C2 2+ 

for the membrane. For input frequencies less than the resonance frequency of the Winkler

foundation, (Isl < wo) the response is that of a pure spring but for higher frequencies it behaves

in part like a string and some of the power of those frequencies gets radiated away.

Neglecting Inertial Effects: It seems reasonable that for slow motion, the effects of inertia

could be neglected as they would be overwhelmed by the static and viscous effects. By inspecting

the solution we see that the effects of inertia can be ignored if:

wco >> L and> W
L

where u, is the (maximum) input frequency and L is a (maximum) characteristic length, i.e.

scale, of the structure of interest. The first condition indicates that the input frequency should

not excite the resonance fiequency of the Winkler foundation and the second condition indicates

that the wavelength of the wave excited by the highest input frequency of the input should be

large compared to the scale of the structure.

Beams and Plates: Solutions for dynamic loading of beams and plates can be obtained using

the same method as above. No analysis of their behavior will be given here.

4.4 Infinite Half-space

In this section we will study the dynamic behavior of the infinite halfspace. First we will

analyze the mechanics of the different types of plane waves, then how the same types of waves

appear from a point source. We will finally analyze the dynamic response of the elastic halfspace

subjected to a dynamic line-load, and based on that give conditions under which we can neglect

the effects of inertia.
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Wave Mechanics of Plane Waves

At a sufficient distance from their source, all waves can be considered plane waves and it is

informative to consider the propagation of plane waves. A plane harmonic displacement wave

can be represented as

u = Adexp (jk(r 15 - ct)) (2.35)

where u is the displacement vector, d is a unit vector defining the direction of motion of the

particle, 15 is a unit vector defining the direction of propagation, c is the wave velocity, k is the

wave number and A is independent of the position vector r and time t. When Eq. (2.35) is

substituted into Navier's Eq. (2.2) we find that two types of plane waves are possible, when

either

(i) d = ±j and c = Cp = [ 2 or (ii) d - = 0 and c= ch = II] (2.36)

In case (i) the motion of the particles is parallel to the direction of propagation and the wave is

a longitudinal wave. It can be shown to involve only volume dilation and no shear or rotation.

In case (ii), on the other hand, the motion of the particles is perpendicular to the direction of

propagation, involving only shear, hence called a shear wave.

A third type of waves occurs close to the surface of the solid as a consequence of an interac-

tion of both the dilational and the shear wave with the free surface. They are called Rayleigh

waves and a solution for them can be found by substituting

u -= Adpek[j (r ' P-CRt ) - a P z] + ds 1h e k[j (r P- CRt) - Qsh z] (2.37)

into Eq. (2.2) and also use the condition that the surface is stress-free, i.e. ,,= a, = c 0 when

z = 0. It can be shown that these conditions lead to an equation for the ratio aR/aah

((CR/Csh) - 1/2)' - (R/ch) 2 (CR/c,)2 h) - - 2 ( R /c h) 2 - 1 (2.38)

that can be shown to give exactly one solution that can be interpreted as a wave [81]. It turns

out that cR E [0.8740, 0.9553] for v e [0, 0.5] and we further get that ap = [1 - 2R/C /2,
Csh

h = [1 - CR/Csh] 1/2 The nature of Rayleigh waves is that they propagate essentially only

on the surface, as they attenuate exponentially with depth. Their geometric attenuation is

therefore lower than that of the dilational and shear waves and they will die out slower with

distance from the load source.

Geometric attenuation: NWhen a sinusoidal point load is applied at the origin P = Po cos(ct)
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the radial and transverse displacements can be written [36]

uR = R(o, 3) cos(wt - kpR)

o = o(0,/3) sin(wt - kshR)

where k = w/cp and ksh = W/csh, but R(.) and E)o() depend on the directional angle

0 = cos-'(z/R) and /3 = 1p/cch. These equations are valid everywhere, except at the surface

0 = 7r/2. We observe that the radial displacement UR is due to the dilational wave only,

and similarly the tangential displacement is due to the shear wave only. At the surface the

displacements are due to the Rayleigh wave and are given by

Ur - K 2 ) Fr(v) sin(wt- kRR- 7r/4)

Po kR)1/2

U z ( R ) Fz(v) cos(wt - kRR - r/4)

where kR = /ICR and Fr(.) and Fz(-) depend on Poisson's ratio [51]. Similar expressions can

be obtained in the case of a line-load. The asymptotic behavior of this solution is determined

by the geometric attenuation, which is the result of the increasing area of the wavefront with

distance from the source. The geometric attenuation depends on how many dimensions the

wave propagates in, and we therefore have different attenuation for Rayleigh waves than for

dilational and shear waves. The attenuation also depends on the source being a line- or a

point-load. AWe have that the amplitude A behaves with distance from the source A (measured

in wavelengths) as follows [36, 51]:

Line-load
1

Dilational and shear waves: A oc
A1/2

Rayleigh waves: A oc 1.

Point-load
1

Dilational and shear waves: A o -
A

Rayleigh waves: A oc
1/2'

Hence, Rayleigh waves in the halfspace behave like shear waves in a string for a line-load

source, and as shear waves in a membrane for a point-load source.
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Transfer Function Solution

The dynamic response of the semi-infinite halfspace is considerably more complicated than that

of the structures in the previous examples, mainly because displacements are now allowed to

vary also in the z-dimension. The solution procedure is however the same as used for the static

problems, detailed in section 3.4, and as above, the effects of inertia are included by adding

d'Alemberts force fAi = piii i = x, y, z to the right hand side of the equilibrium equations. For

the example in section (3.4) this leads to the modified system of equations

D2 _ 2 + PS 2 ) jG( 2 _ 1 F t 1 l [ 1 (2.39)DZ-( x+ s2) j( 21)Dzwx ] Ux

j(2 - 1)Dzwx 2 D2 _ (w2 + Ps2) J [ ux [01

which has the determinant = 2 (D2 _ n2)(D 2 n 2 ) where nl = (w2 + P 2)1/2 and-z 1 '2 2- - X+2/i

71,2 = (W2 + S2) 1/ 2 . A non-trivial solution will therefore be of the form

Ux = Axe - l + Bxe - n 2z

(2.40)
uz = Aze - x z + Bze-n2z

A complete solution of both ux and uz displacements resulting from a combined tangential, fx

and normal load, f can be obtained using the same method as in section 3.4 as well as the

general 3D-solution including uy and fy. These can then be used to derive the stress and strain

relations as needed. We will leave out the details and only look at the normal displacement

response for a distributed line-load and also for a general distributed load, since an analysis

of their dynamical behavior will directly carry over to the other displacements, stresses and

strains.

The solution for the normal displacement u resulting from a line-load is in transfer function

form,

nl [( + -2 -2)e - n i _ 2e-n2Z]
a (Wx,S) = f(WXS). (2-41)

2g [(W2 + 2s2)2 _ z2 n-n2]

The point-load solution is almost identical, one only has to replace W2 with 2 = W2 + 2 in

the transfer function and change the arguments in iu and f to (, wy,, s).

Comparing Eqs. (2.35) and (2.36) to the transfer function in Eq. (2.41) we see that the

exponents nl and n 2 correspond to the dilational and shear waves respectively. The Rayleigh

wave on the other hand, corresponds to the pole of the denominator [51]. The exponential terms

e- 71Z and e- n2z correspond to the interaction of a traveling wave with the effects of increasing

low-pass filtering with depth. For temporal frequencies that are high enough compared to the
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spatial frequency, i.e. on coarse spatial scale, the exponent becomes imaginary and therefore

corresponds to a time-delay caused by the wavefront traveling at a finite speed, (Cp or csh).

For finer spatial details, the exponent serves the same purpose as in the static case, i.e. the

increased spatial low-pass filtering (blurring) of signals with depth.

Neglecting inertia: For further analysis of the transfer function, it is helpful to renormalize

and measure distances and displacements in units of shear-wave wavelengths. Let s = jc,

Ash = csh/lw and hence z = iAsh, wx = cxz/Ash. The w can then be canceled out from the

transfer function which then becomes

nl [(x 2 - 1/2)e- zfl - J2e-t2z]

2/i [( 2 - 1/2)2 - 22]

with i1 = ( 2 - -2)1/2, and fn2 = (2 - 1)1/2. We observe that there are no singularities

and all the terms are real in the transfer function for Cox > 1. This can be interpreted as

spatial frequencies with &2 > 1 are not involved in energy transfer away from the source and

that the halfspace behaves simply as a spring for those frequencies. The denominator however

vanishes for 'x, = cR/csh, since it is identical to Eq. (2.38) used to obtain CR/Csh. That the

halfspace behaves as a spring for some frequency range becomes important when one considers

the conditions under which inertia can be neglected, especially in cases where the solution in Eq.

(2.41) is applied to finite domains as will eventually happen in our case. Let x E [-L/2, L/2],

then only a discrete set of spatial frequencies will give valid solutions as discussed in section

2.4. The lowest nonzero frequency is of particular interest to us and the modeshapes (assuming

simple boundary conditions at x = ±L/2) corresponding to that have been plotted in Fig. 2-6.

We see that the longest possible wavelength is Amax = 2L which is equivalent to min(w) = -r/L.

NWe therefore have that Jx < cR/Csh is satisfied if

7rCR

L

giving us a condition as to when we can ignore the effects of inertia for the semi-infinite halfspace.

4.5 Viscoelasticity

Theory of viscoelasticity extends the theory of elasticity to include cases where the stress-strain

relation behavior is rate dependent. It all boils down to the choice of timescale, and for shorter

intervals of interest, it may be necessary to account the rate dependent behavior of materials.

The description linear viscoelastic material applies to materials for which the rate dependent

behavior can be adequately described by expressing the stress-strain relation in the viscoelastic
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fP(x)

L

x

Figure 2-6: Shows the modeshape for the lowest eigenfrequencies of a domain of length L. The maximulm
wavelength is A,,,,, = 2L and hence the lowest non-zero spatial eigenfrequency is min(w,) = 7r/L.

form of Hooke's law,

a(s) = Q()(s).

AWhere a(s) and p(s) are the Laplace transforms of the stress and the strain, respectively. Q(s)

is called the Operational relaxance and alternatively Q(s)/s is called the Operational impedance.

The main advantage in using the viscoelastic form of Hooke's law is that we can then apply the

correspondence principle. According to the principle, if an elastic solution to a stress analysis

problem is known, substitution of the appropriate Laplace transforms for the material constants

employed in the elastic solution furnishes the v iscoelastic solutions [83].

Hence, the effects of viscoelasticity can be incorporated into the elastodynamic solution

in (2.41) simply by allowing the material constants to be frequency dependent, i.e. and :

become (s) and (s). Similarly the effects of viscoelasticity can included in the static solution

in Eq. (2.30) or in Eqs. (2.32) and (2.33).

The material constants are in general both independently rate independent, p, describing

shear motion and the dilational behavior. It is however often assumed that only p, is rate

dependent. This assumption is reasonable for materials that are near being incompressible,

(v > 0.4) which is the case for polymers and other materials we intent to apply this theory to.

The simplest model that captures the behavior of a linearly viscoelastic solid is the 3-parameter
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(b) Response of stress to a step in strain

If
I

0.5

l_ - - _

n

0 1 2 3
t [s]

Figure 2-7: (a) Shows a diagram of the 3-parameter linear standard solid model using spring and damper
elements. (b) Shows the response in stress to a step change in strain for the 3-parameter linear solid
defined in Fig. 2-7. The relation between the parameters is that /-o = k 1k2/(kl + k2 ), Q = (k 1 + k2)/k 2 ,
and t = bl/(kl + k2 ).

standard linear solid.9 For this model the transfer function for /i is,

1 + trs
C(5) ° ~1 + trs

where p0 is the steady state response, t the retardation time and a is the overshoot of a step

response. A schematic representation of the model as dampers and springs is shown in Fig.

2-7a, and the step response in Fig. 2-7b, i.e. the response in stress to a step in strain.

This model can be generalized to model materials with more than one time constant. The

transfer function for the generalized model is

n 1 + tr.s

The transfer function approach to viscoelasticity provides a powerful tool for the modeling

of the viscoelastic properties of different materials. One still needs, however, to estimate the

parameters in the transfer function for each material and under conditions that are as close as

possible to the conditions under which the model is to be applied.

9 Also called Kelvin model.
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5. Conclusions

In this chapter we have given the basic theory of integral transforms and shown how they can be

applied to problems in contact mechanics. \We have shown how the solutions to contact problems

involving various structures can be presented as transfer functions. The transfer function takes

as inputs the boundary conditions but gives the desired solution as output. Analysis of the

transfer function has also been shown to give us the qualitative properties and behavior of the

solution, irrespective of the exact from of the input. The transfer function approach has further

been shown to be equally applicable to problems involving static, dynamic and viscoelastic

effects, and further analysis of the solutions has given us conditions under which inertial effects

can be ignored and the quasi-static solutions are valid.
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Chapter 3

Static Identification

1. Introduction

'Manual exploration and manipulation of objects in an environment is important to both hu-

mans and robots. Human performance of these tasks is enabled by the haptic system consisting

of tactile and kinesthetic sensory systems together with a motor control system. Similar classi-

fication is applicable to the sensory and motor systems of robots. A detailed and quantitative

understanding of the underlying dynamics, information flow, and control strategies will benefit

investigations of both human haptics and the development of machine haptics. It is especially

valuable in the development of haptic interfaces through which humans can interact manually

with teleoperated systems or computer generated virtual environments [74]. Although the prin-

ciples of operation of man-made devices are quite different from those of humans, the constraints

on the performance of these haptic tasks, such as the laws of physics governing the mechanics of

contact and the presence of friction and gravity are the same for both. In addition, the type of

tactual sensory information, their processing and the computation of the required control action

are sufficiently similar for the two systems that the common aspects of information processing

can be functionally separated from the hardware implementations. Therefore a computational

theory of haptics that investigates what kind of information is necessary, and how it has to be

processed in order to successfully complete a desired haptic task can be common to humans

and robotic systems.

It has been recognized for some time that robots with dextrous hands need 'tactile sense'

in order to successfully explore and manipulate objects in their environment. Reviews of the

various tactile sensors designs have been given by several authors, (see for example [59, 68, 32].)
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Because of the natural constraints imposed by this mode of sensing, the engineering designs

have had to follow nature in overall configuration. By definition, tactile sensing is achieved

through direct contact with objects, and therefore a 'skin' is necessary to protect the sensors

from physical damage. The requirements that the skin should be soft comes from the need to

have (1) regions of contact within which skin surface conforms to the object surface (instead of

point or line contact that occurs between two rigid objects) (2) significant deformation within

the medium so that the sensors are activated and have enough resolution. If the substrate

material on which the sensors and the skin rest is also soft, then, in addition to the above,

better prehension stability can be achieved. The fact that a point contact has no torsional

resistance and that its stability is highly sensitive to local aberrations implies that compliant

skin gives better prehension. Thus, although robotic tactile sensors themselves might differ in

their operation, depending upon whether they respond to changes in conductance, capacitance,

contact area, light intensity, etc., within each sensing cell caused be local mechanical distortions,

the overall configuration of all the designs is that of mechano-sensitive transducers embedded

in a deformable medium.

Two stages in tactual information processing, encoding and decoding make up the identifica-

tion' pIoble'r, which is so called because it involves the determination of the state of the object

and its relationship to the tactual sensory system. The system discussed here differs in some

ways from traditional dynamic systems. The most prominent difference is that it has both spa-

tial and temporal variables, whereas traditional lumped parameter systems only have temporal

ones. In both natural and man-made tactile systems the encoding process is the transduction of

the mechanical stimulus into electrical signals that contain, in a coded form, information about

the stimulus features. The inverse problem, i.e. the decoding process or the calculation of the

surface shape or surface tractions from the transduced signals is in many respects significantly

more difficult. The encoding is essentially a low-pass filtering process which indicates that the

decoding will be ill-posed in the sense that the higher frequency components of the signals will

be prone to noise contamination and special methods have to be applied for successful decoding.

Several papers can be found in the robotics literature on the mechanistic modeling, encoding

and decoding of surface conditions from subsurface measurements using tactile sensors. The

earlier papers dealt primarily with the mechanistic model and only the encoding. In [35] the

problem is approached from a physiological point of view and in [20] from robotic point of

view. Both papers use the plane strain assumption and give solutions to the 2-dimensional

(2D) encoding problem. The decoding problem is first addressed in [73, 63], both of which

solve only the 2D plane strain case. [73] uses a frequency domain approach whereas a neural

network approach is used in [63]. The plane strain assumption is dropped in [9] but the analysis

is limited to the properties of a specific photoelastic sensor. In [18] again plane stress or plane

strain is assumed, the effects of finite thickness and the stability of the grasp are investigated.
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The mathematics of the decoding problem are investigated using matrix regularizing operators

in [65], where the loading is assumed to be axisymmetric. The combined results of the above

papers are detailed in [19] which is the most thorough treatment so far on the infinite half-

space and analytical solutions of the encoding and the decoding problem. [19] further gives the

3-dimensional (3D) half-space solution only to a normal point load in appendix. Additionally,

finite element analysis is used in [72], where the effects of shear loads on sub-surface strain and

stress are demonstrated graphically, and also in [17] which investigates the differentiation of

shapes and the inherent difficulties that arise because of the blurring effect of the skin. In [28]

the encoding and decoding of a stress rate sensor are investigated and a scalar Wiener inverse is

suggested for the decoding. Finally, in [60] the 2D plane strain solution for a cylindrical finger

is given.

In summary, none of the papers above treats either the encoding or the decoding problem

fully. All the results published until now on the reconstruction of general surface loads and pro-

files from subsurface tactile signals do not solve the full 3D problem. The effects and interaction

of shear loads and the selection of appropriate sensor signals has not been investigated before.

In addition, neither the decoding problem has been fully addressed nor has the multivariate

Wiener inverse been applied. In this chapter we will address mainly the mechanistic modeling,

encoding, and the decoding problems. The contributions of this chapter can be itemized as

follows:

I. A complete solution to the 3D half-space problem is given for arbitrary 3D static loading

conditions and any linearly elastic material, instead of the 2D solutions used before. The

solution also applies to pseudo dynamic problems which can be described as a sequence

of elasto-static problems (such as the estimation of the onset of slip).

2. The solution is formulated using transfer function matrices in the domain of spatial fie-

quency which allows us to look at the qualitative properties and general behavior of the

solution, irrespective of particular cases of the loading or object shape. It also enables

efficient numerical implementation based on the theory of linear signal processing.

3. Symmetry and signal bandwidth arguments are invoked to select the optimal transducing

signals or types of sensors. For decoding, we can then apply the signal processing and

regularization theory in a manner similar to what has been done in the development of

computational theory of vision.

4. Numerically stable multivariate regularizing solution methods for the decoding problem

are delineated. The ill-posedness of the decoding process is analyzed and it is shown as

to how the extensively developed methods of image restoration can be applied to avoid

the problems associated with the ill-posedness.
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In Section 2, we formulate and solve the 3D half-space elastic model, which serves as a

description of the encoding process. For the sake of clarity, the mathematical expressions are

detailed in Appendix A. In Section 3, we analyze the decoding problem, first as an ideal

problem without any real world effects such as noise, following which we incorporate the effects

of sampling and random additive noise into the solution. This constitutes an algorithm for the

decoding process. In Section 4, we give example numerical simulations of the methods proposed

in Section 3. Conclusions are given in section 5.

2. The Encoding Problem

From a theoretical viewpoint, tactile sensor response to any given stimulus can be predicted if

we have the following:

1. A mechanistic model of the deformable medium which can be used to calculate reliably

the stresses and strains at each point in the medium for a given mechanical stimulus.

