
The RESEARCH LABORATORY
of

ELECTRONICS
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

Coding Approaches to Fault Tolerance in Dynamic Systems

Christoforos N. Hadjicostis

RLE Technical Report No. 628

September 1999



a

op



Coding Approaches to Fault Tolerance in Dynamic Systems

by

Christoforos N. Hadjicostis

S.B., Massachusetts Institute of Technology (1993)
M.Eng., Massachusetts Institute of Technology (1995)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 1999, 1999

() Massachusetts Institute-of Technology 1999. 1 rghts reserved.

Department of Electrical Engineering and Computer Science
August 12, 1999

Certified by ...............................................
George C. Verghese

Professor of Electrical Engineering
Thesis Supervisor

Accepted by .....................
I

Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NaV 0 9 1999

. ._ _ ! _._ _

.



: I -I ..



Coding Approaches to Fault Tolerance in Dynamic Systems

by

Christoforos N. Hadjicostis

Submitted to the Department of Electrical Engineering and Computer Science
on August 12, 1999, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A fault-tolerant system tolerates internal failures while preserving desirable overall behavior.
Fault tolerance is necessary in life-critical or inaccessible applications, and also enables
the design of reliable systems out of uilreliable, less expensive components. This thesis
discusses fault tolerance in dynamic systems, such as finite-state controllers or computer
simulations, whose internal state influences their future behavior. Modular redundancy
(system replication) and other traditional techniques for fault tolerance are expensive, and
rely heavily - particularly in the case of dynamic systems operating over extended time
horizons - on the assumption that the error-correcting mechanism (e.g., voting) is fault-
free.

The thesis develops a systematic methodology for adding structured redundancy to a
dynamic system and introducing associated fault tolerance. Our approach exposes a wide
range of possibilities between no redundancy and full replication. Assuming that the error-
correcting mechanism is fault-free, we parameterize the different possibilities in various
settings, including algebraic machines, linear dynamic systems and Petri nets. By adopting
specific error models and, in some cases, by making explicit connections with hardware
implementations, we demonstrate how the redundant systems can be designed to allow
detection/correction of a fixed number of failures. We do not explicitly address optimization
criteria that could be used in choosing among different redundant implementations, but our
examples illustrate how such criteria can be investigated in future work.

The last part of the thesis relaxes the traditional assumption that error-correction be
fault-free. We use unreliable system replicas and unreliable voters to construct redundant
dynamic systenms that evolve in time with low probability of failure. Our approach general-
izes modular redundancy by using distributed voting schemes. Combining these techniques
with low-complexity error-correcting coding, we are able to efficiently protect identical un-
reliable linear finite-state machines that operate in parallel on distinct input sequences. The
approach requires only a constant amount of redundant hardware per machine to achieve a
probability of failure that remains below any pre-specified bound over any given finite time
interval.

Thesis Supervisor: George C. Verghese
Title: Professor of Electrical Engineering



Acknowledgments

First and foremost, I would like to express my most sincere thanks to my thesis supervisor,
Professor George Verghese, for his inspiring guidance and unlimited support throughout
my graduate studies and research. Without his enthusiasm, encouragement and patience
whenever I reached a point of difficulty, this thesis would not have reached its current forn.

I am also extremely grateful to Professors Alan Oppenheiln and Gregory Wornell for
their direction, warm support, and hospitality over these years. Not only did their financial
assistance make this thesis possible, but they also gave me the opportunity to work in an
excellent academic environment that helped me mature as a researcher and as a person.

I am indebted to many members of the faculty at MIT for their involvement and con-
tribution to my thesis work. My committee members, Professors Sanjoy Mitter and Alex
Megretski, were a source for help and inspiration. Their challenging and thought-provoking
questions have shaped many aspects of this thesis. Furthermore, the discussions that I had
with Professors Bob Gallager, David Forney, Daniel Spielman, and Srinivas Devadas were
also extremely encouraging and helpful in defining my research direction; I am very thankful
to all of them.

I would also like to thank my many friends and fellow graduate students who made life
at MIT both enjoyable and productive. Special thanks go to my "buddy" Carl Livadas who
was there every time I needed to ask an opinion, or simply complain. Babis Papadopoulos
and John Apostolopoulos were great source of advice during the formative stages of
this work (particularly during late hours!). Thanos Siapas gave me lots of feedback (and
laughs) at the later stages of my thesis. Hisham Kassab, Sekhar Tatikonda, Costas Boussios,
Chalee Asavathiratham, and Tony Ezzat were good friends and also extremely helpful with
comments and suggestions.

I also want to acknowledge all members of the Digital Signal Processing Group for being
great colleagues and friends. My time at the DSPG will remain an unforgettable experience.
My special thanks to Stark Draper, Richard Barron, Nicholas Laneman, Matt Secor, Charles
Sestok, and Jeff Ludwig. Giovanni Aliberti not only offered computer expertise, but was
also a great friend; Darla Chupp, Vivian Mizuno, Maggie Beucler, Janice Zaganjori and
Sally Bemus made life a lot simpler by meticulously taking care of administrative matters.

Finally I am grateful to the Defense Advanced Research Projects Agency for support
under the RASSP project, EPRI and the Department of Defense for support under the
Complex Network Initiation. and the National Semiconductor Corporation and the Grass
Instrument Company for their generous financial support. Peggy Carney's help with finding
and administrating fellowship support is gratefully acknowledged; her assistance was most
valuable for the completion of this work.



To my parents





Contents

1 Introduction and Background 15

1.1 Definitions and Motivation ........................... 15

1.2 Background: Fault Tolerance in Computational Systems . .......... 17

1.3 Fault Tolerance in Dynamic Systems ...................... 22

1.3.1 Redundant Implementation ...................... 25

1.3.2 Error-Correction .................. ..... .... 28

1.4 Scope and Major Contributions of the Thesis ............... 29

1.5 Outline of the Thesis ............................... 32

2 Redundant Implementations of Algebraic Machines 33

2.1 Introduction .......................... ........... 33

2.2 Background: Fault-Tolerant Computation

in Groups and Semigroups ............................ 34

2.2.1 Fault Tolerance in Abelian Group Computations .......... . 34

2.2.2 Fault Tolerance in Semigroup Computations .............. 37

2.3 Redundant Implementations of Algebraic Machines . ............. 41

2.3.1 Redundant Implementations of Group Machines .......... . 42

2.3.2 Redundant Implementations of Semigroup Machines ......... 54

2.4 Redundant Implementations of Finite Semiautomata . ............ 59

2.4.1 Characterization of Non-Separate Redundant Implementations . . . 62

2.4.2 Characterization of Separate Redundant Implementations ...... 64

2.5 Summary. ................................. 67

7



3 Redundant Implementations of Linear Time-Invariant

Dynamic Systems 69

3.1 Introduction .................................... 69

3.2 Linear Time-Invariant Dynamic Systems .................... 70

3.3 Characterization of Redundant Implementations ............... 71

3.4 Hardware Implementation and Error Model ............ ... 74

3.5 Examples of Fault-Tolerant Schemes ..................... 77

3.6 Summary ..................................... 89

4 Redundant Implementations of Linear Finite-State Machines 91

4.1 Introduction .................................... 91

4.2 Linear Finite-State Machines .......................... 92

4.3 Characterization of Redundant Implementations ............... 95

4.4 Examples of Fault-Tolerant Schemes ...................... 97

4.5 Summary ................... ................. . 106

5 Failure Monitoring in Discrete Event Systems Using Redundant

Petri Net Implementations 107

5.1 Introduction ................................... . . 107

5.2 Petri Net Models of Discrete Event Systems . ................. 108

5.3 Error Model .................................... 112

5.4 Monitoring Schemes Using Separate

Redundant Implementations ........................... 115

5.4.1 Separate Redundant Petri Net Implementations ............ 115

5.4.2 Failure Detection and Identification .................. 119

5.5 Monitoring Schemes Using Non-Separate

Redundant Implementations .. ............. . 127

5.5.1 Non-Separate Redundant Petri Net Implementations ........ . 127

5.5.2 Failure Detection and Identification .................. 133

5.6 Applications in Control ............................. 137

5.6.1 Monitoring Active Transitions ...................... 137

5.6.2 Detecting Illegal Transitions ....................... 139

8



5.7 Summary .....................................

6 Unreliable Error-Correction 143

6.1 Introduction .................................... 143

6.2 Problem Staterent ................................ 144

6.3 Distributed Voting Scheme ........................... 145

6.4 Reliable Linear Finite-State Machines Using Constant Redundancy ..... 150

6.4.1 Low-Density Parity Check Codes and Stable Memories ........ 150

6.4.2 Reliable Linear Finite-State Machines . . . . . . . . . . . . ..... 154

6.4.3 Further Issues ............................... 160

6.5 Summary .................................. 164

7 Conclusions and Future Directions 167

A Conditions for Single-Error Detection and Correction 173

A.1 Semigroup Computations .................... . 173

A.2 Finite Semiautomata ................... .. 175

B Proof of Theorem 6.2 179

B.1 "Steady-State" Under No Initial Propagation Failure ............. 180

B.2 Conditional Probabilities Given No Initial Propagation Failure ....... 182

B.3 Bounds on the Probabilities of Failures . ................... . . 184

B.3.1 Bounding the Probability of Initial Propagation Failure ....... 184

B.3.2 Bounding the Probability of Overall Failure .............. 187

9

142



10



List of Figures

1-1 Fault tolerance using an arithmetic coding scheme ............... 20

1-2 Triple modular redundancy with correcting feedback .............. 24

1-3 Thesis approach for fault tolerance in a dynamic system ............ 26

2-1 Fault tolerance in a group computation using a homomorphic mapping. . 36

2-2 Partitioning of semigroup (N, x) into congruence classes ............ 40

2-3 Error detection and correction in a redundant implementation of a group

machine ................ ...... ........... 43

2-4 Monitoring scheme for a group machine ..................... 45

2-5 Series-parallel decomposition of a group machine ................ 49

2-6 Construction of a separate monitor based on group machine decomposition. 50

3-1 Delay-adder-gain circuit and the corresponding signal flow graph ....... 75

3-2 Digital filter implementation using delays, adders and gains.......... 80

3-3 Redundant implementation based on a checksum condition. ......... 81

3-4 A second redundant implementation based on a checksum condition .... 83

4-1 Example of a linear feedback shift register. .................. 92

4-2 Three different implementations of a convolutional encoder ......... 100

5-1 Example of a Petri net with three places and three transitions. ....... 109

5-2 Cat-and-mouse maze. .............................. 111

5-3 Petri net model of a distributed processing system ............... 114

5-4 Petri net model of a digital system ........................ 115

5-5 Concurrent monitoring scheme for a Petri net. ................. 116

11



5-6 Example of a separate redundant Petri net implementation that identifies

single-transition failures in the Petri net of Figure 5-1. ............ 121

5-7 Example of a separate redundant Petri net implementation that identifies

single-place failures in the Petri net of Figure 5-1................ 123

5-8 Example of a separate redundant Petri net implementation that identifies

single-transition or single-place failures in the Petri net of Figure 5-1 ... 125

5-9 Concurrent monitoring using a non-separate Petri net implementation .... 127

5-10 Example of a non-separate redundant Petri net implementation that identifies

single-transition failures in the Petri net of Figure 5-. ............. 134

5-11 Example of a non-separate redundant Petri net implementation that identifies

single-place failures in the Petri net of Figure 5-1................ 136

5-12 Example of a separate redundant Petri net implementation that enhances

control of the Petri net of Figure 5-3 ....................... 138

6-1 Reliable state evolution using unreliable error-correction .. . . . . . . ... 146

6-2 Modular redundancy using a distributed voting scheme. ............ 147

6-3 Hardware implementation of the modified iterative decoding scheme for LDPC

codes ........................................ 152

6-4 Replacing k LFSM's with n redundant LFSM's ................. 155

6-5 Encoded implementation of k LFSM's using n redundant LFSM's. ..... 157

A-1 Conditions for single-error detection in a finite semiautomaton. ....... 175

A-2 Co. 'itions for single-error correction in a finite semiautomaton. . . . . . . 176

12



List of Tables

6.1 Typical values for p, 8 and C given J, K, p and p,. The bound on the

probability of overall failure is shown for d = 10, k = 107 and L = 105 .... 159

13

_I_� 1_1�__ ·̂  �I� _)_II___



14

� ______� �_



Chapter 1

Introduction and Background

1.1 Definitions and Motivation

A fault-tolerant system tolerates internal failures and prevents them from unacceptably

corrupting its overall behavior, output or final result. Fault tolerance is motivated primarily

by applications that require high reliability (such as life-critical medical equipment, defense

systems and aircraft controllers), or by systems that operate in remote locations where

monitoring and repair may be difficult or even impossible (as in the case of space missions

and remote sensors), [5, 85]. In addition, fault tolerance is desirable because it relaxes

design/manufacturing specifications (leading for example to yield enhancement in integrated

circuits, [59, 63, 80]), and also because it enables new technologies and the construction

of reliable systems out of unreliable (possibly fast and inexpensive) components. As the

complexity of computational and signal processing systems increases, their vulnerability to

failures becomes higher, making fault tolerance necessary rather than simply desirable, [90];

the current trends towards higher clock speed and lower power consumption aggravate this

problem even more.

Fault tolerance has been addressed in a variety of settings. The most systematic treat-

ment has been for the case of reliable digital transmission through unreliable communication

links and has resulted in error-correcting coding techniques that efficiently protect against

channel noise, [95, 96, 38, 81, 11, 111]. Fault tolerance has also been used to protect com-

15

I _-



putational circuits against hardware failures. These failures' can be either permanent or

transient: permanent failures could be due to manufacturing defects, irreversible physical

damage, or stuck-at faults, whereas transient2 failures could be due to noise, absorption of

alpha particles or other radiation, electromagnetic interference, or environmental factors.

Techniques for fault tolerance have also been applied at a higher level to protect special-

purpose systems against a fixed number of "functional" failures, which could be hardware,

software or other; these ideas were introduced within the context of algorithm-based fault

tolerance techniques (see [50, 93]).

In this thesis we explore fault tolerance in dynamic systems:

Definition 1.1 A dynamic (or state-space) system is a system that evolves in time accord-

ing to some internal state. More specifically, the state of the system at time step t, denoted

by q[t], together with the input at time step t, denoted by x[t], completely determine the

system's next state according to a state evolution equation

q[t + 1] = 6(q[t], x[t]) .

The output y[t] of the system at time step t is based on the corresponding state and input,

and is captured by the output equation

y[t] = A(q[t], x[t]).

Examples of dynamic systems include finite-state machines, digital filters, convolutional

encoders, decoders, and algorithms or simulations running on a computer architecture over

several time steps. This thesis will focus on failures that cause an unreliable dynamic

system to take a transition to an incorrect state3 . Depending on the underlying system

and its actual implementation, these failures can be permanent or transient, and hardware

or software. Due to the nature of dynamic systems, the effects of a state transition failure

may last over several time steps; state corruption at a particular time step generally leads

'For more details on hardware failures see [31, 109] and references therein.
2A transient or temporal failure is a failure whose cause (but not necessarily the effect) appears only

temporarily.
3A study of this error model in the context of sequential VLSI circuits appears in [24].

16

__ I� _�__ I



to the corruption of the overall behavior and output at future time steps.

To understand the severity of the problem, consider the following situation: assume

that an unreliable dynamic system (such as a finite-state machine that is constructed out of

failure-prone gates) is subject to transient failures with a probability of making an incorrect

transition (on any input at any given time step) that is fixed at p.. If failures at different

time' steps are independent, then the probability that the system follows the correct state

trajectory for L consecutive time steps is (1 - p,)L and goes to zero exponentially with L.

In general, the probability that we are in the correct state after L steps is also low4. This

means that the output of the system at time step L will be erroneous with high probability

(because it is calculated based on an erroneous state). Therefore, our first priority (and the

topic of this thesis work) is to ensure that the system follows the correct state trajectory.

Before we discuss our approach for constructing fault-tolerant dynamic systems, we de-

scribe in more detail previous work on fault-tolerant computational circuits. The distinction

between dynamic systems and computational circuits is that the former evolve in time ac-

cording to their internal state (memory), whereas the latter have no internal state and no

evolution with respect to time.

1.2 Background: Fault Tolerance in Computational Systems

A necessary condition for a computational system to be fault-tolerant is that it exhibit

redundancy. "Structured redundancy" (that is, redundancy that has been intentionally in-

troduced in some systematic way) allows a computational system to distinguish between

valid and invalid results and, if possible, perform the necessary error-correction procedures.

Structured redundancy can also be used to guarantee acceptably degraded performance de-

spite failures. A well-designed fault-tolerant system makes efficient use of resources by

adding redundancy in those parts of the system that are more liable to failures than others,

and adding the redundancy in ways that are adapted to the operation of the system.

The traditional way of designing fault-tolerant computational systems that cope with

4The probability that we are in the correct state after L steps depends on the structure of the particular
finite-state machine, on the error model and on whether multiple failures may lead to a correct state. The
argument can be made more precise if we choose a particular structure for our machine (consider for example
a linear feedback shift register with failures that cause each bit in its state vector to flip with probability p).

17

·-�·�IIIYLIII�··IIIYU·I·I)-X lr .·-^�·li·illlsY1*···(IIIU�� -·-�-�YI pl� ---- _--- Is



hardware failures is to use N-modular hardware redundancy, [107]. By replicating the

original system N times, we compute the desired function multiple times in parallel. The

outputs of all replicas are compared and the final result is chosen based on what the ma-

jority of them agrees upon. Modular redundancy has been the primary methodology for

fault-tolerant system design because it is universally applicable5 and because it effectively

decouples system design from fault tolerance design. Modular redundancy, however, is

inherently expensive and inefficient due to system replication.

Research in communications has extensively explored alternative, more efficient ways

of utilizing redundancy for achieving reliable digital transmission through an imperfect

("noisy") channel. In his seminal work [95, 96], Shannon showed that, contrary to the

common perception of the time, one can send multiple bits encoded in a way that achieves

arbitrarily low probability of error per bit with a constant amount of redundancy (per

bit). This result generated a variety of subsequent work in information and coding theory,

[38, 81, 11, 111].

In more complex systems that involve not only simple transmission of the data but also

some simple processing on the data (e.g., boolean circuits or signal processing systems with

no evolution over time) the application of such coding ideas becomes more challenging. In

addition, as pointed out in [5, 83], there have traditionally been two different philosophies

in terms of dealing with failures in computational systems:

* One school of thought designs systems in a way that allows detection and/or correc-

tion of a fixed number of failures. For example, numerous systems have been designed

with the capability to detect/correct single failures assuming that the error detect-

ing/correcting mechanisms are fault-free. (Triple modular redundancy, which protects

against a single failure in any one subsystem but not in the voter, is perhaps the

most common case.) These approaches are based on the premise that failures are rare

(therefore, protecting against a fixed number of failures is good enough 6) and that the

error-correcting mechanism is much simpler than the actual system implementation.

This approach has resulted in a lot of practical fault-tolerant systems, particularly for

5A number of commercial and other systems have used modular redundancy techniques, 6, 45]; a com-
prehensive list can be found in [8].

6For example, if failures are independent and happen with probability p << 1, then the probability of
two simultaneous failures is of the order of p2, which is very small compared to p.

18

it ____



special-purpose tasks, where the structure of the underlying algorithm and/or hard-

ware configuration can be exploited in order to minimize the hardware overhead, or

the complexity of the redundant system and the corresponding correcting mechanism.

Such ideas have been explored in sorting networks [25, 102, 64], 2-D systolic arrays

for parallel matrix multiplication [50, 56], other matrix operations [1, 23], convolution

using the fast Fourier transform [10], and many others. Similar principles prevail in

the design of self-checking systems, [88, 84]. In these systems we are interested in

ensuring that any combination of a fixed number of failures (including failures in the

error-detecting mechanism) will be detected.

* The second approach to fault tolerance focuses on building reliable systems out of

unreliable components. As we add redundancy into a fault-tolerant system, the prob-

ability of failure per component remains constant. Thus, the larger the system, the

more failures it has to tolerate, but the more flexibility we have in using the added

redundancy/functionality to ensure that, with high probability, the redundant system

will have the desirable behavior. Work in this direction started with von Neumann

[107], and has been continued by many others [112, 106], mostly in the context of

fault-tolerant boolean circuits (see [83] for a comprehensive list).

The idea of adding a minimal amount of redundancy in order to detect/correct a (pre-

specified) number of failures (i.e., the first of the two approaches described above) has

been quite successful in cases where one can exploit structural features of a computation

or an algorithm and introduce "analytical redundancy" in a way that offers more efficient

fault coverage than modular redundancy (at the cost of narrower applicability and harder

design). Work in this direction includes arithmetic codes, algorithm-based fault tolerance

and algebraic techniques. We describe these ideas in more detail below:

Arithmetic Codes: Arithmetic codes are error-correcting codes with properties that re-

main invariant under the arithmetic operations of interest, [87, 88]. They are typically

used as shown in Figure 1-1 (which is drawn for the case of two operands, but more

operands are handled in the same way). We first add "analytical redundancy" into

the representation of the data by using suitable encodings, denoted by the mappings

qX and 42 in the figure. The desired original computation r = g9 o 92 is then replaced

19

^1 ________�_1111_ �__ _i __1_ ��-�1�-·11111 1 __-_ _..^_ _^1 ·11··11·-·1111111�1_^-III-IPI1·Y-L- -



it

- r

Error AnDecoder
[I J | (p |h2= (g2) I Detector/

Faults Corrector

Figure 1-1: Fault tolerance using an arithmetic coding scheme.

by the modified computation o on the encoded data. Under fault-free conditions, this

modified operation produces p = l (gl) o 2 (92), which results in r when decoded

through the mapping a (i.e., r = a(p)). However, due to the possible presence of

failures, the result of the redundant computation could be faulty, pf instead of p.

The redundancy in pf is subsequently used to perform error detection and correction,

denoted in the figure by the mapping a. Note that the detector/corrector a has no

knowledge of the inputs and bases its decision solely on pf. The output of the

error detector and corrector is decoded through the use of the decoding mapping a.

Under fault-free conditions or with correctable failures, A equals p, and the final result

f equals r. A common assumption in the model of Figure 1-1 is that the error de-

tector/corrector is fault-free. This assumption is reasonable if the implementation of

the decoder/corrector is simpler than the implementation of the computational unit

(or if correcting occurs rarely). Another inherent assumption is that no failure takes

place in the decoder unit; this assumption is in some sense inevitable: no matter how

much redundancy we add, the output of a system will be faulty if the device that is

supposed to provide the output fails (i.e., if there is a failure in the very last stage of

the computational circuit/system). One way to avoid this problem is to assume that

the output is provided to the user in an encoded form which can be correctly decoded

by a fault-free final stage. In the modular redundancy case, for example, the output

could be considered correct if the majority of the systems agree on the correct output

(since a fault-free majority voter is then guaranteed to provide the correct output).

20

g1

g2
--- --- - .

1_ �_ - I _ _ �_



Algorithm-Based Fault Tolerance: More sophisticated coding techniques, known as

Algorithm-Based Fault Tolerance (ABFT), were introduced by Abraham and cowork-

ers [50, 56, 57, 74], starting in 1984. These schemes usually deal with arrays of

real/complex data in concurrent multiprocessor systems. The classic example of

ABFT is in the protection of MxM matrix multiplication on a 2-D systolic array,

[50]. A variety of computationally intensive algorithms, such as other matrix compu-

tations [50, 56], FFT computational networks [57], and digital convolution [10], have

since been adapted7 to the requirements of ABFT.

As described in [56], there are three critical steps involved in ABFT schemes: (i)

encoding the input data for the algorithm (just as for arithmetic coding), (ii) re-

formulating the original algorithm so that it can operate on the encoded data and

produce decodable results, and (iii) distributing the computational tasks among the

different subsystems of the failure-prone system so that any failures occurring within

these subsystems can be detected and, hopefully, corrected. The above three steps

are evident in the ABFT scheme for matrix multiplication that was presented in [50].

The encoding step involves adding an extra "checksum" row/column to the original

M x M matrices. The redundant operation involves multiplication of an (M+ 1) x M

matrix by an M x (M + 1) matrix. When using a 2-D systolic array to perform matrix

multiplication, we manage to distribute both the computational tasks and the possible

failures in a way that allows efficient failure detection, location and correction.

Algebraic Approaches: The most important challenge in both arithmetic coding and

ABFT implementations is the recognition of structure in an algorithm that is amenable

to the introduction of redundancy. A step towards providing a systematic approach

for recognition and exploitation of such special structure was made for the case of com-

putations that occur in a group or in a semigroup, [8, 9, 43, 44]. The key observation

is that the desired analytical redundancy can be introduced by homomorphic embed-

ding into a larger algebraic structure (group or semigroup). The approach extends

7As mentioned earlier, this approach attempts to protect against a pre-specified maximum number of
failures assuming fault-free error-correction. Some researchers have actually analyzed the performance of
these schemes when the probability of failure in each component remains constant, [12, 103]. As expected,
the scheme performs well if the probability of failure per component is very small.

21

_ I _ _ · _���__ _~~~~~1___1 1~~~~~~~~~~~ I



to semirings, rings, fields, modules and vector spaces (i.e., algebraic structures that

have the underlying characteristics of a semigroup or a group). A relatively extensive

set of computational tasks can therefore be modeled using this framework. We give a

brief overview of this approach in the beginning of Chapter 2.

The above mentioned approaches were mostly tailored for computational systems (sys-

tems without internal state) and assumed that error-correcti;on is fault-free. As mentioned

earlier, this assumption may be tolerable if the complexity of the correcting mechanism

is considerably less than the complexity of the state evolution mechanism. Also, a fault-

free output stage is in some sense inevitable: if all components may fail then, no matter

how much redundancy we add, the output of a system will be faulty if the device that is

supposed to provide the output fails (i.e., if there is a failure in the very last stage of the

computation/circuit).

A significant aspect of any work on fault tolerance is the development of an appropriate

error model. The error model describes the effect of failures on the output of a computational

system, effectively allowing the mathematical study of fault tolerance. The error model

does not have to mimic the actual fault mechanism; for example, we can model the error

due to a failure in a multiplier as additive, or the error due to a failure in an adder as

multiplicative8. Efficient error models need to be close to reality, yet general enough to

allow algebraic or algorithmic manipulation. If a single hardware failure manifests itself as

an unmanageable number of errors in the analytical representation, then the performance

of our error detection/correction scheme will be unnecessarily complicated.

1.3 Fault Tolerance in Dynamic Systems

Traditionally, fault tolerance in dynamic systems has used modular redundancy. The tech-

nique is based on having replicas of the unreliable dynamic system, each initialized at the

same state and supplied with the same inputs. Each system goes through the same sequence

of states unless failures in the state transition mechanism cause deviations from this correct

SThe faulty result r, of a real-number multiplier can always be modeled in an additive error fashion as
r = r + e where r is the correct result and e is the additive error that has taken place. Similarly for the
multiplicative representation of a failure in an adder (if r # 0).

22



behavior. If we ensure that failures in the different system replicas are independent (e.g., by

requiring that they are hardware- and/or software-independent), then the majority of the

replicas at a certain time step will be in the correct state with high probability; an external

voting mechanism can then decide what the correct state is using a majority voting rule.

If we revisit the toy example of the unreliable dynamic system that makes a transition

to an incorrect next state with probability pa (independently at different time steps), we see

that the use of majority voting at the end of L time steps may be highly unsuccessful: after

a system replica operates (without error-correction) for L time steps, the probability that

it has followed the correct sequence of states is (1 - p)L; in fact, at time step L, a system

replica may be in an incorrect state with a prohibitively high probability 9 (for example, if an

incorrect state is more likely to be reached than the correct one, then a voting mechanism

will be unable to decide what the correct state/result is, regardless of how many times we

replicate the system). One solution could be to correct the state of our systems at the end

of each time step10. This is shown in Figure 1-2: at the end of each time step, the voter

decides what the correct state is, based on a majority voting rule; this "corrected" state is

then fed back to all systems.

Another possibility could be to let the systems evolve for several time steps and then

perform error-correction using a mechanism that is more complicated than a simple voter.

For example, one could look at the overall state evolution (not just the final states) of all

system replicas and then make an educated decision on what the correct state sequence is.

A possible concern about this approach is that, by allowing the system to evolve incorrectly

for several time steps, we may compromise system performance in the intervals between

error-correction. We do not explore such alternatives in this thesis, mainly because we

eventually allow failures in the error-correcting mechanism and and this is a rich issue even

within the simpler setting.

The approach in Figure 1-2, more generally known as concurrent error-correction, has

two major drawbacks:

9Given an initial state and a length-L input sequence, one can in principle calculate the probability of
being in a certain state after L steps; the overall probability distribution will depend on the structure of
the particular dynamic system, on the error model and on whether multiple failures may lead to the correct
state.

oWe do not necessarily have to feed back the correct state at the end of each time step; if we feed it back
after steps, however, we need to ensure that (1 -p,)' does not become too small

23

I __ -II^Y--^I~~----~----·I-I -·-----~IYLII- --II_~--I LII - I-~I· II--·IYI
- - - -- ~ I~ X - -



rected" State

q[t]

Figure 1-2: Triple modular redundancy with correcting feedback.

1. System replication may be unnecessarily expensive. In fact, this was the original

motivation for arithmetic coding and ABFT schemes (namely the development of

fault-tolerant computational systems that make better use of redundancy by taking

into consideration the algorithmic structure of a given computational task).

2. The scheme relies heavily on the assumption that the voter is fault-free. If the voter

also fails independently between time steps (e.g., with probability p, a voter outputs a

state that is different from the state at which the majority of the systems agree), then

we face a problem: after L time steps the probability that the modular redundancy

scheme performs correctly is at best (1 - p)L (ignoring the probability that a failure

in the voter may accidentally result in feeding back the correct state in cases where

most systems are in an incorrect state). Similarly, the probability that the majority

of the replicas is in the correct state after L time steps is also very low. Clearly, given

unreliable voters there appears to be a limit on the number of time steps for which

we can guarantee reliable evolution using a simple replication scheme. Moreover, in

a dynamic system setting, failures in the voting mechanism become more significant

as we increase the number of time steps for which the fault-tolerant system operates.

Therefore, even if p, is significantly smaller than pa (e.g., because the system is more

complex than the voter), the probability that the modular redundancy scheme per-

forms correctly is bounded above by (1 -p.)L and will eventually become unacceptably

24

_I __ �___ _ _ _ _ I_

I__ ....a.B.r
I



small for large enough L.

In this thesis we deal with both of the above problems. We initially aim to protect against

a pre-specified number of failures using a fault-free correcting mechanism. To achieve this

while avoiding replication and while using the least amount of redundancy, we introduce the

concept of a redundant implementation, that is, a version of the dynamic system which is

redundant and follows a restricted state evolution. Redundant implementations range from

no redundancy to full replication and give us a way of characterizing and parameterizing

constructions that are appropriate for fault tolerance. The thesis demonstrates and exploits

certain flexibilities that exist when constructing redundant implementations. We make no

systematic attempt to choose from among these different redundant implementations ones

that are optimal according to a particular criterion; our examples, however, illustrate how

such questions may be posed in future work.

We also address the case when failures in each component happen with constant proba-

bility, independently between different components and independently between time steps.

This problem is much harder, as we can no longer guarantee that the fault-tolerant sys-

tem will be in the right state at the end of each time step. We introduce techniques that

deal with transient failures in the error-correcting mechanism by developing and analyz-

ing the performance of a distributed voting scheme. Our approach uses redundancy in a

way that ensures that, with high probability, the fault-tolerant system will be within a set

of states that represent (and can be decoded to) the actual state; the goal then becomes

to make efficient use of redundancy while achieving any given probability of failure. For

example, by increasing redundancy we can increase the probability that a fault-tolerant

system follows the correct state trajectory for a certain time interval. Our analysis is very

general and provides a better understanding of the tradeoffs that are involved when design-

ing fault-tolerant systems out of unreliable components. These include constraints on the

probabilities of failure in the system/corrector, the length of operation and the required

amount of redundancy.

1.3.1 Redundant Implementation

In order to avoid replication when constructing fault-tolerant dynamic systems, we replace

the original system with a larger, redundant system that preserves the state, evolution and

25

_ IIICZ-"" --- T- Il-·L·-----.-l� -----�-·r�-------l---·- -- -^-·^----�L---s�--- · - - -I - ---
-6



Faults

Input e([]) q =q t]
xit] Encoder e(Xs[t]) System H _w'

e State qh[t]

Correction ( ) State qh[t]

Error
Detector/
Corrector

Figure 1-3: Thesis approach for fault tolerance in a dynamic system.

properties of the original system - perhaps in some encoded form. We impose restrictions

on the set of states that are allowed in the larger dynamic system, so that an external mech-

anism can perform error detection and correction by identifying and analyzing violations of

these restrictions. The larger dynamic system is called a redundant implementation and is

part of the overall fault-tolerant structure shown in Figure 1-3: the input to the redundant

implementation at time step t, denoted by e(xz[t]), is an encoded version of the input xs[t]

to the original system; furthermore, at any given time step t, the state q,[t] of the original

dynamic system can be recovered from the corresponding state qh[t] of the redundant sys-

tem through a decoding mapping e (i.e., qs[t] = (qh[t])). Note that we require the error

detection/correction procedure to be input-independent, so that we ensure the next-state

function is not evaluated in the error-correcting circuit.

The following definition formalizes the notion of a redundant implementation for a dy-

namic system:

Definition 1.2 Let S be a dynamic system with state set Qs, input set Xs, initial state

qs[O] and state evolution

q3 [t + 1] = s (qs[t], Z[t]) 

where q.[] E Qs, x,[.] E Xs and 6s is the next-state function. A dynamic system 7t with

26



state set Q, input set Xxt, initial state qh[0] and state evolution equation

qh[t + 1] = &H (qh[t], e(x.[t]))

(where e: X o-- X?< is an injective input encoding mapping) is a redundant implemen-

tation for S if it concurrently simulates S in the following sense: there exists one-to-one

state decoding mapping e Qu i- Qs such that

e(&i(t1-l(q[t]), e(x.[t]))) = 6s(q[t], z.[t])

for all q.[-] E Qs, x.[] E Xs. The set Qx = f-(Qs) C Qp is called the subset of valid

states in Xi.

If we initialize the redundant implementation %H to state qh[O] = - (q[O]) and encode

the input x[r] using the encoding mapping e, the state of S at all discrete-time steps

r > 0 can be recovered from the state of L through the decoding mapping e (under fault-

free conditions at least); this can be proved easily by induction. Knowledge of the subset

of valid states allows an external error detecting/correcting mechanism to handle failures.

Any failures that cause transitions to invalid states (i.e., states outside the subset Q' =

{qh[] = t-'(q]') I V q.[] E Qs}) will be detected and perhaps corrected.

During each time step, the redundant implementation I evolves to a (possibly cor-

rupl-d) next state. We then perform error detection/correction by checking whether the

resulting state is in the subset of valid states Q' and by making appropriate corrections

when necessary. When we apply this general approach to specific dynamic systems, we

manage to parameterize different redundant implementations, develop appropriate error

models, make connections with hardware and systematically devise schemes capable of de-

tecting/correcting a fixed number of failures.

Note that our definition of a redundant implementation does not specify next-state

transitions when the redundant system is in a state outside the set of valid states'. Due

to this flexibility, there are multiple different redundant implementations for a given error

detecting/correcting scheme. In many cases we will be able to systematically characterize

"This issue becomes very important when the error detector/corrector is not fault-free.

27

A-I __

And ~·l__·__1- I- -l I IIIPr--i .- 1 1 - ------ .I 



and exploit this flexibility to our advantage (e.g., to minimize hardware or to perform error

detection/correction periodically).

1.3.2 Error-Correction

In Chapter 6 we describe how to handle transient failures 12 in both the redundant imple-

mentation and the error-correcting mechanism. We assume that components in our systems

can suffer transient failures (more specifically, we assume that they can fail independently

between components and between time steps) and describe implementations that operate

with an arbitrarily small probability of failure for a specified (finite) number of steps. In par-

ticular, given an unreliable dynamic system (e.g., one that takes an incorrect state transition

with probability pa at any given time step) and unreliable voters (that fail with probability

P,), we describe ways to guarantee that the state evolution of a redundant fault-tolerant

implementation will be correct with high probability for any specified (finite) number of

steps. Our scheme is a variation of modular redundancy and is based on using a distributed

set of voters. We show that, under this very general approach, there is a logarithmic trade-

off between the number of time steps and the amount of redundancy. In other words, if we

want to maintain a given probability of failure while doubling the number of time steps for

which our system operates, we need to increase the amount of redundancy by a constant

amount. For the case of linear finite-state machines, we show that there are efficient ways

of protecting many identical machines that operate in parallel on distinct input sequences.

In this special setting, our approach can achieve a low probability of failure for any finite

time interval using only a constant amount of redundancy per machine.

Our techniques relate well to existing techniques that have been used in the context of

"reliable computational circuits" or "stable memories". As in those cases, our approach

can provide fault tolerance to a dynamic system (that is, low probability of failure over any

pre-specified finite time interval) at the expense of system replication. More specifically,

given a certain time interval, we can achieve a low probability of failure by increasing the

12Permanent failures can be handled more efficiently using reconfiguration techniques rather than concur-
rent error detection and correction. In some sense, permanent failures are easier to deal with than transient
failures. For example, if we are testing for permanent failures in an integrated circuit, it may be reasonable
to assume that our testing mechanism (error-detecting mechanism) has been verified to be fault-free. Since
such verification only needs to take place once, we can devote large amounts of resources and time in order
to ensure the absence of permanent failures in this testing/correcting mechanism.

28

--- 1 ��___



amount of redundancy; alternatively, for a given probability of failure, we can increase

operation time (i.e., the length of time for which the fault-tolerant system needs to operate

reliably for) by increasing the amount of redundancy. Our method ensures that, with high

probability, our fault-tolerant system will go through a sequence of states that correctly

represent the fault-free state sequence. More specifically, at each time step, the state of the

redundant system is within a set of states that can be decoded to the state in which the

fault-free system would be in. Note that this is the best we can do since all components at

our disposal can fail.

1.4 Scope and Major Contributions of the Thesis

Fault tolerance in dynamic systems has traditionally been addressed using techniques devel-

oped for fault tolerance in computational circuits. This thesis generalizes these techniques,

studies the implications that the dynamic nature of systems has on fault tolerance and de-

velops a framework that encompasses most previous schemes for concurrent error detection

and correction in dynamic systems.

Adopting the traditional assumption that the error detecting/correcting mechanism is

fault-free, we describe fault-tolerant schemes that protect against a specified, constant num-

ber of failures. Our approach is systematic and our goal (in each of the cases we study)

is two-fold: (i) develop appropriate error models and techniques that satisfy the error de-

tecting/correcting requirements, and (ii) parameterize redundant implementations for use

in conjunction with a given error detecting/correcting mechanism. We study a variety of

different dynamic systems, specifically those listed below, and in some cases we are able

to make explicit connections with redundant hardware implementations, hardware failure

modes, and error detecting/correcting techniques. We do not specifically address the issue

of choosing an optimal redundant implementation (e.g., one that minimizes the hardware

or cost involved), but we point out related questions in our examples.

Algebraic Machines: We develop appropriate (algebraic) encoding and decoding map-

pings for group/semigroup machines and demonstrate that each encoding/decoding

pair has a number of possible redundant implementations, which may offer vary-

ing fault coverage. Our approach in this setting is purely algebraic and hardware-

29

I ~~~~~ ~ ~~~~~~~~~~ I -I _ I ---̂--·�·1111111�·�1Illisl(CI ^^- -··-~·~·L~sl-1I·



independent. We do not make connections with actual hardware implementations

and hardware failure modes, but use algebraic techniques to illustrate how different

(algebraic) machine decompositions may capture different sets of errors/failures. In

particular, we show that certain decompositions are undesirable because the failures

of interest are always undetectable. We also extend these results to redundant imple-

mentations of finite semiautomata. The virtue of our approach is that it focuses on

the desired functionality of a redundant implementation and not on the specifics of a

particular hardware construction; this allows the development of novel fault-tolerant

hardware constructions.

Linear Dynamic Systems: We study redundant implementations for linear time-invariant

dynamic systems and linear finite-state machines, obtaining in each case a character-

ization of all redundant implementations with states that are linearly constrained

(encoded according to a linear code). We show that within this class of redundant

implementations each pair of encoding and decoding mappings permits a variety of

state evolution mechanisms. Thus, there is some flexibility in terms of choosing the

redundant implementation which was not considered in previous work. A variant of

our core result has been known in the control community (for continuous-time lin-

ear dynamic systems) but was not developed in the context of fault tolerance. Our

approach results in a systematic way of constructing redundant implementations and

allows us to make explicit connections with hardware constructions and hardware

failure modes. In addition, using this flexibility we demonstrate examples of imple-

mentations that require less hardware than traditional ones, and new schemes for fault

tolerance (including parity check schemes with memory).

Petri Nets: Following a similar approach, we systematically develop embeddings of Petri

net models of discrete event systems (DES). The idea is based on enforcing constraints

on the state (marking) of a given Petri net in way that retains its properties and over-

all functionality while allowing easy detection and identification of failures that may

occur in the underlying DES. This leads to monitoring schemes for DES of interest,

such as network protocols or manufacturing systems. The approach is general and can

handle a variety of error models. We focus primarily on separate embeddings in which

30

-- ·- -- I I-



the functionality of the original Petri net is retained in its exact form. Using these

embeddings we construct monitors that operate concurrently %X ith the original system

and allow us to detect and identify different types of failures by performing consis-

tency checks between the state of the original Petri net and that of the monitor. The

methods that we propose are attractive because the resulting monitors are robust to

failures, they may not require explicit acknowledgments from each activity and their

construction is systematic and easily adaptable to restrictions in the available infor-

mation. We also discuss briefly how to construct non-separate Petri net embeddings.

There are a number of interesting directions that emanate from this work, particularly

in terms of optimizing our embeddings (e.g., to minimize communication cost or other

quantities of interest). We do not explicitly address such optimization questions but

rather focus on establishing this new approach, highlighting its potential advantages,

and describing the different parameters of the problem.

Unlike the situation in static (computational) circuits, fault tolerance in dynamic sys-

tems requires considerations about error propagation, and forces us to consider the possi-

bility of failures in the error detecting/correcting mechanism. The problem is that a failure

causing a transition to an incorrect next state at a particular time step will not only affect

the output at a particular time step (which may be an unavoidable possibility, given that

we use failure-prone elements), but will also affect the state (and therefore the output) of

the system at later times. In addition, the problem of error propagation intensifies as we

increase the number of time steps for which the dynamic system operates. On the contrary,

failures in the implementation of static circuits only affect the output at a particular time

step but have no aftereffects on the future performance of the systems (they do not intensify

as we increase the number of time steps for which the systems operate).

The thesis addresses the problem of failures in the error detecting/correcting mechanism

and shows that our two-stage approach to fault tolerance can be used successfully (and, in

some cases that we illustrate, efficiently) to construct reliable systems out of unreliable

components. First, we develop a distributed voting scheme and show how it can be used to

construct redundant systems that evolve reliably for any given finite number of time steps.

Our approach is novel, but related techniques can be found in computational circuits and

31

.ISI�1_-- --- �I.-I_·_I -
·----- 11 1 I IIII · I_----PXIP··I II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~1~I- - _.... U-l· ·. (··III_·--^--~I~I~I1UI·I~YII- ·



stable memories. By combining this distributed voting scheme with low-complexity error-

correcting codes, we construct interconnections of identical linear finite-state machines that

operate in parallel on distinct inputs and use a constant amount of hardware per machine

in order to achieve a desired low probability of failure for any finite number of time steps.

We also make comparisons and connections with related work, and point out interesting

future directions and possible improvements to our construction.

1.5 Outline of the Thesis

This thesis is organized as follows:

Chapters 2 through .5 systematically explore the concurrent error detection/correction

approach of Figure 1-3 for different dynamic systems under the assumption that the error-

correcting mechanism is fault-free. In Chapter 2 we focus on algebraic machines (group and

semigroup machines, and finite semiautomata); in Chapters 3 and 4 we study redundant

implementations for linear time-invariant dynamic systems and linear finite-state machines;

in Chapter 5 we use similar ideas to construct Petri net embeddings and obtain robust

monitoring schemes for discrete event systems.

In Chapter 6 we develop ways to handle failures in the error-correcting mechanism, both

for the general case and also for the special case of linear finite-state machines.

We conclude in Chapter 7 with a summary of our results and future research directions.

32

_ �� �_ _ _ ____



Chapter 2

Redundant Implementations of

Algebraic Machines

2.1 Introduction

In this chapter we develop a general, hardware-independent characterization of fault-tolerant

schemes for group/semigroup machines and for finite semiautomata. More specifically, we

use homomorphic embeddings to construct redundant implementations for algebraic ma

chines, describe the corresponding error detection/correction techniques, and demonstrate

that for a particular encoding/decoding scheme there exist many possible redundant imple-

mentations, each offering potentially different fault coverage.

Throughout our development, we assume that the error detecting/correcting mechanism

is fault-freel and focus on algebraically characterizing redundant implementations. We as-

sume a hardware-independent error model in which failures cause incorrect state transitions

in the redundant machine. In later chapters of the thesis the fruits of our abstract approach

become clearer, as we make explicit connections to hardware implementations and hard-

ware failures. For example, in Chapters 3 and 4 we outline such extensions for linear

time-invariant dynamic systems (implemented using adder, gain and memory elements)

'As mentioned in the Introduction, the assumption that the error detecting/correcting mechanism is fault-
free appears in most concurrent error detection and correction schemes- It is a reasonable assumption in
many cases, particularly if the error checking mechanism is much simpler than the state evolution mechanism.
In Chapter 6 we extend our approach to handle failures in the error detecting/correcting mechanism.

33

1 �--·111·-----��--------------pl-- - X ----L··l^----- ----L--�l^l� ·�I---^·I·-----I-�-��l�l--c· ----I-�-L-l-l-�·-rr�--·------·l·lpl^-�IIl�· ^



and linear finite-state machines (implemented using XOR gates and flip-flops).

This chapter is organized as follows. In Section 2.2 we provide background on the

use of group/semigroup homomorphisms in constructing fault-tolerant computational sys-

tems, [43, 44, 8, 9]. Then, in Section 2.3, we develop redundant implementations for group

and semigroup machines (in Sections 2.3.1 and 2.3.2 respectively). Our approach results

in an algebraic characterization of the different redundant implementations under a given

encoding/decoding scheme and also leads to discussions about the role of machine decom-

position. In Section 2.4 we make connections with redundant implementations for finite

semiautomata. Finally, in Section 2.5 we summarize the theoretical approach of this chap-

ter and the key insights that. it has provided.

2.2 Background: Fault-Tolerant Computation

in Groups and Semigroups

Before we discuss fault tolerance in algebraic machines, we present some previous results

on fault-tolerant computation in systems with algebraic structure.

2.2.1 Fault Tolerance in Abelian Group Computations

A group (G, o) i a set of elements G together with a binary operation o such that the

following are satisfied:

o For all g1,g2, g3 E G, glog2 E G (closure) and g1o(g2og3) = (9glog092)og3 (associativity).

* There is an element 10, called the identity element such that for all g E G, g o lo =

lo og = g.

* For every g E G, there is an inverse element g-1 E G such that g-1 og = g og - 1 = lo.

An abelian group also satisfies commutativity:

* For all g,g2 E G, gl o g2 = 92 0 g1-

A computation that takes pace in an abelian group is protected in [8] by a coding scheme

like the one shown in Figure 1-1. Redundancy is added to the operands by the encoding

34

I



mappings doi and b2, which map operands in the abelian group (G, o) (e.g., l9 and g2 in the

figure) to elements in a larger abelian group (H, o) (these elements are denoted by hi and

h2 in the figure). The original group operation o in G is replaced by the redundant group

operation o in H. Ideally, under no failures, the result r = gl o g2 can be obtained via the

decoding mapping a from the result p = hl o h2 in the redundant group (i.e., r = a(p)).

The subset of valid results in H is given by the set G' = {l(gl) o 2(g92) 1 gl,g2 E G).

The objective is to utilize the redundancy that exists in H to provide fault tolerance for

the computation in G. By imposing the requirement that under fault-free conditions the

decoding mapping : G' -* G be one-to-one, it can be shown that the encoding mappings

01 and b2 need to be the same mapping, which we denote by b, and that cr 1 = . Moreover,

0 is shown to be a group homomorphism: for all 91g,g92 E G, we have e(gl)o4(g2) = (g9og12).

Under the homomorphic mapping X, the subset of valid results G' forms a subgroup of

H that is isomorphic to G. If we assume that failures in the computation keep us in H

(i.e., failures do not cause the computation to hang or behave in some unpredictable way,

but simply result in an incorrect group element), then any result that falls outside of G'

is invalid and is detected as erroneous (which is the case for result p! in Figure 2-1). In

particular, if we model2 pf as 0(gl) * (92) o e poe (where e is an element in the error set

E = {1, el, e2, ..)), then error detection and correction are based on the structure of the

cosets of G' in H (i.e., on the factor or quotient group H/G', [49]). In the absence of failures

results lie in the zero coset (that is, in G' itself). Every detectable error ed E E forces the

result of the computation into a non-zero coset (i.e., G' o ed G'), while every correctable

error ec E E forces the result into a coset that is uniquely associated with that particular

error (i.e., G' o ec, G' o ej for every ec, ej in E such that ej Z ec). In Figure 2-1, if e is a

correctable error, then A = p and -= r.

One of the most important results in [8] (also presented in [9]) is obtained for the special

case of separate codes. These are codes in which redundancy is added through a separate

"parity" computational system. In this case, the redundant group H is the cartesian product

G x T, where T is the group of parity symbols. Finding a suitable encoding homomorphism

2 Since H is a group, we can always model the result of a computation as pt = p o e where e = p-l o pf.
Therefore, given all possible hardware failures, we can generate the set of errors E. The identity 1o is
included in E so that we can handle the fault-free case.

35

I·_X AdI__InlllUI I---- I ----- -- ICI ��---^I^^ICIIIIIII�L--�I



Figure 2-1: Fault tolerance in a group computation using a homomorphic mapping.

reduces to finding a homomorpbism r such that [g. ir(g)] is the element of H = G x T

corresponding to the operand g. If we impose the requirement that r be surjective (onto),

the problem of finding all possible parity codings reduces to that of finding all surjective

homomorphisms (epimorphisms) from G onto T (unlike b, mapping ar maps G onto a smaller

group T). This is a reasonable requirement because if 7r was not onto, then T would contain

elements that are never used by the parity computation (and can therefore be eliminated).

By an important homomorphism theorem from group theory [49], these epimorphisms are

isomorphic to the canonical epimorphisms, namely those that map G to its quotient groups

GIN, where N denotes a (normal3 ) subgroup of G. Hence the problem of finding all possible

parity codings reduces to that of finding all possible subgroups of G.

By simply exploiting the abelian group structure, the above results were extended in

[8, 9] to higher algebraic systems with an embedded group structure, such as rings, fields

and vector spaces. The framework thereby embraces a large variety of arithmetic codes

and Algorithm-Based Fault Tolerance schemes already developed in some other way. In the

following example we discuss how aM and parity check codes can be analyzed within the

abelian group framework; additional examples can be found in [8].

3A subgroup N of a group (G, o) is called normal if for all g E G, the set of elements g o N o g- is
contained in N. In the abelian group case considered in [8], any subgroup is trivially normal (g o N o g-l =
gog- 1 o N = N).

36



Example 2.1 aM-codes provide fault tolerance to modulo-M addition (which takes place

in ZM, the cyclic group of order M) by multiplying each of the operands by an integer

a and performing modulo-aM addition, [87]. Such codes can be placed into the abelian

group framework by using the injective homomorphism : G = ZM -- H = Z0 M such

that for g E ZM, +(g) = ag. Naturally, the specifics of the errors that can be detected or

corrected depend very much on the actual hardware implementation and on the particular

values of M and a. For instance, with M = 5 and a = 11, this arithmetic code can detect

all failures that result in single-bit errors in a digitally implemented binary adder, [87].

In these implementations the operands and the result have a binary representation (i.e., 0

maps to 00000, 1 maps to 00001, etc.) and failures flip a "0" to a "1" and vice-versa.

An alternative way of providing fault tolerance to modulo-M addition is by performing

a parity check using a separate (parity) adder alongside the original one. Using the alge-

braic framework we are able to enumerate and identify all appropriate parity computations

(additions) that can be performed. More specifically, we know that each parity computation

needs to lie in a group T that is isomorphic to a quotient group ZM/N for a normal subgroup

N of ZM. Using standard results on cyclic groups [55], we conclude that all such groups

T are isomorphic to Zp where P is a divisor of M. Therefore, all parity computations for

modulo-M addition are given by modulo-P addition (where P is a divisor of M). o

2.2.2 Fault Tolerance in Semigroup Computations

The results for the abelian group case were extended to computations occurring in a semi-

group in [43, 44]. A semigroup (S, o) is a set of elements S that is closed under an associative

binary operation (denoted by o). Clearly, every group is a semigroup; familiar examples of

semigroups that are not groups are the set of integers under the operation of multiplication,

the set of nonnegative integers under addition and the set of polynomials with real-number

coefficients under the operation of polynomial multiplication. All of the above examples are

abelian semigroups in which the underlying operation o is commutative (for all sl, 2 E S,

sl 0o 2 = S2 S1). Examples of non-abelian semigroups are the set of polynomials under

polynomial substitution and the set of M x M matrices under matrix multiplication. Other

semigroups, as well as theoretical analysis, can be found in 65, 66].

A semigroup S is called a menoid when it possesses an identity element. The identity

37

___- ~ _1-_ 11~~ 11b _--- --_·11I1^I�----__·I�·--I ---··-l--LLI-I_·l---L .. I1IIX I



element, denoted by 1., is the unique element that satisfies s o 1. = 1 o s = s for all

s E S. We can focus on monoids without loss of generality because an identity element can

always be adjoined to a semigroup that does not initially posses one. (The construction is

straightforward: let S l = S U {(1) and define s o 10 = 1 o = s for all E S'; all other

products in St are defined just as in S. By definition, element lo is the identity of S1.)

In order to protect a computation in a monoid (S, o), we follow the model of Figure 1-1.

To introduce the redundancy needed for fault tolerance, we map the computation sl o s2 in

(S, o) to a computation 0 (l) o 02(s2) in a larger monoid (H, o). The encoding mappings

01 and k2 are used to encode the first and second operands respectively (the results can

be generalized to more than two operands). After performing the redundant computation

0l(sl) 0o 2(s2) in H, we obtain a (possibly faulty) result p, which we assume still lies

in H. Again, we perform error-correction through a mapping a and decoding through a

one-to-one mapping a : S' - ) S (where S' = {((sl) o 02(s2) S1 ,s2 E S) is the subset of

valid results in H).

Under fault-free conditions, the decoding mapping a satisfies:

o(1I(I) 0 2(2)) = SI 8 S2

for all sl, S2 E S. Since we have assumed that a is one-to-one, the inverse mapping a':

S -+ S' is well-defined and satisfies r-'(s1 o0 2) = l(Sl) o ,(s2). If we assume further

that both Id and b2 map the identity of S to the identity of H, then by setting s2 = lo, we

get a-'(sl) = 4l(sl) for all sl E S (because 02(lo) = lo). Similarly, a-l(s2 ) = 02 (s 2) for

all s2 E S, and we conclude that a-l = = 0=2 -- . Note that (i) O(s 1os 2 ) = (Sl)k(s2),

and (ii) b(1o = lo. Condition (i) is the defining property of a semigroup homomorphism,

[66, 65]. A monoid homomorphism is additionally required to satisfy condition (ii), [55, 42].

Mapping is thus an injective monoid homomorphism, which maps the original computation

in S into a larger monoid that contains an isomorphic copy of S.

The generalization of the framework of [8] to monoids allows non-abelian computa-

tions, for which inverses might not exist, to be treated algebraically. The generalization

to monoids, however, comes at a cost since error detection and correction can no longer

be based on coset constructions. The problem is two-fold: first, in a semigroup setting we

38

* __ __ �_ _·_ _ ___ �



may be unable to model the possibly faulty result pf as O(sl) o 4(s2) o e for some element

e in H (because inverses do not necessarily exist in H and because the semigroup may be

non-abelian); second, unlike the subgroup G' of valid results, the subsemigroup S' does not

necessarily induce a natural partitioning 4 on the semigroup H. (For instance, it is possible

that the set S'oh is a strict subset of S' for all h E H.) Conditions for single-error detection

and correction are discussed in Appendix A.

If the redundant monoid H is a cartesian product of the form SxT, where (S, o) is

the original monoid and (T, ®) is the "parity" monoid, then the corresponding encoding

mapping h can be expressed as (s) = [s, 7r(s)] for all s E S and an appropriate mapping ar.

In such case, the set of valid results is given by {[s, r(s)] I s E S} and error-detection simply

verifies that the result is of this particular form.

Using the fact that the mapping 4 is a homomorphism, we can easily show that the

parity mapping r is a homomorphism as well. As in the case of abelian groups, if we

restrict this parity mapping to be surjective, we can obtain a characterization of all possible

parity mappings and, thus, of all separate codes. However, the role that was played in the

abelian group framework by the (normal) subgroups N of the group G is now played by

the so-called congruence relations in S. Just as a normal subgroup induces a partitioning

of a group (into the normal subgroup and the corresponding set of cosets), a congruence

relation induces a partitioning of a monoid. Unlike the group case, however, the number

of elements in each partition is not necessarily the same. In order that a given partitioning

{ Pi} correspond to a congruence relation, the partitions need to be preserved by the monoid

operation: when an element of partition Pj is composed with an element of partition Pk,

the result must be confined to a single partition Pi (i.e., for all sj E Pi and all sk E Pk

the products sj o sk lie in partition PI). Note that this is also true for the partitioning of

a group into cosets. More formally, an equivalence relation ~ on the elements of a monoid

S is called a congruence relation if, for all a, a', b, b' E S, a a', b b' =y aob a'ob'. The

partitions are referenced to as congruence classes.

An example of a partitioning into congruence classes is shown in Figure 2-2 for the

semigroup (N, x) of positive integers under multiplication. Congruence class A contains

'A partitioning of a set S is a collection of disjoint subsets {Pi)}, the union of which forms the set S.

39

__~__--~--l - I--II1-_
._L 

- -·I---_ -. �-I�-�-*-· - ~- ·I---^Y--



Semigroup (N, x)

Congruence Congruence
Class B Class C
(2,4,8,10,...) {3,9,15,...)

Congruence Congruen
Class A Class I
(6,12,18,...) (1,5,7,11,...)

Parity
Semigroup T B C

Figure 2-2: Partitioning of semigroup (N, x) into congruence classes.

multiples of 2 and 3 (i.e., multiples of 6); congruence class B contains multiples of 2 but

not 3; congruence class C contains multiples of 3 but not 2; and congruence class I contains

all the remaining positive integers (i.e., integers that are neither multiples of 2 nor 3). One

easily checks that the partitioning is preserved under the semigroup operation.

Let S/ denote the set of equivalence classes of S under congruence relation ~. For two

congruence classes [a], [b] (where [a] denotes the congruence class containing a), we define

a binary operation 0 by [a] ® [b] = [a o b] (note that ® is well-defined if - is a congruence

relation). With this definition, ($S/~, 0) is a monoid, referred to as the factor or quotient

monoid of in S and congruence class [lo] functions as its identity element.

If we apply a homomorphism theorem from semigroup theory [66, 65], which is the nat-

ural generalization of the theorem used earlier in the group case, we get that: surjective

homomorphisms from S onto T are isomorphic to the canonical surjective homomorphisms,

namely those that map S to its quotient semigroups S/-, where denotes a congruence

relation in S. The semigroup (T, () is isomorphic to (S/-, 0) for a suitable congruence

relation ,,. Thus, for each congruence relation -, there is a corresponding surjective ho-

40



momorphism and, for each surjective homomorphism, there is a corresponding congruence

relation. Effectively, the problem of finding all possible parity codes reduces to that of

finding all possible congruence relations in S.

When comparing these results with the abelian group case in [8], we find one major

difference: in the abelian group case, finding a subgroup N of the group G completely

specifies the parity homomorphism r because the inverse images of the elements of the

parity group T are exactly the cosets of G with respect to the subgroup N (this is simply

saying that T -~ G/N). In the more general setting of a monoid, however, specifying a

normal subsemigroup for S does not completely specify the homomorphism r (and therefore

does not determine the structure of the parity monoid T). In order to define the surjective

homomorphism r : S --4 T (or, equivalently, in order to define a congruence relation on

S), we may need to specify all congruence classes5.

2.3 Redundant Implementations of Algebraic Machines

In this section we construct redundant implementations of dynamic systems with algebraic

structure, such as group and semigroup machines, using the preceding approach for fault

tolerance in computational systems. We systematically develop separate and non-separate

encodings that can be used by our two-stage concurrent error detection/correction scheme.

Our approach is purely algebraic and aims at gaining insight for redundant implementations,

error detection/correction techniques and appropriate error models. We show that algebraic

homomorphisms can facilitate the design of fault-tolerant machines and the analysis of error

detection and correction algorithms. We do not make connections to particular hardware

constructions and hardware failure modes; when we couple our results with techniques

for machine decomposition, however, we obtain interesting insight regarding the use of

redundancy in non-separate implementations and regarding the functionality of separate

monitors.

We start with group machines (in Section 2.3.1) and then generalize our approach to

semigroup machines (Section 2.3.2) and finite semiautomata (Section 2.4). A finite-state

5 This makes the search for encodings in a monoid setting more complicated than the search for such
encodings in an abelian group setting. As the examples in [43] showed, however, we have a larger variety to
choose from.

41

L__ 1�-^11111. --· ··��1�11_.
_ - _IIP---'~~~~~~~~~ ~-- ~~~~~~~~~~~~~~- -



machine (FSM) has a finite set of states Q, a finite set of inputs X and a finite set of

outputs Y. The next-state function is given by 6: Q x X -+ Q and specifies the next

state based on the current state and the current input. The output function, given by the

mapping A: Q x X - Y, specifies the current output based on the current state and input.

(Functions 6 and A need not be defined for all pairs in Q x X.) A finite semiautomaton is an

FSM without outputs (or, equivalently, one whose state is its output). A semigroup machine

is a finite semiautomaton whose states and inputs are drawn from a finite semigroup (S, o),

[2, 3]. The next-state function is given by 6(sI, s2) = si os2, where the current state si and

input s2 are elements of (S, o). In the special case when (S, o) is a group (not necessarily

abelian), the machine is known as a group or permutation machine, [2, 3, 40].

Our analysis of redundant implementations for these algebraic machines will be hardware-

independent; for discussion purposes, however, we will make reference to digital implenen-

tations, i.e., implementations of FSM's that are based on digital circuits. Thus, states

are encoded as binary vectors and stored into arrays of single-bit memory registers (flip-

flops); the next-state function and the output function (when applicable) are implemented

by combinational logic. When a hardware failure occurs, the desired transition to a state

qi (qi E Q) with binary encoding (ql,, q2,, ..., qk,) is replaced by a transition to an incorrect

state qj with encoding (ql,, q2,, .. , q,). We will say that a single-bit error occurs when the

encoding of qi differs from the encoding of qj in exactly one bit-position6 .

2.3.1 Redundant Implementations of Group Machines

The next-state function of a group machine is given by 6(gl,g2) = gl o g2, where both

the current state gl and input g92 are elements of a group (G, o). Examples of group ma-

chines include additive accumulators, multi-input linear shift registers, counters and cyclic

autonomous machines; group machines also play an important role as essential components

of arbitrary state machines.

In order to construct redundant implementations of a group machine (G, o) (with state

gl E G, input g2 E G and next-state function (91,92) = g o g), we embed it into a

6 There are many other error models, such as the stuck-at failure model or the delay failure model, [31].
Note that, depending on the hardware implementation, a single hardware failure can cause multiple-bit
errors.

42

_I _ _ � _ _ I__ _��__ �



Faults

Input 1

g2 4ah1)=gi

Ilachines
IA--i---

Figure 2-3: Error detection and correction in a redundant implementation of a group ma-
chine.

larger group machine (H, o) (with state hi E H, input h2 E H and next-state function

H(hl, h2) = hi o h2). As shown in Figure 2-3, machine H receives as input h2 = (92)

(which is an encoded version of the input g2 that machine G would receive) and concurrently

simulates G, so that, under fault-free operation, the state gl of the original group machine

G can be recovered from the corresponding state hi of the redundant machine H through

a one-to-one decoding mapping e (i.e., gl = (hl) at all time steps). The mapping is

only defined for the subset of valid states in X, denoted by G' = e-l(G) C H. Erroneous

operations cause transitions to invalid states in H; these errors will be detected and, if

possible, corrected by the detector/corrector a at the end of the corresponding time step

(for now, we assume that all mappings in Figure 2-3 are fault-free).

More formally we have the following definition for redundant implementations of group

machines:

Definition 2.1 A redundant implementation for a group machine (G, o) is a group ma-

chine (H, o) that concurrently simulates G in the following sense: there exist a one-to-one

mapping : G' -- 4 G (where G' = e-' (G) C H is the subset of valid states) and an ap-

propriate input encoding mapping : G -+ H (from G into H) such that the following

condition holds for all gl, 92 E G:

£(r-l(gl) * (92)) = 91 o g2 (2.1)

43



Note that when H is properly initialized and fault-free, there is a one-to-one corre-

spondence between the state hi of H and the corresponding state gl of G; specifically,

gl = 1(hl) or hi = e-l(gl) for all time steps. At the beginning of each time step, input

92 E G is supplied to machine H encoded via . The next state of H is then given by

h' = hi o(g2) = t-l(gl) oE(g2); since £ is one-to-one, it follows easily from eq. (2.1) that h'

has to satisfy h' = -l (gl o 92) = -l(g'), where g' = gl o g2 is the next state of machine G.

Note that h' belongs to the subset of valid states G' = -1 (G) C H. At the end of the time

step, the error detector verifies that the newly reached state h' is in G'; when an error is

detected, necessary correction procedures are initiated and completed before the next input

is supplied.

The concurrent simulation condition of eq. (2.1) is an instance of the coding scheme of

Figure 1-1 (where we had a(l (gl) o2(g2)) = glog2): the decoding mapping e plays the role

of a, whereas C corresponds to mapping 02. (The situation described in eq. (2.1) is actually

slightly more restrictive than the one in Figure 1-1, because 01 is restricted to be -1.)

Therefore, the results of Section 2.2.2 apply and we can design redundant implementations

for group machines by homomorphically embedding them into larger group machines. More

specifically, by choosing _ -1 to be an injective group homomorphism from G into H,

we automatically satisfy (2.1):

e(eO(gl) 92)t) = t(e-l(l)e- 1 g2))

te-l (9l O 92))

= 91 o 2 

Just as we did for the group/semigroup 7 cases in Sections 2.2.1 and 2.2.2, we will use the

notation b in place of t-1 and 6, and a in place of 1. With this in mind, the condition in

eq. (2.1) simplifies to

a(0l(1) o (g2)) = 91 g92 (2.2)

for all states gl and all inputs g2 in G.

'Remember that this is not necessarily an abelian group.

44



, ___ _'-___ _. ,'-''-1--"------ Input Encoder
I I
I I

II II

' _ t2 .(2) j
___.._______________. ------ Redundant Machine

:H=GxT
II

te ti State g91,
II %,, 

.r. I El Machinesi------...--- - .~.--.---
o _ _ _ _ _ _ _ ,

I[ frcqumm/!t--'--r(I qu yCheck 2) IO Mappingsl

l Error Detector/Corrector a )

Figure 2-4: Monitoring scheme for a group machine.

When the redundant group machine is of the form H = G x T, we recover the results

obtained in Sections 2.2.1 and 2.2.2 for the separate case: the encoding homomorphism

4': G - H (where 4(g) = (g) = -l(g)) is of the form 0(g) = [g, 7r(g)] for an appropriate

mapping r. If we assume that r is surjective, then the redundant machine H consists of the

original machine G and an independent parity machine T as shown in Figure 2-4. Machine

T is smaller than G and we will refer to it as a (separate) monitor or a monitoring machine

(the latter term has been used in finite semiautomata [54, 78, 77], and in other settings).

Mapping r: G -+ T produces the encoded input t 2 = r(g2) of the separate monitor T

(where g92 is the input for G) and is easily shown to be a homomorphism, i.e., it satisfies

lr(gl) 7r(g2) = 7r(g9l 92)

for all gl, g2 E G. It can be easily shown that, if machines G and T are properly initialized

and fault-free, then the state t of the monitor at any time step will be given by t = r(g),

where g is the corresponding state of the original machine G. Error-detection checks if

this condition is satisfied. Depending on the actual hardware implementation and the error

model, we may be able to detect and correct certain errors in the original machine and/or

in the separate monitor.

Next, we use the approach outlined in eqs. (2.1) and (2.2) to discuss examples of separate

45



monitors for group machines.

Separate Monitors for Group Machines

In the previous section we concluded that the problem of designing a separate monitor

T for a group machine G can be solved algebraically: using the results of Sections 2.2.1

and 2.2.2, and retaining the assumption that the mapping r : G - ) T (which maps states

and inputs in machine G to states and inputs in machine T) is surjective, we concluded

that group machine (T, 0) can monitor group machine (G, o) if and only if T is a surjective

homomorphic image of G or, equivalently, if and only if there exists a normal subgroup N

of G such that T GIN.

Example 2.2 Consider the group machine G = Z6 = {0, 1,2,3,4,5) (i.e., a modulo-6

adder). The non-trivial8 (normal) subgroups of G are N = {0, 3)} - Z2 and N' = {0, 2, 4)

Z3 , resulting in quotient groups GIN - Z2 and GIN' 0- Z 3 respectively.