2. A model of the sensor that provides the relationship between the relevant stimulus, i.e., a

particular combination of stresses and strains in the local neighborhood of a sensor that

it is responsive to and the sensor response.

For example, an appropriate mechanistic model of the human skin and the soft tissues under-

neath enables us to investigate one of the important questions in cutaneous neurophysiology,

that of identifying the relevant stimulus that causes each receptor type to respond [35, 75]

2.1 Mechanistic Analysis

In the robotic tactile sensing literature, contact analysis problems are frequently simplified by

posing them as 2D plane strain problems in the elastic half-space [70, 23, 36]. The surface load

or profile is then assumed not to change along one dimension on the planar surface, for example,

as in the case of a line load. Almost all the results in the literature on the analysis of tactile

sensing have made this assumption. Clearly, this is a serious limitation. In this section we

will give the more general solution when 3D loads are arbitrarily distributed over the contact

region.

The assumption that the problem can be posed as a contact problem in the semi-infinite

half-space still remains, mainly for the sake of analytical tractability. We can, however, partially
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justify that assumption based on numerical solutions obtained for finite models [13, 75] which

show that the effects of finite extent are minimal when the contact region is small relative to

the surface area of the medium. The semi-infinite half-space solution is a good approximation

in such cases because the stress/strain response to a load decreases exponentially with distance

from the load.

The problem is set up so that the boundary surface coincides with the xy-plane and the

positive z-axis points into the medium (See Fig. 3-1). The material is assumed to be lin-

Figure 3-1: Shows the semi-infinite halfspace with surface tractions and subsurface sensors.
The x- and y-dimensions extend to infinity in both negative and positive directions. The -
dimension extends from 0 to positive infinity. The tractions are distributed over the contact
area, each point being subjected to 3-dimensional loading f(x, y) = [fx, fy, f]T.

early elastic and homogeneous. It is also assumed to extend to infinity in both negative and

positive x, y directions and in the positive z direction. The surface load is described by the

traction vector field f(x, y) = [fx(x, y), fy(x, y), f(x, y)]T and the surface displacement field

as to0('x, y) = [ux(x, y, 0), Uy(x, y.O), Uz(X, y, 0)1T. In our formulation, the boundary conditions

can be forces, displacements or mixed, i.e. when any 3 elements from both f and uo are given.

We intend to present the solution in the space of spatial frequencies and use transfer functions

to simplify solutions and gain further insight.

2.2 Transfer Function Matrices (TFM)

NMany equivalent routes to the solution of the encoding problem exist, but the simplest and

most direct way for our purposes is to transform the fundamental differential equations of

equilibrium and the stress-strain relationship equations (Generalized Hooke's law) using the

Fourier transform over (x, y) space. Examples of this approach can be seen in [16] and [71].

The derivation of the transfer function matrix form of the solution is given in Appendix A.

Similar to what is done in control theory, we employ here the concept of a transfer function
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matrix (TFM). The transfer function matrices we give here have the Fourier transform of

the components of either f(x,y) or uo(x,y) as the inputs and any displacements, strains or

stresses in the medium as the outputs. Each entry of the TFM would then correspond to the

contribution of a particular input component to the corresponding output component. For

example the entry in the TFM for the z-displacement resulting from the x-load, or uz(x, y, z)

we would write

U (z W, ) = TuZ)f(. X ,Wy, )f(W: ,WY)

to obtain the Fourier transform (v, y, z) of uX(x, y, z) from the transfer function

Tuxf(w, wy, z) and the Fourier transform f(wx,Wy) of the surface shear load f(x, y). Here,

w, and y correspond to spatial frequencies in the x and y directions respectively. Then we

can write
= Tuff = Tff = Tff = Tf = Tpf f

(3.1)
i = TUUoUO E = TEZOUO a = Tauouto n = TpuoUO

where the subscript f indicates that surface tractions are inputs and the subscript u0 indicates
that surface displacements are inputs. As an example, we give here Teuo, i.e. the case when
the surface displacements (u0 ) are the inputs and the subsurface strains (E) are outputs. The
other TFMIs are given in Appendix A.

e- Q

(3 - 4v)=

x

jWa ((3 _ 4v)Q _ W2Z) _jwW yZ Q2YZ

_-jW2z jWy ((3 - 4v)Q - W2z) Qw2z

-jQw, (1 - Qz) -jQwy (1 - Qz) _-Q2 (2(1 - 2v) + Qz)

2wy ((3- 4v)Q- 2z w ((3-)Q-2) Q ) wyZ

1 ((3 - 4v)Q2 + w2(1 - 2Qz)) -2W(l - 2zQ) jQwx(1 - 2v) + Qz)

-2 - ((3 + )) 1) + z)
- ½cwcy( - 2zf) ((3 - 4v) 22 + y(1 - 2,z)) j12x(l - 2v) + z)

(3.2)

where 2 = (p + w) 1 2 , t is the shear modulus, and is the Poisson ratio. TFMs for mixed cases

can also be easily constructed by choosing appropriate elements from the TFMs above.

The equations in (3.1) represent the solution for the encoding problem, because given

f (x, y), uo(x, y) or a combination of 3 elements from the two, we can predict u(x, y, z), (x, y, z),

a(x, y, z) and p(X, y, z). If the relevant stimulus, i.e. a particular combination of stresses and

strains in the local neighborhood of the sensor that it is responsive to, is known, we can predict

the sensor response. For example, if the sensor response is linearly related to the strain Ez,

then it is the relevant stimulus for that sensor. On the other hand, if the relevant stimulus
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needs to be identified, we can use Eq. (3.1) to generate hypotheses that can be tested against

the empirically measured sensor response, as is done in [35, 75].

3. The Decoding Problem

Tactile information is obtained with mechanosensors embedded in a deformable medium that

is in contact with a shaped object. Mechanosensors, embedded within the medium can, at

best, provide information on skin surface shape and surface traction distribution. From this

information, contact region, shape of the object and the contact state need to be inferred.

The problem at hand is therefore the decoding, i.e. reconstruction of the surface shape of

the medium, the tractions on the surface as well as the region of contact from sub-surface

mechanosensory information.

The approach we have chosen is to represent the solution in the spatial frequency domain in

terms of transfer functions as in Eq. (3.1). Equivalently, using superposition of the point load

solution, the solutions can also be presented as convolution integrals. The transfer function

approach gives, however, solutions whose properties are more transparent and some important

statements can be made regarding their qualitative properties (such as the symmetry and

bandwidth properties of subsurface stress or strain components), irrespective of the exact form

of the loading. This approach also enables the use of efficient tools of linear signal processing,

such as the Fast Fourier Transform.

This section is organized as follows. In section 3.1 we discuss the constraints that the task

of tactile identification puts on the selection and the number of necessary sensor signals, and

furthermore identify possible candidates of sensor signal combinations. In section 3.2 we use

symmetry arguments to analyze the TFMs of the previously identified candidates in order to

find an optimal combination. Finally, in section 3.3 we show how an optimal multivariate

Wiener inverse can be used to reconstruct the surface signals from measurements of the sensor

signal in the presence of noise and sampling errors.
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3.1 Sensory Information Necessary for Reconstruction

The most obvious signals to reconstruct are the deformed shape of the surface of the medium and

the spatial distribution of surface tractions. The extents of the contact area need to be assessed

but the surface displacements are necessarily continuous at the edge of the contact area, so they

provide limited information. Discontinuities in slope or curvature of surface shape however, do

not reliably indicate contact borders as an object surface within the contact region could have

similar discontinuities and therefore be mistakenly identified as borders of the contact region.

Each of the regions where the surface tractions (e.g. normal pressure) are non-zero indicates

the region of contact with the object. Within these regions the object shape is the same as

the shape of the deformed medium surface. In addition, the surface traction distribution can

directly give valuable information on the stability of grasp and the type of contact, be it static

or vibrating.

Some interesting properties of the TFLM can be obtained when dynamic systems theory is

applied to them. In what follows we assume that the sensors pick up a strain component or

mean normal stress and further that the components of the strain are expressed in the global

coordinate system (x, y, z). If the medium is incompressible, uniform normal pressure on its

surface does not cause any strains within. Therefore, measurements of strains only are not

sufficient to fully reconstruct surface force distributions, as the mean normal stress component

will not be detectable in the strains for incompressible materials. This is the main reason for

the use of the mean normal stress as a variable that needs to be sensed.

If no shear loads are present, or if the relationship between normal and shear loads is known,

only one component of strain needs to be sensed. However, if shear independent of the normal

load is present, the more general TFM formulation must be employed, as the surface tractions

must be obtained by the inversion of some of the equations in Eq. (A.7) and (A.9) in Appendix

A. What and how many components of the strain tensor are needed depend on the assumptions

we make on the loading conditions. This can be detailed in the following cases.

1. No shear loading: In this case the normal pressure distribution and surface displace-

ments need to be reconstructed. Sensing of any strain or the mean normal pressure is

generally sufficient, but the need for rotational symmetry about the z-axis makes either of

p,, or :zz the natural choice. Using p, will enable the calculation of the uniform pressure

component of the total load which no combination of strains can provide if = 0.5 (i.e.

incompressible material). However, the combination of p" and E: can also be used to

obtain increased spatial frequency bandwidth (see section 3.2), in addition to obtaining
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the full load distribution.

2. Relationship between normal loads and shear loads is fully or partially known:

This is the case for example, if the object is sliding over in an unknown direction over

the surface under Coulomb friction conditions, or if the relationship between normal and

shear loads is unknown but the direction of the shear load is known. Then any two

subsurface stress and strain components need to be sensed to fully reconstruct all three

surface traction or displacement components, and a natural choice would again be p, and

Ezz as above.

3. All tractions unknown: All 3 traction components and surface displacements need

to be reconstructed. Considering only combinations symmetric in (x,y) the following

combinations become candidates: (a) (y, xx, eyy), (b) (xx, Eyy Ezz), (c) (Ezz jxz, yz)

(d) (Txylexz, yz), (e) (Pn, Ezz, Exy), (f) Pn,Exx,¢yy, and (g) (Pn,xz, Eyz).

lWe will shortly show how we can make an optimal choice among these component sets.

Case 3 is the most general one and it indicates that any sensor population that is suit-

able for reconstructing arbitrary loading conditions must measure at least three independent

stress/strain components (out of a total of six). More components could be used to get re-

dundant measurements, and hence more reliable estimates, but here we will only look at the

minimal set.

3.2 Analysis of TFM Properties

rWoe now try to use the properties of the TFM to identify the sensor combination that is most

suitable for tactile sensing. Particulary we will a look at the rank of the TFM and its bandwidth.

Rank of the TFM

Since we intend to invert the TFM, we need to consider its rank, which is a key property and

has to be full for an inversion to be possible. If the TFM loses rank, information is lost as the

output will span fewer dimensions than the input. The conditions under which the TFNM looses

rank are closely related to zero-properties of dynamic systems, just as the conditions under
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which the TFM becomes infinite are related to the poles. The TFMs in our case are however

always finite and therefore do not possess any pole-like properties, which is to be expected from

a linear mechanical system in stable equilibrium.

The TFM looses rank when its determinant becomes zero. When the

the input, the determinants of the TFM candidates detailed in section 3.1

det(T2y ,EEYy) = 0

-(1 2) 'xY -ZQQ2

traction vector f is

are

(a)

(b)

= -(1 - 2v)e -z Q

det(TzY,,,EY,)

det(TpEz,,6Ey)

det(Tpn,E,Eyy)

det(TpnE,,, y,, )

= -(1-2) v) Ye-Q
Q2

2-22(1 + v) wx-W WYe-z

3 Q2

2(1 + V) 2wwy -Z
3 Q2

2(1+ v)e- 
3

\We see that the first one is always rank

1- 2v = 0, then the next three TFMs

deficient. If the medium

loose rank. As discussed

is incompressible, i.e. if

in section 3.1 the mean

normal stress, p,, must be among the sensor signals in the case of an incompressible material.

Otherwise the component of the surface load that contributes to the mean normal stress cannot

be reconstructed. A special case is a solid subjected to uniform pressure. No strains will be

detected inside the solid, although the pressure can be arbitrary.

We also note that the TFM looses rank for candidate (e) when wx = ±wy and for candidate

(f) when wx = 0 or Wy = 0. That the TFM looses rank for certain directions in the (w, wY)

plane, means that the inputs cannot be reconstructed along those same lines. In the case of

candidate (f) this means that the cumulative load distribution in either x or y direction cannot

be reconstructed. For example, if wy = 0, in frequency space we have f(w, O) = (wx) and

g(x) = f+° f(x, y)dy, which is the cumulative load distribution along x. Therefore, since the

TFM for candidate (f), T(f), is rank deficient for wy = 0, the component containing information

on the cumulative distribution of the input along x will be lost in the encoding. The same

arguments apply to candidate (e), with the coordinate system rotated by 45° around the

z-axis. Candidate (g) is the only one that does not loose rank and therefore has the desirable

combination of p, and strains that the sensors need to transduce for decoding.
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Remark: The comments above are also valid when the displacement vector uo or any combi-

nation of tractions and displacements are the inputs, since Tuuo = TufTfuo and the TFM that

relates uo and f (Eq. (A.10) in the Appendix) has the determinant,

detTf = ( )3E3 (3.3)

which does not alter the rank properties of each of the TFMs of candidates (a)-(g) above.

Bandwidth of Spatial Frequency

A frequently used property of dynamic systems is the bandwidth of the components of the

TFM which measures how the attenuation of each signal in the medium depends on frequency.

High bandwidth would mean that reconstruction is possible with finer details and is therefore

desirable. However, since the frequency is 2D, the bandwidth will also depend on orientation in

the (, y) plane, which in turn can be used to exclude sensor combinations which lack rotational

symmetry about the z-axis.

To compare the bandwidth of the various combinations (a)-(g) listed above, we look at the

power spectrum of the TFMs, a line at a time. That is, the power spectrum of each sensor

signal is the norm of the corresponding line vector in the TFM. For example

'ErZ= [TE T z] 112,

but this implicitly assumes that the all the traction imputs are weighted equally. Weighing the

normal traction differently than the shear traction does not alter the result of the following

arguments, as long as the shear tractions are weighted equally. The power spectrum for the

possible sensory signals can be seen in Figs. 3-2-3-7. The figures show the power spectrum as

density plots with darker and lighter areas indicating frequencies where attenuation is low and

high, respectively. Also shown along the border of the density plot, are projected profiles of the

power spectrum along the lines w, = 0, wy 0, and w, = Wy. Figures 3-2-3-7 show the power

spectrum respectively for pn, E,¢,,E1ZZ y,¢xz and candidate (g) (P,, + 7)eP= + PE Y,). We note

that the power spectrums for Eyy or yz are obtained from that of eXX or exz rotated by 90 ° .

Two most important features of the spectrums are their frequency bandwidth and rota-

tional symmetry. If the sensor responses cannot be combined to form a rotationally symmetric

spectrum, the sensor response would depend on stimulus orientation in the xy-plane, which is

undesirable, because of different proportions of signal to noise, (i.e. assuming that the noise is
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at least partially independent of the signal amplitude).

\We note that P,,, has similar shape as Pp, but higher bandwidth, while the other strains

have orientation dependent bandwidth. This excludes candidate (e) since for ?Ply (Fig. 3-5),

frequencies along ±45 ° are attenuated. Candidate (f) is also excluded because both E,, and

£yy attenuate frequencies along 0 and 90° and using both will therefore not produce rotational

symmetry. It is worth noting that the directions of attenuation coincide with the conditions

under which the TFM looses rank (see section 3.2). Candidate (g) is therefore the only one

remaining and it can provide rotational symmetry as seen in Fig. 3-7. The importance of

having full rank and bandwidth in all directions becomes apparent when one considers that

loss of rank means that infinitely many load combinations produce identical sensor responses

and hence make inversion impossible for those cases, and lower bandwidth in any one direction

means that less information on the spatial features characterizing that dimension of the object

is observable by the sensors. The conclusion is therefore that given the assumption that we

are using Cartesian strain sensors, the only combination that works for incompressible materials

and possesses symmetry is (pn, ExZ, y) and the TFM for that selection is (ref. Appendix A):

-jax -jay 

(1 + )e - (1z
Ts = -(-1 te) QWxWyZ jgWxZ (3.4)

- wyz - (Q -,) z) jQx

where s stands for a normalized sensor signal s = [EPn, ixz, Ey]

Remark: The sensor combination (, a, oayz) is equivalent to (p,, E-, Eyz), but the latter

combination can be considered to be unique and optimal because in almost all sensors, it is

the strains that are directly measured and stresses are then inferred from the strains. The

mean normal stress, p, is however needed for incompressible materials and therefore included.

As long as we are sensing stresses or strains, the range of spatial frequency sensed through

each component is of the same order. But only some of the components and combinations are

rotationally symmetric about the z-axis.

The Structure of the Sensor TFM

Analyzing the structure of the TFM in Eq. (3.4) we observe that the e - mZ factor, which is

common to all the terms, expresses how the signals get increasingly lowpass filtered or blurred
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Figure 3-2: The power spectrum of the mean normal stress p,y. We observe that it is rotation-
ally symmetric with a smaller bandwidth than P,, (Fig. 3-4).

with depth. It is a consequence of the model including the resistance of the medium to shear

and is therefore necessary if the sensors are to have a subsurface location. \Ve further observe

that there are two basic variants of transfer functions in the sensor transfer function matrix,

which we will call T1 and T2. T1 is characterized by its norm behaving like e - Oz, for example

Tplfz = e- z. T2, on the other hand, is characterized by its norm behaving like Iwil ze-Q,

i = x, y, e.g. ITzlfz l = Iwxl ze-nR. They differ in that the Ti transfer function has lowpass

characteristics but the T2 transfer function has bandpass characteristics. In the spatial domain

this means that the response of the T1 terms is spread over larger area since a predominantly

low frequency content indicates slow variations in the spatial domain. The response of the T2

terms on the other hand, is more localized and they respond better to sudden changes in the

loading since they have higher bandwidth.
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Figure 3-3: The power spectrum of the x normal strain P,,,. This power spectrum is not
rotationally symmetric as it behaves like Ppn in the wO = ±wy directions but as ',Pz in the
w,-direction (along wy = 0.)

Terms like j e- ,I i = x, y, have the same bandwidth as the T1 and but terms like

Q e-Q, i, k1 = x, y on the other hand are of type T2.

The TFM is symmetric with respect to x and y, since the halfspace model is identical for x

and y. Looking at the TFM linewise, we see that line 1, (n, terms) contains only T1 terms, but

lines 2 and 3 (xz and ¢yz terms) contain mostly T2 terms. T1 terms appear in the subdiagonal,

in TgEzfi and Tyzfy. These T1 terms serve their purpose as they are are the reason that the

matrix is non-singular for Q = 0.

Looking at the TFM columnwise, and column 3 first, we see that P, term in line 1 is type

T1 and the , and eyz terms are type T2, and we observe that they are proportional to the
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Figure 3-4: The power spectrum of the z normal strain PE. This one is also rotationally
symmetric as Pp,, (Fig 3-2) but it has higher bandwidth.

x and y partial derivatives of the p, term (in addition also multiplied by z). The same is true

for the other two columns, except for the previously mentioned additional T1 terms on the

subdiagonal.

In summary, the TFM can be interpreted as the jPn terms measuring the surface force as

directly as possible within the constraints posed by the subsurface location while the other two

sensor signals complement the JPn signal by measuring its x and y spatial derivatives.
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Figure 3-5: The power spectrum of the xy shear strain 7'Ey. It is not rotationally symmetric
and it differs from the other spectrums in that it has a sharp mininmm at the origin.

3.3 The Decoding Solution

The Ideal Case

Ideally the solution to the problem would be obtained by simply dividing the sensor output by

the transfer function in the frequency domain, i.e.

q5(WxWyO) = T-1(w,Wy, Z)S(W, Wy, z)

where 0o is the desired surface signal that needs to be calculated during the decoding process

(can be either tractions, displacements or a combination), T(wx, wY, z) is the transfer function
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Figure 3-6: The power spectrum of the xz shear strain 7P~,. This power spectrum behaves
like Pz in the wx-direction, but as Ppn in the wy-direction, and it is therefore not rotationally
symmetric. The PyEy power spectrum can be obtained from this one by a permuationa of x, y
or a rotation of the axis by ±900.

and s is the measured signal. As can be seen from the TFM expressions, the transfer function is

a low-pass filter where the high-frequency response goes exponentially to zero as Q tends to oo.

Therefore the inverted transfer function will become arbitrarily large for high frequencies. This

is very impractical and will lead to serious errors in real circumstances. To avoid this problem we

will instead use regularized solutions, which is a common practice in treating ill-posed problems

such as this one. Most regularization problems are formulated as scalar problems, here however

we will need to use multivariate regularization which happens to be used in specialized problems

such as the digital restoration of multichannel images [21, 22].
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Figure 3-7: The power spectrum of the sensor signals in candidate (g), i.e. P(p, e =
'PP,, +P +Y.. We observe that it is rotationally symmetric and as the z,, and eyz components
complement each other.

The Real Case

In addition to the features of the ideal problem, the real problem involves the unfavorable

effects of noise and spatial sampling. Both these effects can be effectively minimized using

regularizing agents in the solution as shown in [80]. One possible way of solving the resulting

integral equations is to discretize the integral and put it in the form of a system of linear

equations [65, 63]. A more intuitive way is to construct a regularizing operator in the frequency

domain using transfer functions as follows. The solution is obtained as in the ideal case except

for the multiplication factor ;b(wx, wy, z, a) where is a regularizing parameter, i.e.

O(W ,Wy) = V(w, y, z, )T-1 (, y, z),s(, )y,).
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where 00 is an estimate of the surface signal vector (inputs) and is stimuli (output) vector.

One possible family of regularizing operators that can be constructed are weighted norm

filters [80, 38] which are of the form

H,a (Wx Wy, Z, a) = [T*T + H] 1 T*T

where H(w, wy, z) is weighting function to be determined and will depend on the problem at

hand, the sampling interval and the noise characteristics. The solution is then

to = [T*T + aH]- 1T*9

It is shown in [80] and in further detail in 38], that in the case of scalar signals this regularizing

agent corresponds to the minimization of a functional. This generalizes readily in the vector

case to the functional

[0o, s, a] = ff f-'% [To - s]T [To - s] dwzdwy+

a f. ff. q(w., Wy)H(wz, wy, z) o(wx, wy)dwdwy

This means that in the solution the frequencies of the solution are weighted by the matrix H.

It is also shown in [80, 38] how the selection of the parameter a and the matrix H can be

optimized further. If we assume additive sensor noise which is uncorrelated with the solution,

x, y and load, i.e. s = ST + sN then H and ac can be specified such the expected value of the

squared difference is minimized, i.e.

E [1o H|12] where 00H _ 0 -.

where is the uncontaminated signal. The solution to this problem is the multivariate Wiener

inverse used in problems which appear in digital restoration of multichannel images. It is shown

in [21, 22] that in the multivariate case it is

H(wx, Wy, ) =Ps-l(WX Wy)Pn(w, Wy, z)

where Ps(w, wy, z) is the power spectrum matrix of the solution and Pn(wx, wy) is the power

spectrum matrix of the sensor noise. The multivariate Wiener inverse then finally becomes

¢o = [PT*T + Pn]- 1 PT*s. (3.5)

The need for the power spectrum of the solution indicates that the solution is not in a closed
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form. This problem can be circumvented in several ways. First, the power spectrum can be put

equal to qI where I is the identity matrix and q is a constant, indicating that nothing is known

about the solution a priori and the solution is therefore assumed to be white noise. Second, the

solution can be iterated. Third, all prior information about the solution that can be included

in a power spectrum can be used there. For example, suppose Coulomb's law of friction applies

at all points at the contact inferface and the coefficient of friction is known. The solution can

then be constrained to satisfy Coulomb's law by explicitly expressing the correlation between

the normal and the tangential tractions in the components of the PS matrix. Let us further

assume that it is known that the object is sliding over the surface but the direction of motion

in the (x, y)-plane is unknown, then the power spectrum matrix would be of the form

2 0

p, L 0 fp
h f I'f

hf If 1

where PLf is the power spectrum of fz and pf is the friction coefficient between the object and

the surface. Using this Ps in Eq. (3.5) will constrain the solution to satisfy Coulomb's law, i.e.

fr = lffz and f,y = ffz.

Remark: The linear filter presented here is based on the assumption that the noise properties

are shift-invariant and uncorrelated with the input signal. Also, its optimality is achieved with

respect to a Euclidian norm functional. The shift-invariance assumption comes naturally with

with our formulation of the encoding problem as a contact problem on the homogeneous semi-

infinte half-space. However, if needed, the XViener filter can be extended to correctly treat

cases when the input and the noise are correlated [6]. Finally, different cost functionals can be

prescribed, such as absolute value, p-norm and maximum entropy [10]. These filters should be

considered when the Wiener filter has proven inadequate. The details of their construction is

hence considered to be a matter of implementation and beyond the scope of this thesis.

4. Identification of Shape and the Onset of Slip

In this section we present an example that implements the theory discussed above which brings

together contact mechanics and tactile sensing. The simulations have two main objectives i)

shape identifaction and ii) the detection of the onset of slip. In both cases we will (a) show the

necessity and usefulness of the full 3D formulation presented here, especially in the context of
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a pseudo-dynamic problem, and (b) show the necessity of the multivariate regularizing inverse

in the solution of the decoding problem.

The example problem chosen is that of the incipient relative sliding of two elastic bodies in

contact. This problem is particularily interesting in the context of haptics, as the identification

of object shape and the prediction of the onset of and the prevention of slip is a fundamental

problem for both human and robotic exploration and manipulation. It has also been observed

by [66, 67] that objects of general shape will have qualitatively similar behavior as spherical

objects, so the results presented here will extend to general objects.

The problem demonstrated here is the indentation of an infinite half space by an object

shaped as a paraboloid, with simultaneous tangential (Fxo, Fyo) and normal (Fzo) load. Assum-

ing Coulomb friction with friction coefficient ilf, the condition for local slip can be expressed

as

< ffz f(x,y)+ f,2(x,y) = no slip

t f> X/f y)+f2(, y) f(, y) slip occurs

(3.6)

It is shown in [36] that the unique solution to this problem is that local slip occurs on the outer

edge of the contact area where c r < a, (?' = x2 + y 2) where

1/3

a = 1- F ' 1
a Xl /Fzo -

(3.7)

is the relative size of the

resulting surface tractions

non-slip region and no slip occurs for r < c, (see Fig 3-13).

are

Z� 1' for 0 < r < a
-ra

2 a 2 --

ttF2, r2
7ra 2 a 2

ira2 a2 a ra2 1 2

where c<r < a

where r<c

where ft =

/f(x, y) -+

fz = 0 for r > a, and ft(x,y) is directed along [F,,, Fyo]T with ft(x,y) =
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4.1 Identification of shape

Wie use here the optimal sensor combination obtained in section 3.2 and hence the encoding

part consists of predicting the sensor signal set ( EPn, xzz, yz) by using the traction vector

f above with the TFM, Tsf given in Eq. (3.4). The form of these sensor signals is shown in

Fig. 3-8(a)-(c). The decoding part consists of reconstructing the traction and the displacement

vectors, from noise contaminated sensor signals. The displacements will give us the shape of

the object where it is in contact with the surface, but that is by definition where the traction is

non-zero, and hence both displacements and tractions are needed for object shape identification.

WTe will now illustrate the necessity of regularization in the decoding algorithm by adding

noise to the sensor signals. In this example we use a high-pass filtered Gaussian noise, and

in Figs. 3-8(d)-(e) we show the resulting noise contaminated sensor signals. Profiles of an

unregularized solution obtained by inverting Tsf in Eq. (3.4) is shown in Fig. 3-10 and profiles

of a regularized solution obtained using the \Wiener inverse given in Eq. (3.5) is shown in Fig.

3-9. Surface plots of the same solutions are shown in Figs. 3-11 and 3-12. The displacements

are shown in Fig. 3-11 and the surface tractions in Fig. 3-12. We observe that the regu-

larized inverse is quite close to the uncontaminated solution but the unregularized one is not

recognizable.

4.2 Onset of Slip

As the total tangential load, Fto = /F + F, takes increasing values, the size of the non-slip

region decreases and when Fto = tfFzo global slip will occur. Therefore, knowing the relative

size of the non-slip region will enable us to estimate how close a particular loading situation

is to slipping. The size of the non-slip region can be inferred from the tangential traction

distribution as there will a sharp edge along r = c in that distribution. This edge can be seen

as two peaks on the 2D profile plot of ft(x, y) in Fig. 3-9 and as an edge in the ft-surface plot

in Fig. 3-12. We can measure a and c from the reconstructed ft(x, y) with the help of standard

edge detecting techniques. That information along with the total tangential and normal loads,

Ft, F 0, can either be used in Eq. 3.7 to solve for ttf or compared to the line plot in Fig. 3-13

to estimate how close the contact is to global slip. For example we see from Fig. 3-13, that if

c = 0.5a then the tangential load has reached 87.5% of its maximum value (Fto = 0.875I1fFz 0).
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(b) Noise free sensor signal Exz

0.01

0

-0.01

U.U I U.U LI

0

-0.01

5~~~~~~~~~~~~~~~~

-_OA

50
0

U.OI

0

-0.01

y- 5 -5 x y-5 -5 x y - 5 -5 x
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Figure 3-8: Sensors signals without (a) - (c) and with (d) - (f) noise.

5. Conclusions

In this chapter we have delineated a basic computational theory of haptics that is common

to humans and robots. The tactile identification problem is separated into the encoding and

decoding problems and solutions for both are given. Analysis of the results is shown to lead

to a unique and optimal combination of sensors suitable for tactile sensing. An optimized

multivariate regularizing algorithm for the solution of the decoding problem is also presented.

Using simulations, it is shown how the formulation used here can be applied to predict the

onset of slip using tactile sensors.

The conclusions of this chapter can thus be summarized as follows:

1. To sucessfully decode a general tactile 3D signal from a tactile sensor array, a mini-

mum of three independent sensors are needed; (pn, xze, Eyz) is a unique combination of
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Figure 3-9: Shows profiles of solutions f, f, ux, u along y = 0 to the decoding problem
obtained using an unregularized inverse. We observe that the tractions are hardly recognizable
although the solutions for the displacements, uL, u2 are closer to the true solution f, f.

stress/strain sensory signals which do not have a directional bias.

2. The transfer function approach developed here allows us to look at the qualitative prop-

erties and behavior of the solution, irrespective of the exact form of the load or object

shape.

3. The two items above lead to the transfer function matrix (TFM) formulation, a convenient

and compact formulation that is well known in control theory. The decoding problem is

then reduced, essentially, to the inversion of the (TFM).

4. Since the inversion is ill-posed in the presence of noise and discrete sampling, regulariza-

tion is needed, for which the multivariate Wiener inverse exists as a standard tool.

5. Simulations presented in section 4 show that the above can be used to calculate surface

shape, load distribution, contact area, and further has a possible application in estimating

the onset of slip.
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Figure 3-10: Shows profiles of solutions to the decoding problem obtained using the regularized
\iener inverse. We observe that it coincides almost everywhere with the true solution and that
the error is therefore small.
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(c) Estimated u, (unregularized)
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(d) True u displacement
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Figure 3-11: Shows surface plots of decoded surface displacements u in (a)-(c), and u in (d)-
(f). As in Figs. 3-10 and 3-9 we observe that the true solution and the solution obtained using
the Wiener inverse look very similar but the solution obtained using an unregularized inverse
is considerably worse.
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(c) Estimatedf, (unregularized)
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Figure 3-12: Shows surface plots of decoded surface load distributions fA in (a)-(c), and f in
(d)-(f). Again observe that the true solution and the solution obtained using the Wiener inverse
look very similar but the solution obtained using an unregularized inverse is mostly noise.
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Relative Slip Area vs. Relative Tangential Load

0 0.2 0.4 0.6 0.8 1
c/a

Figure 3-13: The relation between the relative tangential load Ft,,/(IfFzo), where Fto = (F 2 +
Fy2) 1/ 2 and the relative no-slip radius c/a = 1 - F3/(fF,,)3 . As an example, this relation
indicates that when the no-slip radius is equal to half the contact radius (c/a = 1/2) then
Ft = 0.875[LfFzo or that the tangential load is 87.5% of the maximum tangential load.
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Chapter 4

Dynamic Identification

1. Introduction

An understanding on the nature of touch, especially the mechanics and the information transfer

involved, is important for both physiological and robotics research. The workings of human

touch are presently not fully known and a computational model providing theoretical basis

would be useful when interpreting experimental results as a tool to generate and validate con-

sistent hypothesis. In robotics, a theoretical model would be of use in the design and devel-

opment of sensor arrays, addition to providing data processing algorithms and paradigms for

their implementation. Finally, in the emerging fields of virtual environments and telerobotics

depend considerably on detailed knowledge on the nature of the interaction of humans and

machines through touch. The above leads us to conclude that a computational theory which

would cover the common aspects of humans and robotic touch could be of considerable and far

reaching value and we will in this chapter discuss the details of such a theory which relates to

tactile sensing under dynamic contact conditions.

In chapter 3, we have treated a related problem, where we assumed that the loading is static

or quasi-static. The dynamic effects become important when the loading varies significantly on

a timescale measured in units of time constants characteristic of the medium in the fingerpad.

In this chapter we will include the dynamic effects of inertia and viscoelasticity in our analysis

of the tactile sensing problem. We will then delineate the cases in, and conditions under which
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these effects become significant and when the can be neglected - giving examples where the

static solution given in chapter 3 is no longer valid and this dynamic formulation becomes

necessary.

We use the same framework and definition of terms as in chapter 3, which we state here

again for review: Two stages in tactual information processing, encoding and decoding make

up the identification problem, which is so called because it involves the determination of the

state of the object and its relationship to the tactual sensory system. The system discussed

here differs in some ways from traditional dynamic systems. The most prominent difference is

that it has both spatial and temporal variables, whereas traditional lumped parameter systems

only have temporal ones. In both natural and man-made tactile systems the encoding process

is the transduction of the mechanical stimulus into electric signals that contain, in a coded

form, information about the stimulus features. The inverse problem, i.e. the decoding process

or the calculation of the surface shape or surface tractions from the transduced signals is in

many respects significantly more difficult. The encoding is essentially a spatial low-pass filtering

process which indicates that the decoding will be ill-posed in the sense that the higher frequency

components of the signals will be prone to noise contamination and special methods have to be

applied for successful decoding. This applies equally to the static formulation given in chapter

3. but several features are added to this problem with the dynamic formulation. Temporal

properties such as inertia and viscosity now play a role in the dynamic encoding solution, and

the decoding problem also involves the causality constraint on the temporal dimension that

needs to treated accordingly.

Several papers can be found in the robotics literature on the mechanistic modeling, encoding

and decoding of surface conditions from subsurface measurements using tactile sensors under

static conditions and the reader is refered to chapter 3 for an overview. Papers where dynamic

effects are included are much more scarce, but in [28] the encoding and decoding of a stress rate

sensor are investigated and a scalar Wiener inverse is suggested for the decoding. In [84] the

response of a 2D plane strain model to vibrating sinusoidal gratings is analyzed and it compared

to the sensitivity of the human fingerpad at different vibration and grating frequencies.

All previously published results on the reconstruction of general time-varying surface loads

and profiles from subsurface tactile signals do not solve the full 3D problem including the effects

of inertia and viscoelasticity and the effects and interaction of shear loads. In this chapter we

will address those aspects of the mechanistic modeling, encoding, and the decoding problems,

and the contributions of this chapter can be itemized as follows:
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1. A complete solution to the 3D half-space problem is given for arbitrary 3D dynamic

loading conditions and any linearly elastic material. The solution is formulated using

transfer function matrices in the domains of spatial and temporal frequencies which allows

us to look at the qualitative properties and behavior of the solution, irrespective of the

exact form of the load or object shape.

2. The effects of inertia and viscoelasticity are analyzed and it is shown that inertial effects

can be neglected whereas the visocelastic effects are dominant for low temporal frequen-

cies. The use of linear viscoelastic models further leads to solutions that can be expressed

using Transfer Function Matrices that are rational in the temporal frequency.

3. For decoding, we can then apply the extensively developed and numerically efficient

IKalman filter to estimate the inputs which at the same time avoids the problems as-

sociated with the ill-posedness caused by the spatial low-pass filtering.

In Section 2, we formulate and solve the 3D half-space elastic model, which serves as a

description of the encoding process. For the sake of clarity, the mathematical expressions are

detailed in Appendix C. 'e analyze the solutions in order to assess if and when the effects

of inertia can be neglected and further show how viscoelastic effects are included. In Section

3, we solve and analyze the decoding problem. and in Section 4, we give example numerical

simulations of the methods proposed in Section 3. Conclusions are given in section 5.

2. The Encoding Problem

From theoretical viewpoint, tactile sensor response to any given stimulus can be predicted if

we have the following:

1. A mechanistic model of the deformable medium which can be used to calculate reliably

the stresses and strains at each instant and at each point in the medium for a given time

history of the mechanical stimulus.

2. A model of the sensor that provides the relationship between the relevant stimulus, i.e., a

particular combination of stresses and strains in the local neighborhood of a sensor that

it is responsive to and the temporal characteristics of the sensor response.
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Figure 4-1: Shows the semi-infinite halfspace with surface tractions and subsurface sensors.
The x- and y-dimensions extend to infinity in both negative and positive directions. The z-
dimension extends from 0 to positive infinity. The tractions are distributed over the contact
area, each point being subjected to 3-dimensional loading f(x, y, t) = [fx, fy, fz]T .

For example, an appropriate mechanistic model of the human skin and the soft tissues under-

neath enables us to investigate one of the important questions in cutaneous neurophysiology,

that of identifying the relevant stimulus that causes each receptor type to respond [35, 75],

where only the temporal characteristics are known but the particular combination of strains is

not agreed upon.

In this section we will find and analyze the dynamic response of the elastic halfspace sub-

jected to a time-varying load distribution, and based on that give conditions under which we

can neglect the effects of inertia and how viscoelasticity can be included in the solution.

The problem is set up so that the boundary surface coincides with the xy-plane and the

positive ,-axis points into the medium (See Fig. 4-1). The material is assumed to be linearly

elastic and homogeneous. It is also assumed to extend to infinity in both negative and positive

x, y directions and in the positive z direction. The surface load is described by the time-varying

traction vector field f(x, y, t) = [fx(x, y, t), fy(x, y, t), f(x, y, t)]T and the surface displacement

field as uo(x, y, t) = [u ( y, O, t), u(x, y, O, t), u (x, y, O, t)]T. In our formulation, the boundary

conditions can be forces, displacements or mixed, i.e. when any 3 elements from both f and uo

are given. As in chapter 3 we intend to present the solution in the space of spatial frequencies

and use transfer functions to simplify solutions and gain further insight.
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2.1 Transfer Function Matrices (TFM)

We solve the encoding problem by transforming the fundamental differential equations of equi-

librium and the stress-strain relationship equations (Generalized Hooke's law) using the Fourier-

Laplace transform over (x, y, t) space. This is analogous to what was done to solve the static

problem in chapter 3 and examples of this approach can also be seen in [16] and [71].