If we decide to use Z2 as a separate monitor, we need to partition the elements of Z6

in two partitions as {po = {0,2,4},pl = {1,3,5}}. If the original machine is digitally

implemented (i.e., using three bits to encode each of its states) and if the operation of

the monitor is fault-free 9, then in order to detect failures that result in single-bit errors

in the digital implementation of Z6 we need the binary encodings of states within the

same partition to have Hamming distance 0 greater than 1. If we consider the partitioning

{Po = {000, 011, 11lo},pi = {111, 100, 001}} (which corresponds to adigital implementation

in which 0 is encoded to 000, 1 to 111, 2 to 011, 4 to 110, and so on), we see that an

error is detected whenever the state encoding does not lie in the partition specified by the

presumably fault-free monitor or when the result is an invalid codeword. For example, if the

monitor is in partition po and if the current state is 111 or 010, a single-bit error has been

detected. We see that, under the assumption that the monitor is fault-free, this particular

sThe group {lo} (where 1o denotes the identity element) is a trivial normal subgroup of any group.
9 This assumption is realistic if the hardware implementation of the monitor is considerably simpler than

the implementation of the actual machine.
l°The Hamming distance between two binary vectors z = (x, 2, ..., xn) and y = (y t, ... ,y) is the

number of positions at which x and y differ, [87]. The minimum Hamming distance dmi,n between the
codewords of a code (collection of binary vectors of length n) determines its error detecting and correcting
capabilities: a code can detect d,,rn -1 single-bit errors; it can correct 2 -' J single-bit errors.

46



scheme can detect failures that result in single-bit errors in the original machine. Note,

however, that a single hardware failure may not necessarily result in a single-bit error.

If we use Z3 as the monitoring machine, we obtain the partitioning (po = {0, 3), Pi =

(1, 4), P2 = 2, 5}}). Again, to detect single-bit errors in a digital implementation, we require

that states within the same partition have Hamming distance greater than 1, as for example

in the encoding Po = 000, Oll},pi = {001,100),p2 = {010,101}} (which corresponds to

encoding 0 to 000, 1 to 001, 2 to 010, and so on). If states within the same partition

have Hamming distance at least 3 (partitioning {po = 000, 111},pl = {001, 110),2 =

{101,010)} is one such possibility), then we can actually correct single-bit errors. We use

the fault-free monitor to locate the correct partition and, since codewords within the same

partition have Hamming distance greater or equal to 3, we can correct single-bit errors by

choosing as the correct state the one that has the smallest Hamming distance from the

corrupted state. O

Example 2.3 The authors of [78, 77] investigate separate monitors for cyclic autonomous

machines. The only input to an autonomous machine is the clock input. The dynamics

are therefore completely predetermined because from any given state only one transition

is possible, and it occurs at the next clock pulse. Since the number of states is finite, an

autonomous machine will eventually enter a cyclic sequence of states. A cyclic autonomous

machine is one whose states form a pure cycle (i.e., there are no transients involved). Such

a machine is essentially the cyclic group machine ZM, but with only one allowable input

(namely element 1) instead of the whole set {0, 1,2,..., M - 1}.

Using our algebraic framework and some rather standard results from group theory, we

can characterize all possible monitors T for the autonomous machine ZM: each monitor

needs to be a group machine (T, 0) that is isomorphic to ZM/N, where N is a normal

subgroup of ZM. The (normal) subgroups for ZM are exactly the cyclic groups of order

INI = D that divides M, [55]; therefore, the monitors correspond to quotient groups T -

ZM/N = ZM/ZD that are cyclic and of order P = -D (that is, T - Zp). Of course, since

only one input is available to the original machine G, we should restrict T to only one input

as well. This results in a monitor that is a cyclic autonomous machine with P states (where

P is a divisor of M).

47



Using graph-based constructions, the authors of [78, 77] concluded that the minimum

number of states required for a separate monitor is the smallest prime factor of the cycle

length. Our result is a generalization of that conclusion: using the algebraic framework

we are able to describe the structure of all possible monitors (not only the ones with the

minimum number of states) independently of the error model. More importantly, our result

is obtained through simple applications of group theory and can be generalized to machines

with non-trivial inputs and more complicated structure. O

When N is a normal subgroup of G, we can actually decompose the group machine G

into an interconnection of two simpler group machines. This and other results on machine

decomposition introduce some interesting possibilities into our analysis of redundant imple-

mentations. For this reason, in the next section we briefly review some decomposition results

and apply them to the analysis of separate monitors. Machine decomposition is important

because the implementation of group machines (and FSM's in general) as interconnections

of smaller components may result in an improved circuit design 1 , [4].

Group Machine Decomposition

Whenever group G has a non-trivial normal subgroup N, the corresponding group machine

can be decomposed into two smaller group machines: the coset leader machine with group

GIN and the subgroup machine with group N, [2, 3, 40]. Figure 2-5 conveys this idea.

Group machine G, with current state gl and input 92, can be decomposed into the "series-

parallel" interconnection in the figure. Note that the input is encoded differently for each

submachine. The overall state is obtained by combining the states of both submachines.

The above decomposition is possible because the normal subgroup N induces a partition

of the elements of G into cosets, [2, 3]. Each element g of G can be expressed uniquely as

g = n o ci for some n E N, ci E C,

where C = {cl,c 2, ...,c)} is the set of distinct (right) coset leaders (there is exactly one

"Machine decomposition typically results in reductions of the chip area, of the longest path (between
latch inputs and outputs) and of the clock duration. Furthermore, it tends to minimize the clock skew and
utilize more efficiently the programmable gate arrays or logic devices (if FSM's are implemented using such
technologies), [47, 4, 39].

48

__



Combined State I 

Combined State

Figure 2-5: Series-parallel decomposition of a group machine.

representative for each coset). The decomposition in Figure 2-5 simply keeps track of this

parameterization. If the machine is in state gl = n o ci, and an input g2 = n2 o ci2

is received, the new state can be expressed as g3 = n3 0 ci,. One possibility is to take

ci3 = cil o 92 = ci, o nz o ci2 (here, · denotes the coset leader of the element E G); then,

we put n3 = nl o c, o g2 o (ci o g2) - l . Note that ci, o g2 o (ci, o0 g2) - is an element of N

and therefore this group operation can be computed within the subgroup machine '2. The

encoders are used to appropriately encode the input for each machine and to provide the

combined output. The decomposition can continue if either of the groups N or GIN of the

two submachines has a non-trivial normal subgroup.

Recall that in the previous section we concluded that a group machine (T, () can monitor

a machine (G, o) if and only if there exists a normal subgroup N of G such that T - GIN.

Since N is a normal subgroup of G, we can also decompose the original group machine G into

an interconnection of a subgroup machine N and a coset leader machine GIN. Therefore,

we have arrived at an interesting observation: under this particular decomposition and at

a finer level of detail, the monitoring approach corresponds to partial modular redundancy,

because T is isomorphic to the coset leader machine. Error-detection in this special case

l2The above choice of decomposition is general enough to hold even if N is not a normal subgroup of G.
In such case, however, the (right) coset leader machine is no simpler than the original machine; its group is
still G, [2].

49

1___1___1 ___�__·C�_I__



TWG/N OriginalGroup Machine

Monitorin i II
.~~~(fhgop )Dcrpsto

Machine 
(with group T)

Equality
CheckI I1---

Figure 2-6: Construction of a separate monitor based on group machine decomposition.

is straightforward because, as shown in Figure 2-6, failures in T or GIN can be detected

by concurrently comparing their corresponding states. The comparison is a simple equality

check (up to isomorphism) and an error is detected whenever there is a disagreement.

Failures in the subgroup machine N cannot be detected. The error detection and correction

capabilities are different, however, if G is implemented using a different decomposition (or

not decomposed at all).

Example 2.4 Consider the group machine Z4 = {O(0, 1, 2, 3} which performs modulo-4 ad-

dition (its next-state function is given by the modulo-4 sum of its current state and input).

A normal subgroup for Z 4 is given by N = {0, 2} (N - Z2); the cosets are {0, 2} and {1, 3},

and the resulting coset leader machine Z 4 /N - Z 4/Z 2 is also isomorphic to Z2.

Despite the fact that both the coset leader and the subgroup machines have groups

isomorphic to Z2, the overall functionality is different from Z 2 x Z 2 (since Z4 0 Z2 x Z2)

due to the interconnecting coder between the coset leader and subgroup machines. The

output of this coder (denoted in Figure 2-5 by n') is a symbol based on the current state

of the coset leader machine (ci, in Figure 2-5) and the current input (denoted by g2 in the

figure). In this particular example the output functions like the carry-bit in a binary adder:

the coset leader machine performs the addition of the least significant bits, whereas the

subgroup machine deals with the most significant bits. Since this carry-bit" is available

50



concurrently to the subgroup machine (i.e., it depends on the current state of the coset

leader machine and the current input), this decomposition is reminiscent of the use of

carry-lookahead to perform modulo-2k addition using binary adders (in our case k = 2),

[110].

Using N - Z 2 as a normal subgroup of Z4, we conclude from the analysis of the previous

section that an appropriate separate monitor is given by T = GIN = Z4/Z2 o- Z 2 . It

functions as follows: it encodes the inputs in coset {0, 2} into 02 and those in {1, 3) into 12;

then, it adds its current state to its current input modulo-2. Therefore, the functionality of

this separate monitor is identical to the coset leader machine in the decomposition described

above. As illustrated in Figure 2-6, under this particular decomposition of Z4, the monitor

will only be able to detect failures that cause errors in the least significant bit (i.e., errors

in the coset leader machine). Errors in the most significant bit (which correspond to errors

in the subgroup machine) will remain completely undetected. o

If one replicated the subgroup machine N (instead of the coset leader machine), the

resulting "monitor" T N would not correspond to a separate code. The reason is that

the subgroup machine N receives input from the coset leader machine GIN through the

interconnecting coder (e.g., the "carry-bit" in the example above).

Non-Separate Redundant Implementations of Group Machines

A redundant implementation of a group machine (G, o) need not necessarily use a separate

monitor. More generally, we can appropriately embed (G, o) into a larger, redundant group

machine (H, o) that preserves the behavior of G in some non-separately encoded form (as

in Figure 2-3). At the beginning of Section 2.3.1, we showed that such an embedding can

be achieved via an injective group homomorphism : G '-+ H, used to encode the inputs

and states of machine G into those of machine H. Furthermore, since is injective, there

exists a one-to-one decoding mapping a: G' -+ G (where G' = +(G) was defined earlier as

the subset of valid results) that is simply the inverse of mapping . With these choices, the

concurrent simulation condition in eq. (2.2) is satisfied.

In the above analysis the set G' = +(G) is a subgroup of H. If, in addition, G' is a normal

subgroup of H, then it is possible to decompose H into a series-parallel interconnection of a

51

------· ·1111�·111111l(l�- 1 -�11111�---·--�-1 --~~Y-~~~-·ll~~·lls·--·--·-----~~ -^ --- --------��



subgroup machine G' (isomorphic to G) and a coset leader machine HIG' (in the terminology

introduced in the beginning of Section 2.3.1, G' plays the role of the normal subgroup N). If

we actually implement H in this decomposed form, then our fault-tolerant scheme attempts

to protect the computation in G by performing an isomorphic computation (in the subgroup

machine G') and a coset leader computation H/C'. Failures are detected whenever the

overall state of H lies outside G', that is, whenever the state of the coset leader machine

deviates from the identity. Since the coset leader machine does not receive any input from

the subgroup machine G', failures in the subgroup machine are not reflected in the state of

H/C'; therefore, failures in G' are completely undetected and the only detectable failures

are the ones that force HIG' to a state different than the identity. In effect, the added

redundancy is checking for failures within itself rather than for failures in the computation

in G' (which is isomorphic to the computation in G) and turns out to be rather useless

for error detection or correction. As demonstrated in the following example, we can avoid

this problem (while keeping the same encoding, decoding and error correcting procedures)

by implementing H using a different decomposition; each such decomposition may offer

different fault coverage.

Example 2.5 Suppose that we want to protect addition modulo-3, that is, G = Z3=

{0, 1, 2} and decide to do this by using an aM coding scheme where a = 2. Therefore, we

multiply by 2 and perform addition modulo 6, that is, H = Z6 = {0, 1, ... , 5}. The subgroup

G' = {0, 2, 4} is isomorphic to G and results in cosets {0, 2, 4} and {1, 3, 5}. If we choose 0

and 1 as the coset leaders, now denoting them by 02 and 12 to avoid confusion, the coset

leader machine has the following state transition function:

Input 02 {0,2,4} 12 = {1, 3, 5
State I
02 0 02 12
12 12 02

The coding function between the coset leader machine and the subgroup machine (which

has no internal state and provides the input to the subgroup machine based on the current

coset and input) is given by the following table:

52

I- -�- - -e - - - - - I -



Input 1 2 3 4 5
State nut I0i2 45
02 1101012121414
12 022440

Note that the input to machine H will always be a multiple of 2. Therefore, as is clear

from the table, if we start from the 02 coset, we will remain there (at least under fault-free

conditions). Moreover, the input to the subgroup machine will be essentially the same as

in the non-redundant machine (only the symbols used will be different - {0, 2, 4} instead

of {0, 1, 2}).

A failure will be detected whenever the overall state of H does not lie in G', i.e., whenever

the coset leader machine H/G' is in a state different from 02. Since the coset leader machine

does not receive any input from the subgroup machine, a deviation from the 02 coset reflects

a failure in the coset leader machine. Therefore, the redundancy we have added checks itself

and not the original machine.

We get better results if we decompose H in some other way. If we use the normal

subgroup NH = {0, 3}, the corresponding cosets are {0, 3}, {1, 4} and {2, 5) (we will denote

the coset leaders by 03, 13 and 23 respectively). The state transition function of the coset

leader machine is given by

Input 03 = {0, 3} 13= {1,4} 23-{2,5}
State

03 i 03 13 23
13 13 23 03
23 23 03 13

In this case, the output of the coding function between the two machines is given by the

following table:

Input 0 1 2 3 4 5

03 00 3 33
13 003330
23 3 033300

53

111~1111 � - ·-_ 11111~~~~~~~~~~~1-~~~~- 1 111~~~~~~~~~--1111_11~~~~~~~~~~~_.._ ~ ~ ~ . �-L-I··Y--- -�-II�--·I--·. .------s�--····�·I�·-·11111



This situation is quite different from the one described before. The valid results under

fault-free conditions do not lie in the same coset anymore. Instead, for each state in the coset

leader machine there is exactly one valid state in the subgroup machine. More specifically,

the valid results (the ones that comprise the subgroup G') are given by the following (c, nh)

pairs (where c is a coset leader and nh is an element of the subgroup machine NH): (03, 0),

(13, 3) and (23, 0). We can exploit this "structured redundancy" to perform error detection

and correction.

The analysis in this example can be generalized to all cyclic group machines ZM that

are to be protected through aM coding. The encoding of the states and the inputs involves

simple multiplication by a, whereas the computation should be reformulated using a group

machine decomposition that does not have ZM as a (normal) subgroup. (Otherwise, it is

not possible to detect/correct errors in the computation of ZM.) °

The example above has illustrated that non-separate redundancy can be inefficient (or

even useless), depending on the particular group machine decomposition. Research work in

the past had focused on a given (fixed) hardware implementation of the redundant machine.

For example, alia codes were applied to arithmetic circuits with a specific architecture in

mind and with the objective of choosing the parameter a so that an acceptable level of

error detecticn/correction is achieved, [87, 81]. Similarly, the design of self-testing and

fault-secure networks in [108] is based on requiring that all failures under the given imple-

mentation cause transitions to invalid states. Again, the indirect assumption is that the

machine implementation and decomposition are fixed. Our approach is different because

we characterize the encoding and decoding mappings abstractly, and allow the possibility of

implementing and decomposing the redundant machine in different ways; each such decom-

position will likely result in different fault coverage. Chapters 3 and 4 illustrate the kind of

flexibility that we have when constructing these redundant implementations.

2.3.2 Redundant Implementations of Semigroup Machines

The development of eqs. (2.1) and (2.2) in Section 2.3.1 can be generalized to arbitrary

semigroup machines. For this case, we have the following definition:

54

_�_ _ �� � _� __I I �_ I



Definition 2.2 A redundant implementation for a semigroup machine (S, o) is a semigroup

machine (H, o) that concurrently simulates S in the following sense: there exist a one-to-

one mapping I : S' -- S (where S' = e-1(S) C H) and an appropriate input encoding

mapping : S -- H (from S into H) such that the following condition holds true:

e(-'(sl) OE( 2 )) = 81 o 82 (2.3)

for all sl, 2 E S.

Using similar analysis to Section 2.3.1 (i.e., under the assumptions that -1(lo) = 1

and (1) = 1o), we conclude that and - have to be the same injective semigroup

homomorphism, if we use k to denote ~ and t - 1, and a in place of e, we arrive at

a((sl) 4(s2)) = 8sl o 2 (2.4)

for all s8, s2 E S, which is the same as the condition for fault-tolerant semigroup compu-

tations in Section 2.2.2. We can thus construct redundant implementations for semigroup

machines by embedding them into larger semigroup machines using homomorphisms.

The decomposition of group machines described in Section 2.3.1 has generalizations to

ligroup machines, the most well-known result being the Krohn-Rhodes decomposition

theorem, [2, 3]. This theorem states that an arbitrary semigroup machine (S, o) can be

decomposed in a non-unique way into a series-parallel interconnection of simpler components

that are either simple-group'3 machines or one of four basic types of semigroup machines.

These basic machines correspond to the following semigroups (known as units):

* U3 = {1, rl, r2} such that for u, ri E U3, u ol = 1o u u and uori = ri.

· U2 = rl, r 2 such that for u, ri E U2, u o ri = ri.

U = {1, r} such that 1 is the identity element and r o r = r.

Uo = {1}.

3 A simple group is a group that does not have any non-trivial normal subgroups.

55

_ I I___ __ -- - __- ^ ·I ~ · -_~1 11



Note that UO, U1 and Us are in fact subsemigroups of U3. Each simple-group machine in

a Krohn-Rhodes decomposition has a simple ;,roup that is a homomorphic image of some

subgroup of S. It is possible that the decomposition uses multiple copies of a particular

simple-group machine or no copy at all. Some further results and ramifications can be found

in [40].

A semigroup machine is called a reset if it corresponds to a right-zero semigroup R, that

is, for all ri, rj in R, ri o r = r. A reset-identity machine R1 = R U {1} corresponds to a

right-zero semigroup R with 1 included as the identity. A permutation-reset machine has

a semigroup (S, o) that is the union of a set of right zeros R = {rl, r2, ..., rn} and a group

G = {g1, g2 , g--, im}. (The product r o gj for i E {1, ... , n} and j E {1, ... , m} is defined to

be ri ogj = rk for some k E {1, ... , n}. The remaining products are defined so that G forms

a group and R is a set of right zeros.) A permutation-reset machine can be decomposed

into a series-parallel pair with the group machine G at the front-end and the reset-identity

machine R' = R U {1} at the back-end. This construction can be found in [2].

The Zieger decomposition is a special case of the Krohn-Rhodes decomposition. It

states that any general semigroup machine S may be broken down into permutation-reset

components. All groups involved are homomorphic images of subgroups of S. More details

and an outline of the procedure may be found in [2].

Next, we discuss redundant implementations for reset-identity machines. By the Zieger

decomposition theorem, such machines together with simple-group machines are the only

building blocks needed to construct all possible semigroup machines.

Separate Monitors for Reset-Identity Machines

For a right-zero semigroup R, any equivalence relation (i.e., any partitioning of its elements)

is a congruence relation, [42]. This result extends to the monoid R = R U (1): any

partitioning of the elements of R' is a congruence relation, as long as the identity forms its

own partition. Using this we can characterize and construct all possible (separate) monitors

for a given reset-identity machine R 1.

Example 2.6 Consider the standard semigroup machine U3 defined in the previous section.

Its next-state function is given by the following table:

56



Input 1 rl r2

1 1 | rl r 2
rl rl rl r2

r2 r rl r2

The only possible non-trivial partitioning is {{1, {r, r2}}; it results in the parity semi-

group T = {1T, r}, defined by the surjective homomorphism r: U3 i- T with r(1) = 1T

and r(rl) = r(r2) = r. Note that T is actually isomorphic to U1. Under this monitoring

scheme, machine T is simply a coarser version of the original machine U3 (it treats both

right zeros, r and r2, in the same way). O

Example 2.7 Consider the reset-identity machine 14 RI = {17, rl, r2 7, ... , r77}. A possible

partitioning for it is {{17}, {rl7, r 2 7,-, r?}.,} and it results in the same parity semigroup

T - U, as in the previous example (the mapping r: R '- T is given by r(1 7) = T,

7r(rl 7) = (r27) = *-- = (r7) r)-

Other partitionings are also possible as long as the identity forms its own class. This

flexibility in the choice of partitioning could be used to exploit to our advantage the error

model and the actual failures expected in the implementations of the original machine R

and/or the monitor T.

For example, if R7 is implemented digitally (each state being coded to three bits), then

we could choose our partitions to consist of states whose encodings are separated by large

Hamming distances. For example, if the binary encodings for the states of RI are 000 for the

identity, and 001, 010, ..., 111 for r to r77 respectively, then an appropriate partitioning

could be {po = {000},pl = {001,010,100,l ll},p2 = {011,101,110}}. This results in a

monitoring machine with semigroup T -~ U3: state 000 maps to the identity, whereas states

in partition Pi map to r and states in partition P2 map to r2. Under this scheme, we

will be able to detect failures that cause single-bit errors in the original machine as long as

the monitoring machine operates correctly (to see this, notice that the Hamming distance

within each of the partitions is larger than 1).

14 In general, PR will indicate the reset-identity machine with n right zeros (denoted by {rl., r2., ..., r,, ))
and an identity element (denoted by 1n); thus, U3 = R14.

57

I ��"\lsllllslllllU-'-�^�·_·li)-�·l(····i - - ---·I-III· L- _



The scheme above can be made c-error correcting by ensuring that the Hamming dis-

tance within any partition is at least 2c + 1 (still assuming no failures in the monitoring

machine). Under more restrictive error models, other partitionings could be more effective.

For example, if failures in a given implementation cause bits to stick at "1", then we should

aim for partitions with states separated by a large asymmetric distance, [87]. 0

As we have seen through the above examples (and can easily prove), the monitoring

machine for RI is a smaller reset-identity machine RI with 1 < p _ n. Moreover, just as

in the group case, there exists a particular decomposition of RI in which the monitor RI

appears as a front-end submachine. In fact, Rn can be realized as a parallel decomposition

of R and R as follows: partition the n resets into p classes, each of which has at most

q elements (clearly, q < n and q x p > n); then, under appropriate encoding, the state of

machine RI can be used to specify the partition and the state of machine R can specify

the exact element within each partition.

Note that in our examples we have assumed for simplicity that the monitoring machine

is fault-free. This might be a reasonable assumption if the monitor is a lot simpler than the

original machine. In case we want to consider failures in the monitor, the encoding of its

states should also enter the picture.

Non-Separate Redundant Implementations for Reset-Identity Machines

Just as in the case of group machines, a redundant implementation of a reset-identity

machine RI can be based on an injective semigroup homomorphism qb: R: '- H that

reflects the state and input of R1 into a larger semigroup machine H so that eq. (2.4) is

satisfied. Under proper initialization and fault-free conditions, machine X simulates the

reset-identity machine R1; furthermore, since 4 is injective, there exists a mapping a that

can decode the state of H into the corresponding state of R.

An interesting case occurs when the monoid Rl = {1,, rl,, r 2., ..., rn,} is homomorphi-

cally embedded into a larger monoid R = {lm, ri,, r 2m,. rmm) for nm > n (i.e., when

H - R). The homomorphism b: R, -4 RI is given by qb(1n) = lm and 0(rin) $ (rj.)

for i $ j, i,j in {1,2, ..., n). Clearly, is injective and there is a one-to-one decoding

mapping a from the subsemigroup R'l = O(Rl) C RI onto R. Assuming that the system

58



is implemented digitally (i.e., each state is encoded as a binary vector), then in order to

protect against single-bit errors we would need to ensure that the encodings of the states

in the set of valid results R.' are separated by large Hamming distances. Bit errors can be

detected by checking whether the resulting encoding is in R'.

Example 2.8 One way to add redundancy into the semigroup machine R1 = {12, r12 , r22}

is by mapping it into machine RI. Any mapping Q of the form 41(12) = 17, (rl2) = ri7 and

0(r 2 2 ) = ri (j, i E {1, 2,... 7}, j i) is a valid embedding. In order to achieve detection

of single failures, we need to ensure that each failure will result in a state outside the set of

valid results S'.

If machine R1 is implemented digitally (with its states encoded into 3-bit binary vectors),

failures that result in single-bit errors can be detected by choosing the encodings for 4(12) =

17, 0(rl2) = ri7 and 41(r22) = r (j, i E {1, 2, ..., 7}) to be separated by a Hamming distance

of at least 2 (e.g., 001 for 17, 010 for ri7 and 100 for r). o

2.4 Redundant Implementations of Finite Semiautomata

Error detection and correction is extremely important in the design of finite-state controllers

for critical applications. In this section we use algebraic homomorphisms to develop and

analyze separate and non-separate redundant implementations for finite semiautomata.

Given a finite semiautomaton (FS) S with state set Q, input set X and next-state

function 6, we can associate with it a unique semigroup (S, o), [2, 3]. The construction

of S is as follows: for every input sequence of finite length n, denoted by z = il iz.. . X i

(where xi, E X and n > 0), let s : Q -- Q be the inducedl5 state mapping: s(qo) = qn

if starting from state qo and sequentially applying inputs i,, zi 2, and so on (up to Xi,),

FS S ends up in state q,. There is a finite number of such mappings and our construction

is likely to use only a subset of them. If we let S be the union of these mappings s,, then

(S, o) forms a monoid under the composition of mappings given by

S 0 J = SI' ,

'5 The underlying assumption is that at any given state there are defined transitions for allpossible inputs.
This is not necessarily true, but it can be fixed easily by adding an absorbing "dummy" state and using it
as the next state for all transitions that were not defined originally.

59

I � -�-*--- II - ----� --- ..-. - ~ I 11- 1- 1-1-·^l -



where xx' denotes the concatenation of the two input sequences x and x'. One can check that

o is an associative operation (it inherits associativity from the composition of mappings).

The identity element of S is the identity mapping sA which corresponds to the empty input

sequence A (A is assumed to have length 0).

The semigroup machine (S, o) of a given FS S has a larger number of states, potentially

exponential in the number of states of the original semiautomaton. It captures, however, the

behavior of the finite semiautomaton by specifying equivalences between different sequences

of inputs (which is also the description an engineer is likely to be given before constructing

a finite semiautomaton). This representation allows one to explore techniques for algebraic

machine decomposition and parallelism. Furthermore, it introduces alternative possibilities

for semiautomata implementation and state assignment, and it is matched to our framework

for introducing redundancy and eventually fault tolerance.

Example 2.9 A permutation-reset finite semiautomaton is one for which every input either

produces a permutation of the states or resets the semiautomaton to a constant state, [47].

Here, we consider the permutation-reset FS S with state set Q = {ql, q2, q3}, input set

X = {xi, x2} (input xl generates a permutation whereas input 2 is a reset) and the

following next-state function:

Input zI |2

ql q q1

q2 ql ql

q3 q3 ql

To generate the semigroup of the finite semiautomaton, we extend this table to sequences

of length 0, 1, 2, etc. as follows:

Input Sequence A X 2 lXl X1X2 2X1 X2 X2
State

q2 I q2 q2 l ql q I q2 ql
q2 q2 ql ql q2 ql q2 ql
q3 q3 q3 1i q3 q q2 ql

We see that the input sequences induce four different state mappings: a - =

60

--- -- ---- --



{A, x _x=, b - s, = {x}, c - sr 2 = {z 2, xIX2 , x2x21, d -- s2, = {x 2 xl}. It is not hard

to convince oneself that longer input sequences will induce mappings that have already

been generated by one of these four partitions. For example, x2x1 22X1 = X2 (XlX2 )x21 5

X2(X2)-T = (X2X2)Xl (2)Xl = X2Xl (where denotes input sequence equivalence), and

so on. The semigroup S of the permutation-reset FS S is therefore given by the following

table:

Input' a b d

a a b c d
b b a c d
c d c d
d d c d

One can check that the table defines an associative operation. The table can also be

regarded as the next-state transition table for the semigroup machine S: the "states" and

the "inputs" are the same set of elements (given by {a, b, c, d)). Inputs b- s, and c sx

are in some sense equivalent to the inputs xl and z 2 of the original FS S. Similarly, if we

assume that the starting state is q3, states a, b are "equivalent" to state q3 in S, state c is

"equivalent" to ql and state d to q2 (because, if we start at state q3, we end up in state q3

under input sequence x1zl (a - sTZ), in state q3 under input sequence xl (b _ s,,), and

so forth. Note that the semigroup S consists of the subgroup {a, b) and the set of resets

{c, d}; more generally, the semigroup of a permutation-reset finite semiautomaton is the

union of a group and a set of resets. o

The reverse construction is also possible but not unique: given a finite monoid (S, o),

one can generate many different finite semiautomata that have S as their monoid. One

possibility is to take Q = S, X = S, and to set (sl, s2) = sl o s2; another one is to

take any set of generators for S as the input set X. Therefore, even though each finite

semiautomaton has a unique semigroup, there are many finite semiautomata corresponding

to a given semigroup.

Suppose that (S, o) is the semigroup of a reducedl6 FS S (with state set Q, input set

'6 The FS S is reduced if for all pairs of states ql,q2 E Q (ql # q2) there exists a finite input sequence
xt = xr,,2...Xi, such that s,(ql) # Js(q2), [47].

61

. __ .__ 1__ 1_. II· CP I I .1_�-�- -�111� �-.�11111 l-l·--CI--^-� I



X and next-state function 6). Then S can also be regarded as a semigroup machine (with

state sl E S, input s2 E S and next-state function sl o 82). In certain cases that will be

of interest for us later on, we will need to restrict the inputs of semigroup machine S to

the subset of available inputs I = {s, s2, ... , szm} C S (where m = XI is the number of

distinct inputs for FS S). By restricting the inputs to subset I, we obtain an FS S' (which

is in some sense simpler than S) with state s E S, input s=, E I (1 < / < m) and next state

given by s o s,, E S. Under the condition that the original FS S has a starting state, i.e., a

state from which all other states are reachable, it can be shown that FS S can be simulated

by SI, [47]. Specifically, there exist a surjective mapping C: S -+ Q such that for all E S

and all s E I

¢( o sa,) = s (C(s) i) 

The following example illustrates this, using FS S in Example 2.9:

Example 2.9 (continued): The set of available inputs for the semigroup machine S in

Example 2.9 is given by I = {sx, sX2}) - {b, c}; therefore, FS SI has the following next-state

function:

Input b c
State

a b c
b a c
c d c
d c c

Machine SI simulates the original FS S. To see this, define using the following con-

struction: pick the starting state q3 of S (any starting state would do) and for each state

mapping s, E S, set C(s=) = s=(q3). This results in ((a) = C(sA) = q3, C(b) = C(s=x) = q3,

C(c) = C(s. 2) = ql and C(d) = ((s=2:2) = q2. 0

2.4.1 Characterization of Non-Separate Redundant Implementations

In this section we construct redundant implementations for finite semiautomata by reflecting

the state of the original finite semiautomaton into a larger, redundant semiautomaton that

62



preserves the properties and state of the original one in some encoded form. The redundancy

in the larger semiautomaton can be used for error detection and correction.

The following definition formalizes the notion of a non-separate redundant implementa-

tion:

Definition 2.3 A redundant implementation of an FS S (with state set Qs, input set Xs,

initial state qos and next-state function 6 s) is an FS Xt (with a larger state set QpU, input

set XxM, initial state ox and next-state function 6&) that concurrently simulates S in the

following sense: there exists a one-to-one mapping e Q -- Qs (where Q = e- (Qs) C

Q) and an injective mapping : Xs -, X (from Xs into Xt) such that:

£e(&c (e-1(q),(x,))) = 6(q, z.) (2.5)

for all q E Qs, x, E Xs.

If we initialize X to state qo, = l-'(qos) and encode the input z, using mapping t,

then the state of S at all time steps can be recovered from the state of % through the

decoding mapping e, i.e., qs = (qu); this can be proved by induction. The subset Q can

be regarded as the subset of valid states; detecting a state outside Q' implies that a failure

has taken place. Note that in the special case where a group (semigroup) machine (G, o)

is to be protected through an embedding into a group (semigroup) machine (H, o), the

next-state functions are given by the group (semigroup) products and the equation above

reduces to eqs. (2.1) and (2.3).

At the end of each time step in the redundant FS 1, we perform concurrent error detec-

tion/correction to check whether the resulting state belongs to the set of valid states (Qi).

Note that this detection/correction stage is input-independent (i.e., the detector/corrector

does not keep track of the input that has been applied). The conditions for single-error

detection and correction can be found in Appendix A.

Theorem 2.1 If FS i is a redundant implementation of FS S (as defined in eq. (2.5)),

then the semigroup S of S is isomorphic to a subsemigroup of H (H denotes the semigroup

of FS -U).

63

P ___�_l____q__l__C___I__· ---·- I_ ___ 1-__-_---··--··1111111111111111



Proof: If we let qh = - 1 (q,) (since is invertible), eq. (2.5) becomes

e(6(q, (Xs))) = 6s(e(qh) x) (2.6)

for all qh E Qu, xz E Xs. The redundant implementation XH as defined by the above

equation is a particular instance of a cover machine (or simulator). A cover machine C for

S is a finite semiautomaton that simulates S as in eq. (2.6), except that the mapping is

only required to be surjective (i.e., the mapping C-1 does not necessarily exist and the set

Q* may have order larger or equal to the order of Qs). It can be shown that the semigroup

S is homomorphic to a subsemigroup of C (where C is the semigroup of the cover machine

C), [40]. For the redundant implementation I, the requirement that £ is one-to-one ensures

that S will be isomorphic to a subsemigroup of H. 3

The preceding discussion shows how one can use the results of Section 2.2.2 to study

fault tolerance for an FS S. We construct the corresponding semigroup S and study injective

homomorphisms of the form : S - H (where H is a larger semigroup that includes an

isomorphic copy of S as a subsemigroup). Such homomorphisms incorporate redundancy

into the implementation of S in a non-separate way.

2.4.2 Characterization of Separate Redundant Implementations

Definition 2.4 An FS T (with state set Q7, input set X and next-state function 6 7) is

a separate monitor fe, an FS S (with state set Qs, input set Xs and next-state function
6 s) if the following condition is satisfied: for all q, E Qs, z8 E Xs

((6s(q., x)) = 7r(C(qs),((x 5 )) , (2.7)

where is a surjective mapping from Qs onto QT and ~ is a surjective mapping from Xs

onto Xr.

Note that if the input mapping C is one-to-one, then FS T being a separate monitor for

FS S implies that FS S is a cover for T (the converse is not true because a cover may have

additional states that are not used when simulating T).

64

I



The above definition for separate monitors (but with C being the identity mapping) has

appeared in [54, 78, 77]. Monitor T7' operates in parallel and separately from S; it requires

no state information from S, only (a function C of) its input xa. Condition (2.7) guarantees

that, if FS ' is initialized to qoT = C(qos) (where qos is the initial state of S), its future

state at all time steps will be given by (q) (where q, is the corresponding state in S).