The differential equations of equilibrium1 are given by

ij,j = pii i, j = , y, z (4.1)

and the linear stress strain relations according to Hooke's law are

oij = Aeij ij + 2 [tEij i,j = x, y, z (4.2)

where

$ij = (tij + j,i) i,j = , (4.3)

and &ij = 1 if and only if i = j, and is zero otherwise. Further, rho is density and the Lamn

constants A and l (shear modulus) are in terms of Young's modulus and Poisson ratio:

vE E
(1 + v)(1 - 2v)' = 2(1+ v)'

The details of the derivation are given in Appendix C for the purely elastic case. The

complete solution when viscoelastic effects are also present is treated in section 2.3.

As is done in chapter 3, we employ here the concept of a transfer function matrix (TFM). The

transfer function matrices we give here have the Fourier-Laplace transform of the components

of either f(x, y, t) or uo(x, y, t) as the inputs and any displacements, strains or stresses in the

medium as the outputs. Each entry of the TFM would then correspond to the contribution of

a particular input component to the corresponding output component. For example the entry

in the TFM for the z-displacement resulting from the x-load, or u (x, y, z, t) we would write

(WX, WyI, ) = Txf (w, Wy, z, )fy(wZ, Wy, s)

1Here we use tensor notation for compactness, where a ",j" in subscript means a partial derivative with
respect to the independent variable represented by j and repeated symbols in subscript stand for summation
over all indices.
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to obtain the Fourier-Laplace transform f(w, y , s) of ux(x, y, z, t) from the transfer func-

tion TuTf(w, Wy,, z, s) and the Fourier-Laplace transform fx(w, wy, s) of the surface shear load

fx(x, y, t). Here, wx and wy correspond to spatial frequencies in the x and y directions respec-

tively, and s is the Laplace variable (related to the temporal frequency by s = j). Then we

can write
U= Tuff = Tff a= Taff pn = Tpff

(4.4)
= TuUO e = T =Teuoi0 = TOe = (Tpuo O4)

where the subscript f indicates that surface tractions are inputs and the subscript uo indicates

that surface displacements are inputs.

The equations in (4.4) represent the solution for the encoding problem, because given

f(x, y, t), uo(x, y, t) or a combination of 3 elements from the two, we can predict u(x, y, z, t),

(x, y, , t) (, , y, z, t) and pn(x, y, z, t). If the relevant stimulus, i.e. a particular combination

of stresses and strains in the local neighborhood of the sensor that it is responsive to, is known,

we can predict the sensor response. For example, if the sensor response is linearly related to the

strain :z,, then it is the relevant stimulus for that sensor. On the other hand, if the relevant

stimulus needs to be identified, we can use Eq. (4.4) to generate hypotheses that can be tested

against the empirically determined sensor response, as is done in [35, 75].

2.2 Analysis of the Encoding Solution

The above solution to the decoding problem gives us every component of both the strain and

stress tensors but since the input is a 3-dimensional vector we only need to select three signals,

or three independent combinations of signal, which the sensors should transduce. In chapter 3

the selection of suitable sensors was discussed and there we showed using symmetry arguments

that the sensors should optimally transduce three signals: the mean normal pressure, p,n and two

z shear strains ¢zz and yz The arguments made in chapter 3 will also hold for the dynamic

encoding solution as introduction of time as a variable does not destroy spatial symmetry2

\We therefore use transfer functions for the signals above as examples in our analysis of the

encoding solution. VWe however note that the same analysis could be applied to all the other

strain and stress signals and the conclusions would be the same. Hence, we will analyze two

transfer functions, one between the mean normal stress Pn and the normal load f, and the

2 The Laplace variable s only appears in the sensor signals as some constant times s2 being added to Q2 and
will therefore not introduce any spatial asymmetry
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other between the xz-shear strain, E,, and f.

Transfer Functions: In the dynamic solution the transfer functions for those two variables

become
3T 32 - 4 s2 (Q2 + C-2S 2)e- n l z

6P2 Ch2 F3

1 jwxnl(Q2 + lcs2S 2 ) (e - n 2z - e- n lz)

2y F3

where

F3 = (Q 2 + !CshS ) -- n2, nl = Q2 + cp 2s n= Q2 csh2,

and c = /(A + 21)/p and csh = 7 are the dilational- and shear-wave wavespeeds (see

[81]), with A and 1t as bulk and shear modulus respectively, p is the density, and = Cp/IC,1

As before wx and wy are the spatial frequencies, Q = 2w + Wy, and s is the Laplace transform

variable, related to the temporal frequency by s = jw. The solution obtained here should

therefore approach the static solution when s -- 0, and we show that does so in Appendix D.

Analysis: For analysis of the transfer function, it is helpful to normalize and measure distances

and displacements in units of shear-wave wavelengths. Let s = j, Ash = Csh/W and hence

Q = Q/Ash = QW/Ch

z = Jx/Ash = C~x/Csh

The temporal frequency, w, can now be canceled out from the transfer functions, which then

become
32 - 4 (Q2

- )e-nl,

6/32 [(Q2 - 1/2)2 - fr2 12]

= _ 1 ~jnl (Q2 - ) (e2z - e1z)

21L [(22 _ 1/2)2 _ 272h 2]

with nfl = ( 2 _ -2)1/2, and if2 = (2 2 - 1)1/2.

\rTe observe that all the terms in the transfer function are real for Q > 1. This can be

interpreted as those spatial frequencies which satisfy QCsh > that are not involved in the

transfer of energy aay from the source and that the halfspace behaves as an elastic spring for
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fz(x)

L

x,

Figure 4-2: Shows the modeshape for the lowest eigenfrequencies of a domain with length L, assuming
either fixed or free boundary conditions at x = ±L/2. The maximum wavelength is AX,,ax = 2L and
hence the lowest non-zero spatial eigenfrequency is Qmin = '/L.

those frequencies.

The denominator of the transfer functions, however vanishes for Q - QR, something we

know because the denominator is the characteristic equation for the Rayleigh wavespeed (see

[81]). The transfer functions therefore become singular and a resonance phenomena occurs

when Q = cR/c,,h, where CR is the Rayleigh 3 wavespeed.

Inertia and Finite Domains: The above can be used to establish conditions under which

one can neglect inertia, especially in cases where the solution in Eq. (4.5) is applied to finite

domains. As an example, for a rectangular domain, i.e. (x, y) [-L/2, L/2] x [-L/2, L/2],

only a discrete set of spatial frequencies will give valid solutions. The lowest nonzero spatial

frequency is of particular interest to us, and we have plotted corresponding the modeshapes

assuming either free or fixed boundary conditions at x, y = IL/2 in Fig. 4-2.

WVe see that the longest possible 4 wavelength is Amax = 2L which is equivalent to 2in =

3The value of CR depends on = cP/Csh. For materials that are nearly incompressible (/ - oo) we have that
CR 0. 9 5 Csh.

4This is assuming fixed or free boundary conditions. A third kind of boundary conditions, elastic boundary
condition is also possible, and the lowest eigenfrequency will then depend on the stiffness of the boundary
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-T/L. W\e therefore have that Q < cR/csh is satisfied if

7rCR
W < Wcr = (4.6)

L

giving us a condition as to when we can ignore the effects of inertia for the semi-infinite halfspace.

Figures 4-3 and 4-4 show how the condition above appears in a Bode plot of the transfer

functions in Eq. (4.5). The numerical values were chosen so that the system resembled the

human fingerpad in size and material properties, i.e. L = 12.8 [mm], ,t = 2.8s10 4 Pa, = 4.995,

and density p = 1000 [kg/m 3 ], which substituted into the condition in Eq. (4.6) gives that

wc, = 1095 rads-1 or that inertia can be ignored and the quasi-static solution used if the

bandwidth of the loading is less than 174 Hz. lWe observe in Figs. 4-3 and 4-4 that the static

and the dynamic solution are identical below the temporal frequency predicted, but that there

are complex pole-zero pairs (i.e. (s2 + Z2 )/(s 2 + p2)) which are very close to each other at the

critical frequency. Viscoelastic behavior for frequencies lower than that critical frequency can

now be modeled by letting the elastic constants in the static solution, given in chapter 3, be rate

dependent, which will give some shape to the transfer functions in that range, characterizing the

particular material being modeled. lWe will see in section 3 that this will simplify the decoding

part significantly and in fact make it numerically feasible.

2.3 Viscoelasticity

Theory of viscoelasticity extends the theory of elasticity to include cases where the stress-strain

relation behavior is not time independent. It all boils down to the choice of timescale, and

for shorter intervals of interest, it may be necessary to include the rate dependent behavior

of materials. The description linear viscoelastic material applies to materials for which the

rate dependent behavior can be adequately described explained by expressing the stress-strain

relation in the viscoelastic form of Hooke's law,

a(s) = Q(s)P(s).

AWhere F(s) and S(s) are the Laplace transforms of the stress and the strain, respectively. Q(s)

is called the Operational relaxance and alternatively Q(s)/s is called the Operational impedance.

The main advantage in using the viscoelastic form of Hooke's law is that we then can apply the

condition. There will be a minimum eigenvalue similar to the other boundary conditions, with the exception of
the singular case when the stiffness of the boundary condition matches that of the material.
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Mean Normal Pressure p,, -. static -- dynamic
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Figure 4-3: Shows a Bode plot of the mean normal pressure, p, for both the static and dynamic solution
at z = 1 mm below the loading point. The amplitude is normalized with the static response. NWe observe
that the solutions are identical up to a critical frequency, given by ,cr = TcR/L. ( f < 174 Hz when
estimates of the material parameters for the human fingerpad are used.

correspondence principle. According to the principle, if an elastic solution to a stress analysis

problem is known, substitution of the appropriate Laplace transforms for the material constants

employed in the elastic solution furnishes the viscoelastic solutions [83].

Hence, the effects of viscoelasticity can be incorporated into the elastodynamic solution in

Appendix C, simply by allowing the material constants to be frequency dependent, i.e. /t and ,

become (s) and p(s). Similarly the effects of viscoelasticity can included in the static solution

given in chapter 3.

The material constants are in general both independently rate independent, p. describing

shear motion and the dilational behavior. It is however often assumed that only I is rate

dependent. This assumption is reasonable for materials that are near being incompressible,

(v > 0.4) which is the case for polymers and other materials we intent to apply this theory to.

The simplest model that captures the behavior of a linearly viscoelastic solid is the 3-parameter
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Figure 4-4: Shows a Bode plot for the xz-shear strain, Z for both the dynamic and static solutions.
The location is at depth z = 1 [mm] below where the static solution has a maximum (see Fig. 3). As
in the case of the mean normal pressure, we observe that the solutions are identical up to a critical
frequency, given by w,,c = 7rcR/L or while f < 174Hz.

standard linear solid.5 The transfer function for p. is for this model,

1 + ts
g(S) = P0 + 1 tr5

1+ t,.s

where ito is the steady state response, t the retardation time and a is the overshoot of a step

response. A schematic representation of the model as dampers and springs is shown in Fig.

4-5a, and the step response in Fig. 4-5b, i.e. the response in stress to a step in strain.

This model can be generalized to model materials with more than one time constant. The

transfer function for the generalized model is

L(4S)=utJ-1 t is

5Also called Kelvin model.

81

- : .1..I

i

_ · I · 1·_�1 · I··�1·· 1 1 · · �·__1

_� L__�II1___1LLLIL___ll*_��--_^-----L--l·�_IB�-^----�11^-_1__1--·_11 II.·�I_ --- 11^1 - -II

I

_5



(b) Response of stress to a step in strain

k2

I

0.5

0 1 2 3
t [s]

Figure 4-5: (a) Shows a diagram of the 3-parameter linear standard solid model using spring and damper
elements. (b) Shows the response in stress to a step change in strain for the 3-parameter linear solid
defined in Fig. 4-5. The relation between the parameters is that o = k1 k2/(k 1 + k2), a = (k1 + k2)/k 2 ,
and tr = b/(kz + k2).

The transfer function approach to viscoelasticity provides a powerful tool for the modeling

of the viscoelastic properties of different materials. One still needs, however, to estimate the

parameters in the transfer function for each material and under conditions that are as close as

possible to the conditions under which the model is to be applied.

This model captures the general behavior of an viscoelastic solid, in that the net effect is a

phase delay between the loading and the displacement occuring because energy is absorbed by

the medium. This phase delay is one of the factors that makes a dynamic formulation necessary,

even when only viscoelastic effects are dominant and the encoding solution is identical, in form,

to the static solution. This we will discuss in the section 3.

3. The Decoding Problem

Tactile information is obtained with mechano-sensors embedded in a deformable medium that

is in contact with a shaped object. Mechanosensors, embedded within the medium can, at

best, provide information on skin surface shape and surface traction distribution. From this

information, contact region, shape of the object and the contact state need to be inferred.

The problem at hand is therefore the decoding, i.e. reconstruction of the surface shape of

the medium, the tractions on the surface as well as the region of contact using sub-surface

mechanosensory information.
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An important part of the decoding solution is the selection of the sensor signals, i.e. the

particular strains or stresses the sensors should pick up. As the introduction of the dynamics

does not alter the symmetry properties of the halfspace we will refer to the treatment of the

static solution in chapter 3 and not need repeat it here.

In Eq. (4.4), we have chosen to represent the solution for the encoding problem in terms of

transfer functions in both the spatial and temporal frequency domains. WVe will show in this

section that for the solution to the decoding problem, it is more efficient to use state-space

representation for the temporal dimension when possible.

3.1 The Decoding Solution

The solution to the decoding problem essentially gives us an estimate of the conditions on the

surface given a time history of the sensor signals. This estimate must be such that it minimizes

some error measure. One such measure is the expected total square error defined as

= E II(x, y, t)-(, y, t) Idxdy
(4.)

- E (W[JJ (x, yt) - (Wxy t) l2dxdwy]

where ( and are, respectively, the true and estimated signals describing the conditions at the

surface. The latter relation follows from Parceval's theorem, and it shows us that we can with

identical results minimize the error in the domain of spatial frequency.

When the effects of inertia is included in the encoding solution, the resulting TFMs are

irrational in the frequency variable s. This indicates that the system being described does not

have a finite number of states and hence cannot be represented using the state-space approach.

W7e have shown in section 2.2 that the effects of inertia are only of importance for higher

temporal frequencies which are in most cases out of the range of interest in most applications.

Hence, we will concentrate on the solution when viscoelastic effects dominate.

The decoding problem as posed here is in most aspects identical to optimal linear filtering

problems encountered in signal processing and control theory. In those fields, extensive research

has lead to the now accepted conclusion that for this problem effective solutions can only be

obtained for signals that can be described using rational power spectral functions [86, 37, 52].

The system can then be represented in a state-space and the resulting filter is the wellknown
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I(alman filter.

Translating the shear modulus (s) from transfer function to state space representation can

be done using any of the standard control theory methods, cf. [62]. In order to represent the

surface load to sensor TFM,(Tf in Eq. (3.4)), in state space, we need to use as many state

variable as the order of L(s) dictates for each of ez,, eyz However, since p, is a stress variable

and the input is load, /z does not appear in the corresponding TFs. Therefore for p,, there are

no viscoelastice effects that need to expressed as state variables. Effectively, we assume that

the response, of the mean stress sensors to surface load, is instantaneous. Denoting the states

for Ecz and Eyz as cZ,,, Eyz E IR' , respectively, where n is the order of y(s), we get, using

control canonical form for each sensor variable, that the TFM can be represented in state space

as

1E- Al" Onx x1

EZ 1 - AHOnxn A A Ez 

bT
E."

On-1x3

bT
yOn

0n-lx3

f(4.8)

(4.8)

P|n 0 ixn Olxn

-7 T~~~ S 1Tx ' + [ TE l f]

where ., E Rf and c, E IRn are obtained from y(s), and the input matrix is made of the

static encoding solution TFs from T f in Eq. (3.4)'as follows

I62zr = I Te.zfy bEyz = Te yzfy

Txf Ty-f

The Kalman Filter

In order to formulate the decoding problem as a filtering problem we assume that known

properties of the surface signal can be modeled using a colored noise signal, i.e. a signal filtered

through a known linear system that characterizes the expected spatial and temporal properties
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of the signal, primarily bandwidth. The form and the parameters of that system need to be

assessed for each model or implementation, but this paradigm provides a tool to incorporate

and utilize known properties of the input in the decoding. For example, if we assume that the

temporal and spatial characteristics are separable and write

E[f(w,, W , S)f7 (, y , s)] = Ps(., y) (),

where Ps is the spatial power spectrum matrix of the solution discussed in chapter 3 section

3.3 but D is the temporal power spectrum matrix that can be used as a shaping filter to model

the temporal characteristics of the load signals. can be any valid rational power spectrum,

but a simple example of such a model is the AMarkov process model, where the power spectrum

and the corresponding shaping filter is given by

(s) = 2 /3 2 qquadH = 8+

where represents the temporal bandwidth of the load signal. Using the above example, the

spatial and temporal spectrum characteristics can then be combined, e.g. for the normal load

f:

f = -'a + 23Piz(W, )wv(t)

where tw is a white noise signals, P~z is the spatial power spectrum of fz, and we have made

the simplifying assumption that P, is diagonal.

Having expressed both the encoding solution and the known spectral properties as state

variables, we combine those and obtain the system in form that we can directly apply the

Kalman filter to
= A4+B

(4.9)
C = C(+vi.

A, B and C are obtained by augmenting the system Eq. (4.8) with the states used to model

the temporal spectral properties of the surface loads or or displacements as discussed above.

The resulting state is and we have used for the measurement vector, i.e. ( = [pn, ez, % ]T

The input w and the sensor noise v are assumed to be white noise processes with the following

properties:
E [(t)0(T)*] = Q6(t - T)

E [(t)F(T)*] = R6(t - r) (4.10)

E [w(t)v(T)*] = 0.

where R = P the same as delineated in section 3.3, chapter 3 and Q = P,, if temporal and

spatial properties are separable, as discussed above. We further note that the Kalman filter

85



allows A, B, C, Q and R functions of spatial frequency and time, i.e. A = A(w, wy, t), hence

the separability assumption above is not necessary but we only present it to show the relation

of this solution to the static solution (see also Appendix E).

For linear systems in state space it is known that a filter that minimizes the expected

covariance of the estimation error P = E [tr (( - )(F - )*)] and hence, minimizes the error

in Eq. (4.7), is the Kalman filter given by the following equations:

= A +K(-C-)

K = PC*R- 1 (4.11)

P = AP + PA* - PC*R-1CP + BQB* P(O) = Po

and we get our solution to the decoding problem from the state estimate since the inputs are

contained in that part state vector that models the input characteristics. (For examples see

simulations in section 4..

This state representation in the spatial frequency domain is a straightforward and a powerful

extension to the static decoding solution. It retains the numerical efficiency of the Fourier

transform (i.e. with the use of FFT) and at the same time provides a well developed modeling

tool. The KIalman filter further has many guaranteed properties and an important one is that

if the signals involved (w and v) can be assumed to be Gaussian the the Kalman filter is the

best possible filter for a large class of criterion [6], i.e. it can be shown that it minimizes the

expectation of nondecreasing functions of the magnitude of the error.

Remark: Many of the assumptions made above (e.g. that E [w(t)vT(r)] = 0) can be dropped

or weakened but we believe that more detailed discussion on the properties of the Kalman filter

is beyond the scope of this thesis and the reader is refered to the rich literature that exist on

the kalman filtering and its many applications, (e.g. [6, 37].)

Remark: Even though this formulation of a solution to the decoding problem appears quite

different than the one obtained in the case of static loading in chapter 3 it is in fact equivalent

in the sense that the Kalman filter solution can be shown to converge to the Wiener filter under

static conditions. This we show in appendix E.
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4. Simulations

The simulations presented here are designed to clearly draw out the specific aspects of the en-

coding and decoding problems treated in this chapter, i.e. the dynamic effects of viscoelasticity

on these problems. In order not to clutter the results, we chose the examples to be as simple as

possible while still being able to reach the main objective of this simulation section, which is to

confer the following: 1) Viscoelastic effects need be accounted for if one wants to correctly solve

the encoding and decoding problems under dynamic conditions. 2) State space representation

and the Kalman filter can be successfully applied to solve the above problems.

The example presented here will be a model of a smooth rigid body, shaped in the form of a

paraboloid, indenting a viscoelastic halfspace. The normal load is assumed to be a time-varying

Hertzian distribution, which is one of the few available analytical solutions to viscoelastic con-

tact problems. The time varying Hertz distribution can be shown to correctly model the in-

dentation of an object of this shape into a viscoelastic halfspace during the indentation phase,

i.e. while the contact area is nondecreasing [44, 30].

The contact area is time-varying but the contact radius is obtained by integrating the

relation

a3] (s) = 3RF(s) (4.12)

where the parameter R is the curvature of the object, as u = ( 2 + y 2)/2R and we have

assumed that the material is incompressible (v = 0.5). \We use here the simple Kelvin model,

discussed in section 2.3 for the shear modulus, or

l+s

1 + s/3

i.e. t = 1 s and ar = 3. AWbe further choose the total normal load trajectory to be a low-pass

filtered step (see Fig. 4-6a) The resulting time history for the contact radius a(t) is shown in

Fig. 4-Gb and corresponding surface load and displacement distributions are shown in Figs.

4-6c and 4-Gd for the time points t = 0.02, 0.1, 1, and 4s. The surface normal load and the

displacement distributions shown in Fig. 4-6 are calculated using the known Hertzian solution
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Figure 4-6: (a) Shows the time history of the total normal load Fz(t) which is a low-pass filtered step.
(b) Shows the corresponding contact radius time history obtained from Eq. (4.12). (c) Shows sections
of the resulting surface normal load distribution, f,,obtained using Eq. (4.13) at for different times,
(t = [0.02, 0.1, 1, 4]). We note that the maximum load, is not monotonic in time as the total load but
reaches a maximum in t E [0.1, 1] (see also Fig. 4-7. (d) Shows sections of the resulting surface normal
displacement for the same time points as (c).
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[36]:

3 F,(t) r2
f (r, t) (

27w a2 (t) a2 (t)

= 0l t 1 (2a2(t)- r2) if r' < a (4.13)

-- (2a2(t)-r2) sin- ( ) + ra(t) 1 a2(t ) if r > a

Although the solution presented in section 3. is valid for a general 3D loading we only include the

normal load since we are concentrating on the dynamic and viscoelastic effects in this chapter

and they are independent of the effects of the shear loads. Hence, the results and comments on

the effects of static shear loading obtained in chapter 3 are equally applicable when dynamics

and viscoelasticity are included and we therefore do not repeat them here.

4.1 The Encoding

Vle pose the encoding problem here, as the prediction or calculaction of the subsurface signals

that the sensors transduce, given the surface load or displacement distributions. WNe have

already decided that the sensors are the set (Pn, EXZ yz) and since we later on intend to apply

the Kalman filter, we use the state space representation given in Eq. (4.8). The state space

matrices, not already specified, for this system become

A =-a, and c = tr (1--

and Fig. 4-7 shows the shape of the resulting signals for the same time points as Fig. 4-6. \We

note that the shape of mean normal stress, p,, sections (Fig. 4-7a-b) is a low-pass filter version

of the surface normal load in Fig. 4-6c and that the response is instantaneous. The shear strain

response shown in Fig. 4-7c, on the other hand, is not instantaneous and there the viscoelastic

effects become clearly visible. The instantaneous, or static, response is shown as a dotted line

and we see that it behaves quite differently, with time, than the viscoelastic response, shown as

a solid line. We further note that the sections corresponding to t = 4 s coincide so the responses

converge in the end as expected.
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Figure 4-7: (a) Shows the time history of maximum mean normal pressure, max(pn). The time points
selected to show the distribution profiles are marked with x on the plot and we note that there is a
maximum at t 0.3s. (b) Shows sections of the mean normal pressure distribution. (c) Shows sections
of the xz-shear strain distribution. The solid lines show the viscoelastic response but the dotted lines
what the predicted response would be if viscoelastic effects were ignored. We note that they are quite
different for all time points, except for t = 4s when the response profiles coincide as then the static
assumption becomes valid.
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4.2 The Decoding

Here the problem is to reconstruct the surface load and displacement distributions from the

sensor signals. We only consider normal loads so the input signal is D and we therefore only

need one sensor signal for which we choose Pn. We could use the other signals, i.e. exz and

Eyz instead or as well but that would not have any effects on the dynamic side of this problem,

which we want to expose.

Reconstructing the surface load distribution, fz, from p, will not involve viscoelastic effects

as our assumptions implicitly say that this response is instantaneous. The reconstruction of the

displacement distribution, u, does however involve dynamics and then we use the above state

space model with the transfer function Tpnuz = 2Q exp(-Qz) in both the B and C matrices.

We further use the Markov process to model the temporal properties of the surface signals

and choose the parameter d to be large enough to match approximately the bandwidth of the

surface signals. Finally, we add a spatially high-pass filtered Gaussian sensor noise, so that the

rms. error to signal ratio 6 is 23%, see Fig. 4-8.

The results from the Kalman filter are shown in Figs. 4-9a-c and there we note that the

filter successfully estimates the surface signals and that the rms. error ratios are 14% for f=,

the surface normal load and 3% for u, the surface normal displacent.

In this section we have given an example of how the theory presented in this chapter can be

applied to solve the encoding and decoding problems under dynamic conditions. The results of

the simulations indicate that the state space approach can be used to model viscoelastic prop-

erties and, simultaneously include known spatial and temporal properties of the signals. The

encoding results indicate that viscoelastic effects can have significant effects on the predicted

sensor response and that viscoelastic effects need to be accounted for under dynamic conditions.

The decoding results give us that the Kalman filter is successful in filtering out sensor errors

and gives relatively accurate estimates of the surface signals, where the displacement estimates

are more accurate than the load distribution estimates.

6 That is, square root of the ratio between the integrated squared error and squared signal, respectively
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(a) (b)

A

Figure 4-8: (a) Shows the distribution of the mean normal stress, p,, at sensor depth. (b) Shows the
same distribution with spatially high-pass filtered measurment noise added. The rms. error level is
;23%.
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Figure 4-9: The results of decoding simulations. (a) Shows the actual and decoded estimates of
surface normal displacement distribution uz. The estimates are shown using dotted lines but the actual
displacements using solid lines. (b) Shows the actual and decoded estimates of surface normal load
distribution f,. The estimates are shown using dotted lines but the actual loads using solid lines. (c)
Shows the rms. errors as percentage ratios to the total response of each signal. We note that both
the load and displacement errors are less than the sensor noise and that the displacment error ratio are
always less than the load error ratio but that is caused by the smoothing nature of continuous materials.
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5. Conclusions

In this chapter we have delineated the aspects of haptic computational theory that relate to

dynamic properties of the fingerpad. Separating the problem of shape identification into an

encoding and decoding problem we give a solution to the encoding problem using a Transfer

function Matrix formulation obtained using a combined 2D-Fourier-Laplace transform. We show

how the effects of inertia and viscoelasticity enter the solution and analyze the contribution of

each. lWe further show that the effects of inertia can be neglected for a significant lower range

of the temporal (lower bandwidth signals). We give a solution to the decoding problem in

the form of a Kalman filter operating on the 2D-Fourier transform of the sensor signals. The

IKalman filter is a numerically effective and well developed tool with many desirable properties,

and it has proven its validity in numerous applications. Finally we show how the solutions to

the encoding and the decoding problems become identical to the solutions to the static problem

given in chapter 3 when the surface loads become static or quasi-static.

A computational model of dynamic tactile contact provides an important extension to pre-

vious results on the static haptic identification problem. Robots can generally be expected to

operate under dynamic conditions where contact loads cannot be assumed to be quasi-static. It,

is also known that for humans stroking enhances performance when carrying out haptic tasks.

We further know that the characteristic time constants of the fingerpad are on the order of a

second or more and that viscoelastic effects are significant and cannot be ignored. Finally in

virtual environments, it is the dynamic interaction that simultaneously provides most of the

illusion and implementation difficulties, making detailed modeling necessary. A related problem

is how the information that is obtained using the methods described in this chapter can be used

to touch and grasp, and consequently explore environments or manipulate objects , but that

will be the subject of next chapter.
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Chapter 5

Exploration Strategies and Finger

Control

1. Introduction

A comprehension of the nature of contact, grasping and subsequent exploration or manipulation

is of significant importance in both physiological and robotics research. In physiological research

the objective is to understand the mechanics of hand movements, especially which factors govern

the shape of motion trajectories and more importantly why they do so. This knowledge has in

addition to its scientific value, uses in such areas as rehabilitation, learning and development of

motion skills and ergonomic studies, just to name a few. On the robotics side the goal has been

to make a robots perform tasks that demand human level of dexterity. This goal has proven

elusive, mainly because of the inherent complexity of the mechanics involved. But the difficulty

is easy to underestimate considering the relative ease humans seem to have with performing

these tasks. Robots have until now also lagged behind their human counterparts on the sensory

side and it is only recently that sensor arrays have been produced that in some ways duplicate

the properties of the human sensory organs. The problem of grasping and manipulating an

object has been investigated by many researchers (for review see [69]) and in view of that and

the above we will in this chapter discuss how this sensory information can be used for the

exploration of objects. We will try to make our arguments independent of implementation and

therefore equally applicable to robots and humans. By this, we hope to extract a common
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thread in a web that could be called a computational theory of haptics.

In chapters 3 and 4 we have discussed the processing of sensor signals resulting in algo-

rithms and guidelines for sensor design that together give optimal estimates of the loading and

displacement distributions on the surface of the fingerpad. That is the Surface Signal Identifi-

cation Problem, which details can be found in chapters 3 and 4. Fig. 5-1 shows a diagram which

explains the relation of that part to the problems we are going to discuss here. In this chapter

we will focus on two blocks of Fig. 5-1, the Exploration Strategy and the Finger Control blocks.

Our main goal is to explore objects, but the Exploration Strategy block refers to the problem

of inferring object properties such as shape, texture, and compliance and the state of contact

from the estimated surface signals. This involves determining, given a property that is to be

explored, what kind of sensor information and also what kind of action is needed for successful

exploration. Thus, in addition to actual information processing, a specific action, that brings

the desired information to the sensors, is also needed. This is the role of the Finger Control

block, but it refers to the translation of the desired actions into command trajectories for the

fingerpad. We will show that for continued exploration we will need information about the

local curvature of the object at the contact location. Wre further give a method to extract that

information from the surface signals estimates in a robust manner. Finally, Fig. 5-1 shows how

the command trajectories are fed into a low-level manipulator controller which we assume is ca-

pable of producing motor commands that will make the manipulator move accurately enough1

along the command trajectories, which in turn closes the loop at the fingerpad.

The Supervisor figure in Fig. 5-1 provides extermal information labeled control strategy

which for example includes the desired direction of stroking. We therefore, assign to the Super-

visor the role of providing 'global' information which is not readily accessable through tactile

channels, e.g. visual information. One of the implications of this assumption is that we will

not dwell on various problems that arise when an object is explored, such as how can we ensure

we will cover the whole surface of an object when stroking it. We believe that such questions

are more naturally answered using either heuristic or AI techniques and as such are beyond the

scope of this thesis.

W'e are not aware of any reference that treats the problems discussed here as whole and

we believe the reason is the fact that it has been addressed from different directions in various

disciplines. Exploration strategies have mostly been investigated from the human side. [42, 43]

'The manipulator we discuss here can be a human arm or finger as well as a robot manipulator. W\e acknowl-
edge that the human arm has in general inferior position and force accuracy when compared to robot arms.
However; we also know that measured in dexterity it is superior so the human accuracy, or lack thereof, must be
sufficient in some way and this is what we mean by saying "accurately enough".
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investigates exploratory procedures, [48] delineates sensor channels and coding in general, but

[76, 77, 48, 12, 33, 29] discuss the same with respect to specific object properties, mainly texture.

Most of the definitions in these references are implementation independent and therefore usable

for robots as well. It is only the definition of object properties such as texture that is often

subjective and often hard to get any consensus on what the term texture means. We will

therefore explicitly define the object properties we will discuss so that they can be quantitively

identified. For shape sensing we rely mainly on image analysis literature, [1, 31, 3, 50, 78, 27],

and for texture measures we borrow concepts from triboloby in work on surface roughness

[79, 47, 46, 58, 25]. The robotics literature dominates in the formulation of control laws as can

be expected. For contact and grasping stability during manipulation we confer [69, 54, 7], but

for stroking and manipulation kinematics we confer [57, 53, 55], and finally for the formulation

of control laws we confer [2, 26, 11].

The contributions of this chapter lie mainly in the arrangement in a common framework

the different components and processes of haptic exploration. These components and processes

have until now been treated treated separately, but we identify them as different facets of a

larger structure, ie. the structure illustrated in Fig. 5-1. On the more detailed level, we define

and discuss in a consistent manner the constituting parts, i.e. the Exploratory Procedures for

each object Property and contact state and also the relevant Sensor Channels and Codes in

each case. We finally show how these exploration strategies can be implemented and specifically

delineate how stroking can be achieved using robust estimates of local shape information.

This chapter is organized sectionwise as follows: In section 2 we discuss the Exploration

Strategies including definitions of the term used, i.e. Exploratory Procedures, Sensor Channels

and Sensor Codes. \Te then apply the tools introduced for the identification of object properties,

and the state of contact. In section 3 we discuss translation of the Exploratory Procedures into

control laws and we do that separately for directions tangential and normal to the fingerpad.

W\e finally give our conclusions and remarks in section 4.

2. Exploration Strategies

In this section we will discuss exploration strategies suitable for object property or state-of-

contact identification. More specifically we will list the types of actions, i.e. Exploratory

Procedures human and robots have available. We will also list different types of sensors, ie.

Sensor Channels and further what part of the sensor signal is of interest, i.e. Sensor Codings.
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Table 5.1: Explicitly lists the available exploratory procedures, sensor channels and codes as well as
object properties. For further clarifications of terms used in the table see text.

Exploratory Sensor Sensor
Procedures Channels Codes
Static Touch SA1 Intensive
Indenting Sensor Array Temporal
Stretch RA1 Spatial
Stroking SA2 Spatio-
Tapping PC temporal
(Enclosure) Accelerometer

\, I X
Object Shape, Texture, Texture
Properties Compliance, State of Contact

Finally, we will list and define the object properties that are identifiable using the previously

listed exploratory procedures and sensor channels and codes. For overview, Table 5.1 explicitly

lists the available exploratory procedures, sensor channels and codes as well as the object

properties that we discuss in more detail below.

Exploratory Procedures

The term Exploratory Procedure as defined in [42], refers to a "stereotyped movement pattern

having certain characteristics that are invariant and others that are highly typical". Here we

will only include simple movements that only require the movement of a single fingerpad and

exclude more complicated procedures such as function tests or part motion tests that may

require the relative motion of two hands. The "enclosure" procedure actually violates this

condition since it would require multiple fingerpads, but we include it since it adds insight

when explaining object shape identification (see section 2.1).

1. Static Touch is the most basic procedure and it can only give information on the shape

of the fingerpad within the contact area, and only spatial information is available.

2. Indenting gives also information about the force-displacement relationship of an object

and can therefore be used to infer the normal compliance of the object.
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3. Stretch gives same addition as indenting but in the tangential direction and will therefore

give information on the lateral stiffness of an object.

4. Stroking adds the temporal dimension and the spatio-temporal information becomes

available. One feature of stroking is that if position accuracy is better than sensor resolu-

tion then one can increase the effective spatial bandwidth as then the surface is effectively

re-sampled. The extents of this bandwidth enhancement are limited by the position ac-

curacy.

5. Tapping is a ballistic movement where the finger impacts the object, and provides the

same information as indenting.

6. Enclosure is the simultaneous contact of multiple fingers and may include other parts

of the hands such as the palms.

Physiological experiments involving analysis of videotaped hand movements indicate that hu-

mans use these exploratory procedures to a high degree and further that they select different

procedure to match the required object property [43]. We therefore believe that this approach

is of value and can be used for robotic exploration.

Sensor Channels and Codes

The concept of sensor channels and the coding principle introduced in [34, 40] has its roots in

neurophysiology where researchers were interested in how different textures and other stimuli

to the fingerpad of monkeys was coded in the measured peripheral neural signals. There this

classification has been proven to be useful in generating hypothesis on phenomena such as

roughness perception. It can however, also be useful for the identification of other object

properties such as shape and compliance.

Sensor Channels

The need to define different sensor channels arises from the fact that there are known at least

four different types of mechanoreceptors the human fingerpad. These are frequently classified

as: slowly adapting type I (SA1), slowly adapting type II (SA2), rapidly adapting (RA1) and

Pacinian (PC). WVe have in table 5.1 where applicable identified the robot sensor types that are

roughly parallel to the human mechanoreceptors. The criteria we used in matching human and
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Table 5.2: Lists the different sensor channels for humans and robots and matches them according to
temporal and spatial bandwidth.

robotic are the sensor's differing temporal and spatial bandwidth of the sensors. Table 5.2 lists

how this comparison is made.

Sensors with limited spatial and temporal frequency range are easier to make than sensors

that cover large ranges of both. It is, however, possible to make several sensors each targeting

a different frequency range and combine the information from the different sensor channels to

cover the frequency ranges of interest. How this concept is realized in the human fingerpad

is shown schematically in Fig. 5-2, where the the temporal and spatial frequencies are on the

horizontal and vertical axis, respectively.

An interesting coupling between the temporal and spatial frequency responses occurs during

stroking and it does play a role in shape and texture identification. Assuming that under static

loading the loading distribution is represented by its Fourier transform, f(WX, wyy), then the

same loading distribution traveling along the surface with a constant x-velocity, vt will result

in a loading distribution which has a Fourier transform fz(wJ, wy) exp(-jwaJvtt). (This result

is easily obtained directly from the definition of the Fourier transform.) This means that a

wa&-component of the loading distribution will give rise to a temporal variations of frequency

Wt = WxVt. (5.1)

Details on this phenomenon are to be found in Fig. 5-3, where we superimpose a typical spatial

frequency distribution onto the observed temporal sensitivity properties of human receptors.

The relation in Eq. (5.1) appears as a line on a loglog (t, w) plot and the line is translated

sideways by changing the stroking velocity vt. A consequence of this result is that the stroking

velocity can be selected based on a desired spatial frequency range to match the temporal

sensitivity range of the sensor/receptor.
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Mechanorepectors bandwidths Sensors
SA1 Low temporal, high spatial Strain gauge array
SA2 Low temporal, low spatial Force sensor
RA1 Medium temporal, medium spatial
PC High temporal, low spatial Force sensor

._.~~ '^ Il " CI-·II__ ll ~ - --·



Sensor Codes

Sensor coding refers to how the sensors signals are pre-processed or what part of its content

is used for object property identification. Four principal codes, C1 - C4, have been identified

[34, 40] based on the assumption that we have a distributed sensors response signals ri(x, y, t),

that are the response to some stimuli, where i represents different sensor channels.

1. Intensive code is when C = C1 =const., i.e. all spatial and all temporal variations has

been integrated or averaged out.