This can be proved by induction. Therefore, the separate monitor 'F can serve as a separate

("parity") checker for FS S.

Theorem 2.2 If FS 7- is a separate monitor for an FS S, then the semigroup T of is

isomorphic to S/~ for a congruence relation ~ of semigroup S (the semigroup of FS S). In

other words, there exists a homomorphism r S -+ T such that T = r(S).

Proof: It can be shown that if T is a separate monitor for S, then its semigroup T is a

(surjective) homomorphic image of S, the semigroup of S, [40). Combining this with the

results of Section 2.2.2 (where we used the fact that T is a surjective homomorphic image

of S only if T - S/ for some appropriate congruence relation ), we conclude that 7'

can be a monitor for S only if its semigroup T is isomorphic to S/, for some congruence

relation - in S. In particular, when S is a group, T has to be a quotient group of S. 0

The above th "-rem provides an indirect method of constructing monitoring schemes for

semiautomata:

1. given an FS S, construct the corresponding semigroup machine S;

2. find T = S/I for a congruence relation ~ in S, i.e., find a surjective semigroup

homomorphism r: S - T such that T = 7r(S);

3. obtain FS ,IT (with semigroup T) by restricting the semigroup machine T to the

input set IT = Ir(Is) (where Is corresponds to the available inputs Xs in the original

FS S). This forces T-T to use inputs that correspond to the original input set Xs in

S;

4. FS 7'T can be used to monitor SI, (which in turn can simulate the original FS S).

65

_I·�C_��I __LLIIII_·�_·_____jll�·-l ·___.1_1. �---�II ·--·--P-------^-1- ----�-�



This procedure is best illustrated by an example, continuing Example 2.9.

Example 2.9 (continued): Let S be the semigroup obtained for FS S in Example 2.9.

One easily checks that r: S |- U1 = -1, r} defined by 7r(a) = r(b) = 1, r(c) = r(d) = r is

a surjective homomorphism. The subset of available inputs for S, given by Is = {s1, s 2}) =

{b, c}, maps to the input set IT = r(I) = 1, r}, which is the subset of available inputs for

the separate monitor T. The restriction of the semigroup machine T to inputs IT gives FS

7 IT which is a separate monitor for FS SIs. To see this, notice that:

* The mapping g from the inputs of Sis to the inputs of TIT is given by the restriction of

ir on the input set Is. In this particular case, we get: (b) = 7r(b) = 1, C(c) = r(c) = r.

* The mapping C from the states of Sis to the states of TIT is given by ir, that is,

C(c) = r(c)= r, C(d) = r(d) = r and C(a) = 7r(a) = 1.

Note that FS Si. and monitor 7IT are not necessarily in a reduced form; if desirable,

one can employ state reduction techniques to reduce the number of states, [47]. 0

Using the approach illustrated in the above example, we can design separate monitors

7IT for FS SIs by finding semigroup homomorphisms from S onto T (where S and T are

the corresponding semigroups for the two finite semiautomata). Equivalently, as we argued

in Section 2.2.2, one can look for congruence relations on semigroup S.

The authors of [54] designed separate monitors for an FS S using substitution property

(SP) partitions on its state set Qs. (A partitioning Pj} of the state set Qs is an SP

partition if, for each partition Pk and each input xi in the input set XYs, the next states of

all states in Pk under input xi are confined to some partition Pi.) Our approach focuses

instead on congruence relations in the semigroup S of the given FS S. The result is a

monitor for FS Ss,, the restriction of semigroup machine S to the set of available inputs.

If we reduce both SIs and TIT so that they have the minimum number of states [47],

we recover the results of [54]. Our approach, however, focuses more on the structure of

the finite semiautomata (as summarized by their semigroups) and can take advantage of

machine decomposition concepts (resulting in important simplifications in certain special

cases, as we have seen with group or reset-identity machines).

An additional advantage of constructing the semigroup of S is that the dynamics of the

66

__ _ _ _



finite semiautomata are completely specified. For instance, we can analyze not only the

next-state function, but also the n-step next-state function an defined as

bn(q., ) = (..(b((q,, il), xiT),), in)

for all q, E Qs and all length-n sequences X = xisXi2...xi n (with xi, E Xs). Note that for

n = 1, 61 - 6, whereas for n = 0, 60 can be defined as 6o(q,,A) = q.. By focusing on the

n-step next-state function n, we can construct n-step monitors for S. Such monitors have

as inputs sequences of length n and compare their state against the state of the original

finite semiautomaton once every n time steps.

Example 2.10 The 2-step next-state function for the finite semiautomaton in Example 2.9

is given by the following table:

Input Sequence Xzll x12 |21 2 X2

ql qJ qi q2 qi
q2 q2 qi q2 q,
3 qs3 qj q2 ql

The semigroup generated by this function is given by the subsemigroup of S generated by

the elements {a, c, d} (which correspond to inputs {(zlxl, z2Xl, xlz2 x2x2} respectively):

Input a c d
|State
ca Ca d

d dcd

By considering surjective homomorphisms of the above semigroup, one can construct sepa-

rate monitors that check the operation of FS SI, once every two inputs. O

2.5 Summary

In this chapter we considered the problem of systematically constructing redundant imple-

mentations for algebraic machines (group/semigroup machines and finite semiautomata).

67

�lllll-.l--IIIU- --- ���11111-�1111-- ·-- 1 - II~-----_I~Ll~-C~



Our approach was hardware-independent and resulted in appropriate redundant implemen-

tations that are based on algebraic embeddings. We did not made any explicit connections

with hardware failure modes, but we did address issues regarding machine decomposition.

Our techniques take advantage of algebraic structure in order to analyze procedures for

error-correction, to avoid decompositions under which failures in the original machine are

always undetectable, and to construct separate monitors that perform checking periodically.

Future work should focus on making explicit connections with hardware implementations

(e.g., digital implementations based on gates and flip-flops) and on exploiting further the

role of machine decomposition. It would also be interesting to extend these ideas to other

settings (e.g., group homomorphic systems, [15]) and to investigate whether fault tolerance

can be achieved through a combination of our techniques and the techniques for dynamical

systems and codes over finite abelian groups, [34, 16].

68



Chapter 3

Redundant Implementations of

Linear Time-Invariant

Dynamic Systems

3.1 Introduction

In this chapter we apply our two-stage approach for fault tolerance to linear time-invariant

(LTI) dynamic systems, primarily for the discrete-time case. We focus on error detection

and correction that are based on linear coding techniques. Specifically, we reflect the state

of the original system into a larger LTI dynamic system in a way that preserves the state

of the original system in some linearly encoded form. At the end of each time step, we

use the redundancy in the state representation of the larger system to perform error de-

tection and correction. Our approach results in a complete characterization of this class of

redundant implementations for LTI dynamic systems. By adopting a particular hardware

implementation that uses delay, adder and gain elements, we demonstrate through exam-

ples novel redundant implementations for error detection and correction. Our methodology

for mapping to hardware and hardware failure modes is systematic and ensures that single

hardware failures result in the corruption of a single state variable. This allows us to employ

techniques from linear coding theory to detect and correct failures.

This chapter is organized as follows. In Section 3.2 we provide an introduction to LTI

69

_ ______~_~_ X~____~~·_----- _Illnl__Ill__l1llIl·-L-^ll�llll·s�-- ---11111 -11 11·1�-- ----�� --------·I�··�······�·11�11111



dynamic systems and in Section 3.3 we characterize the class of redundant implementations

that are based on linear coding techniques. In Section 3.4 we map our mathematical equa-

tions to explicit hardware constructions by adopting realizations that use delay, adder and

gain elements. In Section 3.5 we discuss the implications of our approach by presenting

examples of concurrent error detection and correction schemes for LTI dynamic systems.

3.2 Linear Time-Invariant Dynamic Systems

Linear time-invariant (LTI) dynamic systems have a variety of applications in digital filter

design, system simulation and model-based control, [92, 58, 67]. Although our discussion is

focused on the discrete-time case, most of our results and examples of redundant implemen-

tations can be translated to the continuous-time case in a straightforward manner1. The

state evolution of an LTI dynamic system S is given by

qa[t + 1] = Aq,[t] + Bx[t] , (3.1)

where t is the discrete-time index, q8 [t] is the state vector and x[t] is the input vector. We

assume that q,[.] is d-dimensional, x[-] is u-dimensional and A and B are constant matrices

of appropriate dimensions (all vectors and matrices have real numbers as entries). Equiv-

alent state-space models (with d-dimensional state vector q'[t]) can be obtained through

similarity transformation, [58, 67]:

q'[t +] = (T- 1AT) q'[t] + (T-B)x[t]

A' B'

= A'q[t] + B'x[t],

where T is an invertible d x d matrix such that q,[t] = Tq'[t]. The initial conditions for

the transformed system can be obtained as q[O] = T-lqs[O]. Systems related in such a

way are known as similar systems.

'Error detection in continuous-time LTI dynamic systems can be performed in a way that is similar to
the discrete-time case. Error correction scenarios, however, will need rethinking.

70



3.3 Characterization of Redundant Implementations

Our redundant implementations for a given LTI dynamic system will be LTI systems of

higher dimensionality. Specifically, a redundant implementation of the LTI dynamic system

S (with state evolution as given in eq. (3.1)) is an LTI dynamic system In with dimension

r (- d + s, s > 0) and state evolution

qh[t + 1] = Aqh[t] + Bx[t] . (3.2)

We assume that the redundant system X{ will be implemented in the same way as the

original system S (Section 3.4 discusses implementations that use delay, adder and gain

elements).

We will carefully choose the initial state qh[0], and the matrices A and B of the redun-

dant system 'U, so that under fault-free conditions the states in the redundant system will

remain within a subspace V C R. This subspace will contain all valid states in 7W (i.e.,

states that are obtainable in ' under fault-free conditions) and, as we will show, it will be

invariant2 under the matrix A of eq. (3.2). Furthermore, we will require that there exists

an appropriate decoding mapping e such that during fault-free operation

q,[t] = e(qh[t]) for qh[t] E V and for all t > 0.

Note that £ is only defined from the subset of valid states V and is required to be one-to-one

(bijection). This means that the mapping e- 1 is well-defined and each valid state qh[t] E V

of the redundant system at any time step t corresponds to a unique state q,[t] of system S.

In other words, there exists an encoding mapping g = -t- such that qh[t] = .(ql;[t]). ,'e

will restrict ourselves to linear decoding and encoding techniques. More specifically, we will

assume that there exist

* a d x q decoding matrix L such that q,[t] = Lqh[t] for all t, qh[-] E V,

o an 77 x d encoding matrix G such that qh[t] = Gqs[t] for all t.

Under the above assumptions, LG = Id (where Id is the d x d identity matrix). Note that

2 y is an invariant subspace of matrix A if Av E V for all vectors v E Y, [113].

71

I__IIIILI IIUqIIt -4 - I·C^^-- ---̂ -L·- -----



this equation by itself does not uniquely determine L given G, or vice-versa. (In fact, as

we will see, even by specifying both L and G we do not uniquely specify the corresponding

redundant system 7.)

The error detector/corrector has to make a decision at the end of each time step based

solely on the state qh[t] of the redundant system (it does not have access to previous

inputs). Since our construction of X and our choice of initial condition has ensured that

under fault- *ree conditions

qh[t] = Gq,[t],

our error-detection strategy simply verifies that the redundant state vector qh[t] is in the

column space of G. Equivalently, we can check that qh[t] is in the null space of an appro-

priate parity check matrix P, so that Pqh[t] = 0 under 'ault-free conditions. All failures

that force the state qh[t] to fall outside the column space of G (producing a non-zero parity

check p[t] Pqh[t]) will be detected.

For example, a corruption of the ith state variable at time step t (e.g., due to a failure

in an adder or in a gain element - see Section 3.4) will produce a state vector qf[t], given

by

qf[t] =qh[t] + ei ,

where qh[t] is the state vector that would have been obtained under fault-free conditions

and ei is a column vector with a unique non-zero entry at the ith position. The parity

check will then be

p[t] Pqf[t] = P(qh[t] + ei)

= Pqh[t] + Pei

= Pe.

Single-error correction will be possible if the columns of P are not multiples of each other.

By identifying the column of P that is a multiple of p[t], we can locate the corrupted state

72



variable and correct it3 .

We are now in position to state the following theorem:

Theorem 3.1 In the setting described above, the system ' (of dimension 71 _ d + s, s > 0)

and state evolution as in eq. (3.2) is a redundant implementation of S if and only if it is

similar to a standard redundant system X, whose state evolution equation is given by

q[t + 1] = [ A qt] + [ ]x[t] . (3.3)
0 A22 0

Here, A and B are the matrices in eq. (3.1), A 22 is an s x s matrix that describes the

dynamics of the redundant modes that have been added, and Al2 is a d x s matrix that

describes the coupling from the redundant to the non-redundant modes. Associated with this

standard redundant system is the standard decoding matrix Lo = [ Id ], the standard

encoding matriz G = [d] and the standard parity check matriz P = [ I, 1].

Proof: Let IW be a redundant implementation of S. From LG = Id, we know that L

is full-row rank and G is full-column rank. Furthermore, there exists an invertible 77 x 7

matrix T such that LT = [Id and T-'G = . If we apply the transformation

qh[t] = Tqj[t] to system X/, we obtain a similar system I/' with decoding mapping L' =

LT= [Id 0 ] and encoding mappingG'= - l' = [ ] . The state evolution of the

redundant system ' is given by

q'h[t + 1] = (T 1 AT)q[t] + (T-1B)x[t]

- A'q[t] + B'x[t] . (3.4)

3As mentioned in Chapter 1, one of the main assumptions in most concurrent error detection and correc-
tion schemes is that the detecting/correcting mechanism is fault-free. Here, we assume that the evaluation
of Pqh[t] and all actions that may be subsequently required for error-correction are fault-free. This is a
reasonable assumption if the complexity of evaluating Pqh[t] is considerably less than the complexity of
evaluating Aqh[t] + Bx[t]. This would be the case, for example, if the size of P is much smaller than the
size of A, or if P requires simpler operations (e.g., if P only has integer entries whereas A has real-number
entries). In Chapter 6 we address the issue of failures in the error detecting/correcting mechanism.

73



For all time steps t and under fault-free conditions, q [t] = G'q,[t] = [ ]. Combining

the state evolution equations of the original and redundant systems (eqs. (3.1) and (3.4)

respectively), we see that

Aq.[t] + Bx[t] Al]- Al2 q.[t] ]A'1 A'12 + L B'] x[t]-

By setting the input x[t] _ 0 for all t, we conclude that A', = A and Al21 = 0. With the

input now allowed to be non-zero, we deduce that B = B and B2' = 0. The system 7/'

is therefore in the form of the standard system 7/, in eq. (3.3) with appropriate decoding,

encoding and parity check4 matrices.

The converse, namely that if 7 is similar to a standard 7'U as in eq. (3.3) then it is a

redundant implementation of the system in eq. (3.1), is easy to show. 0

Theorem 3.1 establishes a complete characterization of all possible redundant imple-

mentations for our fault-tolerant designs of a given LTI dynamic system (subject to the

restriction that we use linear encoding and decoding techniques). The additional modes in-

troduced by the redundancy never get excited under fault-free conditions because they are

initialized to zero and because they are unreachable from the input. Due to the existence of

the coupling matrix A12, the additional modes are not necessarily unobservable through the

decoding matrix. Theorem 3.1 (but stated for the continuous-time case) essentially appears

in [52], although the proof is different and the motivation apparently very different. As we

will see in the next sections, the application of this theorem in the context of fault tolerance

allows us to choose the redundant dynamics and coupling to our advantage.

3.4 Hardware Implementation and Error Model

In order to demonstrate the implications of Theorem 3.1 to our redundant implementations

and to our error detection and correction procedures, we need to discuss in more detail

4The check matrix can be P' = [ O e ], where e is any invertible s x s matrix; a trivial similarity
transformation will ensure that the parity check matrix takes the form [ 0 I. ], while keeping the system
in the standard form 74, in eq. (3.3) - except with A1 2 = A128 and A22 = e-1AE2.

74



a2

x[t] z-1l Z-1
C------, .--- - .-

Figure 3-1: Delay-adder-gain circuit and the corresponding signal flow graph.

how our systems are implemented and what kinds of failures we expect. We assume that

an LTI dynamic system S (like the one in eq. (3.1)) is implemented using appropriately

interconnected delays (memory elements), adders and gain elements (multipliers). These

realizations can be represented by signal flow graphs or, equivalently, by delay-adder-gain

diagrams as shown in Figure 3-1 for an LTI dynamic system with state evolution

q[t + 1] t + ]= Lq[t]+[ 1]x t
q2[t + 1] a2 0

Nodes in a signal flow graph sum up all of their incoming arcs; delays are represented by

arcs labeled z - .

A given state evolution equation has multiple possible realizations using delay, adder

and gain elements, [92]. In order to define a unique mapping from a state evolution equation

to a hardware implementation, we assume 5 that our implementations correspond to signal

flow graphs whose delay-free paths are all of length 1. The signal flow graph in Figure 3-

1 is one such example. One easily verifies that for such implementations the entries of

the matrices in the state evolution equation are directly reflected as gain constants in the

SOne can study more general descriptions by studying factored state variable descriptions [92], or by
employing the computation trees in [221, or using the techniques of Example 3.5.

75

(XI



signal flow graph, [92]. Furthermore, each of the variables in the next-state vector q[t + 1]

is calculated using separate gain and adder elements (sharing only the input x[t] and the

previous state vector q[t]). This means that a failure in a single gain element or in a single

adder will initially result in the corruption of a single state variable; in fact, any combination

of failures in the gains or adders that are used in the calculation of the next value of the ith

state variable will only corrupt the ith state variable. Note that for arbitrary realizations

single failures may corrupt multiple state variables. Under our assumptions, however, there

are no shared gain elements or adders; this guarantees that single failures will result in the

corruption of a single variable in the state vector.

We consider both transient (soft) and permanent (hard) failures in the gains and adders

of our implementations. A transient failure at time step t causes errors at that particular

time step but disappears at the following ones. Therefore, if the errors are corrected before

the initiation of time step t + 1, the system will resume its normal mode of operation. A

permanent failure, on the other hand, causes errors at all remaining time steps. Clearly, a

permanent failure can be treated as a transient failure for each of the remaining time steps

(assuming successful error-correction at every time step), but in certain cases one can deal

with it in more efficient ways (e.g., reconfiguration).

Note that we cannot use the standard redundant system 7/, of Theorem 3.1 to provide

fault tolerance to systelrl S. Since we assume that our implementation will employ delay-

adder-gain circuits that have delay-free paths of length 1, the implementation of 7t, will

result in a system that only identifies failures in the redundant part of the system. Since

the state variables in the lower part of q,[-] are not influenced by the variables in the

upper part and since our parity check matrix is given by P, = [ Is, , our fault-tolerant

implementation cannot identify failures in the original system. The situation is similar to

the one in Example 2.5 in Chapter 2. Our objective is to use the redundancy to protect the

original system, not to protect the redundancy itself.

Theorem 3.1 is important, however, because it says that we only need to search among

systems and implementations that are similar to the standard redundant system 1/,. Specif-

ically, given an LTI dynamic system S (as in eq. (3.1)), Theorem 3.1 characterizes all possible

redundant implementations that have the given (fixed) encoding, decoding and parity check

matrices (L, G and P respectively). Since the choice of matrices A 12 and A 22 is completely

76



free, there is an infinite number of redundant implementations for system S. All of these

systems have the same encoding, decoding and parity check matrices, and offer the same

fault coverage: depending on the redundancy in the parity check matrix P, all of these

implementations can detect and/or correct the same number of errors in the state vector

qh[t].

Previous suggestions for concurrent error-detection in LTI dynamic systems used linear

and real-number codes (for example, in [50, 22]), but overlooked some of the available

freedom, essentially setting A 12 and A22 to zero. As we will see in the next section, there

are a number of interesting redundant implementations with non-zero Al2 and A2 2; in fact,

in Chapter 6 we see that non-zero A 12 and A 22 are essential in handling failures in the

error detecting/correcting mechanism.

3.5 Examples of Fault-Tolerant Schemes

In this section we discuss the implications of Theorem 3.1 for redundant implementations

of LTI dynamic systems. Example 3.1 illustrates how linear coding schemes can be devised

using the standard redundant implementation as a starting point. Example 3.2 shows that

non-zero A 12 and/or A 22 can lead to designs that make better use of redundancy and Ex-

ample 3.3 shows that triple modular redundancy is a special case of our setup. Example 3.4

uses a non-zero A 22 to design parity checks with "memory." Finally, Example 3.5 discusses a

reconfiguration scheme that allows the decoding matrix L to adjust once permanent failures

are detected in a gain element or in an adder.

Example 3.1 Using our framework we can easily develop schemes that provide detection

and correction of transient failures. The following is a simple motivating example to illus-

trate the idea. Let the original system S be

.2 0 0 0 3

0 .5 0 0 -1
qs[t + 1 .5 0 0 q [t]+ -1 x[t]

0 0 .1 0 7

0 0 0 .6 O

77



To protect this system against a single transient failure in a gain element or in an adder,

we will use three additional modes. More specifically, the standard redundant system will

be as follows:

q 0 [t + 1] =

.2 0 0 0

0 .5 0 0

O .1 0

0 0 0 .6

0 0 0 0

0 0 0 0

0 0 0 0

000

000

000

000

.2 0 0

0 .5 0

0 0 .3

qO[t] +

3

-1

7

O

O

O

O

x[t].

with parity check matrix given by

0 0 0

P=[ 0 I3] = 0 0 0

For error-detection, we need to check whether P,q,[t] is 0. However, as we argued

earlier, redundant systems in standard form cannot be used for detecting failures that

cause errors in the original modes: given a faulty state vector qf[t], a non-zero parity check

(Pqf[t1 $ O) would simply mean that a failure has resulted in an error in the calculation

of the r-dundant modes. What we really want is to protect against errors that appear in

the original modes. One way to achieve this is to employ a system similar to the standard

redundant system, but with parity check matrix

11101

P= 10 1 0

1 01 1 0

0 0

1 0

0 1

(3.5)

This choice of P is motivated by the structure of Hamming codes in communications, [81,

111, 11]. With a suitable similarity transformation T (so that PT = PO), the corresponding

78

0 1 0 

0 0 1 

0 0 1 



redundant system is

.2 0 0 0 0 0 0

0 .5 0 0 0 0 0

0 0 .1 0 0 0 0

0 0 0 .6 00 0

0 -. 3 .1 0 .2 0 0

.3 0 0 -. 1 0 .5 0

.1 0 .2 -. 3 0 0 .3

qh[t] +

3

-1

7

0

-9

-2

-10

x[t]. (3.6)

This system can detect and locate transient failures that cause the value of a single state

variable to be incorrect at a particular time step. To do this, we check for non-zero entries in

the parity vector p[t] Pqh[t]. If, for example, pl[t] 9 0, p2 [t] # 0 and p3[t] : 0, then ql [t],

the value of the first state variable in qh[t] is corrupted; if pl[t] # 0, p2[t] 0 and p3[t] = 0,

then a failure has corrupted q2[t]; and so forth. Once the erroneous variable is located, we

can correct it using any of the parity equations in which it appears. For example, if q2[t]

is corrupted, we can calculate the correct value by setting q2[t] = -ql[t] - q3[t] - q5[t] (i.e.,

using the first parity equation). If failures are transient, the operation of the system will

resume normally in the following time steps.

Hamming codes, like the ones we used in this example, are able to perform correction

of a single error in the state vector. In other words, they can detect and identify a single

failure in an adder or in a multiplier. Instead of replicating the whole system, we only

need to add a few redundant modes; as long as 2 -1 > / (where 17 d+ s is the

dimension of the redundant system), we can guarantee the existence of a Hamming code

and a redundant implementation that achieve single-error correction. Note that the authors

in [22] developed a real coding scheme (also included in our framework) which performs

single-error correction using only two additional state variables. It requires, however, more

complicated error detection and correction mechanisms. The methods used in [22] (as well

as in [21], where one of the authors of [22] analyzes. the continuous-time case) do not consider

different similarity transformations and do not permit additional modes to be non-zero. Our

framework is more general and can take advantage of additional non-zero modes to reduce

79

qh[t + 1] =



Figure 3-2: Digital filter implementation using delays, adders and gains.

redundant hardware, to devise stable fault-tolerant schemes for continuous-time systems6,

or, as we will see' in Example 3.4, to construct schemes in which checking can be done

non-concurrently (e.g., periodically). 13

Example 3.2 Suppose that the original system S that we would like to protect is the digital

filter shown in Figure 3-2. It is implemented using delays, adders and gains interconnected

as shown in the figure (note that the corresponding signal flow graph has delay-free paths

of length 1). If we let the contents of the delays be the state q,[t] of system S, then its

state evolution is given by

qs[t + 1] = Aq[t]+bx[t]

0 0 0 -1/4 .

I 0 0 1/2 0 
q,[t]+ t].

0 1 0 -1/4 0

o 0 1 1/2 0

As expected, the entries of A and b are reflected directly as gains in the diagram (simple

connections have unity gain); furthermore, the only variables that are shared when calculat-

ing the next-state vector are the previous state vector and the input; no hardware is shared

during the state update.

6In [21], they used "negative feedback" or "lossy integrators" to deal with the stability issue. Our use of
non-zero redundant modes avoids this problem completely.

80

X



)

Figure 3-3: Redundant implementation based on a checksum condition.

In order to detect a single failure in a gain element or in an adder, we can use an

extra "checksum" state variable as shown in Figure 3-3, [50, 22]. The resulting redundant

implementation Xl has state evolution

qh[t + 1] A 0 qh[t] + [ CTb t]CTA 0 L Cb

o o 0 -1/4 0 1

1 0 0 1/2O O0

-- 0 1 0 -1/4 0 qh[t]+ 0

00 1 1/2 0

11 1 1/2 0 1

where cT = [1 1 1 1 ]- There are a number of different delay-adder-gain diagrams

that are consistent with the above state evolution equation; the one shown in Figure 3-3 is

the only one consistent with our requirement that signal flow graphs have delay paths of

length 1.

Under fault-free conditions, the additional state variable is always the sum of all other

state variables (which are the original state variables in system S). Error-detection is

based on verifying the validity of this very simple checksum condition; no complicated

multiplications are involved, which may make it reasonable to assume that error-detection

is fault-free.

81

[t] ,



The above approach is easily seen to be consistent with our setup. Specifically, the

encoding, decoding and parity check matrices are given by:

1000

0100

0010

0001

1 1 11

000

1 00

010

0 1

0

0

0

0
O

[-cT I ] [ -1 -1 -1 1 1 ]

Using the transformation matrix [ ]

standard system W, with state evolution

q[t + 1] = [ 
0 0

we can show that system X is similar to a

q[t] + [t] 

where A, b are the ones in eq. (3.1).

Indirectly, the constructions in [50, 22] were choosing A 12 and A 22 to be zero. As stated

earlier, with each choice of A 12 and A22, there is a different redundant implementation with

the same encoding, decoding and parity check matrices. If, for example, we set A 12 = 0

and A 22 = [1], and then transform back, we get a redundant implementation 7/' whose

state evolution equation is given by

qh,[t + 1] [ A

cTA - A2 2CT

0 0 0 -1/4

1 0 0 1/2

0 1 0 -1/4

0 0 1 1/2

0 o 0 -1/2

0

0

0

0

1

J qh[t] +

qh,[t] +

b 1 [t]
cTb 

1

0

0 I[t] .

1J

82

r

G = I4] , L= I4IO] 



Figure 3-4: A second redundant implementation based on a checksum condition.

This redundant implementation is shown in Figure 3-4.

Both redundant implementations and A7' have the same encoding, decoding and parity

check matrices and are able to detect failures that corrupt a single state variable (e.g., a

single failure in an adder or in a gain element). The (added) complexity in system I7',

however, is lower than that in system X (the computation of the redundant state variable

is less involved). More generally, as illustrated in this example for the case of a non-zero

A2 2 , we can explore different versions of these redundant implementations by exploiting

the dynamics of the redundant modes (A 22) and/or their coupling with the original system

(A 12). For certain choices of A12 and A22 , we may get designs that utilize less hardware

than others. o

Example 3.3 Triple modular redundancy (TMR) consists of three copies of the original

system, each initialized at the same state and subject to the same input. By comparing

their state vectors at the end of each time step, we can detect and correct any failure that

appears in one of the subsystems. The correction is performed via a simple voting scheme

that selects the state agreed upon by two or more systems. Assuming that the voting

scheme can be performed reliably, a TMR system can tolerate any combination of failures

that corrupts a single copy of the system.

TMR in our setting corresponds to a redundant system of the form

i q[t 1] A 0 0 B

aqh[t + 1] Iq[t + 1] = A qh[t + B x[t],

qI[t+1] O 0 A B

83

__ _ I__ _� j_



where q.[t], q2[t] and q3[t] evolve in the same way (because q[0] = q2[O0] = q3[0] = q[0]).

Each of q![.], q2[-] and q3[.], however, is calculated using a separate set of delays, adders and

gains (according to our assumptions about mapping to hardware as outlined in Section 3.4).

Id

The encoding matrix G is given by Id ,the decoding mapping L can be7 [Id 0 0 ]

[Id l

and the parity check matrix P can be Id. A non-zero entry in the upper (re-
-Id 0 Id

spectively lower) half of Pqh[t] indicates a failure in subsystem 2 (respectively 3). Non-zero

entries in both the top and bottom half-vectors, indicate a failure in subsystem 1.

Id 0 0

The TMR system is easily shown (for example, with transformation matrix Id Id 0

Id 0 Id
to be similar to

A B

qt[t+ 1= [0 A 0 qo] [t] + 0 x[t],

O O A 0O

which is of the form described in Theorem 3.1. All modes of the original system are

replicated twice and no coupling is involved from the redundant to the original modes.

Once the encoding matrix G is fixed, the additional freedom in choosing the decoding

matrix L can be used to our advantage. For example, if failures are permanent and there

is a failure in the first subsystem, we can change the decoding matrix to L = [ 0 Id 0 ]

This ensures that the final output is correct; we expand on this idea in Example 3.5. 0

Example 3.4 In this example we show how non-zero redundant modes can be used to

construct parity checks with "memory." These parity checks "remembern an error and

allow us to perform checking periodically. Instead of checking at the end of each time step,

we can check once every N time steps and still be able to detect and identify transient

failures that took place at earlier time steps.

7 Other decoding and parity check matrices are also possible.

84



Suppose that S is an LTI dynamic system as in eq. (3.1). Starting from the standard

redundant system 1t, in eq. (3.3) with A1 2 = 0 and using the similarity transformation

q[t] = 7qh[t] (where 7' = ) and C is a d x s matrix, we obtain the following
-C Io

redundant implementation I:

qh[t + 1] = q[ ] + B [t]
CA-A2 2C A22 CB

-Aqh[t] + Bx[t].

The encoding, decoding and parity check matrices for system Xi are given by

GC L=L=[Id ] P=PT=-CI,].

Without loss of generality, suppose that at time step 0 a transient failure (e.g., noise)

corrupts system IL so that the faulty state is given by

qf[0] = qh[0] + e,

where e is an additive error vector that models the effect of the transient failure. If we

perform the parity check at the end of time step 0, we will get the following syndrome:

p[] = Pqf[0] = Pqh[O] + Pe

= O+Pe

= [-C 1, ]e.

If transient failures affect only a single variable in the state vector (i.e., if e is a vector with

a single non-zero entry), then we can detect, identify and correct failures as long as the

columns of P = [ -C I ] are not multiples of each other. For example, if P is the parity

check matrix of a Hamming code (as in eq. (3.5) of Example 3.1), then we can identify the

column of P that is a multiple of the obtained syndrome p[O], find out exactly what e was

and make the appropriate correction.

85

· _1_1�1· 1___1_ _1_11__ -11111111 �- .~- -··-···1



If, however, we perform the parity check only periodically (e.g., once every N time steps),

the syndrome at time step N - 1, given a failure at time step N - 1- m (0 < m < N - 1),

will be

p[N- 1] = Pqf[N- 1] = Pqh[N- 1] + P.4e

o+[C I] Am 0]

= Am[-C IJe.

This assumes that no other transient failures occurred between time step and N - 1.

If A 22 = 0, then the parity check will be O (i.e., e will go undetected). More generally,

however, we can choose A 22 so that the parity check will be non-zero. For example, if

A 22 = I, then we get the same syndrome as if we checked at time step N - 1 - m. The

problem is, of course, that we will not know what m is (i.e., we will not know when the

transient failure took place). This situation can be remedied if we choose a different matrix

A 22. For example, if P is the parity check matrix of a Hamming code and A 22 is the

diagonal matrix

10 -- O

0 1/2 *.. 0
A 2 2 -

0 .0O

00 0 - (1/2)2

then we can easily identify the corrupted state variable. Furthermore, we can find out when

the corruption took place (i.e., what m is) and by how much it affected the erroneous state

variable (i.e., what e was). In this particular case we assume that only a single transient

failure took place between periodic checks, but the approach can be extended to handle

multiple failures. 0

Example 3.5 In the TMR case in Example 3.3 a transient failure in any subsystem was

corrected using a voting scheme. When the failure is permanent, however, we would like to

avoid the overhead of error-correction at each time step. This can be done in a straight-

86

_ �_ �_



forward way in the TMR case: if a failure permanently corrupts the first subsystem (by

corrupting gains or adders in its hardware implementation), we can switch our decoding

matrixfrom L= [ d o o ] to L = [ o Id o] (or L = [ 0 Id ] or others) and
ignore the state of the first subsystem. This ensures that the overall state of our fault-

tolerant implementation is still correct. We can continue to perform error-detection by

comparing the state of the two remaining subsystems, but we have lost the ability to do

error-correction. In this example we formalize and generalize this idea.

Consider again the redundant system 1 whose state evolution equation is given by

eq. (3.2). Under fault-free conditions, q,[t] = Lqh[t] and qh[t] = Gq[t] for all t. Suppose

that we implement this redundant system using a delay-adder-gain interconnection with

delay-free paths of unit length. A permanent failure in a gain element manifests itself as

a corrupted entry in matrices A or B. The ith state variable in qh[t] (and other variables

at later time steps) will be corrupted if some of the entries s A(i, li) and/or B(i, 12) ( in

{1, 2, ... , d., 12 in {1, 2, ..., u}) are affected right after time step t- 1. We assume that we can

locate the faulty state variable through the use of some linear error detecting/correcting

scheme as in Example 3.1. We do not have control over the entries in A and B (i.e., the

multipliers, gains and interconnections), but we are allowed to adjust the decoding matrix

L to a new matrix La. We would like to know which gain or adder corruptions can be

tolerated and how to choose L,.

The first step is to find out which state variables will be corrupted eventually. If at time

step N we detect a corruption at the ith state variable, then we know that at time step N+1,

state variable qi[N] will corrupt the state variables that depend on it (let Mi, be the set of

indices of these state variables - including i); at time step N + 2, the state variables with

indices in set Mi, will corrupt the state variables that depend on them; let their indices be in

set Mi2 (which includes Mi,); and so on. Eventually, the final set of indices for all corrupted

state variables is given by the set Mif (note that Mi = Mi, = Mil U Mi2 U Mi,... U Mix).