2. Temporal code is when C = C 2(t), i.e. all spatial variations have been removed.

3. Spatial code is when C = C 2 (x, y), i.e. all temporal variations have been removed.

4. Spatio-temporal code is when C = C4 (x, y, t), i.e. at least one channel preserves infor-

mation about both spatial and temporal variations.

All sensor channels may not be used to identify every object property and it is mainly for

complicated object properties such as texture that we can expect more than one channel to be

used. WTe will now discuss how we match the sensor channels and codes with various object

properties, which we will also define along the way.

2.1 Identification of Object Properties

In this section we will give details on how one can go about identifying object properties. We

will go through each of the properties listed in Table 5.1, define it and give a modeling method

suitable for identification, and further delineate the appropriate exploratory procedures and

relevant sensor channels and codes.

Scale Segmentation

Most of object properties that can be identified using touch are a part of the geometry of

the object and one can define different object properties by segmenting the spatial scale and
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Table 5.3: Lists definitions of geometric object properties and how the different scale segments arise
from human sensing abilities.

Name Scale Comment
Shape 1000-1 mm Lower limit set by sensor resolution
Texture 1-0.1 mm Lower limit set by estimated position accuracy
jiTexture 100-0.1 jim Practical lower limit set by sensor sensitivity

identifying a scale interval with an object property. This is necessary because there will always

be an upper and a lower limit on the size of the geometric features of interest, but real objects

will continue to have geometric variations right down to atomic scale. We define here three

object properties by segmenting the spatial scale and Figure 5-4 shows this schematically, but

Table 5.2 in numbers. We name the scales Shape, Texture and Texture, and where the limits

are decided approximately by human sensing abilities.

Having defined shape using scale segmentation we can now simply define shape identification

as follows:

Definition 1 Shape identification: Identification of the geometric boundary of an object to a

given resolution.

Shape Identification

Humans recognize common objects reliable in a matter of few seconds [39, 43] and based on

observation made in human experiments the identification procedure has been separated into:

1. Scanning, i.e. finding the object.

2. Positioning, establishing extents or a point of reckoning.

3. Enclosure with one or both hands to get an initial size estimate.

4. Contour following where the outlines and contours of the object are traced.

The trend is therefore to begin the identification on a coarse scale and the proceed to the finer

scales. This approach appears intuitively feasible and it is natural to assume that the same
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approach could work for robots as well. This approach may however, not always be optimal

e.g. if the task at hand is to classify objects that only differ in some detail at a fine scale,

then the coarse scale identification would only give limited information. In order to compare

or recognize an object we must somehow be able to register its features and for that we use

object models. The problem we face is to construct a geometrical model of an object from

surface measurements. A similar problem occurs in machine vision and there, fortunately for

us, considerable research has been done and several approaches to this problem have been

developed (for review cf. [1, 31, 3]). There this problem has been divided into five subtasks:

1. Data acquisition.

2. Low-level processing.

3. Object representation.

4. Model Construction.

5. MIodel matching.

and we note that this subdivision is directly applicable to our problem. We have already in

previous chapters discussed subtasks 1 and 2 and we go therefore directly to number 3.

Object representation: Object representation refers to method we use to describe the shape

of the object. Many representations have been developed, such as vertex- or edge based, surface

based, moment based, or volume based. We believe surface representation is natural, since the

sensor data we have available gives information about a patch of the surface, i.e. the contact

area, but because of the compliant fingerpad will not give direct information about either

vertices or edges.

Model Construction: As an example we will give a short description of a surface based

object representation that can be used in shape identification [50, 78]. It is a physics-based

approach in the sense that it utilizes a 3D elastically deformable finite element balloon model

with both membrane and plate properties. The spatial data then acts as external forces pulling

the model surface towards where it has been measured and the internal membrane/plane forces

strive to regularize the surface to be smooth and continuous in areas where the surface shape

is unknown.

Model Matching: Once we have a shape model of the object we can attempt to match it with

a known object. Many schemes designed for this task have been developed in the related fields
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of machine vision and artificial intelligence. Examples of those are feature matching, where a

distance between feature vectors for the shape model and object is used as a criteria to decide

which object the shape model most likely represents [27]. Other more sophisticated methods

are constantly being developed and we believe detailed discussion of those is beyond the scope

of this thesis.

As a matter of completeness we list in Table 5.4 the relevant exploratory procedures as well

as the relevant sensor channels and codes.

Table 5.4: Lists exploratory procedures, sensor channels and sensor codes used for shape identification.

Exploratory Sensor Sensor
Procedure Channel Code
Static Touch SA1, RA1 Spatial
Stroking Strain gauge arrays Spatio-temporal

Texture Identification

Definition 2 Texture identification: Identification of the geometric features of an object that

are of finer scale than sensor resolution but that can in principle be reconstructed by stroking.

Texture Measures As defined, texture could be identified the same way as shape (both are

in fact geometry of the object) but we propose a different identification method solely based

on human experience and abilities. Since knowing the exact shape at such a small scale is

of limited interest to humans it is natural to look for a collective measures characterizing the

shape variation. We will now discuss different approaches to texture identification and their

characteristics.

In the field of neuro-physiology considerable research has gone into identifying how texture

is coded in the peripheral nerve signals [76, 77, 48, 12, 33, 29]. There definitions of texture,

roughness and measures thereof are widely varying. Usually specimens used in the experiments

are regular patterns such as dot patterns, that vary only in their frequency or spacing. The

measure applied is usually single scale, smooth to rough or equivalent. The research suffers from

inconsistent definitions of texture and non-standard specimens, but still has some interesting

results. In [33] are presented results which indicate that the tactual roughness perception for
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the set of specimens used, is based on spatial variation in the SA1 population response (which

in fact is similar to am defined in Eq. (5.3) below). The perceived roughness was further

observed to be independent of stroking velocity, but to be proportional to the load which is

consistent with our definition of texture above. The problem is however that most natural

textured surfaces are not as simple as the specimens used and can rarely be described using a

single parameter.

A related problem is encountered in the characterization of surfaces in the field of tribology.

The most common engineering measure is roughness, R,, which is primarily used along with a

prescribed machining process to characterize a surface texture for machine parts. Engineering

roughness is defined as the mean absolute deviation of a height profile z(x), from its mean:

Ra= j L)lz(x)- dx.

A plethora of other engineering measures and standards for the measure of surface roughness

exist [79] but all suffer to some degree to from the same shortcomings as the measures detailed

above, i.e. that there are surfaces are identical in terms of roughness measures but clearly have

different surface textures.

The third type of measures are the scientific measures and they are based on a statistical

approach, i.e. the surface is modeled as a two-dimensional random process and analyzed as

such cf. [47, 46, 58, 25]. If the surface shape is decided by the effects of many random and

independent processes, we can apply the Central Limit Theorem which gives us that the result

will be a Gaussian surface. Analysis of the joint Gaussian probability distribution for the height,

the first and the second spatial derivatives, p(z, z', z") then gives that such a surface can be

characterized by only three parameters:

1. Root mean square height of surface,

a = E [(z - zo)2] 0.8R (5.2)

i.e. the standard deviation of surface height.

2. Root mean square slope of surface,

=E [(i - ZO)2] / (5.3)
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3. Root mean square curvature of z,

Oak = E ( - )2] 1/2 (5.4)

From these parameters others can be derived, such as peak density

Ds = (ak/am) 2 (5.5)

and average wavelength

X = 27i/Jm (5.6)

and many more. If the surface is close to being Gaussian these statistical parameters can be used

to identify and compare textures, e.g. by constructing a feature vector [27]. Not all surfaces are

Gaussian and there certainly will exist surfaces with the same (a, am, ak) but that still cannot

be considered to have similar surface textures. This can never be completely avoided as we

cannot completely describe an arbitrary surface geometry using a finite number of parameters,

hence the question is how many parameters and which do we need to characterize a given

class of surfaces. A related issue is that there will always be some part of the geometry that

cannot ble sensed using tactile sensors, namely sharp and deep minima, which give arise to some

asymmetry. Here we will not elaborate further on these question but end with the conclusion

that in order to identify texture of surfaces one needs in general more than one parameter,

three statistical parameters for a Gaussian random surface but more for a general surface.

Table 5.5: Lists Exploratory procedures, sensor channels and sensor codes used for texture identification.

Exploratory Sensor Sensor
Procedure Channel Code
Stroking SA1, RA1 Temporal

Strain gauge arrays Spatio-temporal

iLTexture Identification

Definition 3 Texture identification: Identification of geometric features of an object that are

of a finer scale than stroking resolution but can still be detected as temporal variations.
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.Microtexture differs from texture only by scale, but the scale boundary between them is set

by the estimated sensor properties of the human hand. The sensor signals will be the results

of the interaction of geometric variations that are smaller than spatial resolution and all the

information can therefore be contained in a temporal code. Further, the signals will typically

be high frequency so suitable sensors channels would be PC for humans and accelerometers

for robots. Stroking velocity will effect the temporal frequency content of that temporal code,

higher velocity will translate the signal into higher temporal frequency range as illustrated in

Fig. 5-3. This in turn has the consequence that if the sensors have some optimal sensitivity

in some specific frequency range, one can translate the dominant spatial frequency, if any, into

that range. For that purpose Eq. (5.1) can be rewritten as v = Af* where A is the average

wavelength of the surface defined in Eq. (5.6), f* is the optimal temporal frequency of the

sensor, and v is the corresponding optimal stroking velocity.

Table 5.6: Lists Exploratory procedures, sensor channels and sensor codes used for ttexture identifica-
tion.

Exploratory Sensor Sensor
Procedure Channel Code
Stroking PC Intensive

Accelerometers Temporal

Compliance Identification

Definition 4 Compliance Identification: the estimation of the effective compliance of an object,

at the contact location, averaged over the contact area, assuming that the object is smooth and

made of homogeneous and linearly elastic material.

The compliance of an object is a material property that refers to how much the material

deforms with increased loading. The identified compliance should ideally not depend on the

loading or geometry of the object. That is however not practical as it is generally not possible

to distinguish between the effects of geometry and material properties if both are unknown.

Here we will therefore neglect the effects of geometry and assume that the object is smooth over

the contact area. We are then calculating the effective compliance of that surface averaged over

the contact area. When the object is smooth and slowly varying, the contact area will have

the shape of an ellipse and the loading distribution will be ellipsoidal, i.e. Hertzian contact

conditions [36]. Further, when a compliant material is contacted with compliant fingerpad

the compliances of add the same way as springs in series. Assuming that the compliance
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of the fingerpad is known we can then infer the compliance of an object from the combined

compliance. For a linearly elastic material the compliance depends on two constants, E, v,

the Young's modulus and Poisson's ratio. How they combine depends on what exploration

procedure is used, indentation or stretch, or equivalently the direction of the load, normal or

tangential, but the general form is similar.

Normal Compliance: In [36] it is shown that if the contact area has the form of the circle

with radius, a, then the overall normal displacement, 6z, is related to the total normal load, Fz

by
1 3Fz

_= I (5.7)
E 4a

WThere 1/E,* is the combined normal compliance, given by

I 1 _ -v 1-v
1 Vf +1-V (5.8)

En Ef Eo

and where the subscript, f refers to the material properties of the finger, but o to that of the

object. This relation is also valid if linear viscous effects are present, [30, 44, 36], but then

only while the contact area is increasing 2 > 0, but then En = E*(s) is in the form of a

Laplace transfer function describing the rate dependent behavior of the material. In this case

one can simply apply system identification techniques from control theory (cf. [45]) to identify

the parameters of E,(s).

In the more general case, when the contact area is an ellipse, with axes a and b, the relation

in Eq. (5.7) is only slightly modified and becomes

1 3F: b
Sz =E* 4(b)l2 K(e). (5.9)

E* 4(ab)1/2 a

where K(e) is a complete elliptic integral, and e = (1 - (b/a)2)1 /2, This solution is similarly

valid for viscoelastic materials while the contact area is non-decreasing [85].

Compliance by Tapping: It has been observed that humans can quite effectively discriminate

between differently compliant materials by tapping it with a stylus. Sound is evidentially an

important cue and besides that experiments also indicate that the initial rise time of the loading

transmitted to the fingerpad is the most important tactile feature used [41].

2 This solution becomes invalid if a(t) at any time becomes negative and then the solution becomes significantly

more complicated, which form depends on the loading history [82, 8].
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Table 5.7: Lists Exploratory procedures, sensor channels and sensor codes used for normal compliance
identification.

These results can be explained theoretically by calculating the time to peak force, t, for a

stylus that impacts a linearly elastic half-space [49, 36]. The time depends on the shape of the

end of the stylus but for spherical and fiat ends t* can be calculated to be

tSpherical = 1 E2 t [1 2 1/2tFlat -E

Figure 5-5 further shows the response force trajectory for three different materials, from which

we conclude that this relation between the time to peak force and compliance sufficiently ex-

plains experimental results.

Table 5.8: Lists Exploratory procedures, sensor channels and sensor codes used for normal compliance
identification using tapping.

Tangential Compliance: The lateral behavior is slightly different because there the effects

of friction must be included. When simultaneous normal and tangential loads are applied

then there is a central region, homothetic with the contact area, where no slip occurs, and a

surrounding region with microslip [36, 14] (see also section 4, chapter 3). When the contact

region is circular, with radius a, the relation between the tangential displacement, 6, and the

tangential load, F is

(5.11)Et 4a 1- 1- lfF

W1here 1/E* is the combined lateral compliance, given by

1 _ (2 - vf)(1 + vf) (2 - Vo)(1 + vo)

E* 2Ef 2E,
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Exploratory Sensor Sensor
Procedure Channel Code
Indenting SA1, SA2 Intensive

Strain gauge array Spatial
Force sensors Spatio-temporal

(5.10)

Exploratory Sensor Sensor
Procedure Channel Code
Tapping RA1, PC Temporal

Force sensors
Accelerometers

(5.12)



where the subscript, f refers to the material properties of the finger, but o to that of the object.

We note that if Ef = Eo and vf = vo, then the ratio of normal compliance to lateral compliance

is 2(1 - v)/(2 - v) which goes from 1 to 1.5 as v goes from 0 to 0.5, i.e. lateral and normal

compliances are comparable in this case.

For non-axisymmetric objects, i.e. when the contact area is an ellipse, similar relations have

been derived and similarly there is a correction factor a function of the eccentricity, e, but the

relations are not as simple as above and we confer the reader to [14] for details.

Table 5.9: Lists Exploratory procedures, sensor channels and sensor codes used for lateral compliance
identification.

Layered Compliance: A variant of compliance identification is the case when we have an

object that is composed of different layers that can slide relative to each other, e.g. skin

over a bone or a muscle. The task is then to detect the shape and/or compliance of the

deeper layer, e.g. finding lumps in tissue which is an important application of tactile sensing in

medical practice [48]. One way of achieving that is to modify the transfer functions used in the

decoding algorithms (see chapters 3 and 4) by increasing the parameter for sensor depth so that

the signals estimates, the output, are the estimated displacements and loading distributions at

the depth of the second layer. Its shape can then be identified and its compliance can also be

estimated using the same relations as above.

Table 5.10: Lists Exploratory procedures, sensor channels and sensor codes used for layered compliance
identification.
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Exploratory Sensor Sensor
Procedure Channel Code
Stretch SA1, SA2 Intensive
Static touch Strain gauge array Spatial

Force sensors Spatio-temporal

Exploratory Sensor Sensor
Procedure Channel Code
Stretch SA1, SA2 Intensive
Stroking Strain gauge array Spatial

Force sensors Spatio-temporal



2.2 Identification of the State of Contact

Definition 5 State-of-Contact Identification: the identification of the nature or mode of the

interaction between the object and the fingerpad from sensor signals and estimation of the related

parameters.

As stated in the definition, then the concept state-of-contact refers to which mode the

interaction between the object and the fingerpad is at the contact area. Is there adhesion,

sliding with friction or something in-between? State of contact differs from the object properties

delineated above, in that it is not strictly a property of the object only, but is rather an interface

property. For example friction, which is very important in tactile sensing depends in reality

on the load, sliding velocity, temperature, and surface texture in addition to individual and

combined material properties [56, 4]. Identifying friction parameters, e.g. the friction coefficient

pf, therefore has little meaning except as an interface property at that location and instant

only.

Adhesion: Adhesion is mainly important for very soft and smooth objects 3 such as gels or

gel-like materials. A clear cue for adhesion is obviously negative pressure in the contact area. It

is however unknown if adhesion plays a role in human haptics as fingerpad irregularities, such

as fingerprints prevent in most cases adhesion. Instead the finger ridges give better hold in wet

and lubricated contact conditions, the same principle as is behind tiretracks.

Microslip: In section 4. chapter 3 we discussed in detail what happens when tangential loading

is added to an object that is already under normal loading, assuming that Coulomb's law and

axisymmetric Hertzian conditions are valid. For sake of completeness we will review those

results here but refer the reader to chapter 3 or [36] for further details.

As one increases the tangential load, Ft from zero it turns out that slip does not occur

instantaneously when the friction limit, Ft = plfF, is reached. The object sticks to the finger-

pad in a circular central region with radius, c, but microslip occurs in the surrounding region

starting from the edge of the contact. In the microslip region the tangential loading is related to

the normal loading through Coulomb's law but in the sticking region it follows load distribution

giving uniform displacement. Figure 5-6 illustrates this phenomena, showing the loading situ-

ation in Fig. 5-6a, the stick and microslip areas superimposed on a grid showing the resulting

tangential displacement in Fig. 5-6c. Profiles of the tangential and normal load distributions

3\e exclude sticky films, glues etc. from our discussion here.
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are shown in Fig. 5-6c and finally Fig. 5-6d shows the relation between the applied tangential

load and the stick radius, which turns out to be given by

= 1 - (c/a)3 . (5.13)

Since the tangential loading distribution has a sharp edge at the outer limits of the stick region

(r = c) its extents can be inferred from the tangential load distribution and along with the

contact radius used to calculate the friction coefficient from Eq. (5.13) without any global slip

of the contact. This is a very valuable information that can be used to predict the onset of

slip before it happens. More complicated but qualitatively similar behavior can be expected

for more generally shaped object but will not be discussed further here, (cf. [67]).

Sliding: If the object is smooth so that Coulomb's law and Hertzian conditions are valid then

during sliding the tangential and normal load distribution will be proportional to each other. In

the absence of other spatial information, such as texture, the sliding velocity cannot be inferred

from the sensors as texture will be based on a temporal code which cannot uniquely decide the

sliding velocity. Hence, either kinesthetic information, texture, or shape variations that have

smaller spatial wavelength than the fingerpad are needed to infer the sliding velocity.

3. Finger Control

In this section we will discuss what happens inside the Finger Control block in Fig. 5-1 and in

Fig. 5-7 we have expanded that very block and shown its inside structure. In Fig. 5-7 we have

divided the controller into two main paths, tangential controller and normal controller. We will

first discuss the tangential controller as it is more involved and mainly consider stroking. Other

exploratory procedures are, from the viewpoint of control, much simpler and can as such be

considered special cases of stroking.

3.1 Tangential Control

During stroking the tangential controller must ensure that the fingerpad maintains contact and

follows the shape of the object, while maintaining the contact area within the extents of the

fingerpad. As discussed in section 1. we assume here that the desired direction of stroking, i.e.
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the tangential velocity vector, is provided by an outside source (supervisor). However, in order

to keep the contact region within the fingerpad area during stroking, the fingerpad will need

to rotate as it moves over the surface. How this simultaneous rolling and sliding is combined is

decided by the contact or stroking kinematics.

Stroking Kinematics

Equations describing the kinematics of an object and a finger in contact, subjected to simulta-

neous relative rolling and sliding have been available in the literature for some time [53]. They

have recently been extended to include multiple fingers and contact dynamics [57, 55]. Here we

will focus on the special and relatively simple case of stroking, i.e. when the center of contact

does not move relative to the fingerpad. Figure 5-8 shows a fingerpad stroking an object and

defines a coordinate system fixed in the fingerpad.

Contact kinematics then demand that the translation velocities v, v) and the rotational

velocities, (x, y) of the fingerpad be related through the curvature Iobj of the object at the

contact location as follows

-= I/ob j (5.14)

, -vy

1When the fingerpad is flat4 Iobj is a 2x2 matrix of second spatial derivatives of the objects

shape taken with respect to the coordinated system defined in Fig. 5-8. The relation in Eq.

(5.14) is obtained under the assumption that the object's shape, as well as its first and second

spatial derivatives vary smoothly in the contact area. Even if that is true, measurements of

derivatives are always tricky, especially in the presence of imperfect measurements. Addition-

ally, for our purpose, i.e. stroking, we are only interested in the average or overall curvature of

the contact area.

Overall Curvature Estimation

The problem of finding the overall curvature of the contact area can equivalently be stated as

fitting a constant curvature displacement distribution to the estimated surface displacements.

The curvature should only be estimated within the contact area, defined here as being where

4 Similar relations hold when the fingerpad is also curved, cf. [53] for details.
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the normal load is positive (i.e. indicating pressure) and therefore we also need the estimated

normal load distribution. An estimated distribution can be fitted to a constant curvature

distribution using standard fitting techniques. Fitting in the least square sense can for example

be obtained by matching the moments of the distributions and use those relations to solve

for the parameters of the constant curvature distribution. A constant curvature displacement

distribution can generally be described using six parameters

= 6- Ax2 + y2 + Cxy +D+Ey) (5.15)

We observe that the zeroth, first and second moments will give all six parameters, but the

moments are defined as:

Io = fc uodxdy

Ix = c xuzodxdy y = fc yuzodxdy (5.16)

Iax = c x 2U -odxdy Ixy = fc xyuzodxdy Iy C = fc y 2uzodxdy

All the integrals are taken over the contact area C which is known from the surface load

distribution as discussed above.

The entries in Kobj are then finally obtained by calculating each of the moments for both

the constant curvature distribution in Eq. (5.15) and the estimated displacement distribution

^t: and then solving for for the .4, B and C values which are the values needed, since

Kobj = A C
C B

TWThen viscous effects are negligible and quasi-static contact conditions are valid, we know

that a Hertzian (i.e. ellipsoidal) load distribution will give a constant curvature displacement

distribution. We can therefore work directly with the load distribution, i.e fit the estimated

normal load distribution to a Hertzian distribution, and hence avoid the problem of explicitly

estimating the area of contact. Hertzian load distribution can generally also be described using

six parameters, e.g.

f 0o = 1 - (Afx 2 + Bfy2 + Cf xy + Dfx + Efy) (5.17)

Similarly as above, the parameters of this relation can be estimated, in the least square sense.

by matching the zeroth, first and second moments of the estimated and Hertzian distributions.
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The entries for Kbj can then be obtained from known Hertzian load-displacement relations,

cf. [361.

Example:

As an example we now show how the method delineated above can be used to estimate the

overall curvature of a textured surface. Figure 5-9a shows the surface from a perspective view

but Fig. 5-9c from above as a height-density plot. Figure 5-9b shows that part of the surface

that contacts the fingerpad at this particular instant and similarly does Fig. 5-9d show the same

from above as height-density plot. We note that the contact area is not a simply connected

region and that one cannot reliably estimate the curvature from single location within that

area.

As discussed above we use the six moments defined in Eq. (5.16) to obtain six equations

that we use to solve for the parameters of interest in the constant curvature defined in Eq.

(5.15). NWe combine this relations in a matrix equation

106 IoA 'oB IOC IOD IOE

Ix6 IIA IxB IxC IxD IxE

Iyb IyA lyB IyC IyD IyE

Ixx6 IxxA IxxB IxxC IxxD IxxE

Iyy6 IyyA IyyB IyyC IyyD IyyE

-Ixy6 IYA IxYB IXyC IxyD IxyE

A

B

C

D

E

'0

Ix

I

~y
ly
IYY

1IZY

(5.18)

where, for example,

IoA = C x 2dxdy andIxxB = f cY 2X2dxdy

and further

Ixy= jt uxydxdy,

where as before Ufz is the estimated surface displacement.

Figure 5-10 shows the results of the above applied to the surface show in Fig. 5-9. Figure

5-10a shows it as a surface plot with the fingerpad surface displacement superimposed onto the

resulting constant curvature surface and Fig. 5-10b shows the same but from a profile view. We

note that the constant curvature surfaces captures the overall curvature of the surface despite

the widely varying curvature of the texture.
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Fitting the estimated displacement distributions this way gives us an easily calculable and

the estimate is robust since we avoid taking derivatives. However, care must be taken when

the contact area becomes very small. The loads will the become concentrated and the effects

of discrete sensors can then lead to inaccurate estimates of the overall curvature. It is however

a different question how we should react to sharp points or corners and otherwise regulate the

normal load so that the contact area is large enough but does not lead to overly high load

concentrations that can damage the sensors.

3.2 Normal Control

The problem of maintaining a suitable normal force while moving along a surface has been

under investigation in the field of robotics for some time [2] where the term compliant motion

control has been used. Solution to this problem have been formulated in a number of ways using

different control schemes. The most straightforward approach, in our case, is to directly control

the total normal force, i.e. a force control scheme in the normal direction. A variant of this

approach would be to control or regulate the maximum normal pressure or some other norm or

measure of the normal load distribution. Other control schemes, such as impedance control can

also be applied, but since we already have measurements of the contact force they may not be

needed but one of its strengths is that force measurements are not needed [2, 26]. Impedance

control might however prove useful during the phases when the hand is in free motion prior to

or during contact [11].

4. Conclusions

In this chapter we have discussed the computational aspects of exploration of objects and

environments. WVe have analyzed exploration strategies in terms of the exploration procedures,

sensor channels, codes and object properties that are available using tactile sensing. In addition

to providing a general and common structure positioning exploration of objects relative to other

aspects of tactile sensing, we have analyzed each of the above components in detail and explicitly

stated related formulas where appropriate. We have finally discussed the implementation of

proposed exploration strategies in terms of different control schemes.

A framework that organizes the different aspects that relate to computational theory of
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haptics is a very important milestone - if it gains acceptance among researchers. NWe still must

recognize, that we cannot claim that results presented here are based on the only viable or

reasonable approach. For example, the intermediate step of surface signal identification, where

we explicitly estimate both the surface load and surface displacement distributions, may not

be necessary. Instead, the object properties could be identified directly from the sensor signals.

\Ve however believe that an explicit formulation like ours is needed first, and that our work has

value in being a reasonable starting point and providing understanding useful for future work.
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Figure 5-1: Shows a diagram that explains the structure and the relation between the various problems
that constitute a computational theory of haptics. The Surface Signal Identification problem was treated
in Chapters 3 and 4 but in this chapter we will discuss the Exploration Strategy, and Finger Controller
blocks. The Exploration Strategy block refers to the problem of inferring object properties such as
shape, texture and compliance or state of contact from the estimated surface signals. This involves
determining, given a property that is to be explored, what kind of sensor information and what kind of
action is needed for successful exploration. The Supervisor shown in the figure represents an external
source that supplies additional information required to identify each object, e.g. the stroking direction
for shape identification. The Finger Controller block represents the calculation of tracking trajectories
for the fingerpad from a given desired action, local shape, and contact force distribution information.
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Figure 5-2: Schematically shows the temporal and spatial frequency characteristics of human receptors
as ranges of sensitivity.
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Figure 5-3: Shows a typical spatial frequency distribution superimposed onto the temporal sensitivity
properties of human receptors. The relation in Eq. (5.1) appears as a line on the loglog (wt,wx) plot
(upper-right) and the line translates sideways by changing the stroking velocity vt.
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Figure 5-4: Shows scale segmentation schematically and how the original geometry is composed of
Shape, Texture and Texture.
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Impact Force for Different Stiffnesses
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Figure 5-5: Impact response trajectories for differently compliant materials. The trajectories are nor-
malized with respect to that of the intermediate compliant material. We observe that there is a direct
relation between the time to peak force and material compliance, as indicated in Eq. (5.10), and that it
can be used for material discrimination.
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(b) Tangential Displacement
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Figure 5-6: Illustrates the behavior of axisymmetric Hertzian solid under simultaneous normal and
tangential load. (a) shows the loading configuration, (b) shows the stick and microslip region superim-
posed onto a grid showing the resulting tangential displacement, (c) shows profiles of the tangential and
normal load distributions and finally (d) shows the relation between normal load, tangential load, stick
radius, contact radius and friction coefficient, i.e. Eq. (5.13).
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Figure 5-7: Shows a diagram that expands the Finger Controller-block in Fig. 5-1. There are two main
paths: i) tangential control and ii) normal control. The tangential control takes as inputs estimated
surface signals and stroking direction and velocity from a supervisor. It gives as output the desired
tangential translation and rotation velocities (v., vy,t 6, ky) after going through the steps of Curvature
Estimation and Stroking Kinematics. The normal control path takes as input the estimated surface load
distribution and gives as output desired total normal force. Both normal and tangential outputs are fed
into a Low-level Controller which we assume is capable of tracking the desired signals with sufficient
accuracy.
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I'

Vy, y0y y

v, 0.

Object

Figure 5-8: Shows a fingerpad stroking an object and defines a coordinate system fixed in the fingerpad.
With the tangential velocities (v,, v) and rotational velocities about the respective axes (0, y) .
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(a)

(c) (d)

Figure 5-9: Shows a textured surface and the part of the surface that is in contact with the fingerpad.
Figure (a) shows the actual surface from a perspective viewpoint, (c) from above as a height-density
plot. Similarly, shows figure (b) the part in contact from a perspective but (d) from above. We note
that the contact region is not a simply connected region, as there are areas where there is a gap between
the object and the fingerpad.
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(b)

(a)

Figure 5-10: Shows a constant curvature surface superimposed on the texture surface in Fig. 5-9
obtained by matching the moments, defined in Eq. (5.16), of the constant curvature surface and the
surface displacement within the contact area. Figure (a) shows it as a surface plot and (b) shows it
from a profile view where the contact region is marked with thickened lines. We note that the constant
curvature surface captures the overall curvature of the surface despite the widely varying curvature of
the texture.
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Chapter 6

Concluding Remarks and

Suggestions for Future Work

1. Conclusions

In this thesis we have presented a basic computational theory of haptics. We divide the problem

into Identification and Control problems. We further separate the identification problem into

Surface Signal Identification and Object Property Identification problems as shown in Fig. 5-

1. We have analyzed each of these problems and presented our results in four, by and large,

independent chapters, each with their concluding remarks, but they can be summarized as

follows:

1. In order to correctly decode a general 3D tactile signal from a sensor array, we need a

minimum of three independent sensor signals, and we show that (Pn, Exz, cyz) is the only

stress/strain signal combination without a directional bias.

2. We give solutions that are valid under static or quasi-static conditions as well as ones that

include the effects of viscoelasticity and inertia and further give conditions under which

the inertia can be ignored.

3. The transfer function approach developed in the thesis is shown to allow us to infer

qualitative properties and behavior of the solution without specifying the inputs. The
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transfer function approach further gives us access to powerful signal processing tools,

such as the Wiener and Kalman filter which we evoke to solve the decoding problem. The

decoding problem being the problem of reconstructing the surface signals from sensor

signals, in a robust manner, in the presence of sensor noise.

4. We analyze exploration strategies in terms of exploration procedures, sensor channels,

codes and the object properties that are available using tactile sensing and explicitly

state related formulas where appropriate.

5. Finally, we discuss implementation issues in terms of different control schemes.

The above results are valid for homogeneous and linearly elastic materials and while in-

finitismal displacement assumptions hold. These are idealized conditions and it is therefore

important to consider what happens when they are not completely satisfied. The tools and

methods we apply have, however, been applied with good results to various problems where

those assumptions may not always hold, most notably the methods developed around linear

elasticity in mechanics and also the Kalman filter in navigation and control. e however

cannot state unilaterally that the solutions given in this thesis will not fail under non-ideal

conditions, but that can most likely only be assessed on case-by-case basis and then with the

aid of experiments.

2. Suggestions for Future Work

The results presented here essentially provide a skeleton of a computational theory or an outline

to which details need to be added. The encoding solutions are given for the infinite halfspace

but solutions for other geometries, such as layered, finite thickness, finite size, cylindrical or

spherical, might more accurately model real fingerpads and therefore prove more useful.

The decoding solution given here assumes that the sensor signal is linearly related to the

components of the stress or strain tensor, but we might want to consider other nonlinear mea-

sures such as strain energy density or maximum compressive strain that experimental results

indicate might constitute the relevant sensor stimulus in the human tactile system [13, 75]. In

appendix F we state the decoding problem in general terms where we observe that the problem

is then expressed in conditions regarding the integrability of the relevant PDEs. The integra-

bility of general PDEs is an advanced mathematical problem beyond the scope of this thesis

and we do not discuss that further here but refer the reader to [64].
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The object identification problem has many possibilities for further work, such as experi-

mental studies of human subject where the experimental paradigms and results are stated in

terms of the concepts we have developed. As an example one could test the perception of

texture in the terms of roughness measures or test the hypothesis that humans perceive texture

and texture differently, the former being independent of stroking velocity.

131



132



Appendix A

Derivation of Static Transfer

Function Matrices

lW.e start with the differential equations of equilibrium'

aij,j = x,y,z (A.1)

and the linear stress strain relations according to Hooke's law

oij = AEijSij + 2ieij i, j = x, y, z (A.2)

where

Eij= (ui,j + uj,i) i,j = , y, 

and ij = 1 if and only if i = j, and is zero otherwise. Further, the Lame constants A and l. (shear

modulus) are in terms of Young's modulus and Poisson ratio:

vE E
(1 + )(1-2v)' 2(1+ v)

'Here we use tensor notation for compactness, where a ",j" in subscript means a partial derivative with

respect to the independent variable represented by j and repeated symbols in subscript stand for summation
over all indices.
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In order to solve these nine partial differential equations we make use of the two dimensional Fourier

transform defined by [5]

f(wz w) = fW
1 r r+oo

f(x, Y) = 4 2 f(wz
1 //:: J_0

f(x, y)e-j(w"x+w"Y)dxdy

", y )e j( Zx+WY) dw dwy.

Assuming that all integrals are well behaved as Ix, yl - oo, we apply this transform to each term in the

equations in (A.1) and (A.2). Then the operator 0 is replaced by multiplication by jwx, and by
jwx. Wie further use D to notate Z. The 9 partial differential equations have now been transformed
into ordinary differential equations in D ( a becomes d ) XWe write (A.1) and (A.2) using matrix-vector&Z dz '

notation as

ITa = O, y = Ku,

and

KT = 0

0

A+ 2,

A

A

0

0

0

0 0

jwy 0

0 D

A

A + 2 t

A

0

0

0
0

JWyjwI

jw

0

A

A

A + 2it

0

0

0

D

0

jwx

0

D

jwy

000

000

000

I 0 0

0 0 p,O H O
O O At,

= [a , ayy , az , axy , yrz]T, and y = [Exz yy, Ezz, xy, xz' y]T 2. Eliminating a and w we get

KTCCI u = 0 (A.3)

where ft = [, iay, zi]T and

D2 - Q2 -_ -2(2 - 1) -wy(3 2 - 1)
KTC K = -w w(3 2

- 1) D2 _ Q2 _ 2(32 -_ 1)

jw (32 - 1)D jw y(3 2 - 1)D

jw ( 2 - 1)D

jw (3 2 - 1)D

f32 (D2 _ Q2) + Q232

2For the sake of simplicity in the definitition of K e use an alternative notation for strain: yij = 2ij for i 
j.
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with Q2 = W2 + W2 and P2 = (A + 2p)/LI. The determinant of this matrix is

det(K T CK) = /32,3 [D 2 _ Q2]3

and this system therefore has non-trivial solutions of the form

Uii = (Ai + Biz + Ciz2 )e- f z i = , y, z

where Ai, Bi, Ci are independent of z, and we have also used the condition that displacements stay

finite as z oo to include only terms with negative exponents. Substituting this back into (A.3) we

obtain

A = 1 jwxAx + wyAy + Bp2 _1

B, B

cx = cy = Cz = o

wicll gives
1 02By w jw 1BzCx = Cy=CO
1 1 0 ]w~ 

The three still uknown terms, Ax, AY, B. will be determined by boundary conditions at z = O. Here,

we will first pose the boundary conditions in terms of the load distributions on the surface of the infinite

hlalfspace, defined by z > O. The z-normal stress azz at the surface z = O equals normal load on the

surface, f. Similarly the shear stresses azZ and oyz at z = O equal the shear loads on the same surface,

fz and f respectively. The relevant stresses call be derived by substituting (A.4) into (A.2) which

become

-(2w + Y) -wxwy 2jwx( 2 - ±+ Qz)

-jW y -(LW + 22) 2jw ( + z)

jo~ jwyY Y(-2 --_ 1+ -)

Ax

A y . (A.5)

- ,-

The unknown terms Ax, Ay, B can then be found by letting z = 0 and either invert Eq. (A.4) with

[iiz, ity, Ui] = [xzo, auyo, uzo] or Eq. (A.5) with [, au, aZ] = [fx, f, fZ].
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TFMs for Tractions as Inputs

It is convenient to solve for each load case separately and state the solution in terms of a Transfer
Function Matrix (TFM) which after we have substituted for , and /i, finally becomes

ii = Tff,

with

2Q2- w2(2v + fQz)

e-z
Tf = 2ji 3 -wzwy(2v + Qz)

-jwxQ(l - 2v + fz)

-wow,(2v + Qz)

2Q 2 - w2(2v + Qz)

-jwyQ(1 - 2v + Qz)

jwxQ(1 - 2v - Qz)

jwyQ(1 - 2v - Qz)

(2(1 - v) + qz)Q2

The strain and the stress field TFM's are obtained using the relations in (A.2) and results in

- = Tff, where, E = [E£, Sy, z E, EzzI Eyz]

with

jwx (2Q2
- w2(2v+ Qz))

-jwiw (2v + Qz)

-jf 2 w1 (2v - Qz)

jJ, (Q - w(2v + Qz))

_2 ( - w2z)

Q wXwyZ

-W2Wy (2v + Qz)

jwy (2Q 2 - w2(2v + Qz))

-jQ 2 wy (2v - Qz)

jwx (Q2 - w2(2v + Qz))

Q2 wZwxyZ

-Q 2 (Q- _ w2z)-St'to _~,2,

-Qw 2 (1 - 2v - Qz)

-Qlw (1 - 2v - Qz)

-Q 3 (1 - 2v + Qz)

-QwWy (1 - 2v - Qz)

jQ3wyzI Y -f

and a = Tfff, where, = [, or , o-, y az , aXz, ryz]T

with

j3x (2Q 2 + 2vw2 - W2zQ)

jwx (2vwZ - Qw2z)

jQ3 w z

jw (Q2
- w2(2v + zQ))

-2 (Q - W2z)

Q2WxwyZ

jwy (2vw2 - w2zQ)

jwy (2Q2 + 2v 2 -_ w2ZQ)

jQ3 w z

jw (2 -w2(2 + zQ))

Q2 ww Z

_Q2(Q _ ( W2Z)
,,,

-Q (2v 2 + w2(1 - QZ))

-Q (2vw 2 + w2(1 - Qz))

-Q3 (1 + zQ)

-Qwwy (1 - 2v - zQ)

jQ 3 wxz
jQ3w z

(j
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W\e also calculate the TFM for the mean normal stress defined as

1
pn = (au + aoy + aCZ)

3

which gives

P = Tp,,ff,

with
2E e-zQ [Tp. f =3- jW jwy - ]

The relationship between io and f can be found by letting z = 0 in Eq. (A.6) obtaining

Uo = Tf f,

with
2(Q 2 - vw 2 )

-2vw;wY

-j(1 - 2v)wQ

-2vwvwy j(1 - 2)wa2

2(Q 2 - vL2)

-j(1 - 2v)wfy

j(1 - 2v)wyQf

2(1 - v)Q 2

We note that the z component decouples firom the x and y components when the material is incompress-

ible v = 0.5.