The sets of indices Mif for all i in {1,2,..., } can be pre-calculated in an efficient manner

by computing R(A), the reachab;.lWt matrix of A, as outlined in [76].

8We use A(i, l) to denote the element in the ith row and the Ith column of matrix A.

87

_� II�LI---�--LI�C ·- ·l l·C1·-- I-Il ll·l- ~1_~I· -C--~ - ~ --



Once we have detected an error at the ith state variable, our new decoding matrix La

(if it exists) should not make use of state variables with indices in Mif . Equivalently, we

can ask the question: does there exist a decoding matrix La such that LaGa = Id? Here,

Ga is the same as the original encoding matrix G except that Ga(j, 1) is set to zero for all

I in 1,2,...,d} and j in Mi,. If Ga is full-column rank, such an La exists (any L. that

satisfies LaG. = Id is suitable). We conclude that our redundant system can withstand

permanent corruptions of entries in the ith row(s) of A and/or B as long as the resulting

G, is full-column rank.

TMR is clearly a special case of the above formulation: corruption of a state variable

of the first subsystem is guaranteed to remain within the first subsystem. Therefore, Mf C

1, 2, ..., d} and (conservatively) G. = [ O Id Id One possible La is (among others)

[O Id ].

Less obvious is the following case (based on the earlier linear coding scheme in Exam-

ple 3.1). Consider the system with state evolution as in eq. (3.6). Its decoding matrix is

given by L = [ 14 0 ]. If A(2, 2) (whose value is .5) becomes corrupted, then the set of

indices of corrupted state variables is M2 = 2, 5}. Below, we show the original encoding

matrix G, together with the new encoding matrix Ga (resulting after the corruption of

entry A(2, 2)) and a suitable La:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-1 -1 -1 0

-1 -1 0 -1

-1 0 -1 -1

1 0 0 0

O 0 1 0

, Ga = 0 0 0 1

0 00 0

-1 -1 0 -1

-1 0 -1 -1

'100 00 00

-1 0 0 -1 0 -1 0
La =

001 0 0 0 0

0 00 0 10 0 0

88

_ � I

G= I



Using the above L the redundant system can continue to function properly and provide

the correct state vector q,[t] despite the corrupted entry A(2, 2). We can still use the parity

check matrix of eq. (3.5) for error-detection, except that the checks involving the second

and/or fifth state variables (i.e., the first and second checks in Pqh[t]) will be invalid. 0

3.6 Summary

In this chapter we obtained a characterization of all redundant implementations for a given

LTI dynamic system under linear encoding and decoding schemes. Based on this character-

ization, we have shown that the set of available redundant implementations for concurrent

error detection and correction in such systems is larger than what was considered in pre-

vious work because the redundancy may have its own dynamics and/or it may interact

with the original system. We have shown that our method essentially amounts to augment-

ing the original system with redundant modes that are unreachable but observable under

fault-free conditions. Because these additional modes are not excited initially, they man-

ifest themselves only when a failure takes place. Our characterization resembles results

on continuous-time LTI system :nclusion" treated in [52], although the issue of creating

redundancy for fault tolerance does not seem to have been a motivation for [52].

We have adopted an explicit mapping to hardware (using delays, adders and gains)

which allowed us to develop an attractive error model in a way that maps single failures

in an adder or multiplier to an error in a single state variable. By employing linear coding

techniques, one can develop schemes that detect/correct a fixed number of failures. By

investigating the redundant implementations that are possible under a particular error

detection/correction scheme, we constructed novel fault-tolerant schemes that make better

use of additional hardware or have other desirable properties, such as reconfigurability or

memory. We did not directly address criteria that may allow us to "optimally" select the

"best" possible redundant implementation; our examples, however, presented a variety of

open questions for future research.

It would be interesting to explore extensions of the ideas presented in this chapter to

linear systems over other fields, rings [14], or semirings, or to nonlinear/time-varying systems

(e.g., by extending the "inclusion principle" ideas in [51, 53]). These generalizations are

89

_ C(--1I.X_·.--^-^.-.-I- -.-X^II�--LIIIIISPLI I�·l�··l�··�*IDLI---..-11�11--1�1- -.·-1111-���_141111 ICI��



unlikely to use similarity transformations to explicitly display the original system embedded

in the redundant one, but they should allow us to claim that there are some invariant or

self-contained dynamics of the redundant system that are isomorphic to the original ones. It

would also be interesting to investigate different techniques for mapping to hardware (e.g.,

using factored state variables, [92]).

The application of these ideas to max-plus systems appears to be particularly inter-

esting, [7, 27, 26, 18, 17]. Max-plus systems are "linear" with respect to two different

operations: regular addition is replaced by the MAX operation, whereas multiplication is re-

placed by addition. The net result is to replace the field of real numbers under addition and

multiplication with the semifield of reals under the MAX (additive) and + (multiplicative)

operations. Redundancy can be introduced in such "generalized linear" systems in ways

analogous to those we used for LTI dynamic systems. The absence of an inverse for the MAX

operation forces us to consider issues related with error-detection and robust performance

rather than error-correction. These ideas may be useful in building robust flow networks,

real-time systems and scheduling algorithms.

90

I



Chapter 4

Redundant Implementations of

Linear Finite-State Machines

4.1 Introduction

In this chapter we extend the ideas of Chapter 3 to linear finite-state machines (LFSM's).

We focus on linear coding techniques and reflect the state of the original LFSM into a

larger LFSM in a way that preserves the state of the original system in some linearly encoded

form. At the end of each time step, we use the redundancy in the state representation of the

larger system to perform error detection and correction. Our approach results in a complete

characterization of the class of appropriate redundant implementations for LFSM's (as was

the case for linear time-invariant dynamic systems). To demonstrate the implications of

our approach, we build hardware implementations using 2-input XOR gates and single-bit

memory elements (flip-flops). We also discuss how to choose the redundant implementation

that uses the least number of 2-input XOR gates.

This chapter is organized as follows. In Section 4.2 we provide an introduction to LFSM's

and in Section 4.3 we characterize appropriate redundant implementations. In Section 4.4

we discuss how our approach car, be used, through a variety of examples.

91

�I_ II--IIII·XLIUIIY·II·- �·-��----L·--X---�I- ---·1X·------�--� II -I--- ----···-· 11111



x[t] qIq[t+1 I q[t] 1 4[- qt]

Figure 4-1: Example of a linear feedback shift register.

4.2 Linear Finite-State Machines

Linear finite-state machines (LFSM's) form a very general class of finite-state machines'

with a variety of applications, [13, 46]. They include linear feedback shift registers [41, 70,

28, 29], sequence enumerators and random number generators [41], encoders and decoders

for linear error-correcting codes [81, 11, 111], and cellular automata, [19, 20].

The state evolution of an LFSM S is given by

q.[t + 1] = Aq.[t] fD Bx[t], (4.1)

where t is the discrete-time index, q[t] is the state vector and x[t] is the input vector. We

assume that q,[-] is d-dimensional, x[-] is u-dimensional, and A, B are constant matrices

of appropriate dimensions. All vectors and matrices have entries from GF(2), the Galois

field2 of order 2, i.e., they are either "0" or "1" (more generally they can be drawn from any

other finite field). In eq. (4.1) and for the rest of this chapter, matrix-vector multiplication

and vector-vector addition are performed as usual except that element-wise addition and

multiplication are taken modulo-2. Operation E in (4.1) denotes vector addition modulo-

2. Note that "-1" is the same as "+1" when performing addition and multiplication

modulo-2; we will feel free to use both notations to give more insight regarding a check or

a transformation that takes place.

'A discussion on the power of LFSM's and related references can be found in [115].
2The finite field GF(I) is the unique set of I elements GF together with two binary operations and 0

such that

1. GF forms a group under D with identity 0.
2. GF - {O} forms a commutative group under 0 with identity 1.
3. Operation 0 distributes over D, i.e., for all f,, f2, f3 E GF, 0i ® (f2 f3s) = (fi f2 ) (fi 0 f3).

The order I of a finite field has to be a prime number or a power of a prime number, [13, 46].

92

- --- -- ---- ------- ---



Example 4.1 The linear feedback shift register (LFSR) in Figure 4-1 is a simple example

of an LFSM. It is implemented using single-bit memory elements (flip-flops) and 2-input

XOR gates (a 2-input XOR gate performs modulo-2 addition on its binary inputs and is

denoted by G in the figure). The state evolution equation of the LFSR in Figure 4-1 is

given by

q.[t + 1] Aqo[t] E bx[t]
00001 1
1 0 0 0 0 0
= 0 0 0 1 qo[t] 0 x[t].
0 0 1 0 0 0
0 0 0 1 0 0

Note that when z[.] = 0 and q[O] $ 0, the LFSR acts as an autonomous sequence

generator. It goes through all non-zero states (essentially counting from 1 to 31). For ex-

ample, if initialized at q,[0] = [ 1 0 0 0 0 ]T, the LFSR goes through states q,[1] =

[0 1 0 0 0 qs[2]= 0 0 1 0 0 ]T,...,qs[30]= [ 0 1 0 0 1 ,q[31] =

[ 1 0 0 0 0 ]T, and so forth. 3

Given a description of the state evolution of an LFSM as in the example above, there

are a number of implementations with 2-input XOR gates and flip-flops. Just as in the

case of LTI dynamic systems in Chapter 3 (see Section 3.4), we assume that each bit in the

next-state vector q8[t + 1] is calculated using a separate set of 2-input XOR gates. This

implies that a failure in a single XOR gate can corrupt at most one bit in vector q,[t + 1].

We also assume that the calculation of each bit in q8 [t + 1] is based on the bits of q,[t] that

are explicitly specified by the 1l's" in the matrix A of the state evolution equation (e.g.,

the third bit of qa[t + 1] in Example 4.1 is calculated based on the second and fifth bits

of q.[t]). Under these assumptions, we can focus on detecting/correcting single-bit errors

because a single failure in an adder or in an XOR gate corrupts at most one bit in the state

vector of a redundant implementation.

One can obtain an LFSM S' (with d-dimensional state vector q [t]) that is similar to S

93

__I 1�1___�__1 -----C------�~-



in eq. (4.1) through a similarity transformation, [13, 46]:

q[t+ 1] = (T-'AT) q[t] @e (T -B)x[t]
A' B

- Aq'[t] B'x[t] ,

where T is an invertible d x d binary matrix such that q,[t] = Tq'[t]. The initial conditions

for the transformed LFSM can be obtained as q'[O] = T-lq[O].

It can be shown that any LFSM with state evolution as in eq. (4.1) can be put via a

similarity transformation in a form where the matrix A' is in classical canonical form, [13]:

Al

Ai = A2

where each Ai (1 < i < p) is given by

Cil

Ai =
C/2

Cil

Each Ci, (1 < j < q) looks like

Di, Ei,
Di,

Ci =

where Di, and E are given by

94

_ I __� __I��__

Di,



o0 0 -.. 0 ·

Di 1 i 0 0·1 O *0 * 0O O *0 1

0 --- 0 1 ,

Each * symbol could be a 0" or a "1". What is important about this form is that there

are at most two "1's" in each row of A'; this means that each bit in the next-state vector

q'[t +- 1] can be generated based on at most two bits of the current state vector q'[(t]. This

property of the classical canonical form is critical in our analysis in Chapter 6.

4.3 Characterization of Redundant Implementations

Our analysis in this section focuses on the structure of the redundant implementations and

assumes that the error detection/correction procedure is fault-free3 . In Chapter 6 we extend

our approach to handle failures in the error-correcting mechanism.

We look for ways of embedding the given LFSM S (with d state variables and state

evolution as in eq. (4.1)) into a redundant LFSM It with state variables (/=- d+s, s > 0)

and state evolution

qh[t + 1] = Aqh[t] ED Bx[t] . (4.2)

The initial state qh[0] and matrices A, B need to be chosen such that the unfailed state

qh[t] of ' at time step t provides complete information about qo[t], the state of the original

LFSM S, through a decoding mapping, and vice-versa. We restrict ourselves to decoding

and encoding techniques that are linear in GF(2) (in general encoding and decoding need

not be linear). Specifically, we assume that there exist

* a d x 7 binary decoding matrix L such that q,[t] = Lqh[t] for all t,

* an 7 x d binary encoding matrix G such that qh[t] = Gq[t] for all t.

3As mentioned in Chapter 3, the assumption that error detection/correction is fault-free is reasonable
if the complexity of detection/correction is considerably less than the complexity of computing the state
evolution of the system.

95



Under the above assumptions, the redundant machine H concurrently simulates the original

machine S (q,[t] = Lqh[t]). Furthermore, there is a one-to-one correspondence between the

states in S and the states in X (i.e., qh[t] = Gq,[t] and qj[t] = Lqh[t]). It is easy to show

that LG = Id (where Id is the d x d identity matrix).

The redundant machine HX enforces an (, d) linear code on the state of the original

machine, [81, 11, 111]. An (, d) linear code uses rt bits to represent d bits of information

and is defined in GF(2) by an r7 x d generator matrix G with full-column rank. The

d dimensional vector q, is uniquely represented by the i1 dimensional vector (codeword)

qh = Gq,. Error-detection is straightforward: under fault-free conditions, the redundant

state vector must be in the column space of G; therefore, all we need to check is that at

each time step t the redundant state qh[t] lies in the column space of G (in coding theory

terminology, we need to check that qh[t] is a codeword of the linear code that is generated by

G, [81, 11, 111]). Equivalently, we can check that qh[t] is in the null space of an appropriate

parity check matrix P, so that Pqh[t] = 0. The parity check matrix has row rank 7 - d s

and satisfies PG = 0. Error-correction associates with each valid state in Xl (of the form

Gq,[-]), a unique subset of invalid states that get corrected to that particular valid state4 .

Error-correction can be performed using any of the methods used in the communications

setting (e.g., syndrome table decoding or iterative decoding, [81, 11, 111, 37]).

The following theorem provides a parameterization of all redundant implementations

for a given LFSM under a given linear coding scheme:

Theorem 4.1 In the setting described above, LFSM Al (of dimension rl = d + s, s > 0 and

state evolution as in eq. (4.2)) is a redundant version of S if and only if it is similar to a

sta,dard redundant LFSM HL whose state evolution equation is given by

q,[t + 1] = [A A q[t] 1 x[t]. (4.3)
0 A22 0 j

Here, A and B are the matrices in eq. (4.1), A 22 is an s x s binary matrix that describes the

dynamics of the redundant modes that have been added, and A 12 is a dx s binary matriz that

4 This subset usually contains r-dimensional vectors with small Hamming distance from the associated
valid codeword. Recall that the Hamming distance between two binary vectors x = (,X2,..., x,) and
y = (yl, y2, ..., y,e) is the number of positions at which x and y differ, [81, 11, 111].

96



describes the coupling from the redundant to the non-redundant modes. Associated with this

standard redundant LFSM is the standard decoding matrix La = [Id O ]o the standard

encoding matriz G, = [i] and the standard parity check matrix P = [ I. ]

Proof: The proof is similar to the proof of Theorem 3.1 in Chapter 3 and we omit it. O

Given a pair of encoding and decoding matrices L and G (they need to satisfy LG = Id),

and an LFSM S, Theorem 4.1 completely characterizes all possible redundant LFSM's ?/.

Since the choice of the binary matrices A 12 and A 22 is completely free, there are multiple

redundant implementations of LFSM S for the given L and G.

4.4 Examples of Fault-Tolerant Schemes

In this section we discuss examples of redundant implementations for LFSM's. Example 4.2

illustrates that, even for a simple checksum scheme, non-zero A 1 2 and/or A 22 catu lead to

designs that make better use of redundancy. Example 4.3 discusses some interesting trade-

offs between computation and memory for redundant LFSM implementations in the context

of convolutional encoders for communication systems. More generally, we discuss ways to

explore different redundant implementations in order to minimize hardware overhead.

Example 4.2 Suppose that the original LFSM S that we would l.ke to protect is the

linear feedback shift register shown in Figure 4-1. In order to detect a single failure in

an XOR gate, we can use an extra "checksum" state variable (as was suggested for linear

time-invariant dynamic systems in [50] - see the discussions in Example 3.2 and also in

[61, 94]). The resulting redundant LFSM WC has six state variables and state evolution

A 0 q
qh[t +1] = [ A]. [t] , 0

wJhcTA [O 1cTb 

wherecT = [ 1 1 1 1,i.e.,

97

_�_1^1_1 11 I I -1-----�-·111)··111



qh[t + 1] =

0000
1000
0100
0010
0001
1 111

1
0
1
0
0
0

0
0
0
0
0

Under fault-free conditions, the added state variable is always the modulo-2 sum of all other

state variables (which are the same as the original state variables in LFSM S).

The above approach is easily seen to be consistent with our setup. Specifically, the

encoding, decoding and parity check matrices are given by:

10000
01000
00100
00010
00001
1 1 1 1 1

, L= 1510 ] =

00 0 0 0
10000
01000
00100
0001 0

P = [ -cT1 ]=[ -1 -1 -1 -1 -111 ] .

Using the transformation q,[t] = Tqh[t] where 7- = [ I50

a standard redundant LFSM 94 with state evolution given by

, we see that X7 is similar to

qo,[t+ 1] = A 0 qa[t] E1 t].

Note that both A 12 and A 22 are set to zero.

As tated earlier, there are multiple redundant implementations with the same encoding,

decoding and parity check matrices. For the scenario described here, there are exactly 25

different LFSM's (we get a different system for each combination of choices for entries in

matrices A 12 and A 22). One such choice could have been to set

A 12 = 0, A 2 2 = [1] ,

98

L

- -

-

h[t] 0 [t 

1o

G = I5



and use the same transformation (q[t] = 7qh'[t], = [15T ) to get a redundant
cT

LFSM Vl' with state evolution equation

Qh[t + 1] :qh,[t] D I- -T [t] ,
TA - A= 22c T A22 c ['b ]

or

0 0 0 0 1 0'100010 0
10000 0 0

qh[t+ 1] = 1 0 1 0 0 0 qh[t] 0 
0 0 0 1 0 0 
0 0 1 1 1

Both redundant LFSM's X and t'r have the same encoding, decoding and parity check

matrices, and are able to concurrently detect single-bit errors in the redundant state vector

(and therefore a failure in a single XOR gate, according to our assumptions about hardware

implementation). Clearly, the complexity in IL' is lower than in IL. More generally, as

illustrated in this example for the case of a non-zero A2 2 , we obtain more efficient redundant

implementations by exploiting the dynamics of the redundant modes (given by A22) and /or

their coupling with the original system (given by A 12). The gain is not only in terms of the

hardware involved, but also in terms of minimizing the probability of failure (since XOR

gates may fail). More generally, one of the problems in encoding the state of dynamic

systems (in order to provide fault tolerance) has been the cost associated with generating

the redundant bits, [75]. For example, in the original implementation of the checksum

scheme, generating one additional bit costs more (in terms of 2-input XOR gates) than the

linear feedback shift register altogether. 0

Example 4.3 At the top of Figure 4-2 we see an example of a rate 1/3 convolutional

encoder (the code was taken from [111]). The encoder takes a sequence of bits x[t] and

encodes it into three output sequences (yl[t], y2[t] and y3[t]) as shown in the figure. The

encoding mechanism can be seen as an LFSM with state evolution equation given by

99



----------- -------------- ----. t--

/ I 
I ]

I"- ,'" " I--I 

Figure 4-2: Three different implementations of a convolutional encoder.

100

___ I_ __

3

N



q 8 [t + 1] 

q [t + 1] 
q2[t + 1]
q3[t + 1]
q4 [t + 1]
q5[t + 1]
q6[t + 1]
q7[t + 1] 

1 0 0 0 0 0 01000000
0100000
0010000
0001000
0000100
0 0 0 0 0 1 0

1 
0
0
0
0
0

0 

x[t]

- Aq[t] @ b[t]

and output 5

[t + 1 1 0 1 1 1 0 1 0

y[t+ 1] Y2[t+ ] = 1 0 1 1 1 0 q.[t] ( 1 z[t]
y3[t + 1] 1 1 0 0 1 1 0 1

Fq,[t] E dx[t] .

(Note that we have included q7[t] as a udummy" state variable because we will use it in our

analysis later on.)

Since at each time step t we calculate output values yl[t], y2[t] and y3 [t], we can consider

saving them in designated single-bit memory elements. If we do this, we have a redundant

implementation of an LFSM with state evolution equation

0 0 0 0 0 0 0
1000000
0100000
0010000
0001000
0000100
0000010
011
100
1 1 0

10
1 1
0 1

1 0
1 0
1 0

0
0
0
0
0
0
0

0 0-
0 0
0 0
0 0
0 0
0 0
0 0

000

0 0 0.

qh[t] 

1.

O
O
O
O
O
0

1
1.1 

and whose encoding and decoding matrices are given by:

5 What we denote by y[t + 1] usually gets denoted by y[t].

101

F�iil�_� ____�_�

_ q.,19[tll~~ + 1] rA I 0 1
qh~~t + 11 = I - q-] h[t] ED X] [t]



17
- 1011101
1 10 0 1 1 1
1110011

Therefore, just as we did in Example 4.2, we can use non-zero redundant dynamics

(A 22 0 0) and/or coupling (A 12 0 0) in order to reduce the number of 2-input XOR gates

that are used. The encoder in the middle of Figure 4-2 is the result of such a minimization

with the restriction that state variable q7['] not be used; this reduces the number of 2-input

XOR gates by two. If we allow the use of q7[-] as shown at the bottom of Figure 4-2, we

can reduce the number of XOR gates even more.

Therefore, we see an interesting tradeoff between single-bit memory elements (flip-flops)

and computation (2-input XOR gates) in the context of redundant implementations of

LFSM's. The more state variables we remember the easier it is to generate the desired

output. If we remember more outputs and states (e.g., if we add a state variable q[t] and

previous outputs y 1[t - 1], y2 [t - 1], y3 [t - 1]), we can do even better. o

Next, we describe how to systematically minimize the number of 2-input XOR gates in

a redundant implementation.

Construction of Redundant LFSM's Using Systematic Linear Codes

For a given LFSM we can use Theorem 4.1 to construct all redundant implementations that

are encoded according to a given linear code. In fact, if the linear code is systematic , one

can algorithmically find the redundant LFSM that uses minimal hardware overhead (i.e.,

minimal number of 2-input XOR gates).

Problem Formulation: Let S be an LFSM with d state variables and state evolution as

in eq. (4.1). Given encoding, decoding and parity check matrices

G [ ] L d O] P [C I]

6 An (, d) systematic linear code is one whose generator matrix is an r x d binary matrix of the form

G = [ I ] Any linear code can be transformed into an equivalent systematic linear code, [111].C 

102



(where C is an s x d binary matrix), construct the redundant LFSM 7 (of dimension

= d + s, s > 0 and state evolution as in eq. (4.2)) that uses the minimum number of

2-input XOR gates.

Solution: From Theorem 4.1, we know that any appropriate redundant implementation

will be similar to a standard LFSM 7,. Specifically, there exists an tr x 7 matrix T such

that

A=T4[1 t B=AT,[-1 [
0 A 22 0

where the choices for Al2 and A 22 are arbitrary.

Moreover, we know that

G = T-1 G, L = LT, P= PT,

which establish that T is given by

T=[Id °]

C I,

(One easily checks that T - 1 = T over GF(2), which is consistent with the choice of G.)

Therefore, we completely know matrices A and B in terms of A12 and A2 2:

-1 A A12 A A12C A12

o A22 CA ED CA 12C A 22 C CA1 2 A 2 2

B =

0 CB

In order to find the system with the minimal number of 2-input XOR gates, we need to

choose A 12 and A 22 so that we minimize7 the number of "1's" in A. For example, we can

search through all 2" XI possibilities (each entry can be either a "0" or a "1") to find the

7Assuming that each row will have at least one "1'.

103

------- --__--_ - ----·- -·III -



one that minimizes the number of "l's" in A. Next, we discuss a '.nore efficient approach.

Minimization Algorithm:

1. Ignore the bottom s rows of A (we will soon show why we can do this) and optimize

the cost in the top d rows. Each row of matrix A 12 can be optimized independently

from the other rows (clearly the jth row of matrix A 12 does not influence the structure

of the other rows of A). An exhaustive search of all possibilities in each row will look

through 2 different cases. Thus, the minimization for the top d rows will take d25

steps.

2. Having chosen the entries of A 1 2 , proceed in the exact same way for the last s rows

of A (once A12 is known, the problem has the same structure as for the top d rows).

Exhaustive search for each row will search 2 cases; the total cases needed will be s2'.

The algorithm above searches through a total of 2's = (d + s)2s cases instead of 2 7X .

The only issue that remains to be resolved is, of course, whether choosing A 12 first

(based only on the top d rows of matrix A) is actually optimal. We will show that this is

the case by contradiction: suppose that we have chosen A 12 (as in Step 1 of the algorithm),

but that there exists a matrix A' 2 : A12, which together with a choice of A'2, minimizes

the number of "1's" in A. Let A22 = A 22 E CA'1 2 (E CA12 ; matrix A is then given by

F1 AEAl A1 2 C

L CA CA 12C A 22C 

F __ A A 12C

CAE CA 2C A'2C

A 12

CA 12 ( A22

i1
A 12

CA 2 A22 J

Clearly, this choice of A 22 has the same effect in the bottom s rows as the choice A12 and

A 22. Since by assumption A 12 was a better choice in minimizing the number of "l's" in the

top d rows, we have a contradiction: choices A' 2 and A'22 are suboptimal (they are worse

than choices A 12 and A 22). O

Example 4.4 Consider the autonomous LFSM with state evolution q,[t+ 1] = Aq,[t] and

matrix A given by

104

A =

�__



o 0 0 0O

1000
0100
0010
0001
0000
0000
0000
0000

0 0 0 0 1-
00000
00000
00000
00001
10000
01000
00100
0 0 0 1 0

This LFSM goes through all non-zero 9-bit sequences, essentially counting from 1 to 29 -1

(because its feedback corresponds to a primitive polynomial, [111, 41]). We want to con-

struct a redundant machine that uses four additional state variables and has encoding ma-

trix G = [9 ] decoding matrixL= [ 9 o ] and parity checkmatrixP= [ C I4],
C

where C is given by

1 0 1 1 0 0 1 0
C- 0 1 1 0 0 1 0 1 1

1111100011 1 1 1 1 0 0 0 0

Note that this choice of P allows single-error correction because all of its columns are

different.

If we use the minimization algorithm described earlier, we find that the choice that

minimizes the number of XOR gates is

A0 0 1 1

A 1 2 = 0, A22 0 0 0

Matrix0 A for the resulting LFSM is given by

Matrix A for the resulting LFSM is given by

105

I- · I 1 1___· 



A A 12C | A 12 1A =
CA E CA1 2C D A22 C I CA12 e A 22 J

000000001
100000000
010000000
001000000
000100001
000010000
000001000
000000100
000000010
000000010
0 0 0 0 00 1 1 0
000001010
010000100

0000
0000

0 0 0 0

0000
000000000 0 0 00 0 0 0o O O O 

O 0 1 0
0011
1000
0 1 0 0

It requires only nine 2-input XOR gates (as opposed to sixteen gates required by the real-

ization that sets A 12 and A22 to zero). Note that the original machine uses a single XOR

gate. o

4.5 Summary

In this section we obtained a characterization of all redundant implementations for a given

LFSM under linear encoding and decoding schemes. Based on this characterization, we pre-

sented a variety of redundant implementations that can be used by our two-stage approach

for fault tolerance. Future work can focus on describing in more detail ways to minimize

the cost of redundant implementations by exploiting redundant dynamics and coupling. It

would also be interesting to study whether the two-stage approach to fault tolerance can

employ convolutional rather than block coding techniques. Note that so far we have as-

sumed that error-correction is fault-free. In Chapter 6 we relax this assumption by allowing

failures in the error detecting/correcting mechanism and by discussing methods to handle

them effectively and efficiently.

106

�1 I-



Chapter 5

Failure Monitoring in Discrete

Event Systems Using Redundant

Petri Net Implementations

5.1 Introduction

In this chapter we apply our methodology for fault tolerance in dynamic systems to Petri

net models of discrete event systems (DES's). This results in techniques for monitoring

failures and other activity in such systems. Our approach replaces the original Petri net

with a redundant one (with more places, tokens and/or transitions) in a way that preserves

the state, evolution and properties of the original Petri net in some encoded form. We

systematically develop schemes for monitoring failures in a DES by focusing on the class

of separate redundant Petri net implementations. These implementations retain the func-

tionality of the original Petri net, but use additional places and tokens in order to impose

invariant conditions; by performing linear consistency checks, our monitoring schemes are

able locate and identify failures in the overall system. The constructions that we propose

are attractive because they automatically point out the additional connections that are nec-

essary in order to allow failure monitoring, and may not require explicit acknowledgments

from each activity. Furthermore, they can be made robust to failures and can be adapted

to incorporate configuration changes in the original system or to impose restrictions in the

107

__ Il__-.-·I(III�LI��- -_ ILC-· --- _I1I-



information that is available to the monitors. For example, we can design our schemes

so that they do not require information about system activity that is unavailable or gets

corrupted. We also discuss how to construct non-separate redundant Petri net implemen-

tations and analyze briefly some of their potential advantages. The resulting monitoring

schemes are simple and straightforward to design. Future work should examine designing

and optimizing monitoring schemes that achieve the desired objective while minimizing the

cost associated with them (e.g., the number of communication links required, the number

of acknowledgments, the size of monitor, and others).

The chapter is organized as follows. In Sections 5.2 and 5.3 we provide a brief intro-

duction to Petri net modeling of DES's and discuss the types of failures that we will be

protecting against. In Section 5.4 we construct monitoring schemes using separate redun-

dant Petri net implementations. In Section 5.5 we discuss non-separate redundant Petri net

implementations and analyze some of their potential advantages. In Section 5.6 we describe

how our redundant implementations can be used to facilitate control or to detect "illegal"

or unmodeled behavior in a DES.

5.2 Petri Net Models of Discrete Event Systems

Petri nets are a graphical and mathematical mode! for a variety of information and pro-

cessing systems, [73]. Due to their power and flexibility, Petri nets are particularly relevant

to the study of concurrent, asynchronous, distributed, nondeterministic, and/or stochastic

systems, [7, 18]. They are used to model communication protocols, manufacturing systems

[30], or more general DES's, [17]. The extended spectrum of applications, their size and dis-

tributed nature, and the diverse implementations involved in modern Petri nets necessitate

elaborate control and failure detection/recovery mechanisms.

A Petri net S is represented by a directed, bipartite graph with two kinds of nodes: places

(denoted by ({Pl, p2, ...,Pd and drawn as circles) and transitions (denoted by tl, t 2,...,tu

and drawn as rectangles). Weighted directed arcs connect transitions to places and vice-

versa (but there are no connections from a place to a place or from a transition to a

transition). The arc weights have to be nonnegative integers; we use b to denote the

108



t2
fli [011

10- @ Lp2 B + 1 00
100

~~~~~0p1 

\ t1\- I~2 0 0
1 g > ) B3 = 0 1 

t3

Figure 5-1: Example of a Petri net with three places and three transitions.

weight1 of the arc from place pi to transition tj and b+ to denote the weight of the arc from

transition tj to place pi. The graph shown in Figure 5-1 is an example of a Petri net with

d = 3 and u = 3; its three places are denoted by P1, P2 and p3, and its three transitions by

tl, t2 and t3 (arcs with zero weight are not drawn).

Depending on the system modeled by the Petri net, input places can be interpreted

as preconditions, input data/signals, resources, or buffers; transitions can be regarded as

events, computation steps, tasks, or processors; output places can represent postconditions,

output data/signals, conclusions, or buffers. Each place functions as a token holder. Tokens

are drawn as black dots and represent resources that are available at different parts of the

system. The number of tokens in a place cannot be negative. At any given time instant t,

the marking (state) of the Petri net is given by the number of tokens at each of its places; for

the Petri net in the figure the marking (at time instant 0) is given by q[O] = 2 1 0 ]

Transitions model events that take place and cause the rearrangement, generation or

disappearance of tokens. Transition tj is enabled (i.e., it is allowed to take place) only if

each of its input places Pi has at least bi tokens (where, as explained before, b is the

weight of the arc from place pi to transition t). When transition tj takes place (we say

that transition tj fires), it removes b- tokens from each input place p and adds b tokens

to each output place pi. In our example in Figure 5-1 transitions tl and t 2 are enabled but

transition t3 is not. If transition tl fires, it removes 2 tokens from its input place Pi and

X In this analysis we assume that there is only one arc from place pi to transition t; otherwise be can be
the aggregate weight of all such transitions.

109

II_____I__IILIYIIIL1II .. .. 1_ - 1- --1 _1 -



adds 1 token each to its output places p2 and p3; the corresponding state of the Petri net

(at the next time instant) will be q8 [1] = [ 2 1 ]T

If we define B- = [b-] (respectively B + - [b+]) to be the d x u matrix with b-

(respectively b) at its ith row, jth column position, the state evolution of a Petri net can

be represented by the following equation:

q[t + 1] = qs[t] + (B + - B-)x[t] (5.1)

= qs[t] + Bx[t], (5.2)

where B _ B+ - B- (in Figure 5-1 we show the corresponding B+ and B- for that Petri

net). The input x[t] in the above description is n-dimensional and restricted to have exactly

one non-zero entry with value '1". When x[t] = x = [ ... 1 . O ] (the "1" being

at the jth position), transition tj fires (j is in { 1, 2, ..., u}). Note that transition tj is enabled

at time instant t if and only if q,[t] > B-(:,j) (where B-(:,j) denotes the jth column of

B- and the inequality is taken element-wise). A pure Petri net is one in which no place

serves as both an input and an output for the same transition (i.e., only one of b+. and b~

can be non-zero). The Petri net in Figure 5-1 (with the indicated B+ and B- matrices)

is a pure Petri net. Matrix B has integer entries; its transpose is known as the incidence

matrix, [73].

Discrete event systems are often modeled as Petri nets. In the following example we

present the Petri net version of the popular "cat-and-mouse" problem, originally introduced

by Ramadge and Wonham in the setting of supervisory control [86], and described as a Petri

net in [114]. References [86, 114] were concerned with controlling the doors in the maze

so that the two animals are never in the same room together 2. In Sections 5.4 and 5.5 we

discuss how to perform failure detection and identification in such systems; in Section 5.6

we discuss how to detect ongoing illegal" activity.

Example 5.1 We are given the maze of five rooms shown in Figure 5-2; a cat and a mouse

circulate in this maze, with the cat moving from room to room through unidirectionaldoors

{cl, c2, ..., c8} and the mouse through unidirectional doors {ml, m 2, ..., m6}. The Petri net

2Only a subset of the doors may be controllable; the task becomes challenging because we wish to allow
maximum freedom in the movement of the two animals (while avoiding their entrance into the same room).

110



Figure 5-2: Cat-and-mouse maze.

model is based on two separate subnets, one dealing with the cat's position and movements

and the other dealing with the mouse's position and movements. Each subnet has five places,

corresponding to the five rooms in the maze. A token in a certain place indicates that the

mouse (or the cat) is in the corresponding room. Transitions model the movements of the

two animals between different rooms (as allowed by the structure of the maze in Figure 5-

2). The subnet that deals with the mouse has a marking with five variables, exactly one

of which has the value 1" (the rest are set to "0"). The state evolution for this subnet is

given by eqs. (5.1) and (5.2) with

001001

010000

100000

000010

000100

100100

001000

010000

000001

000010

For example, state qs[t] = [ 1 0 0 ] indicates that at time instant t the mouse is

in room 2. Transition t 3 takes place when the mouse moves from room 2 to room 1 through

door m3; this causes the new state to be q,[t + 1] = 0 0 0 ] . In [114] the two

subnets associated with the mouse and cat movements were combined in order to obtain

111

C2 - Room 3
Room 2 -2 c3

Mouse m t-i
I ml

'8 l C1 Room 1
C7 I C4

ms6--. m4

Room 4 e- e-
Cat5 6 Room 5

Cat cs T Room 5

B + =

-I �------ I-IYI--IPI--I·��P-II�.�I _.I._ --I· �-- _.- ·-�P- I---IIIII__�--

, B-=

_



an overall Petri net, based on which was constructed a linear controller that achieves the

desired objective (i.e., disallows the presence of the cat and the mouse in the same room

while permitting maximum freedom in their movement within the maze). In Section 5.6

we use this Petri net representation in order to construct monitors that detect and identify

"illegal" (or unmodeled) activity in the system. 0

5.3 Error Model

In complex Petri nets with a large number of places and transitions, there is a high possibility

of system breakdown due to malfunctions of hardware, software or other components. It is

therefore essential that one design systems with the ability to detect, locate and correct any

failures that may occur. In this section we discuss the error models that will be used in our

failure detection and identification schemes for Petri nets. As mentioned in Chapter 1, an

effective error model needs to capture the underlying failure in an efficient manner. Clearly,

this will depend significantly on the particular application and the actual implementation;

this is the price we pay for the generality of the error model. Since failures depend on the

actual implementation (which varies considerably depending on the application), we will

consider three different error models.

* A transition failure models a failure that occurs while performing a certain transition.

We say that transition tj fails to ezecute its postconditions if no tokens are deposited

to its output places (even though the correct number of tokens from the input places

have been used). Similarly, we say that transition tj fails to execute its preconditions

if the tokens that are supposed to be removed from the input places of the faulty

transition are not removed (even though the correct number of tokens are deposited

at the corresponding output places). In terms of the state evolution in eq. (5.1), a

failure at transition tj corresponds to transition tj firing, but its preconditions (given

by the jth column of B-, B-(:,j)), or its postconditions (given by B+(:,j)) not

taking effect 3.

3A failure in which both the preconditions and the postconditions are not executed is indistinguishable
from the transition not taking place at all. The motivation for the transition failure error model came from
[35], although the failures mentioned there are captured best by place failures.

112

__ _I_ � 1__ �I___ __ __



* A place failure models a failure that corrupts the number of tokens in a single place of

the Petri net. In terms of eq. (5.1), a place failure at time instant t causes the value of

a single variable in the d-dimensional state q,[t] to be incorrect. This error model is

suitable for Petri nets that represent computational systems or finite-state machines

(e.g., single-bit errors corrupt a single place in the Petri net); it has appeared in earlier

work that dealt with failure-detection in pure Petri nets, [97, 98].

* The additive failure model is based on explicitly enumerating all failures that we would

like to be able to detect or protect against. The error is then modeled by its additive

effect on the state qs[t] of the Petri net. In particular, if failure f(i) takes place at

time instant t, then qf(i)[t] = q[t] + ef(i) where qf(i)[t] is the faulty state of the

Petri net and ef(i) is the additive effect of failure f(i). If we can find a priori the

additive effect ef(i) for each failure f(i) that we would like to protect against, then

we can define a d x I failure matrix E = [ ef(l) ef(2) I | ef() ], where I is the

total number of different failures expected. Based on the matrix E, we can construct

redundant implementations to protect our Petri net.

Note that the additive error model captures both transition and place failures:

* If transition tj fails to execute its preconditions, then et = B- (:, j), whereas if tj fails

to execute its postconditions, then e+ =-B+(:, j).

* The corruption of the number of tokens in place pi is captured by the additive er-

ror array epi = c x [0 ... I -.. 0 ]T, where c is an integer that denotes the

number of tokens that have been added and the only non-zero entry of the array

[ 0 .. 1 ..-- ]T appears at the ith position.

The additive error model can also capture the effects of multiple independent additive

failures (i.e., failures whose additive effect does not depend on whether other failures have

taken place or not). For example, a precondition failure at transition tj and an independent

failure at place pi will result in the additive error array e- + ei.

Example 5.2 Consider the Petri net in Figure 5-3. It could be the model of a distributed

processing network or of a flexible manufacturing system. Transition t 2 models a process

113

I � _II_�� Il�--I�1IIII^IIICI---n� ._. .. I. - - .-- ~-· _ _ _ �-1�-·-·1111111111



t3

2

ti

t4

Figure 5-3: Petri net model of a distributed processing system.

that takes as input two data packets (or two raw products) from place P2 and produces two

different data packets (or intermediate products), each of which gets deposited to places p3

and p4. Processes t3 and t4 take their corresponding input packets (from places p3 and p4

respectively) to produce the final data packets (or final products). Note that processes t 3

and t4 can take effect concurrently. Once done, they return separate acknowledgments to

places p5 and P6 so that process t 2 can be enabled again. Transition tl models the external

input to the system and is always enabled. The state of the Petri net shown in Figure 5-3

is given by q[0] = [ 2 2 0 1 ]; only transitions t and t 2 are enabled.

If the process modeled by transition t 2 fails to execute its postconditions, tokens will be

removed from input places P2, Ps and P6, but no tokens will be deposited at output places

p3 and p4. The faulty state of the Petri net will be qf[1] = [ 2 0 0 0 0 0 ]

If process t 2 fails to execute its preconditions, then tokens will appear at the output

places p3 and p4 but no tokens will be removed from the input places P2, P5 and p6. The

faulty state of the Petri net will be qf[1] = 2 2 1 1 1 1 I
If process t 2 executes correctly but there is a failure at place p4, then the resulting state

will be of the form qf[1] = [2 0 1 1+c 0 0 ; the number of tokens at p'ace p4 has

been corrupted by c. °

Example 5.3 The Petri net in Figure 5-4 denotes a simple digital system. Places corre-

spond to memory locations that hold a single bit with value "0" or "1". In this particular

114

p)

D4



p

t3
INIT

Figure 5-4: Petri net model of a digital system.

example, P1 and P2 represent the two states of the system4 , places p3 and p4 are place-

holders for the INIT and RESET inputs, and places ps and p6 ensure that these inputs are

only applied when appropriate. Transitions correspond to logic gates that produce the next

state of the system based on the current state and input. More specifically, each transition

produces two outputs: the first output has value "1" and activates the necessary memory

locations for the next state; the second output has value "On and deactivates the memory

locations associated with the previous state (and input). We assume that the output of the

system is based on its state (Pl or P2) and we do not show it here.

A failure in a particular memory location causes a 0" to become "1" or vice-versa.

The effect can be represented by a place failure. A gate failure at a transition is more

complicated and may need to be represented by multiple place failures or a combination of

transition and place failures. o

5.4 Monitoring Schemes Using Separate

Redundant Implementations

5.4.1 Separate Redundant Petri Net Implementations

We begin our study of redundant Petri net implementations with a special case in which

the original Petri net remains unchanged. Carefully chosen additional functionality allows

'The system is in state p, when there is a token in place pi. The approach is reminiscent of one-hot
coding where each state is represented by its own memory location.

115

_ I_�_______I�_LI __ 11�----·1111�-�� �-I_- -- 1�1 --·l�^------ill�··ll�-�Y-*·L�--I ~~- -L·--_------^~~~~~--_·-C · ~ ~ 11 - �---------··111111�·I



Separate Redundant
Petri Net Embedding

r . . . . .. .. . . . .. . .. .. ...... - - - - - -

Figure 5-5: Concurrent monitoring scheme for a Petri net.

us to build a monitoring scheme as shown in Figure 5-5: by performing a check on the

combined state of the original system and the added monitor, the detecting mechanism

is able to locate and identify failures in the overall system. The state of the monitor is

changed according to the transition activity in the original system, and captures exactly

the information that is necessary in order to concurrently detect and identify failures.

Our monitoring schemes are constructed using linear checks. This makes them easily

adaptable to changes in the configuration or in the initial marking of the given Petri net;

furthermore, our schemes can be applied to systems where certain information is unavailable

(e.g., when no connections are available from a particular place or transition). We give

examples of how these ideas could be pursued but leave a detailed study to future work.

The alternative to our construction could be an analysis that is based on locating an invalid

state and inferring the exact failure that caused the Petri net to reach this invalid state.

Our approach avoids this complicated reachability analysis5, automatically points out which

additional connections are necessary and results in simple monitors.

Definition 5.1 A separate redundant implementation of Petri net S (with d places, u

transitions, marking q,[.] and state evolution as in eq. (5.1)) is a Petri net IL (with l - d+s

5A nice discussion on state reachability in Petri nets can be found in [91].

116

II
II
II
II
II
I
II
II
I
II

r ?



places, s > 0, and u transitions) that has state evolution

qh[t + 1] = qh[t] + B+x[t] - B-x[t]

= qh[t] + ]x[t [I] x[] (5.3)

and whose state is given bP

qh[t] = [ ] q[t],
C

G

for all time instants t. We require that for any initial marking (state) q,[O] for S, Petri net

1/ (with initial state qh[O] = Gq,[O]) admits all firing transition sequences that are allowed

in S (under initial state q,[O]).

Note that the functionality of Petri net S remains intact within the separate redundant

Petri net implementation 7. Matrix G is referred to as the encoding matrix. All valid states

qh[t] in H have to lie within the column space of G; furthermore, there exists a parity check

matrix P = [ -C I, ] such that Pqh[t] = 0 for all t (under fault-free conditions). Since

IL is a Petri net, matrices X + and X-, and state qh[t] (for all t) have nonnegative integer

entries. The following theorem characterizes separate redundant Petri net implementations

and leads to systematic ways of constructing them:

Theorem 5.1 Consider the setting described above. Petri net 7 is a separate redundant

implementation of Petri net S if and only if C is a matrix with nonnegative integer entries

and

X + = CB + - D, X- = CB- -D,

where D is any sxu matrix with nonnegative integer entries such that D < MIN(CB+, CB-)

(operations < and MIN are taken element-wise).

6 More generally the state of a separate redundant Petri net implementation can be given by qh[t] =
(q[t]) ] fo

[ Cq.[t]) ]fr an appropriate function ¢.

117

___I�__CI___PILIU_-� ------·1C·--. 1--- 11 ------ -.-. 1· -



Proof: () The state qh[0] = Gq,[O] = [ I q,[O] needs to have nonnegative integer

entries for all valid q,[O] (a valid initial state for S is any marking q.[O] with nonnegative

integer entries). Clearly, a necessary (and sufficient) condition is that C is a matrix with

nonnegative integer entries.

If we combine the state evolution of the redundant and original Petri nets (in eqs. (5.3)

and (5.1) respectively), we see that

Gqs[t+ 1] qh[t1] = qh[t] + ] x[t] - B ]x[t]
4. X-

Id q[t+ = dq + B+ x[t]+ Xt
C C X + X-

Since any transition tj can be enabled (e.g., by choosing q[O] > B-(:, j)), we conclude that

X + - X- = C(B + - B-) .

Without loss of generality we can set X+ = CB+ - D and X- = CB- - D for some

matrix D with integer entries. In order for Petri net X with initial marking qh[O] =

[ qT[O] (Cqs[O])T ] (where q,[O] is any initial state for S) to admit all firing transition

sequences that are allowed in S under initial state q8[O], we need D to have nonnegative

integer entries. The proof follows easily by contradiction: suppose D has a negative entry

in its jth column; choose q,[0] = B- (:, j); then transition tj can be fired in S but cannot

be fired in Ii because

Cq[O] = CB-(:,j)

< CB-(:,j)-D(:,j)

= X-(:, j) .

The requirement that D < MIN(CB+, CB-) follows from X + and X- being matrices

with nonnegative integer entries.

118

_ _�_



(.=) The converse direction follows easily. The only challenge is to show that if D is

chosen to have nonnegative entries, all transitions that are enabled in S at time instant t

under state q,[t] are also enabled in 7 under state qh[t] = [ qT[t] (Cq[t])T ]. For this,

note that if D has nonnegative entries, then

qs[t] > B-(:,j) j Gq[t] > GB-(:,j)

= qh[t] GB-(:,j)

= qh[t] > GB-(:,j)- ]
DO, j)

qh[t] 2 B-(:,j).

(Remember that matrices G, B+, B- and D have nonnegative integer entries.) We conclude

that if transition tj is enabled in S (q,[t] > B- (:, j)), then it is also enabled in X7 (qh[t] >

B- (:, j))- 0o

5.4.2 Failure Detection and Identification

Given a Petri net S with state evolution as in eq. (5.1), we can use a separate redundant

implementation 7 as described in Theorem 5.1 to monitor transition and place failures.

The invariant conditions imposed by the construction of our separate implementations can

be checked by verifying that [ -C I, qh[t] is equal to 0. The s additional places in 7

function as checkpoint places and can either be distributed in the Petri net system or be

part of a centralized monitor7.

Transition Failures: Suppose that at time instant t-1 transition tj fires (that is, x[t-1] =

xj). If, due to a failure, the postconditions of transition tj are not executed, the erroneous

state at time instant t will be

qf[t] = qh[t] - B+(:, j) = qh[t] - B+xj

(where qh[t] is the state that would have been reached under fault-free conditions). The

7Some of the constraints that we developed in the previous section can be dropped if we adopt the view
in [98], and treat additional places only as test places, i.e., allow them to have a negative number of tokens.
In such case, C and D are not restricted to have nonnegative entries.

119

�1�1__ �1�_11� �__1__�_~~~~___~~~~ - -·-·11~· 1-ly.- -- 9L·I Ir. __ -·-l^·--L-l�---*--·-^---



error syndrome will be

Pqf[t] = P(qh[t] CB+ - D xj

B+
= Pqh[t]-P CB+ -D X

CB+ - D ]

-(-CB+ + CB+ - D) x

- Dxj D(:,j).

If the preconditions of transition tj are not executed, the erroneous state will be

qf [t] = qh[t] + B-(:,j) = qh[t] + 1x x;

the error syndrome can be calculated similarly as

Pqf[t] = -Dxj -D(:,j).

If we choose all columns of D to be distinct, we will be able to detect and identify all

single-transition failures. Depending on the sign, we can also describe whether preconditions

or postconditions were not executed. In fact, given enough redundancy we will be able to

identify multiple transition failures (for example, we can ensure that the columns of D

linearly independent).

Example 5.4 Consider the Petri net in Figure 5-1 with the indicated B+ and B- matrices.

We will use one additional place (s = 1); in order to concurrently detect and identify

transition failures, we need to ensure that the columns of matrix D are distinct (the choice

of C does not matter in this case). We setD= [ 3 2 1 ],C= [ 2 2 1 ] and obtain

the separate redundant Petri net implementation of Figure 5-6 (the additional connections

are shown with dotted lines).

120

* __ _ � _�__



P

tb

Figure 5-6: Example of a separate redundant Petri net implementation that identifies single-
transition failures in the Petri net of Figure 5-1.

Matrices B+ and B- are given by

0 1 1 200 

B+ B+ 1 1 0 0B-- 0 1 0
CB+-D 1 0 0 CB- - D 0 1

0 1 1 0 0001 100

The parity check, performed concurrently by the checking mechanism, is given by

[ -C ]qh[t = [ -2 -2 -1 1 ] qht] 

If the parity check is -3 (respectively -2, -1), then transition t (respectively t2, t 3) has

failed to perform its preconditions. If the parity check is 3 (respectively 2, 1), then transition

ti (respectively t2, t 3) has failed to perform its postconditions.

The additional place p4 is part of the monitoring mechanism: it receives information

about the activity in the original Petri net (which transitions fire or complete, etc.) and

appropriately updates its tokens. The linear checker (not shown in Figure 5-6) detects and

identifies failures by evaluating a checksum on the state of the overall (redundant) system.

Note that the monitoring mechanism in Figure 5-6 does not use any information about

transition t2. More generally, explicit connections from each transition to the monitoring

mechanism may not be required; in fact, an interesting direction to pursue in future work is

121

I -·� I---------ILY--L��^---�l�m�c---�.��·_. ----- ---��-r-_-r^-*F-·*ll-_I---· I-r---------··-rrrr*----^-·-·-·- ·- ~us~ ll ~r m-~------ ··~-~---

AL
k!v
- r-



to investigate whether this monitoring scheme can be systematically adapted to handle cases

where certain connections are not permitted (i.e., where information about a transition or

a place is not available). o

Place Failures: If, due to a failure, the number of tokens in place Pi is increased by c, the

faulty state is given by

q [t] = qh[t] + ep,

where ep is an i7-dimensional array with a unique non-zero entry at its ith position, i.e.,

ep = c x 0 --- 1 *.. 0 (with the "1" at the ith position). In this case, the parity

check will be

Pqff[t] = P(qh[t]+ep,)

= Pqh [t] + Pe,,

= + Pepi

= cxP(:,i).

If we choose C so that columns of P [ -C I, ] are not rational multiples of each other,

then we can detect and identify single-place failuress.

Example 5.5 In order to concurrently detect and identify single-place failures in the Petri

net of Figure 5-1, we will use two additional places (s = 2) and choose C = 2 1 
2 1

(so that the columns of the parity check matrix P = [-C I2 ] are not multiples of each

other). Our choice for D is not critical in the identification of place failures and in this case

we set 9 D = [ 1 . We then obtain the separate redundant implementation shown
2 1

in Figure 5-7 (the additional connections are shown with dotted lines).

SWe need to make sure that for all pairs of columns of P there do not exist non-zero integers a, f such
that a x P(:, i) =p x P(:, j), i j.

9 This choice actually minimizes the number of additional connections (for the given choice of C).

122

·_



p4

T3

Figure 5-7: Example of a separate redundant Petri net implementation that identifies single-
place failures in the Petri net of Figure 5-1.

Matrices B+ and B- are given by

B+ =
CB+ - D

0 1 1

100

100

100

011
0 1 1 

The parity check is performed through

[ -C I2 ] qht]= [-2
-2 -1 o 0

-1 -1 0 1 qht] 

[ 2 
If the result is a multiple of (respectively ], [

2 1p) f
pi (respectively P2, P3, p4, p5) has failed.

, [), then place] 0

In a monitoring scheme, the additional places (p4 and p in this example) may be parts

of a centralized monitoring mechanism, so it may be possible in certain cases to assume

that they are fault-free. Just as in Example 5.4, the checking mechanism (not shown in

Figure 5-7) detects and identifies place failures by evaluating a checksum on the state of

the overall Petri net. O

123

B B= 
CB- - D

200

010

001

010

200

--- LI_ - · l~~~~· -- it · - Y~~~~~~~~--~- -_- - -- ^_ -- _-I_



If C and D are chosen properly, we can actually perform detection and identification of

both place and transition failures. Note that matrices C and D can be chosen almost inde-

pendently (subject to the constraints analyzed abovel°). The following example illustrates

how this can be done.

Example 5.6 Identification of a single-transition failure or a single-place failure (but not of

both occurring together) can be achieved in the Petri net of Figure 5-1 using two additional

places (s = 2). Let C = [3 andD= [ . With these choices, matrices
2 33 4 1 1

B+ and B- are given by

B+ - D
CB+-D 

0 1

1 0 0

1 0 0

0 1 0

2 11

200

0 1 0

00 1

1 0 0

022

The parity check is performed through

[ { I]qdtI[3 -2 -3 3 1 ]h[t

If the parity check is a multiple of [3] (respectively [ 2 ] [ 3 ][ ] [ ), then

there is a place failure in p, (respectively P, p3, p4, p5). If the parity check is 5

(respectively [2], [] ), then transition tl (respectively t 2, t3 ) has failed to perform

its postconditions. If the parity check is (respectively ],[ ), then

transition t (respectively t 2, t3) has failed to perform its preconditions.

l°Matrix D has to satisfy D MIN(CB+, CB-), but we can always multiply matrix C by an integer
constant to increase the possibilities for entries in D.

124

B-
B- =

CB -D 



A

ps

Figure 5-8: Example of a separate redundant Petri net implementation that identifies single-
transition or single-place failures in the Petri net of Figure 5-1.

The resulting redundant Petri net implementation is shown in Figure 5-8 (the additional

connections are shown with dotted lines; the linear checker is not shown in the figure). 

The graphical interpretation of the monitoring scheme in the above examples is straight-

forward: we add a places and connect them to the transitions of the original Petri net. The

added places could be part of a centralized controller or could be distributed in the system.

The tokens associated with the additional connections and places can be regarded as simple

acknowledgment messages. The weights of the additional connections are given by the ma-

trices CB+ - D and CB -D. The choice of matrix C specifies detection and identification

for place failures, whereas the choice of D determines detection and identification for tran-

sition failures. Coding techniques or simple linear algebra can be used to guide the choice

of C or D. To detect single-place failures, we need to ensure that the columns of matrix

C are not multiples of each other (this is what guided our choice of C in Examples 5.5

and 5.6). Similarly, matrices D in Examples 5.4 and 5.6 were chosen so that their columns

are not the 6ame (they are allowed to be multiples of each other).

The above discussion clearly demonstrates that there are many choices for matrices C

and D for given failure detection and identification requirements. One interesting future

research direction is to develop criteria for choosing among these various possibilities. De-

pending on the underlying system, plausible objectives could be to minimize the size of

the monitor (number of additional places), the number of additional connections (from the

125

I I . ------ l---- -- -l-rrurr- - -~- -Andl - U~l~-
- - -- ---- · l ------------ ·111111�·-·I



original system to the additional places), and/or the number of tokens involved. Once these

criteria are well-understood, it would be beneficial to develop algorithmic techniques and

automatic tools that allow us to systematically choose C and D so as to satisfy any or all

of these criteria.

The additional places in our monitoring schemes (e.g., places p4 and p5 in Examples 5.5

and 5.6) may be parts of a centralized monitoring mechanism, so it may be reasonable in

certain cases to assume that they are fault-free. Nevertheless, our scheme is capable of

handling failures in any of the places in the Petri net embedding, including the added ones.

The checking mechanism (not shown in any of the figures in Examples 5.4, 5.5 and 5.6)

detects and identifies place failures by evaluating a checksum on the state of the overall Petri

net embedding. Our implicit assumption has been that no failure takes place during this

checksum calculation; it would be interesting to investigate ways to relax this assumption.

Note that, if we restrict ourselves to pure Petri nets, then we do not have a choice for D.

More specifically, we need to ensure that the resulting Petri net is pure, which means that

D = MIN(CB+, CB-). In such cases we may loose the ability to detect transition failures

(we may attempt to treat them as multiple place failures). In this restricted case we recover

the results in [97, 98]: given a pure Petri net S as in eq. (5.2), we can construct a pure Petri

net embedding with state evolution

qh[t + 1] = qh[t] + B [t]
CB

for a matrix C with nonnegative integer entries.

The distance measure adopted in [97] suggests that the redundant Petri net should

guard against place failures (corruption of the number of tokens in individual places). The

examples in [97] include a discussion of codes in finite fields and Petri nets in which addition

is performed modulo some integer. (For instance, modulo-2 addition matches well with Petri

net systems in which places are implemented using binary memory elements. In this case,

by choosing P [ -C I ] to be the (systematic) parity check matrix of a Hamming

code [111], one can achieve single-place failure detection and identification.) Our approach

is more general than in [97, 98], and is well-suited to failure detection and identification

schemes for DES's.

126



Figure 5-9: Concurrent monitoring using a non-separate Petri net implementation.

5.5 Monitoring Schemes Using Non-Separate

Redundant Implementations

5.5.1 Non-Separate Redundant Petri Net Implementations

In this section we characterize non-separate redundant Petri net implementations and use

this characterization to systematically construct more general monitoring schemes as shown

in Figure 5-9: the state of the redundant Petri net implementation is encoded in a form

that allows us to recover the state of the original Petri net and perform failure detection

and identification.

Let S be a Petri net with d places, u transitions and state evolution as given in eqs. (5.1)

and (5.2); let q[O] be any initial state q,[O] > 0 and X = {x[O], x[l],... } be any admissible

(legal) firing sequence under this initial state.

Definition 5.2 Let t be a Petri net with r - d + s places, u + v transitions (where s and

v are positive integers), initial state qh[O] and state evolution equation

qh[t + 1] = qh[t] + B+z[t] B-z[t

= qh[t] + (B+ - B-)z[t]. (5.4)

Petri net ' is a redundant implementation for S if it concurrently simulates S in the

following sense: there exist

1. an input encoding mapping : x[t] -+ z[t],

127

II__II_1_I_-I1·I)·II^_�_ _�1IX-�-----��XIIPI_-----Qli�CIIII �·P·L·I�-··�--^IIIIIIIP·-·III�IPIIII��� ~_IIIIXIII~~-I--···_·11 - - ...... .---.- ·11�·�11(·11)1I



2. a state decoding mapping e: qh[t] -+ q[t], and

?. a state encoding mapping g q,[t] , > qh[t],

such that for any initial state q[O] in S and any admissible firing sequence X (for qo[O]),

and for z[t] = (x[t]), q,[t] = (qh[t]) and qh[t] = g(q,[t]) for all time instants t > 0.

As defined above, a redundant implementation /i is a Petri net that after proper ini-

tialization (i.e., qh[0] = g(q,[O])) has the ability to admit any firing sequence X that is

admissible by the original Petri net S (under initial state q[O]). The state of the original

Petri net at time instant t is specified by the state of the redundant implementation and

vice-versa (through mappings e and g). Note that, regardless of the initial state q,[0O] and

the firing sequence X, the state qh[t] of the redundant implementation always lies in a

subset of the redundant state space (namely the image of q.a[] under the mapping g). The

v additional transitions represent new activity that can be used for failure-recovery.

For the rest of this section we focus on a special class of non-separate redundant imple-

mentations, where encoding and decoding can be performed through appropriate encoding

and decoding matrices. Specifically, we consider the case where there exists a d x ry decoding

matrix L and an r7 x d encoding matrix G such that, under any initial state q,[O] and any

admissible sequence of inputs X = {x[O], x[1],...},

qs[t] = Lqh[t], and

qh[t] Gq8 [t]

for all time instants t > 0. Furthermore, we will assume that v = 0 and (without loss

of generality) treat ~ as the identity mapping (we can always permute the columns of B+

and B- in eq. (5.1)). The state evolution equation of a non-separate redundant Petri net

implementation is then given by

qh[t + 1] = qh[t] + B+x[t]-B-x[t] (5.5)

= qh[t] + X[t], (5.6)

where B -- 3+ - B-.

128

_ __ �



The additional structure that is enforced through a redundant Petri net implementation

of the form described above can be used for failure detection and identification. In order to

systematically construct redundant implementations, we need to provide a common starting

point. The following theorem characterizes redundant Petri net implementations in terms

of a similarity transformation and a standard redundant Petri net.

Theorem 5.2 A Petri net 7/ with l d + s places, u transitions and state evolution as

in eqs. (5.5) and (5.6) is a redundant Petri net implementation for S (with state evolution

as in eqs. (5.1) and (5.2)) only if it is similar (in the usual sense of change of basis in the

state space, see Chapter 3) to a standard redundant Petri net implementation 7 whose

state evolution equation is given by

q5 [t + 1] = q.[t]+ x ][t]
O

= q4,[t] + [B x[t]. (5.7)

Here, B + , B- and B = B + - B- are the matrices in eqs. (5.1) and (5.2). Associ-

ated with the standard redundant Petri net implementation is the standard decoding matrix

L, = [Id o] and the standard encoding matrix Go = . Note that the standard

redundant Petri net implementation is a pure Petri net.

Proof: Clearly, LGq,[-] = Lqh[.] = q,[.]. Since all initial states are possible in S (q,[O] can

be any array with nonnegative integer entries), we conclude that LG = I. In particular,

L is full-row rank, G is full-column rank and there exists an x 7 matrix T such that

LT=[Id ] and -1G=[I . By employing the similarity transformation qj[t] =

Tqh[t], we obtain a similar system 7/' whose state evolution is given by

q'ht + 1] = (T-In')q[t] + (-B)x[t]

= qj[t] + B'x[t],

129



and has decoding and encoding matrices L' = LT = [Id o, aad G' = T-G [ d]

For all time instants t, q[t] = G'q[t] q [ by combining the state evolution

equations of the original Petri net and the redundant system, we see that

q[t- 1] = q[t] + Bx[t]

[ qa[t] Bx[t] ] [qt]] + [B ] 

The above equations hold for all initial conditions q.[O]; since all transitions are enabled

under some initial condition q[0], we see that B = B and B = 0.

If we regard the system i't as a pure Petri net, we see that any transition enabled in

S is also enabled in 'H'. Therefore, A1' is a redundant Petri net implementation. In fact,

it is the standard redundant Petri net implementation '14 with the decoding and encoding

matrices presented in the theorem. 0

Theorem 5.2 provides a characterization of the class of redundant Petri net implemen-

tations for the given Petri net S and is a convenient starting point for systematically con-

structing such implementations. The invariant conditions that are imposed by the added

redundancy on the standard Petri net 714 are easily identified: they are summa-ized by the

parity check Pq,[.], where P, = [ 0 I, ] is the parity check matrix.

We now produce the converse to Theorem 5.2, which leads to the systematic construction

of redundant Petri net implementations.

Theorem 5.3 Let S be a Petri net with d places, u transitions and state evolution as given

in eqs. (5.1) and (5.2). A Petri net Xi with d+s places, u transitions and state evolution

as in eqs. (5.5) and (5.6) is a redundant Petri net implementation of S if:

* It is similar to a standard redundant Petri net implementation '1, (with state evolution

equation as in (5.7)) through an rx invertible matrix T, whose first d columns consist

of nonnegative integer entries. (The encoding, decoding and parity check matrices of

130



the Petri net implementation X are then given by L = [Id o ] T, G - 1 [Id]

andP=[o I ]T.)

* Matrices B+ and B- are given by

[ B+
[ 

T-, - = GB- -D,

where D is an t7 x u matrix with nonnegative integer entries. Note that D has to be

chosen so that the entries of B+ and B- are nonnegative, i.e., V < MIN(GB+, GB-).

Proof: We know from Theorem 5.2 that any redundant Petri net implementation as

in eqs. (5.5) and (5.6) can be obtained through an appropriate similarity transformation

Tqh[t] = qt] of the standard redundant implementation W7a in eq. (5.7). In the pro-

cess of constructing from 1,, we need to ensure that X is a valid redundant Petri net

implementation of S, i.e., we need to meet the following requirements:

1. Given any initial condition q[O] (q.[O] has nonnegative integer entries), the marking

qh[O] = T-1Gqs[O] = - 1 [I] q[O] should have nonnegative integer entries.

2. Matrices B+ and B- should have nonnegative integer entries.

3. The set of transitions enabled in S at any time instant t should be a subset of the set

of transitions enabled in X (so that under any initial condition q,[O], a firing sequence

X that is admissible (legal) in S is also admissible in It).

The first condition has to be satisfied for any array q.[O] with nonnegative integer entries.

It is therefore necessary and sufficient that the first d columns of T - 1 have nonnegative

integer entries. This also ensures that the matrix difference

0 0

131



consists of integer entries. Without loss of generality we let

13+ = GB + - ,

B- = GB--D,

where the entries of D are integers chosen so that B+ and B- have nonnegative entries (i.e.,

it is necessary that D < GB+ and D < GB-).

We now check the last condition: transition t is enabled in the original Petri net S at

time instant t if and only if q,[t] > B-(:,j). If X has nonnegative entries, then

qs[t] > B-xj = Gq,[tj > GB-xj

* qh[l] > GB-x

* qh[t] > (GB- - D)x3

= qh[t] > BX-j,

where B-(:,j) B-xj (recall hat q,[t], B-, G and V have nonnegative integer entries).

Therefore, if transition tj is enabled in the original Petri net S, it is also enabled in X/

(transition tj is enabled in I if and only if qh[t] > B-(:,j)). It is not hard to see that

it is also necessary for V to have nonnegative integer entries (otherwise we can find a

counterexample by appropriately choosing the initial condition q[O]). 0

The following lemnma is derived easily from Theorem 5.3 and simplifies the construction

of redundant Petri net implementations:

Lemma 5.1 Let S be a Petri net with d places, u transitions and state evolution as given

in eqs. (5.1) and (5.2). A Petri net 1t with = d + s (s > 0) places, u transitions and state

evolution as in eqs. (5.5) and (5.6) is a redundant implementation of S if:

* Matrices B+ and B- have nonnegative integer entries given by

B+ = GB + - D,

B- = GB--D,

132



where G is a full-column rank vl x d matriz with nonnegative integer entries and is

an q x u matrix with nonnegative integer entries.

Note that no other restrictions are placed on a redrindant Petri net implementation.

For example, the entries of the decoding matrix L and the parity check matrix P can be

negative and/or rational.

5.5.2 Failure Detection and Identification

Separate redundant Petri net implementations are required whenever the structure of the

original Petri net cannot be changed. In cases where we have the flexibility to restructure

the original Petri net, we can look for non-separate redundant Petri net implementations

which may have additional features (e.g., use fewer tokens, connections, or places than

separate implementations of the same order). This is useful for Petri nets that model digital

controllers or computational systems. In essence, non-separate redundant implementations

permit fault tolerance considerations during the design of the overall (redundant) Petri net.

We will be using non-separate redundant Petri net implementations of the form in

Theorem 5.3. Note that the invariance conditions imposed by these constructions can be