TFMs for Displacements as Inputs

The TFMs when the surface displacements are considered the inputs are found similarily as the ones in

pre\ious section:

f = Tfuofo,

Q2(3 - 4v) + w2

Tf =(3 -4)
(3 - 4v)Q

Wx WY

2j(1 - 2v)w 1Q

W:zOWy 2j(1 - 2v)wxQ

Q2 (34v) + w 2 2j(1 - 2v)wQ 

2j(1 - 2v)wyQ 4(1 - v)Q2

u = T., oto,
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with

(3-4v)Q-w2z -w,,wz -jWxQz

e-zQ
T. = -wyx (3 - 4v)Q - W2z -j WyQ(3 - 4v)Qf

-jw:Qz -jwyQz (3 - 4v)Q + Q2 z

For the strains

E = ToF,

with

e-zQ

rTE, (3 - 4v)Q

jwx ((3 - 4v)Q - wrz)

-jQW0 (1 - Qz)
x

Lwy ((3- 4v)Q - 2 2z)

- ((3 - 4v)Q2 + w2(1 - 2Qz))

-ww,(l - 2zQ)

2
-jw wYz

jwy ((3 - 4v)Q- z)

-jQwy (1 - z)

zwo ((3- 4v)Q- 2z)

-:1WLjy(l - 2zQ)

- ((3 - 4v)Q2 + w2(1 - 2Qz))2 y

Qw2 z
y

_Q 2 (2(1 - 2v) + Qz)

Qwx wyz

jQw(1 - 2v) + Qz)

jQw:(1 - 2v) + Qz)
(A.13)

and for the stresses

a = Tu,i o,

with

2pe- 'z

(3 - 4v)Q

JL ((3 - 2v)Q- wz)

jwx (2vQ- w z)

-jQwx(1 - 2v - Qz)

lwy ((3 - 4v)Q - 2w2z)

-1 ((3 - 4v) Q2 + w2(1 - 2Qz))

-½:W(l - 2Qz)

jwy, (2vQ -wz)

jWy ((3-2v)Q-w2z)

-jQwy(1 - 2v - Qz)

2zx ((3- 4v)Q - 22z)

-2wx0y(l - 2z)

-1 ((3 - 4v)Q2 + w2(1 - 2Qz))2~~~~~~

-Q (2vQ - w)

-Q (2vQ - w2z)

_Q 2 (2(1 - v) + Qz)

jQwx(1 - 2v + Qz)

jQwy(1 - 2v + Qz)

Finally for the mean normal stress we obtain

pI = Tp7,uoio,
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with

Tuo 2E e- z [ ] (A.15)TP 3 (3-4v) j JWy 
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Appendix B

Effects of Finite Sensor Size on a

Stress Field

If the sensor is of a finite size, it will disturb the stress field around it and one may need to corrects for

these effects at that sensor. There is also the possibility that the sensor will disturb the sensor field in

such a way that it will effect other sensors close by. It is therefore appropriate to assess how close sensors

of finite size can be placed without disturbing each other. We do that by investigating how a spherical

inclusion with different elastic properties than the medium around it reacts t an external stressfield.

We assume that the stress field is uniform away from the inclusion or so slowly varying that it can

be assumed to be uniform. It then follows from dimensional analysis that, under classical elasticity

assumptions, the stress intensity factor' is independent of the absolute size of the inclusion and only

depends on its geometrical form [24].

Here below we give the solutions for a cavity2 under 3 different loading conditions, i.e. under (i)

uniform stress, (ii) uniaxial stress, and (iii) pure shear.

'The stress intensity factor is defined as the ratio of the maximum stress to the uniform stress at a distance.
2If the inclusion is not a cavity but an inclusion of a different material, the behavior will be quite similar with

slightly lower stress intensity factors [24].
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Figure B-1: Shows the effects of an inclusion on a uniform stress field. The plot shows the radial stress
given by, RR = oo (1 - a3 /R 3 ).

1. Uniform Stress

In the case of a uniform stress, the radial stress, RR and the hoop stresses aro, ao¢ are

oRR = (oo 1- 3 and UrO = a = (1±+ 2 R3 ) 2(R
which means a stress intensity factor of 3/2 for the hoop stresses. The radial stress is plotted in Fig.

B-1 and there we see that the error is 4% at R = 3a, and 1% at R = 5a where R is the distance form the

center of the inclusion and a is its radius. By that measure, sensors would have to be put 5 diameters

apart for less than 2% cross-sensor error.

2. Uniaxial Stress

In the case when the external loading is a uniaxial tension aoo applied at infinity in the z-direction

then the most significant variations are observed in the normal stress on the plane perpendicular to the
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Uniaxial Tension
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Figure B-2: Shows the effects of an inclusion on an uniaxial stress field. The plot shows the z-normal
stress given by, azz = (i + a3 /(6R3 ) + a5 /R 5 ).

loading, i.e. azz, which becomes

= 14 - 5v a3 9 1 a5)
2 7 - 5v R+ 2 7 - 5v R5 )

1 a3 a5= aoto x+ GR + R for v = 0.5

which means a stress intensity factor of 13/6. The a=z stress is plotted in Fig. B-2 and there it can be

seen that the error is 1% for R = 3a and 0.2% for R = 5a. The effect on the stressfield are therefore not

spreading as far as in the case of a uniform stress.

3. Pure Shear

If uniform tension is applied in the z-direction and and uniform pressure is applied in x-direction the

net effect is pure shear in the planes x = ±z, ie. az = o, [49]. It has a maximum at x = z = 0, y = a
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Pure Shear
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Figure B-3: Shows the effects of an inclusion on pure shear. The plot shows the xz-shear stress along
the y-axis, given by az = aO (1 + 2a5 /(3R 5 )). We observe that the disturbance is more localized than
the ones in Figs. B-2 and B-1

and along the y-axis the solution is

5(1 - 2v)a3 3 a5

7- 5v R3 7-5v R5 )

= ao~ (+ 1+ ) for v = 0.5

which means a stress intensity factor of 3/2. The ao-z stress is plotted in Fig. B-3 and there it can be

seen that the error is only 0.3% for R = 3a and 0.02% for R = 5a. These results indicate that under the

assumptions given, shear sensors are less sensitive than normal stress sensors to disturbances caused by

their own finite size. WVe note that this observation is analogous with the observations made in section

1 regarding the lowpass properties of the mean normal stress (spread out) and the bandpass properties

of the shear strain (localized).

In summary the results of the above are that the disturbances of the stress field caused by finite

size sensors estimated using solutions of spherical inclusions in an infinite medium have the following

characteristics:

* The magnitude of the effect depends only on the geometry of the sensor, not on its dimension.

* Sensors from a material that is stiffer than the surrounding medium have generally a lesser effect
than sensor made from softer materials.
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* The effects on the mean normal pressure die out oc (a/R)3 where a is the radius of the sensor and
R is the distance from its center.

* The effects on shear stress die out as oc (a/R)5 , and shear sensors are therefore less likely to be
sensitive to the effects of nearby sensors.
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Appendix C

Derivation of Dynamic Transfer

Function Matrices

In order to solve the nine partial differential equations given by Eqs. (4.1) and (4.2) in chapter 4 section

2.1, we make use of the triple Fourier-Laplace transform defined by

f (W ,Oy,+ o r r+oois = If 
I -2Yvlj= +A Jj+0

f(x,y, 1T) = Pj Jo X
873 I' -j ~O i -O

f (x, y, 1 )e-j(L, x+w,y)+srl dxdydTi

ow, wy, s)ej( d+WY)+srd wdwyds.

Assuming that all the integrals are well behaved as Ix,y, 11 oc, we apply this transform to each

term in the equations in (4.1) and (4.2). Then the operator o is replaced by multiplication by jwx,

similarly 0 is replaced by multiplication by jwy. Ve further use D to notate and assuming zero

initial conditions at t = 0, we replace Al by s. The 9 partial differential equations have now been

transformed into ordinary differential equations in D. ( becomes d ). We write (4.1) and (4.2) using
&Z dz

matrix-vector notation as

KT = 32 s2 fi

and

= CE E = K

where
jwx 0

K T = 0 jwy

0 0

jy

jx

D O

D

0

jWx

0

D

jwy
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C =

A+2 2 A A

A A+2,t A

A A A+2Lt

0 0 0

0 0 0

0 0 0

00 0

00 0

00 0

/I00

0 0

00 i

[, _Y, U]T and = [ , y, = y, , y ]T 1. Elimi-a = a[ n Oyy, 0=, wey, get , z],
nating and E e get

[IKTCK - 2 s2 1] i = 0

D2 _ Q2 _ 2(2 1)

jw,( 2 - 1)D

-w1 w(03 2- 1)

D2 _ 2
- w2(3 2 1)

jw,( 2 - 1)D

jiW(,32 - 1)D

jcW(0 2 - 1)D

32(D2 _ Q2) + pQ232

w-ith Q
2

= W + and 32 = (A + 2)//. The determinant of this matrix is

det(KIT CK -_ 2s2I) = 2it
3 (D2 _ n2)) (D2 - n2)2

where

nl = (Q2 + s2) /2 n2 = ( 2 + 2s2)12

This system therefore has non-trivial solutions of the form

ui = Aie-nIz + (Bi + Ciz)e- n2z i = x, y, z

where we have used the condition that displacements stay finite as z - oo to include only terms with

negative exponents. Substituting this back into (C.2) we further get that

A = jwxAx + jyAy + /--2 1_

B = - B

By = --- B

C = Cy = C = 0

1For the sake of symmetry we use the equivalent definition of strain: yij = 2 Eij, i j.
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which gives

u = -Az e- lz + Bxe- n 22

nl

uy = -AzJ Ye- ' z + Bye-n2Z (C.3)

uz = Aze- n iz + (wB, + jwyBy) e- n 2Z.
n2

The three still unknown constants, Az, B., By will be determined by boundary conditions at z = 0.

TFMs with Tractions as Inputs

lWe will first pose the boundary conditions in terms of the load distributions on the surface of of the

solid, defined as the infinite halfspace, defined as z > 0. The z-normal stress azz at z = 0 equals normal

load on the surface, z = 0, f and similarly the shear stresses aOz and ayz at z = 0 equal the shear

loads on the same surface, fo and fyo respectively. The relevant stresses can be derived by substituting

(C.3) into (4.2) and then become

a:z= AZ2 jzen, _ wzwyBy + (n2 + w)BZ

It

ayz =xW Bx + (n 2+ 2)BYz = Az2jwye-nz _ wxwyB + (n2 + w)By 2
AL n2

Zz - 2Q 2 + s2/ 2
= -A 2 +s e- nl - 2j(wB, +wyBy)e - n 2Z

Y L nl

It is convenient to solve for each load case separately and state the solution in terms of a Transfer

Function Matrix (TFM) which finally becomes

W
2

12

Tf = WxWyyn 2

jLxnln2

w-j(2nn 2

+ WWy(132 -

-JWzxn2n3

Wxwyn2 jWx113

e-nlz

wYn2 jwyn3 2pF3

jWyonjn2 -nln2

- n) - n3722 W yw(n - 2nln2)

2nl n2) 2(2nln2 - n3 2
) -n2n 2-- - - 3n2

(C.4)
jwLxnln2

e-2 _ 2z

ul 2u72 F3

nln2 2-jWyn2nfl3
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where n3 = (Q2 + 2/2s 2 )1/2 and F3 = n4 - nln2Q2 . The strains are obtained using Eq. (4.3) and hence

the TFM is

3Wn2 2 2 22

* 2 3 2 2oxwWn2 n2 juw:n2 -W 7yn3

e-nlz -jWzll2n2 -jWynL722 n ln 3 e-n2z

2pF3 j2wzwyn 2 j2wwy2n 2 -2ww yn 2 2-n 2 F3

-2wnln2 -2wxwynln2 -j23nln]

-2wxwynln2 -2wyrnln2 -j2wynln3

jwx(2w2nln2 - n2(2n2 - w2)) jw2 wy(n 3 - 2nln2)

jow(l 3 - 2nln2) 23)) 3
-jx Z,) (n - 2n,712 ) jwy(2w2nlin 2 - n3(2n3 - wy))

22, 2 2\)j2wy(nn7(W2 - W) + n(Wz - n )) j2wx(njn2(z-w2 ) + n(- n2))

22n7 3- 2, 12 2wzwynln2 ,

92 J4Wyl2 2n2n 4
2znln21,xw 2n 3 2wxi2

LA)nl n2

2 2W1172i

-nil n2

2w-wYnln.2

j2w7xnln 2n3

j2wynln2123

(C.5)

and the stresses are obtained using Hooke's law in Eq. (4.2), hence
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e -nlz
Tf. = -- x

-jwxn2(( 2 - 2)2 - 2') -jWynL
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(C.6)

The mean normal stress defined as p, = (oxx + Jyy + Oaz)/3 is then

(C. 7)Tf, = [ -jwxn2 -jWyl2 n3 ] 3 2F (C. )

TFMs with Displacements as Inputs

W\7hen the displacement distribution on the surface is taken as inputs, we use Eq. (C.3) to solve for

(.A, Bx, By) which gives:

The TFM giving the subsurface displacements, u = TO,,, as being

2 2

T. = W'Wy

jWZAxnl

WI Wy

2
Wy
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jw.,n2 1

e--nz _ e-n2Z
JWYn 2 1 + 1
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nl2 OL0

0 0

1 0 e- n 2

0 1

(C.8)
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the TFM for the strains, T = T,,uo, as being

TU() =
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and finally, the TFM for the mean normal stress, Pn = Tp,,(oTo, as being

r, ..j 1 i 1pe-nlz 32 - 4
Tp( = [ jWX JWy 12 I Q2 -n 3
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The variable s in the above equations is the Laplace variable corresponding to the scaled 1 time

variable. To get the solution in terms of a Laplace variable corresponding to the actual time, t, we need

only to replace s2 everywhere with c 2s'2 so that we will get (after we drop the prime)

n = Q2 + c 2
p s2 n = /2 + c 2s2 n3 = VfQ2 + c 2s2/2.
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Appendix D

Retrival of the Static Solution

The dynamic solution should approach the static solution when s -+ 0, but since both the denominator

and the numerator vanish for s = 0 we use Taylor expansion for the denominator and also the (e -n2z -

e-nz) term around s = 0. Writing each step out explicitly we get

n,=V Q2 q 2= Q2(1+ + cC2s 2 ) + o(4)

n2 = ft 2 + c- s2 = Q(1 -+ C s2 ) + O(s4)n 2 f2 2 (l+Vc, 2hs)

and hence the denominator becomes

F3 = (2+ c -2S2)2 - 712ln2
F~ ~ 1 -22 1 -2 2

= Q + QC-28s2 _ Q2(Q2 + C-2S2 + 1C 2 S2) + O(S4)

= Q2S2 (-2 _ -2)+ 0(4),
\sh -C

and the numerator term

(e-n 2 Z - e- n z) = exp (-Qz(1 + 1 c-2s2 Q-2 )) - exp (-Qz(1 + C-p2 s2 Q-2 )) + 0(s 4 )

e-z [exp (- 1 C-2s 2 q-' Z) - exp (-1 C 2 s2 -lz)] + O(S4)

e- l z (1- c - 2 2 (1 c 2 s2-1 Z)) + 0($4)
le 2 sh -c ) O(s )

e-fQZ2a-lz(Cp2 -2) + O(S4).
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Substituting this into Eq. 4.5, we get for the mean normal stress

3 2 4 S2 (Q2 + 1 C-2S2)e-nlz

3/P2 Ch Q2S 2 (c-2 _h -2)

3P2 - 4 -z

3(02 - 1)

2E 1 _nz

3 2A

and the shear strain

1 jW,2 3
(2Q--le--ZZ(C2'-2-C-2))

2t I Q 2s2(c2 _ c2)

1. -Qz
= j156Ze
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Appendix E

The Kalman Filter With Static

Load

Since the Wiener filter given in chapter 3 and the IKalman filter given in chapter 4, minimize the same

error measure, they should become identical when the (loads) signals become static. This can be seen,

most easily, by using the discontinuous-time version of the IKalman filter under the assumption that the

input is an unknown constant. In this case the Kalman filter estimate is given by

KI = PC*R-1

(E.1)
p- = po- + C*R-1C

We identify C as the static TFM T(w, WY, z), since it is the encoding solution relating the input and the

state vector, which only contains the sensor output under static conditions. Similarily we note that in

the static case the sensor noise intensity matrix R(w, ,wY) is the power spectrum matrix for the sensor

noise, PN(wZ, wy), also the initial covariance estimate, Po(w,,wy) is the power spectrum matrix for the

solution Ps(wz,wy), or R = P, and P0o = Ps. Substituting the above into the equations in Eq. (E.1)

and combining we finally obtain

= [Ps +T*PNT ]- 1 T PN-1

= PS [PN + T*PsT]- T*

157



which we recognize as the Wiener filter derived in [38, 80] and used for the static case in chapter 3.
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Appendix F

General Statement of the Decoding

Problem

Problem Statement: Given a 3D sensor signal S = [S1, S2, S3 ] T, a function of the strain tensor at
the sensor location, what conditions does it have to satisfy in order to be suitable' for decoding.

Remark: This approach, of assuming a 3D loading and a 3D sensor signal makes it necessary to consider

strain measures in sets of three and one can therefore not answer questions such as: Is strain energy

density suitable as relevant stimulus. (One will need to specify two additional strain measures.)

Assumptions

Al The sensors form a continuous 2D sheet that is located in some sense parallel to the contact

surface and both are anchored at an outer boundary where boundary conditions are known. (The

boundary is at infinity for the infinite halfspace.)

A2 We further assume that the displacements and strains are parametrized everywhere by three
variables (x, y, z), z being constant for both the surface and the sensor sheet (depth). We can
then write the sensor signal as S = S(ui, ui,j) where i, j = x, y, z and ui,j is the partial derivative

of ui wrt. j (e.g. aux/Dz = ut,z).

'By 'suitable for decoding' we mean that there is a one-to-one mapping between all allowable traction distri-
butions and sensor distributions.
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A3 Finally, we assume that the sensor sheet is sufficiently close to the surface so that there is a

one-to-one relationship between surface displacements and the ones at the sensor depth.

Conditions: A sensor signal will be suitable for decoding if it satisfies the following conditions:

C1 The relation S = S(ui,ui,j) i,j = x,y,z can be integrated wrt. z using the encoding solution2

so that it becomes S' = S'(ui,ui,k) i = ,y,z k = x,y.

C2 The relation S' = S'(ui,ui,k) is integrable wrt. x,y giving S" = S"(ui) i = ,y, z.

C3 This relation, S", has to invertable, i.e. there exists a function, S"- , such that u = [us, Uy, uz]T =

S"-l (iu).

Remark: Condition C2 is different from C1 as does not need the encoding solution, but utilizes the

fact that the integrand is known over all the integration domain and at the boundary. It is therefore

a condition on the sensor signal independent of the particular shape or mechanical composition of the

fingerpad.

2By "the encoding solution" we mean the model of the fingerpad that given the displacements at one depth
gives the displacements and also strains at all depths and hence the sensor signal S for all z.
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