checked by the parity matrix P = PfT = [ , I] T.

Transition Failures: Suppose we use a non-separate redundant Petri net implementation

to detect and identify transition failures. If transition tj fires at time instant t - 1 (i.e.,

x[t - 1] = xj) but fails to execute its postconditions, the erroneous state will be

qf[t] = qh[t] - B(:,j)= qh[t] - (GB+ - D) xj .

The error syndrome is

Pqf[t] = P(qh[t] - (GB + - ) xj)

= - P (GB+ - ) x

= - (P7) (T-'G,B + - V) xj

= PTDxj - PDxj .

133



1 © p2

P4

1
ta

Figure 5-10: Example of a non-separate redundant Petri net implementation that identifies
single-transition failures in the Petri net of Figure 5-1.

If the preconditions of transition tj are not executed, the erroneous state will be

qf[t] = qh[t] + B (:,j) = qh[t] + (GB- - 2)) xj

and the error syndrome is Pqft] = -P)xi (calculated similarly).

If we ensure that the columns of matrix POD are all distinct, we can detect and identify all

single-transition failures. Depending on the sign, we can also decide whether postconditions

or preconditions were not executed. Note that in the non-separate case the syndromes are

linear combinations of columns of D.

Example 5.7 The Petri net in Figure 510 is a non-separate redundant implementation

of the Petri net in Figure 5-1. It uses one additional place (s = 1); place p4, however, is

disconnected from the rest of the network and can be treated as a constant. The scheme

can detect and identify single-transition failures.

The transformation matrix T- ' and matrix D that we used in this example are

1 1 0 -1 1 1 

-T X 1 0 1 2 'D 1 0 1

1 1 1 2 1 1

T-~- - , 2)----j
134

I



They result in matrices G = T-G,, B + = GB+ - D and B- = GB- - D as follows:

110 001 100

01 010 100
0 2 1 3 0 0 0, 2 1

11 1 0 0 00 0 j

The decoding matrix L = L,T and the parity check matrix P = POT are given by

r 1 1 0 -1

-3 -4 -2 7

If the parity check Pqh[t] is -3 (respectively -2, -1), then transition t (respectively

t2, t3) has failed to execute its postconditions. If the check is 3 (respectively 2, 1), then

transition t (respectively t 2, t3 ) has failed to execute its preconditions. o

Note that the failure-identification schemes in Figures 5-6 and 5-10 are both able to

detect single-transition failures. The scheme in Figure 5-10, however, requires fewer con-

nections (only 7 are required as opposed to 9 in the scheme of Figure 5-6) and fewer places

(only 3 as opposed to 4). If desirable, non-separate redundant Petri net implementations

can be used to optimize other quantities (e.g., minimize the sum of weights between con-

nections or minimize the number of tokens that reside in a place). This may be a significant

advantage when places, connections, or tokens are hard or expensive to establish.

Place Failures: Suppose we use a non-separate redundant Petri net implementation to

protect against place failures. If, due to a failure, the number of tokens in place pi is

increased by c, the faulty state is given by qf [t] = qh[t] + epi (where epj is an it-dimensional

array with a unique non-zero entry at its ith position, epi = c x [0 .-- 1 ... ] )

The parity check will then be

Pqf[t] = P(qh[t]+ep,)

= + Pep,

= cxP(:,i).

135



Figure 5-11: Example of a non-separate redundant Petri net implementation that identifies
single-place failures in the Petri net of Figure 5-1.

We can detect single-place failures if all columns of the matrix P = [ I ] T are non-

zero. If the columns of P are not rational multiples of each other, then we can detect and

identify single-place failures.

Example 5.8 In Figure 5-11 we show a non-separate redundant implementation of the

Petri net in Figure 5-1. The implementation uses two additional places (s = 2) and is able

to identify single-place failures. Note that place p4 essentially acts as a constant.

The transformation matrix T- 1 and matrix ) that were used, as well as matrices B+

and B-, are given by

1 2 0 -1 1

10 1 11

1 12 10

111 1 1 0

13 0 01

210

101

211

211

210

001

0 1 0

100

000

1 0 1

100

001

000 L0 20

The parity check matrix is

P=[ O 4I2] [4 -1 3 1 -5 2 

N

Note that the syndromes for transition and place failures in non-separate Petri net

136

1r_1 = I ' = I H+ = 7 -



embeddings are more complicated than the syndromes in separate embeddings. At the

same time, however, we are given some additional flexibility (design parameters), which we

can use to construct "optimal" embeddings, that is, embeddings that maintain the desired

monitoring capabilities while minimizing certain quantities of interest (such as tokens, con-

nections or places). We will not address such optimization questions; the examples that we

presented in this section illustrated some interesting questions that may be posed in the

future.

5.6 Applications in Control

A DES is usually monitored through a separate control mechanism that takes appropriate

actions based on observations about the state and activity in the system. Control strate-

gies (such as enabling or disabling transitions and external inputs) are often based on the

Petri net that models the DES of interest, [72, 114, 71]. In this section we demonstrate

that redundant Petri net implementations can facilitate the task of the controller by mon-

itoring active transitions and by identifying "illegal" (unmodeled) transitions. One of the

biggest advantages of our approach is that it can be combined with failure detection and

identification, and perform monitoring despite incomplete or erroneous information.

5.6.1 Monitoring Active Transitions

In order to time decisions appropriately, the controller of a DES may need to identify

ongoing activity in the system. For example, the controller may have to identify all activel l

transitions or it may need to detect (two or more) transitions that have fired simultaneously.

If we use the techniques of Section 5.4, we can construct separate redundant Petri net

implementations that allow the controller to detect and locate active transitions by looking

at the state of the redundant implementation. The following example illustrates this idea.

Example 5.9 We revisit the Petri net of Figure 5-3 which models a distributed processing

network. If we add one extra place (s = 1) and use matrices C [ 1 1 3 2 3 1 ] and

llWe define an active transition as a transition that has not completed yet: it has used all tokens at its
input places but has not returned any tokens at its output places. If we use the terminology of the transition
failure model in Section 5.3, we can say that active transitions are the ones that have not completed their
postconditions.

137

-1_1_·111�-- _ - ·11_11-^... �.�� -----�-·11111111



t3

2
pi(___

2

'4

p7

Figure 5-12: Example of a separate redundant Petri net implementation that enhances
control of the Petri net of Figure 5-3.

D =[ 2 5 3 1 ], we obtain the separate redundant Petri net implementation shown in

Figure 5-12.

At any given time instant t, the controller of the redundant Petri net in Figure 5-12

can determine if a transition is under execution by observing the overall state qh[t] of the

system and by performing the parity check

[ -C I ]qh[t]= [ -1 -1 -3 -2 -3 -1 1 ] qh[t]

If the result is 2 (respectively 5, 3, 1), then transition tl (respectively t 2, t 3, t 4 ) is under

execution. Note that in order to identify whether multiple transitions are under execution,

we need to use additional places (s > 1).

The interpretation of the additional place in this example is straightforward. Place

P7 acts as a place-holder for special tokens (acknowledgments): it receives 2 (respectively

1) such tokens whenever transition t (respectively t4 ) is completed; it provides 1 token in

order to enable transition t2 . Explicit acknowledgments about the initiation and completion

of each transition are avoided. Furthermore, by adding enough extra places, we can make

the above monitoring scheme robust to incomplete or erroneous information (as in the case

when a certain place fails to submit the correct number of tokens). 0

138

)3



5.6.2 Detecting Illegal Transitions

The occurrence of illegal or unmodeled activity in a DES can lead to complete control

failure. In this section we use separate redundant Petri net implementations to detect

and identify illegal transitions in DES's. We assume that the system modeled by the

Petri net is observed" through two different mechanisms: (i) place sensors that provide

information about the number of tokens in each place, and (ii) transition sensors that

indicate when each transition fires. We now discuss how to obtain a separate redundant

Petri net implementation to detect discrepancies in the information provided by these two

sets of sensors in order to pinpoint illegal behavior.

Suppose that the DES of interest is modeled by a Petri net with state evolution equation

q.[t+1]=q.[t]+ [ B+ B ]x[t]-[ B- B ]x[t],

where the columns of B + and B; model the postconditions and preconditions of illegal

transitions. We will construct a separate redundant implementation of the legal part of the

network. The overall system will then have a state evolution equation given by

qh[t + 1] _[] = + q h[t] + 1 B x[t- -
qh2[t+ 1] CB+ - D O CB -D 0o 

Our goal is to choose C and D so that we can detect illegal behavior. Information

about the state of the upper part of the redundant implementation (with state evolution

qhl[t+ 1] = qhl[t]+ [ B+ B+ ] x[t]- [ B- B; ] x[t]) will be provided to the controller

by the place sensors. The effect of illegal transitions will be captured in this part of the

redundant implementation by the changes in the number of tokens in the affected places.

The additional places (with state evolution qh2[t + 1 = qh2[t] + [ CB+ - D O ] x[t] -

[ CB- - D 0 ] x[t]) are internal to the controller and act only as test places 12. Once the

number of tokens in these test places is initialized appropriately (i.e., qh2[0] = Cqhl[0O),

the controller removes or adds tokens to these places based on which (legal) transitions take

place. Therefore, the information about the bottom part of the system is provided by the

12Test places cannot inhibit transitions and can have a negative number of tokens. A connection from a
test place pi to transition t simply indicates that the number of tokens in pi will decrease when t, fires.

139

1_1_1�··___^___1_______�_l__lll�C_� 1 �-^C·l---·-·ll ------- I I -·�_- _ _



transition sensors.

If an illegal transition fires at time instant t, the illegal state qf[t] of the redundant

implementation is given by

qf[t] = qh[t] + B x[t]- [B x,[t]=- qh[t]+ [ x[t],

where Bu, B + - B; and xu[t] denotes an array with all zero entries, except an entry that

is "1" and indicates the illegal transition that fired. If we perform the parity check Pqf[t],

we get

Pqf[t] = [-C I, ]q[t]

= [-C I] (q[]+[ BU]xUt])

= -CBx,[t] .

Therefore, we can identify which illegal transition has fired if all columns of CBu are unique.

Example 5.10 The controller of the maze in Figure 5-2 obtains information about the

state of the system through a set of detectors. More specifically, each room is equipped

with a "mouse sensor" that indicates whether the mouse is in that room. In addition, "door

sensors" get activated whenever the mouse goes through the corresponding door.

Suppose that due to a bad choice of materials, the maze of Figure 5-2 is built in a way

that allows the mouse to dig a tunnel connecting rooms 1 and 5 and a tunnel connecting

rooms and 4. This leads to the following set of illegal (i.e., non-door) transitions in the

network:

1 -1 1 -1

0 0 0 0

0 O O 0

0 0 -1 1

-1 1 0 0

140

B,=



In order to detect the existence of such tunnels, we can use a redundant Petri net

implementation with one additional place (s = 1), C = [ 1 1 2 3 ] and D =

[ 1 1 1 1 2 1 ]. The resulting redundant matrices B+ and B- are given by

,. [ r B + IB+1
CB+-D 0 

B- B;]U - _~~~~

0 I

001001

010000

100000

000010

000100

000200

100100

001000

010000

000001

000010

000011

The upper part of the network is observed through the place ("mouse") sensors. The

number of tokens in the additional place is updated based on information from the transition

("door") sensors (it receives 2 tokens when transition t3 fires; it looses 1 token each time

transition t4 or t5 fires). The parity check is given by

-1 -1 -1 -3 -2 -1 1 ] qh[t]

and is 0 if no illegal activity has taken place. It

transition B,(:, 1) (respectively B,(:,2), Bu(:,3),

order to be able to detect the existence of a tunnel

door sensors.

is 2 (respectively -2, 1, -1) if illegal

B,(:,4)) has taken place. Clearly, in

in the maze, we only need to use three

0

141

Do .

1010

0000

0000

0001

0100

0 0 0 0

0101

0000

0000

0010

1000

0000 

2- r
. -LCB--DT

-. _ _ , ,. @ -�-1__··--(1_------1�·1*111-·---- ------i��ll-· I--�



5.7 Summary

In this chapter we have presented techniques that systematically incorporate redundancy

into a given Petri net. The result. is a methodology for monitoring failures or facilitating

control of underlying DES's. We defined and characterized classes of redundant Petri net

implementations, which we then used for systematically constructing failure detection and

identification schemes for a variety of failures. Our approach extended the results on fault-

tolerant Petri nets in [97, 98] by introducing non-separate redundant implementations, by

allowing the study of non-pure Petri nets and by applying the methods to the development

of monitoring schemes for DES's. Our monitors detect and identify failures by using simple

linear checks; furthermore, they can be made robust to erroneous or incomplete information

and do not need to be re-constructed when the initial state of the Petri net changes.

Future work needs to better characterize the cost of our schemes in terms of an ap-

propriate set of measures (e.g., the total number of links and/or the number of tokens).

Once these measures are well understood, we need to systematically construct monitoring

schemes with minimal cost (for example, choose linear codes and weights that minimize the

number of connections). Along the same lines, we should investigate the constraints that

are required to develop hierarchical/distributed monitoring schemes for complex Petri nets.

Another interesting future extension is to study examples where a subset of the transitions

is uncontrollable and/or unobservable (i.e., when links to or from the transition are not pos-

sible, [71]), or cases where the number of tokens in a subset of the places is unavailable. The

main problem is to algorithmically devise schemes that have the desirable error-detecting

capabilities while minimizing the associated "cost". In order to achieve these objectives,

we may want to relax some of our assumptions: for example, if we drop the requirement

that failure detection/identification is concurrent, we can build monitors that are matched

to the dynamic nature of the underlying Petri net and the types of failures expected. These

monitors will perform "non-concurrent" failure identification and will also have the ability

to handle failures in the error-correcting mechanism. Finally, in order to achieve error-

correction we need to introduce failure-recovery transitions (which will serve as correcting

actions when particular failures are detected).

142

_ �_ I



Chapter 6

Unreliable Error-Correction

6.1 Introduction

In this chapter we take a more "classical" view of fault tolerance (as studied, for example, in

[107, 112, 95, 96, 33]) and construct reliable dynamic systems exclusively out of unreliable

components, including unreliable components in the error-correcting mechanism. As we

add redundancy into our system, we allow the probability of failure in each component

to remain constants. We assume that all components that we use suffer transient failures

with constant probability independently between different components and independently

between different time steps. Since our systems evolve with 'time according to their internal

state, we need to deal with the effects of error propagation.

This chapter is organized as follows. In Section 6.2 we state the problem and our

assumptions. In Section 6.3 we introduce and analyze a distributed voting scheme that is

a generalization of modular redundancy, employing multiple unreliable system replicas and

multiple unreliable voters. We show that by increasing the amount of redundancy (system

replicas and voters) modestly, one can significantly extend the time interval for which a

fault-tolerant implementation will operate "correctly". More specifically, increasing the

amount of redundancy (systems and voters) by a constant amount, allows one to double

the number of time steps for which the fault-tolerant implementation will operate within

a specified probability of failure. In Section 6.4 we combine our distributed voting scheme

'We are essentially adopting the second of the two different approaches to fault tolerance discussed in
Chapter 1.

143

11 1 _ _ -

·_- _ _ -



with linear codes that call be corrected with low complexity. This allows us to obtain

interconnections of identical linear finite-state machines that operate in parallel on distinct

input streams and use only a constant amount of redundant hardware per machine to achieve

arbitrarily small probability of failure over any specified time interval. Equivalently, given

a specified probability of failure, one can achieve "correctness" for any given, finite number

of time steps using a constant amount of redundancy per system. Along the way we make

connections with previous work on reliable computational circuits, stable memories, and

graph and coding theory.

6.2 Problem Statement

In a dynamic system an incorrect transition to the next state at a particular time step will

not only affect the output at that time step, but will typically also affect the state and

therefore the output of the system at later time steps. In Chapters 2 through 5 we added

structured redundancy into our dynamic systems, and then performed error detection and

correction by identifying violations of the state constraints and taking appropriate correcting

actions. This approach works nicely if the error-correcting mechanism is fault-free. If we

are to allow failures in all components of the system, however, we need to ensure that

failures in the error-correcting mechanism will not be devastating. To realize the severity

of the problem, recall the toy example that we introduced in Chapter 1: assume that we

have a dynamic system (e.g., a finite-state machine) in which the probability of making

a transition to an incorrect next state (on any input) is Pa (independently between time

steps). Clearly, the probability that the system follows the correct state trajectory for L

consecutive time steps is (1 - ps)L, and goes to zero exponentially with L. One solution

is to use modular redundancy with feedback (as in Figure 1-2): at the end of each time

step, a voter decides what the correct state is and feeds this corrected state back to all

systems. If the voter feeds back an incorrect state with probability Pv, this approach will

not work: after L time steps, the probability that the system has followed the correct state

trajectory is at best 2 (1 - p)L and again goes down exponentially with L. The problem is

2 This bound ignores the (rare) possibility that a failure in the voter may result in feeding back the correct
state (because the majority of the systems are in an incorrect state).

144

ii



that failures in the voter (or more generally in the error-correcting mechanism) corrupt the

overall redundant system state and cause error propagation. Therefore, given unreliable

systems and unreliable error-correction, we need to use a different approach in order to

guarantee reliable state evolution for a larger number of time steps.

The first question that we ask in this chapter is the following: given unreliable systems

and unreliable voters (more generally given unreliable components), is there a way to guar-

antee the operation of a dynamic system for an arbitrarily large (but finite) number of time

steps? Furthermore, what is the tradeoff between the amount of redundant hardware and

the associated probability of failure or the number of time steps for which the system is

required to operate reliably? Our approach will use the scheme shown in Figure 1-3 but will

allow failures in both the redundant implementation and the error-correcting mechanism.

Clearly, since all components of this construction are allowed to fail, the system will not

necessarily be in the correct state at the end of a particular time step. What we hope for,

however, is for its state to be within a set of states that correspond to the correct one: in

other words, if a fault-free error corrector/decoder was available, then we would be able to

obtain the correct state from the possibly corrupted state of the redundant system. This

situation is shown in Figure 6-1: at the end of each time step, the system is within a set of

states that could be corrected/decoded to the actual state (in which the underlying system

would be, had there been no failures). Even when the decoding mechanism is not fault-free,

our approach is still desirable because it guarantees that the probability of a decoding fail-

ure will not increase with time in an unacceptable fashion. As long as the redundant state

is within the set of states that represent the actual (underlying) state, the decoding at each

time step will be incorrect with a fized probability, which depends only on the reliability

of the decoding mechanism and does not diminish as the dynamic system evolves in time.

Our method guarantees that the probability of incorrect state evolution during a certain

time interval is much smaller in the redundant dynamic system than in the original one.

6.3 Distributed Voting Scheme

The problem in the modular redundancy scheme of Figure 1-2 is that a voter failure corrupts

the states of all system replicas. This results in an overall failure, i.e., a situation where

145

�·_111___1______1__·11_111_1-� . -l·LIIIIII --�-XI III -1___.�_ __�



Correction
r 

I, 

o o

i
Current Faulty Next Corrected
State qt State q [tl] Next State

h q4t+l]

Valid '
- State . -, o\ Set of States

0' ,00 Representing a
to Invalid ' Single Valid State

. State

Figure 6-1: Reliable state evolution using unreliable error-correction.

the state of our redundant implementation does not correctly represent the state of the

underlying dynamic system (e.g., if the majority of the systems agrees on an incorrect

state, then even a fault-free voter would not be able to recover the correct state of the

underlying dynamic system). To avoid this situation, we need to ensure that failures in the

error-correcting mechanism do not have such devastating consequences. One way to achieve

this is to have several voters and to perform the error-correction in a distributed fashion, as

shown in Figure 6-2. The arrangement in Figure 6-2 uses n system replicas and n voters.

All n replicas are initialized at the same state and receive the same inputs. Each voter

receives "ballots" from all systems and feeds back a correction to only one of the systems.

This way, a failure in a single voter only corrupts one of the system replicas and not all of

them.

Notice that the redundant implementation of Figure 6-2 operates correctly as long as

more than half of the n systems are in the correct state, since a fault-free voter is then able

to recover the correct state of the underlying system. Also notice that as long as half or

more of the systems are in the correct state all voters ideally feed back the correct state,

unless there is a voter failure. Therefore, a failure in a particular voter or a particular

system will be corrected at future time steps with high probability if at least half of the

146

· � �__ _ __ �_ �_ I _ _



Inl

Figure 6-2: Modular redundancy using a distributed voting scheme.

other systems end up in the correct state. We will say that an overall failure happens when

half or more of the systems are in a corrupted state3. Our goal will be to ensure that, with

high probability, the fault-tolerant implementation will operate for a finite number of time

steps with no overall failure, i.e., with at least [ 1] systems in the correct state at any given

time step. Note that it is not necessary for each of these []1 systems to remain in the

correct state for all consecutive time steps.

Theorem 6.1 Suppose that each system takes a transition to an incorrect state with prob-

ability p, and each voter feeds back an incorrect state with probability p, (independently

between systems, voters and time steps). Then the probability of an overall failure at or

before time step L (starting at time step 0) can be bounded as follows:

Pr[ overall failure at orbefore timestep L ] < L p'(l - p)-i,
i= n/2J i/

where p -- p, + (1 - p,)p,. This probability goes down exponentially with the number of

systems n if and only if p < .

Proof: Given that there is no overall failure at time step r-1, the probability that system j

3 This definition of an overall failure is actually conservative because the overall redundant implementation
may perform as expected even if more than half of the systems are in an incorrect state. What we really
need is for the majority of the systems to be in the correct state.

147

.__ 1_1_ �I I�1�Ys_____ 1_II_1I X~ -L ---- 11^· Ir~l �_�1�-·111 .__._ -



ends up in an incorrect state at time step r is bounded by the probability that either its

voter fails or its voter does not fail, but system j itself transitions to an incorrect state, i.e.,

Pr[ system j in incorrect state at r I no overall failure at r-1 ] < pi + (1 - p)p, - p .

Given no overall failure at time step r-1, the probability of an overall failure at time step r

is the probability that half or more of the n system replicas fail:

Pr[ overall failure at r no overall failure at r-l ] < ( ) pi(1 - p)-i.
i=Ln/2J i

Using the above expression, we can bound the probability of an overall failure at or

before a certain time step L using the union bound:

Pr[ overall failure at or beforeL] L ] < L n p(l-p)
~_Ln/2 j i

Note that the bound on the probability of failure increases linearly with the number of

time steps (because of the union bound). The bound goes down exponentially with n if and

only if p is less than 2; we can see this using the Sterling approximation and the results on

p. 531 of [38] and assuming p < , we see that

n pn/2 ( 1 - '/
where(fo simplicty we P(1PA( <) p n/2 (1 p) n/2
n/2 i=,/2 i

(where for simplicity we have taken n to be even). Since

ft~ , \ 2< - 2nn n/2 -

we conclude that ( p( - p)n-i will decrease exponentially with n if and only if
i=n/2 i

p(1 - p) < - (i.e., if and only if p is less than ). rl

A potential problem with the arrangement in Figure 6-2 is the fact that, as we increase

148

I__ _ __ _�_ _ _ _ _I_ �_�� __ _� ___



n, the complexity of each voter (and therefore p,) increases4 . If this causes p to increase

beyond , we can no longer guarantee exponential decay of the probability of an overall

failure (note that we can ensure that p < as long as Pv < 2-P ). In the next section we

consider an arrangement in which the number of inputs to each voter is fixed, which means

that the voter complexity and v, remain constant as we increase the number of systems

and voters. More generally, it would be interesting to explore the performance of schemes

where, for example, we fix or bound the number of inputs to each voter. Such situations

have been studied in the context of reliable computational circuits and stable memories5 .

Another concern about the approach in Figure 6-2 is that, in order to construct dy-

nanic systems that fail with an acceptably small probability of failure during any (finite)

time interval, we may need to increase the hardware in our redundant implementations

unacceptably. More specifically, if we double the number of time steps, the bound in The-

orem 6.1 suggests that we may need to increase the number of system replications by a

constant amount (in order to keep the probability of an overall failure at the same level).

To make an analogy with the communications problem of digital transmission through

an unreliable link, what we have shown in this section is very similar to what can be achieved

without the coding techniques that Sbannon suggested in [95, 96]. More specifically, in the

communications setting we can make the probability of a transmission error as small as we

want by arbitrarily replicating (retransmitting) the bit we want to transmit, but at the cost

of correspondingly reducing the rate at which information is transmitted. If, however, we

are willing to transmit k bits as a block, then we can use coding techniques to achieve an

arbitrarily small probability of transmission error with a constant amount of redundancy

per bit 6. In the next section we transfer this coding paradigm to our computational setting.

Specifically, we show that for identical linear finite-state machines that operate in parallel

on distinct input sequences, one can design a scheme that requires only a constant amount

4A nice discussion and further pointers on the hardware complexity of voting mechanisms can be found
in [48]; more general voting algorithms and complexity issues are discussed in [79].

In [69, 82] an (m, k, a, 3) compressor graph is defined as a bipartite multigraph with m input nodes and
m output nodes such that the following property is satisfied: for every set A that contains at most am input
nodes, the set of output nodes that are connected to at least k/2 inputs in A contains at most fim elements.
We can use such multigraphs to generalize the distributed voting scheme that we discussed in this section.

'This is achieved by encoding k information bits into n > k bits, transmitting these n bits through the
channel, receiving n (possibly corrupted) bits, performing error-correction and finally decoding the n bits
into the original k bits.

149

1_1_1··1 1 l_______m_(l·__�____�



of redundancy per machine/sequence to achieve arbitrarily small probability of failure over

any finite time interval.

6.4 Reliable Linear Finite-State Machines Using Constant

Redundancy

In this section we combine a variation of the distributed voting scheme of the previous

section with linear coding techniques. We obtain interconnections of identical linear finite-

state machines (LFSM's) that operate in parallel on distinct input streams and require only

a constant amount of redundancy per machine to achieve an arbitrarily small probability

of failure over a specified (finite) time interval. The codes that we use are low-density

parity check codes (see [37, 68, 99, 101]); error-correction is of low complexity7 and can be

performed using majority voters and XOR gates. The voters that we will be using vote

on J-1 bits (where J is a constant). Throughout this section we will assume that these

(.J-1)-bit voters fail with probability p, and the 2-input XOR gates fail with probability

pa. For simplicity, we will also assume that no failures take place in the single-bit memory

elements (flip-flops), although our approach can also handle this type of failure.

Before we describe our construction, we provide an introduction to low-density parity

check codes [37], and discuss how they have been used to construct stable memories, [104,

106, 105].

6.4.1 Low-Density Parity Check Codes and Stable Memories

An (n, k) low-density parity check (LDPC) code is a linear code that represents k bits of

information using n total bits, [37]. Just like any linear code, an LDPC code has an n x k

generator matrix G with full-column rank; the additional requirement is that the code has a

parity check matrix P that (is generally sparse and) has exactly K "l's" in each row and J

"l's" in each column. It can be easily shown that the ratio K has to be an integer and that

P has dimension nJ x n, [37]. Each bit in a codeword is involved in J parity checks, and

each of these J parity checks involves K-I other bits. Note that the rows of P are allowed

7We use codes with low decoding complexity because failures in the correcting mechanism could otherwise
become the bottleneck of our fault-tolerant scheme.

150



to be linearly dependent (i.e., P can have more than n-k rows) and that the generator

matrix G of an LDPC code is not necessarily sparse.

In his seminal thesis [37] Gallager studied ways to construct and decode LDPC codes.

In particular, he constructed sequences of (n, k) LDPC codes for fixed J and K with rate

k > 1- . Gallager suggested and analyzed the performance of simple iterative procedures

for correcting erroneous bits in corrupted codewords; we summarize these procedures below.

Iterative Decoding For each bit:

1. evaluate the J associated parity checks (since each column of P has exactly J l's");

2. if more than half of the J parity checks for a particular bit are unsatisfied, flip the

value of that bit; do this for all bits concurrently;

3. iterate;

In order to analytically evaluate the performance of this iterative scheme, Gallager

slightly modified his approach:

Modified Iterative Decoding Replace each bit d with J bit-copies {di,d?,..., dJ } (all

bit-copies are initially the same); obtain new estimates of each of these copies (i.e., J new

estimates {d, d,..., d})) by

1. evaluating J-1 parity checks for each bit-copy (each time step excluding one different

parity check from the original set of J checks);

2. flipping the value of a particular bit-copy if half or more of the J-1 parity checks are

unsatisfied;

3. iterating.

A hardware implementation of Gallager's modified iterative decoding scheme can be

seen in Figure 6-3. Initially, we start with J copies of an (n, k) codeword (i.e., a total of Jn

bits). During each iteration, each bit-copy is corrected using an error-correcting mechanism

of the form shown in the figure: there are a total of J- 1 parity checks, each evaluated via

K-1 2-input XOR gates; the output of each voter is "1" if half or more of the J-1 parity

checks are non-zero. The correction is accomplished by XOR-ing the output of the voter

with the previous value of the bit-copy.

151

I--I�I--·L^·�··YII·I�s1·sl�·�·-*11�� -�-- 111-1---11�11--- .--



I I I I I L...--1 ' I

I 1 1 1 -.....-. 1 I

I I I I I 1 1.....

J Copies of
(n,k) Codeword

Correcting , -
Mnahnim '
for Each
Bit-Copy

K-1 Other
Bit-Copies

(Jxn Total Bit-Copies)

Parity
,ks

S

Figure 6-3: Hardware implementation of the modified iterative decoding scheme for LDPC
codes.

Note that in the modified iterative decoding scheme, each parity check requires K- 1

input bits (other than the bit-copy we are trying to estimate). Since each of these input

bits has J different copies, we have some flexibility in terms of which particular copy we use

when obtaining an estimate for copy 4d of bit di (1 < j < J). If we are careful enough in

how we choose among these J bit-copies, we can guarantee that the number of independent

iterations will be non-zero (i.e., the number of independent iterations is the number of

iterations for which no decision about any bit-copy is based on a previous estimate of this

same bit-copy). In particular, when estimating a copy of bit d using an estimate of bit dj,

we should use the bit-copy of dj that disregarded the parity check involving di (otherwise,

the estimate of di would immediately depend upon its previous estimate).

The number of independent iterations, which we denote by m, is important because

during these first m iterations, the probability of error in an est;mate for a particular bit-

copy can be calculated easily using independence. It is not hard to show that the number of

independent iterations for any LDPC code is bounded by m < j lo)(J-)] in his thesis

Gallager suggested a procedure for constructing sequences of (n, k) LDPC codes with fixed

J, K (i.e., with parity check matrices that have J "l's" in each row and K "l's" in each

column) such that k > 1- and with the number of independent iterations m bounded

152

Cnrretinn



by

log n + log KJ-K-J
m + 1 > 2 > m .

2log[(K - 1)(J -1)]

Building on Gallager's work, Taylor considered the following problem in [106]: suppose

that we have unreliable memory elements (flip-flops) which can store a single bit ("0" or

"1") but may fail independently during each time step. More specifically, a bit stored in

an unreliable flip-flop may get flipped with probability Pc during each time step. Taylor

used (n, k) LDPC codes to construct reliable (or stable) memory arrays out of unreliable

flip-flops: a reliable memory array uses n flip-flops to store k bits of information. At the

end of each time step an unreliable error-correcting mechanism re-establishes the correct

state in the memory array. (Note that if error-correction is fault-free, the problem reduces

to the problem of communicating through a sequence of identical unreliable channels, while

performing error detection/correction at the end of each transmission through a channel:

the first node transmits an (n, k) codeword to the second node via an unreliable commu-

nication link; after performing error detection and correction, the second node transmits

the corrected (ideally the same) codeword to the third node, and so forth.) The memory

scheme performs reliably for L time steps if at any time step r (O <_ r < L) the k infor-

mation bits can be deduced from the n memory bits. This means that the codeword stored

in the memory at time step r is within the set of n-bit sequences that get decoded to the

originally stored codeword (i.e., if we employ fault-free iterative decoding at the end of time

step r, we will obtain the codeword that was stored in the memory array at time step 0).

Taylor used LDPC codes and Gallager's modified iterative procedure to build a correct-

ing mechanism out of 2-input XOR gates and (J- 1)-bit voters that may fail (i.e., output

an incorrect bit) vith probabilities Pz and p, respectively. Note that since he was using the

modified iterative decoding scheme, there were J estimates associated with each bit, each

of which was corrected based on a simple circuit that involved one (J- 1)-bit voter and

1 + (K-1)(J-1) 2-input XOR gates (as shown in Figure 6-3). Taylor constructed reliable

memory arrays using (n, k) LDPC codes (with > - , J < K) such that the probability

of a failure increases linearly with the number of time steps r and decreases polynomially

with k (i.e., the probability of failure is O(k-P) for a positive constant ). Therefore, by

153



increasing k we can make the probability of failure arbitrarily small while keeping k > 1 -

(i.e., the redundancy per bit remains below a constant). Note that Taylor's construction

of reliable memory arrays uses Jn voters, Jn flip-flops and Jn[l + (J - 1)(K - 1)] 2-input

XOR gates; since - < g---r , the overhead per bit (in terms of overall flip-flops, XOR gates

and voters) remains below a constant as k and n increase. Taylor also showed that one can

reliably perform the XOR operation on k pairs of bits by performing component-wise XOR-

ing on two (n, k) codewords. In fact, he showed that one can reliably perform a sequence

of r such component-wise XOR operations, [105]. His results for general computation (i.e.,

component-wise binary operations other than XOR) were in error; see the discussions in

[100, 83].

Here, we extend Taylor's techniques to handle LFSM's.

6.4.2 Reliable Linear Finite-State Machines

Without loss of generality, we assume the LFSM that we are trying to protect has a d-

dimensional state that evolves according to

q[t + 1] = Acq[t] D bx[t], (6.1)

where A, is a d x d matrix in classical canonical form (see the discussion in Section 4.2).

For simplicity, we also assume that the LFSM has a single input. Note that any such

LFSM can be implemented using XOR gates and flip-flops as outlined in Chapter 4. In

such implementations, each bit in the next-state vector q[t + 1] can be generated using at

most two bits from q[t] and at most two 2-input XOR gates (this is due to the structure of

matrix Ac).

We will take k such LFSM's that run in parallel (each with possibly different initial

state and different input streams) and use an LDPC scheme to protect their evolution in

time (which constitutes computation on their input streams). What we have are k parallel

instantiations of the system in eq. (6.1):

[ ql[t + 1] ... qk[t + 1] = A qt] ... qk[t] ] b[ z [t] . .*-*[t] 

154



-Hi

k Distinct 
Inputs

-

I Relacewit >

k Distinct
Inputs

k Identical
LFMS's

L

0
0a)O
L)

0

ICI

, ;n

n Redundant
LFSM'sLFSM's

Figure 6-4: Replacing k LFSM's with n redundant LFSM's.

Let G be the n x k encoding matrix of a linear code. If we post-multiply both sides of

the above equation by GT, we get the following n encoded parallel instantiations:

[ ql[t+ 1] *- qk[t 1]]GT = (A, [ ql[t]

(3 (b [ x[t]

= A, ([ ql[t]

eb([ xl[t]

*-- qk[t] ]) GTE

·*-- k[t] ])G

... qk[t] I GT) E
...- X[t] ] GT) 

or equivalently

- Ac[ [t] .. t] ]@b ([l xi[t] *- xk[t]]GT)

e (,[t], . ., (k[it])

(6.2)

where

(6.3)

Effectively, we have n LFSM's with state evolution of the form of eq. (6.1), performing

k different encoded instantiations of the system in eq. (6.1). As shown in Figure 6-4, we

155

[ C[t +11 ... t + 1] 

[ G r] ... .[-r ]= [q r] - ·- [r] I G



have replaced the operation of k identical LFSM's acting on distinct input streams by n

redundant LFSM's acting on encoded versions of the k original inputs (encoded according

to an (n, k) linear code with generator matrix G). We will use a separate set of flip-flops

and XOR gates to implement each of the n redundant systems, and we assume for simplicity

that the flip-flops are reliable. We also assume that encoding is performed instantaneously

and is fault-free. (The latter assumption can be relaxed; the real issue with the encoding

mechanism is its time and hardware complexity - see the discussion in Section 6.4.3.) At

each time step, we will supply encoded inputs to these n systems and allow each one to

evolve to its corresponding (and possibly erroneous) next state. At the end of the time step

we will correct errors in the new states of the n systems by performing error-correction on

d codewords from our (n, k) code, with the ith codeword obtained by collecting the ith bit

from each of the n state vectors.

If error-correction was fault-free, we could invokes Shannon's result and ensure that the

condition in eq. (6.3) will be satisfied with high probability (at least for a specified, finite

number of time steps). By increasing both k and n, we would be able to make the probability

of "error per time step" (i.e., the probability of an overall failure at a particular time

step given no corruption at the previous time step, denoted by Pr[ error per time step ])

arbitrarily small. Then, using the union bound, we could conclude that the probability of

an overall failure over L consecutive time steps is bounded as follows:

Pr[ overall failure at or before time step L ] < L Pr[ error per time step ].

In order to allow failures in the error-correcting mechanism, we use the following ap-

proach: we employ LDPC codes and perform error-correction in each bit using an unreli-

able error-correcting mechanism (like the one in Figure 6-3). Note that the error-correcting

mechanism for each bit is implemented using separate sets of unreliable XOR gates and

'This argument can be made more precise by looking at the probability of error per bit during each time
step. Assuming that there are no corruptions in any of the n state vectors at the beginning of a given time
step, we can easily bound the probability of an error in each bit of the n next-state vectors (based on the
number of XOR operations that are involved). If this bit-error probability is less than - and if we ensure that
errors among different bits are independent (which will certainly be the case if we use separate XOR gates
to generate each bit), then our problem essentially reduces to an unreliable communication problem. The
key is that by assuming fault-free error-correction, we are ensuring that at the beginning of each time step
the overall redundant state will be correct (unless, of course, failures during state evolution have resulted in
an overall failure and have caused the correcting mechanism to recover to an incorrect state).

156

- I ------ -- � L�



(n,k) Codeword
----- = Error
, I II I .... I1 I I ,Correcdon

per Codeword
I I.1 I I I ....... 1 (Total of d

: Codewords)
I I ·

I

t
d-Dimensional
State Vector of
System 1

Figure 6-5: Encoded implementation of k LFSM's using n redundant LFSM's.

unreliable voters (so that a single failure in a component corrupts a single bit). Also note

that, following Taylor's scheme, we actually need to have J replicas of each of the n redun-

dant systems (a total of Jn systems). At the beginning of each time step, we allow these

Jn systems to evolve to a (possibly corrupted) next state; at the end of the time step, we

perform error detection and correction using one iteration of the modified iterative decoding

scheme.

Once we allow failures in the error-correcting mechanism, we can no longer guarantee the

invariant condition in eq. (6.3). However, given that there is no overall failure, the overall

redundant state (i.e., the state of all Jn systems) at a certain time step correctly represents

the state of the k underlying systems9. This means that with a fault-free iterative decoder

we would be able to correctly recover the state of the k underlying redundant systems.

Before stating our main theorem, we summarize the setting in which it holds:

Consider k distinct instantiations of an LFSM with state evolution as in eq. (6.1), each

instantiation with its own initial state and distinct input sequence. Embed these k instanti-

ations into n redundant LFSM's (also with state evolution as in eq. (6.1)) using the approach

described above. Each of these n redundant systems needs to be properly initialized (so that

9 The overall state is an nd binary vector that represents kd bits of information. The n redundant systems
perform without an overall failure for L time steps if their overall state at time step r (O r < L) is within
the set of nd vectors that correspond to the actual kd bits of information at that particular time step. In
other words, if we had a fault-free (iterative) decoder, we would be able to obtain the correct states of the
k underlying systems.

157

--·lll�-�---·IUII-. .-~- -l- Y . YC1- . -L~F·--Y~ l_-



eq. (6.3) is satisfied for r = 0) and needs to be supplied with an appropriate input (encoded

according to an (n, k) LDPC code). Furthermore, each of the n redundant systems needs to

have J realizations (i.e., there is a total of Jn systems). A system realization uses its own

set of reliable flip-flops and unreliable 2-input XOR gates. At the beginning of a time step,

we allow all Jn redundant systems to evolve to a (possibly corrupted) next state. At the end

of the time step, we use Gallager's modified iterative decoding scheme to correct any errors

that may have taken place (each bit-copy is corrected using a separate set of 1+ (J-1) (K-l)

unreliable 2-input XOR gates and one unreliable (J-l1)-bit voter).

Theorem 6.2 Assume that the 2-input XOR gates fail with probability p, and the (J-1)-

bit voters fail with probability Pv. Let J be a fixed even integer greater than 4, let K be an

integer greater than J, and let p be such that

P > ( )[(K - l) (2p+ 3p)] J / 2 + p + p
J/2

Then there exists a sequence of (n, k) LDPC codes (with _ > 1 - , with K 1 's" in each

row and J "1 's" in each column of their parity check matrices) such that the probability of

an overall failure at or before time step L is bounded above as follows:

Pr[ overall failure at or before time step L ] < LdCk - ,

where 13 and C are constants given by

/P - 2og[(J-1)(K-1) -

C - ] ( +3) [ 1 - 1U· 1T-(P+ 3(-/) 3 p 2J( -)]

The code redundancy is < < ;7?i and the hardware used (including the error-correcting

mechanism) is bounded above by J d(3+ (J-) (K-) XOR gates and by - voters per

system (where d is the system dimension).

158



Table 6.1: Typical values for p, 8 and C given J, K, p, and p,,. The bound on the
probability of overall failure is shown for d = 10, k = 107 and L = 106.

Some illustrative values of and C, and possible p, given pr and p,, can be seen in

Table 6.1; the failure probabilities shown are for d = 10, k = 107 and L = 105.

Proof: The proof follows similar steps as the proofs in [106, 105]. In what follows, we give

an overview of the proof. We describe it in more detail in Appendix B.

The state of the overall redundant implementation at a given time step r (i.e., the states

of the n redundant systems created by the embedding in eq. (6.2)) are fully captured by d

codewords Ci[t] of an (n, k) LDPC code (1 < i < d). More specifically, the state evolution

equation of the n systems can be written as

C¢[t + 1] C,[t]

C2[t + 1] = A C2[t] b[t]

Cd[t + 1] Cd[t]

where X[t] = [ zl[t] X2[t] -.. xk[t] ] GT is the encoding of the k inputs at time step t

and Ac, b are the matrices in the state evolution equation (6.1).

Taylor showed that adding any two (n, k) codewords modulo-2 can be done reliably using

LDPC codes and modified iterative decoding. Furthermore, he showed that we can reliably

perform a sequence of L such additions by performing a component-wise XOR operation

(using an array of n 2-input XOR gates) followed by one iteration of Gallager's modified

159

_1�___�1 C^·�l_ _I�I �__ __PIIII_�III_______-·-C-- 1_ �-1I-I-I1II �-U--·^ll_�^ ---�-L-I�·-LIILLI_



scheme (see the mechanism in Figure 6-3). More specifically, Taylor showed that

Pr[ overall failure in a sequence of L modulo-2 additions ] < LC'k- f '

for constants C' and 3' that depend on the probabilities of failure of the XOR gates and

the voters, and on the parameters of the LDPC codes used.

From the discussion above, we see that we can use Taylor's scheme to perform error-

correction in the d codewords from the (n, k) code. This requires, of course, that we maintain

J copies of each codeword (a total of Jd codewords). During each time step, the overall

redundant implementation calculates its new state (Jd new codewords) by adding modulo-2

the corresponding codewords of the current state; this is then followed by one iteration of

error-correction based on Gallager's modified scheme.

Since matrix Ac is in canonical form, the computation of each codeword in the next

overall state is based on at most two codewords of the current state (plus the input modulo-

2). So over L time steps we essentially have d sequences of additions modulo-2 in the form

that Taylor considered and which he showed can be protected efficiently via LDPC coding.

Using the union bound, we conclude that

Pr[ overall failure at or before time step L ] < LdCk- .

Note that the input is also something that we have to consider (and one of the reasons that

our constants differ slightly from Taylor's) but it is not critical in the proof since the inputs

involve no memory or error propagation.

The proof is discussed in more detail in Appendix B. o

6.4.3 Further Issues

Before we close, let us discuss a few issues regarding our approach:

* The bound on the probability of failure that we obtained in Theorem 6.2 goes down

polynomially with the number of systems (not exponentially, as is the case for the

distributed voting scheme and for Shannon's approach). It would be interesting to

investigate whether this polynomial decay can be improved while maintaining constant

160

__ �I_ _1_1__



redundancy per system. Since error propagation does not necessarily constitute a

failure, the bounds we have obtained are probably too conservativel ° and it may be

worthwhile exploring how they can be relaxed. Another interesting future direction

would be to see whether other codes could be used.

* For simplicity, we have assumed that the only compone',l. that fail in our systems are

the XOR gates. Our scheme can easily be adjusted to handle transient failures in other

components (namely connections and/or flip-flops). We can also handle LFSM's with

multiple inputs or LFSM's with the same dynamics (same Ac matrix) but different b

vectors. Finding ways to handle permanent failures is also a very promising direction,

but it would probably require the use of different techniques.

* We have not dealt in our proof with the encoding function or the cost associated with

it. Encoding an LDPC code can be done in a straightforward way using matrix G:

each of the n encoded bits can be generated using at most k information bits and

at most k -1 2-input XOR gates. Of course, the problem is that in our approach

we let n and k increase. One possible solution is to encode using a binary tree of

depth log k where each node performs a component-wise 2-input XOR operation.

This requires O(nk) 2-input XOR gates and O(logk) time; it can be done reliably

using unreliable XOR gates if at the end of each stage of the tree evaluation we include

one correcting iteration. This, however, means that our computation will be slowed

down by O(logk) stepsl . Since our input encoding mechanism does not have to

be "perfect" (in our proof we assumed so for simplicity), we could potentially exploit

this flexibility to design encoding schemes that are perhaps faster or use less hardware

than conventional ones; this could be a worthwhile future direction.

* The k LFSM instantiations that we are simultaneously protecting in Theorem 6.2 can

be viewed as a larger original system S with state q[t] = [ qT[t] q2[t] . . qT[t] ]T

"°For example, Taylor's results were improved in [60, 32].
" Similar slowdown is exhibited in Spielman's approach in [100].

161

I-- --- He _� I�-�ICI 1II -·



input x[t] = [ xl[t] "'* xk [t] ], and state evolution

A, 0 0 0... 

o AC0 0

0 O Ac

qs[t] E

bOO..0

ObO 0

0 b 0

0 .. .

o o 0... b

Each A, is a d x d matrix and there are k such matrices along the diagonal of the

overall system matrix; the structure of the input matrix is similar. The state vector

q,[-] is a dk-dimensional vector that represents the states of all distinct instantiations

of the system in eq. (6.1).

The overall redundant implementation that we construct is a system in the same form

except that it has n matrices Ac along the diagonal of its system matrix. Clearly,

the redundant dynamics (in the sense of Chapter 4) of the overall redundant system

are not zero. In fact, they are chosen to be exactly the same as the dynamics of the

original systems. This allows us to create the redundant bits in a manner that does

not require an excessive number of XOR gates. Generating the redundant bits using

zero redundant dynamics would actually create problems in terms of the number of

XOR gates that are needed, and would invalidate this approach12 . Therefore, this

particular case illustrates a successful example of generating the redundant bits in an

efficient manner.

* In a memoryless binary symmetric channel, a bit (0" or 1") is provided as input

at the transmitting end; the output bit (at the receiving end) is the same as the

input bit with probability 1 - p and flipped with probability p (p is known as the

channel crossover probability). Errors between successive uses of the channel are

independent. Shannon studied ways to encode k input bits into n redundant bits in

order to achieve low probability of failure during transmissions. He showed that the

probability of error can be made arbitrarily low using coding techniques, as long as

1
2 This is actually one of the problems that Taylor had in [105]; see the discussions in [100, 83].

162

q,[t + 1] = x[t],

__ ___I



the rate R = of the code is less than the capacity of the channel, evaluated as

C = 1 + p logp + (1 - p) log(1 - p) (for the binary symmetric channel). Moreover, for

rates R greater than C the probability of error per bit in the transmitted sequence

can be arbitrarily large.

In our case, we have looked at embeddings of k distinct instantiations of a particu-

lar LFSM into n redundant systems, each of which is implemented using unreliable

components. We have shown that, given certain conditions on the probabilities of

component failures, there exist LDPC codes that will allow us to use n LFSM's to

implement k identical LFSM's (that nevertheless operate on distinct input streams)

and, with non-zero rate," achieve arbitrarily low probability of failure during any

specified time interval. (In our context, "rate" means the amount of redundant hard-

ware that is required per machine instantiation.) Specifically, by increasing n and k

while keeping > 1 - , we can make the probability of an overall failure arbitrarily

small. We have not shown that there is an upper bound on (which might then be

called the computational capacity). It would be interesting to see if this can be done.

We would probably have to consider a different approach since our goal would be to

prove that for rates above a certain constant the probability of failure gets arbitrarily

large, regardless of the coding/correcting scheme that we use.

e Ways of constructing fault-tolerant systems out of unreliable components have also

been developed by Spielman in [100], and by Gics in [36]. In [100] the approach was

for parallel systems that run on k "fine-grained" processors for L time steps. Spielman

showed that the probability of error can go down as O(Le- k l 4) but the amount of

redundancy is O(klog k) (i.e., O(logk) processors per system). Spielman also intro-

duced the concept of slowdown due to the redundant implementation. Gcs studied

fault-tolerant cellular automata in [36], mostly in the context of stable memories.

He employed cellular automata so that the cost/complexity of connectivity between

different parts of the redundant implementation remain constant as the amount of

redundancy increases. It would be interesting to investigate further how our methods

relate to those of Spielman and Gacs, and how these approaches may be generalized

to arbitrary systems.

163

�_II____I__I_�I___Y__11_1 - _··llll·-_--IXI·ll--- �XLI�C-IIIII ��I-�_·III··-�--^·I^--�·ltllY--- --· l~l~ ----- · ~--



* Another interesting possibility is to apply our approach to signal processing or other

special-purpose systems, such as linear digital filters. The latter generalization would

have to deal with linear time-invariant systems operating on a larger (possibly infinite)

set of elements and not on elements drawn from a finite field.

6.5 Summary

In this chapter we dealt with the problem of systematically providing fault tolerance to a

dynamic system that is made of unreliable components, including unreliable components

in the error-correcting mechanism. We considered components that suffer transient failures

with constant probability. Initially, we employed modular redundancy with a distributed

voting scheme, demonstrating that by increasing the amount of redundancy one can make

the (bound on the) probability of failure during any given (finite) time interval as small

as desired. We also constructed fault-tolerant LFSM's using failure-prone XOR gates and

voters. More specifically, using linear codes with low decoding complexity, we obtained

arrangements of n redundant LFSM's which reliably and efficiently perform the function

of k identical LFSM's that are driven by distinct input sequences. At a constant cost per

system we were able to guarantee any target probability of failure for a specified (finite)

number of time steps. Our methods for error detection/correction are very simple and

allow us to make connections with techniques used in graph and coding theory. They also

demonstrate efficient ways to construct reliable dynamic systems exclusively using unreliable

components (at least for LFSM's).

There are a number of interesting future directions, particularly in terms of applying

our approach to more general dynamic systems, exploring further the use of alternative

coding schemes with low decoding complexity (such as convolutional codes), and improving

the bounds on the probability of failure. There are also interesting theoretical questions

regarding how one can define the computational capacity of unreliable LFSM's and whether

group machines are amenable to similar coding schemes as LFSM's. Since one concern about

our approach is the increasing number of connections, it may be worthwhile exploring

whether we can design dynamic systems that limit connections to neighboring elements

(much like Gacs approach in [36]). On the practical side, since our approach allows us to

164

---1 I _lli



construct dynamic systems largely out of unreliable components, it would be interesting to

build and test such systems, either using silicon-based manufacturing technology (in order

to evaluate any gains in terms of speed, power dissipation and reliability) or using novel

technologies.

165

�___I�·_��_ � 11�-1_1111--�1-1___-___I_ --I ll----·�·L--·-·�-···PL I .·�-_�·1I�LIII�-LII^�---·(�-



166



Chapter 7

Conclusions and Future Directions

In this thesis we developed a framework for protecting dynamic systems against failures

that affect their state transition mechanism. Depending on the actual system implementa-

tion, these failures could be due to hardware malfunctions, programming errors, incorrect

initialization, and so forth. Our approach replaces the original system with a larger, re-

dundant dynamic system which is designed and implemented in a way that preserves the

state evolution of the original system and imposes constraints on the set of states that are

reachable under fault-free conditions. During each time step, the redundant system evolves

to a possibly corrupted next state; then, a separate mechanism performs error detection

and correction by identifying violations of the enforced state constraints and by taking ap-

propriate correcting action. The redundant implementation together with the correcting

mechanism become the fault-tolerant version of the original system.

The thesis systematically studied this two-stage approach to fault tolerance and demon-

strated its potential and effectiveness. We directly applied coding techniques to dynamic

systems and pointed out two issues of great importance: (i) redundant dynamics that can be

used to efficiently/reliably enforce state constraints (for example, in order to build redun-

dant implementations that require less hardware), and (ii) error propagation that is caused

by failures in the error-correcting mechanism and complicates the task of maintaining the

correct operation of a dynamic system for long time intervals. This second issue raises

questions regarding the possibility and cost of constructing reliable dynamic systems using

unreliable components.

167

·�-·�··--·i-3IIY·-^lI·l�·r�--· -- - L--- - -- -



We initially adopted the traditional assumption that the error detecting/correcting

mechanism is fault-free, and focused on issues related exclusively to redundant dynamic sys-

tems. The overarching goal of Chapters 2 through 5 was to systematically develop schemes

that can detect, identify and correct a fixed number of failures. We showed that a number

of redundant implementations are possible under a particular error detection/correction

scheme, and we precisely characterized these different redundant implementations for a va-

riety of dynamic systems. Our techniques not only gave us insight and systematic ways

of parameterizing redundant implementations, but also resulted in new schemes for fault

tolerance, including parity check schemes with memory and reconfiguration methodologies.

The specific classes of systems we considered are reviewed below.

Algebraic machines: Adopting a purely algebraic approach, we studied fault tolerance

in group/semigroup machines and finite semiautomata. We showed how algebraic

homomorphisms can be used to obtain redundant implementations, and exploited

algebraic structure in order to facilitate error detection and correction. We made

connections with algebraic machine decomposition and studied in more detail the

construction of (separate and non-separate) redundant implementations. In particu-

lar, we demonstrated that certain decompositions for redundant implementations may

be inappropriate because they detect failures unrelated to the system functionality we

want to protect.

Further work on the role of machine decomposition and the use of non-separate re-

dundancy schemes could bring our algebraic approach closer to making explicit con-

nections with hardware (which is something we did not attempt in Chapter 2). For

example, one possibility would be to study digital implementations that are based on

failure-prone AND and OR gates and flip-flops. Another interesting future direction

is to investigate whether fault tolerance can be achieved through a combination of

our techniques and the techniques for dynamical systems and codes over finite abelian

groups, [34, 16].

Linear time-invariant (LTI) dynamic systems: We constructed fault-tolerant LTI dy-

namic systems using linearcodes. More specifically, given an LTI dynamic system that

we needed to protect against state transition failures, we applied linear block-coding

168

I - -- I - _ - � _



techniques and obtained a complete characterization of the class of appropriate re-

dundant implementations. Our approach generalized previous work based on modular

redundancy or simple checksum schemes by allowing redundant modes to be non-zero

and/or be coupled with the original system.

We made explicit connections with hardware and constructed our redundant LTI

dynamic systems out of delays, adders and gain elements. Our design ensured that

failures in a single component (adder or multiplier) corrupted only a single state

variable. This allowed us to make use of linear codes to protect our systems against a

fixed number of errors in the redundant state variables. Our examples exploited the

possibilities that exist when constructing redundant implementations (e.g., in order to

minimize hardware, to verify parity checks periodically, or to perform reconfiguration

when dealing with permanent failures).

Future work can focus on applying these ideas to LTI dynamic systems of interest

(e.g., linear filters in digital signal processing applications). We should also focus

on systematically studying optimization criteria (e.g., minimizing hardware redun-

dancy) and on finding the "best" redundant implementation for a particular decod-

ing/encoding scheme. One can also study how these ideas generalize to nonlinear

and/or time-varying systems.

Linear finite-state machines (LFSM's): We followed an approach similar to the one

for LTI dynamic systems and showed that, under a particular linear block-coding

scheme, there are many ways of constructing redundant implementations for an LFSM.

We exploited this flexibility in order to minimize the number of XOR gates that are

required in a redundant implementation. It would be interesting to see whether these

techniques can be generalized to other "linear" systems, such as linear systems over

rings or semirings (e.g., max-plus systems).

Petri nets: When we applied our approach to Petri net models of discrete event systems

(DES's), we obtained monitoring schemes for complex networked systems, such as

manufacturing systems, network and communication protocols, or power systems. The

algebraic construction resembles that used in our other classes of dynamic systems:

we are essentially trying to build a redundant Petri net with a state (marking) that

169

__�-·1�·-·*·�----��--��I� �·11)-·1-_---�-�� I� �··IUI�··LLI·�·1I�-C-- .I 1 ^-·- 1_111 



is restricted in a way that allows us to identify failures by detecting violations of the

enforced state constraints. The tradeoffs and objectives involved in DES's, however,

may be completely different. For example, the goal may be to avoid complicated

reachability analysis, or to minimize the size of the monitor, or to construct systems

that require minimal communication overhead.

The monitoring mechanisms that are obtained using our approach are simple and allow

us to easily choose additional places, connections and weights so that monitoring

of both transition and place failures can be verified by weighted checksums on the

overall state of the redundant Petri net. The monitoring schemes can be designed to

operate reliably despite erroneous/incomplete information from certain places, or to

minimize the communication and hardware overhead that occurs due to the additional

connections and acknowledgments. The thesis did not address such optimization issues

explicitly, but this is a very interesting direction for future research.

Other future extensions include the investigation of additional error models and the

development of hierarchical or distributed error detection and correction schemes.

Another interesting possibility would be the development of robust control schemes

for DES's that are observed at a central controller through a network of remote and

unreliable sensors. In such cases we can use Petri net embeddings to design redundant

sensor networks and to devise control strategies that achieve the desired objectives,

despite the presence of uncertainty (in the sensors themselves or in the information

received by the controller). The development of more general redundant embeddings

and the explicit study of examples where a subset of the transitions is uncontrollable

and/or unobservable (i.e., where links to or from these transitions are not possible) is

also a very appealing direction. Finally, in order to achieve error-correction we should

introduce failure recovery transitions that can serve as correcting mechanisms when

failures are detected.

In the thesis we also relaxed the assumption that error-correction be fault-free, and

looked at ways to cope with failures in the error-correcting mechanism. We considered

transient failures that generate transitions to incorrect states at a particular time step,

but whose physical causes disappear at later time steps. Transient failures in the error

170

_ ____



corrector propagate in time, due to the dynamic evolution of our systems (the new state is

partially based on the internal state of our systems); this results in a serious increase in the

probability of failure, particularly in the case of dynamic systems that operate over long

time intervals.

In order to handle error propagation effectively, we introduced modular redundancy

schemes that use multiple system replicas and voters. By increasing the amount of redun-

dancy, we can construct redundant implementations that operate under a specified (low)

level of failure probability for any specified finite time interval. (Equivalently, we can con-

struct redundant implementations that achieve arbitrarily small probability of failure for a

specified time interval.) By combining these schemes with low-complexity error-correcting

codes, we obtained interconnections of identical LFSM's that operate in parallel on distinct

input sequences, fail with arbitrarily low probability during a specified finite time interval,

and require only a constant amount of redundancy per machine. Our approach is quite

comprehensive, allows us to construct reliable dynamic systems largely out of unreliable

components, and in principle may enable the use of less expensive manufacturing tech-

nologies that can perhaps operate at faster speeds or in more hostile environments (e.g.,

high temperatures, space missions). It would be worthwhile to explore these possibilities

further in order to construct novel computer architectures and employ new manufacturing

technologies.

There are a number of additional future directions, particularly in terms of generalizing

our approach to arbitrary finite-state machines, evaluating the possibility of using other

(easily decodable) coding schemes and finding out more about the system structure that

allows us to perform parallel simulations in an efficient manner. There are also interesting

theoretical questions regarding how the bounds can be improved and whether we can define

the computational capacity of unreliable LFSM's.

It may also be helpful to study generalizations of the approach suggested in this thesis.

We have operated under the premise that the code (constraints) enforced on the state of

the redundant implementation are time-independent; this means that the error-correcting

mechanism has no memory (it does not remember any of the previous states or inputs).

The thesis has shown that this approach can be used effectively and efficiently to protect

the evolution of dynamic systems; it would be interesting, however, to investigate the appli-

171

1.II__� --- ^I��----�1L--UI1 -.r�----^lll·--�-*--··-C--L·YII �-1�--^ L-C1-I-·-·I·--rl�^XI·I_^.·-__-illl�·tlO�-YI--·-LDI_-�---�L-�I·- -_



cability of other, more general approaches. For example, instead of using block codes, one

could try convolutional codes1 to protect LFSM's. This approach appears promising since

convolutional codes can also be decoded with low cost. In addition, using error-correcting

mechanisms with memory may lead to reduced hardware complexity in our fault-tolerant

implementations.

The bounds that we have obtained on the probability of failure increase linearly with

the number of time steps for which our fault-tolerant constructions operate. An alternative

to our approach that could potentially alleviate this problem would be to let the systems

evolve for several time steps and then use an error-correction mechanism that looks at their

overall state evolution (sequence of states) to decide what corrections to make. Of course,

this would require a more sophisticated error detecting/correcting mechanism, which could

potentially be subject to more failures than a simple voter.

Other interesting future directions include the investigation of error-correction tech-

niques capable of handling permanent failures, the use of redundancy to guarantee robust

performance in DES's and the construction of simple and effective monitoring schemes that

are based on statistical observations (e.g., periodic behavior). It would also be interesting

to connect our approach with techniques used to test and verify sequential circuits [62], or

to enable systematic reconfiguration.

'Some related work has appeared in [89]; the implicit assumption in this case is that error detec-
tion/correction is fault-free.

172

_ __� __ �



Appendix A

Conditions for Single-Error

Detection and Correction

A.1 Semigroup Computations

Here, we derive necessary and sufficient conditions for error detection and correction in fault-

tolerant semigroup computations using the approach described in Chapter 2 (Section 2.2).

Throughout our analysis we assume that the error detecting/correcting unit is fault-free1.

We assume that the set of possible failures F = fi, f2, f3, ... ) is finite and that the

faulty output due to one or more failures depends only on the fault-free result, i.e., the

faulty result is independent of the actual pair of operands involved, but only depends on

the semigroup product of the operants. Note that a failure can always be modeled this way:

when a physical failure produces different erroneous results for pairs of operands that ideally

result in the same semigroup product, we can use multiple f's, each of which captures the

effect of this physical failure for a particular pair of operands. We assume that the erroneous

result reached due to the occurrence of failure fi when operating on (sl) and (s82) lies

in H, and is given by p = e(p, fi), where p = O(sl) o (s2). We define the error model

for k simultaneous failures similarly: the effect of a multiple failure f) = (fl, f 2 , ..., fI)

'As mentioned earlier, this is a reasonable assumption when the error detecting/correcting mechanism
is simpler than the operation we are trying to protect. Another justification for this assumption is that the
output stage of a fault-tolerant system has to be fault-free (otherwise failures in it would definitely cause
incorrect outputs regardless of the redundancy).

173

II IIU �---·�··-·I1)XI�---�^�-1111--1�_--_^1�_·.-· ·- 1^_11 I ·1 --1 1 1



(where fj E F, 1 < j < k, and failures are ordered in the k-tuple according to their times of

occurrence) is captured by the mapping e(k)(p, f(k)). We denote the set of possible multiple

failures by F(k) {(fl, f2, ..., fk) I f' F, 1 < i < k}.

Since the detector/corrector a in Figure 1-1 bases its decisions solely on the possibly

faulty output pf, the computation in the redundant semigroup H needs to meet the following

condition for full single-error detection:

e(pl, fi) P2 for all f E F and all P,P2 E S' such that P # p 2 -.

Here, S' = q(S) C H is the subset of valid results; an error is detected whenever the result

pf lies outside S'. To be able to correct single errors, we need the additional condition

e(pl, F) n e(p2, F) = 0 for all Pl, p2 E S' such that P1 # P2,

where e(p, F) = e(p, fi) I fi E F). The error can be corrected by identifying the unique

set e(pk, F) in which the erroneous result pf lies; Pk is then the correct result. The above

condition essentially establishes that no two different results Pl and P2 can be mapped,

perhaps by different failures, to the same faulty result.

These conditions can be generalized for fully detecting up to d errors and correcting up

to c errors (c < d); one can easily show that the following conditions are necessary and

sufficient:

e(k)(pl, F(k)) n S' c {pl} for all Pl E S', and for 1 < k < d,

U e(k)(p, Fk) ), n e()(pF( = 0 for all P1, P2 E S, pi ) P2,
k=

and for 1 < j < c.

Here, e(k)(p, F(k)) denotes the set {e(k)(p, f(k)) I f(k) E F(k) }. The first condition guarantees

detection of any combination of d or less failures (because no k failures, k < d, can cause

the erroneous result e(k)(pl, f(k)) to be a valid one - unless it is the correct result pi). The

second condition guarantees correction of up to c failures (no combination of up to c failures

174

I



F O UI

o--,

O 0

O 0

O O0

Current State
qh[t]

* Valid States

Fault-free Next-State
- ,-P Mappings Under

Inpute(Xs[t])

fO O
Pr

.

0

0

0

0

.

Next State
qh[t+l]

O Invalid States

Faulty Next-State
------ M appings Under

Inpute(Xs[t]) and
Faultfi

Figure A-1: Conditions for single-error detection in a finite semiautomaton.

on P2 can result in an erroneous value also produced by up to d failures on a different result

Pi).

A.2 Finite Semiautomata

In this section we derive the conditions that are necessary and sufficient for single-error

detection and correction in a redundant implementation t' of a dynamic system S (see

Chapter 1 for definitions). We assume fault-free error-correction, which implies that dy-

namic system ' is in the correct state at the beginning of each time step.

Let F = {fl, f, f3, ...} be the set of possible state transition failures and assume that

the erroneous next state due to failure f is described by q' [t + 1] = 6 (qh[t], e(x,[t]))

defined for all states (valid or not) qh[t] E QH and all inputs x.[t] E Xs (6f. is assumed

independent of t).

The following condition is necessary and sufficient for single-error detection at the end

of time step t: for all fi E F, all z,[t] E Xs, all q[t] E Qu and all qh[t + 1] E Q' such that

175

w

IIIIIIIIIIIC -IU�--. �. 1�1�1_ 1·1_1· 1 I ·1 111 1 -·-

I., 

v

- -- 

O 0,



-. 

0 --0 r .

I

e(s[t])

e(x[t]),fh
------------- ~ e71........i-¢f [

-- W N*0 '
I

o o
0- ,
_t IIm

Current State Next State

qh[t] qh[t+l]

0 Valid States 0 Invalid States

Fault-Free Next-State Faulty Next-State
- Mappings Under Mappings Under

Input e(x)[t…Input e(Xs[t]) and
Faults f and f2

/ o Set of states that get
l10 % decoded to the unique valid
"a C°,' state within the set

Figure A-2: Conditions for single-error correction in a finite semiautomaton.

qh[t + 1] 6J (q[t], e(xz[t])), we require that

6 (q[t], e(Xs[t])) # qh[t + 1] 

An illustration of this condition for a particular input xo[t] E Xs and a particular failure

fi E F is given in Figure A-1. The fault-free next-state mappings are described by the solid

lines; failure fi is detectable by a fault-free detector because it causes transitions to invalid

states (shown by dotted lines). When fi and x,[t] do result in a valid state (within Qu),

the transition is the correct one (f is undetectable under input x,[t], but does not cause

an erroneous transition - fi may be less benign under different inputs).

Similarly, for concurrent correction of a single error, we need the additional condition:

for all q[t] E Q', all x,[t] E Xs and all bq[t + 1] E Q' such that qh[t] $ &(q[t], e(z,[t]))

(q [t], e(x8[t])) n at-1 'Qh[t + 1) = 0,

176

_

- ., r4l't S_



where

6(q[t], e(z,[t])) denotes the set { (qa[t], e(z[t])) I for all fi E F),

* a-' (q[t + 1]) C QH is the set of states in X that get corrected to state qh[t + 1] (by

the error-correcting mechanism).

An illustration of the necessary conditions for single-error correction is shown in Figure A-2

for a set of two failures F = fi, f2} and one input z,[t]: the solid lines denote the correct

transitions under the encoded input e(xz[t]) for each of two states; the dotted lines denote

incorrect transitions under failures f, f2.

These conditions can be generalized to detection and correction of multiple failures.

177

II------- ----pl I II I - ---__-tl.· �-II--11^-I·I1I---�I··I�··Y-LI�^-·�-·C-·---- *"IIC------- '-�



178

�_�



Appendix B

Proof of Theorem 6.2

In this appendix we discuss the proof of Theorem 6.2 in more detail. The proof follows the

steps in [106, 105].

Assume that our overall redundant implementation starts operation at time step 0. As

described in Section 6.4, during each time step, we first allow the Jn redundant systems

to evolve to their corresponding (possibly corrupted) next state, and we then perform one

iteration of Gallager's modified decoding scheme. We do this in parallel for all d (n, k)

codewords, each of which has J copies - see Figure 6-5.

The construction of our low-density parity check (LDPC) coding scheme guarantees

that for the first m time steps the parity checks that are involved in correcting a particular

bit-copy are in error with independent probabilities (recall that each bit d has J copies

di', d2, ..., di, and that m denotes the number of independent iterations of the LDPC code at

hand). The reason for this independence is that the errors within these parity check sets are

generated in different systems (failures in different components are, of course, statistically

independent).

After the first m time steps, the independence condition in the parity checks will be

true given that certain conditions are satisfied. More specifically, if we can ensure that

no component failure influences decisions for m or more consecutive time steps (causing a

bit-copy to be incorrect m or more time steps in the future), then we can guarantee that

the J-1 parity checks for a particular bit-copy are in error with independent probabilities.

We make this more precise with the following definition:

179

__ _I_ --l-_^^-·l_·-·LIIIII1111111111



Definition B.1 A propagation failure occurs whenever any of the Jnd bit-copies in the

overall redundant implementation is erroneous due to component failures that occurred more

than m time steps in the past.

Definition B.2 The initial propagation failure denotes the first propagation failure that

takes place, i.e., the occurrence of the first component failure that propagates for m+ 1 time

steps in the future.

We will show that a propagation failure is very unlikely and that in most cases the bit

errors in the Jd codewords will depend only on component failures that occurred within

the last few time steps. We calculate a bound on the probability of a propagation failure

in Section B.3. To do that, we use a bound on the probability of error per bit-copy which

we establish in the next section.

B.1 "Steady-State" Under No Initial Propagation Failure

For now, we concentrate on the first m time steps (during which the overall redundant im-

plementation is guaranteed to operate under no propagation failure) and obtain an upper

bound on the probability of error per bit-copy. More specifically, we show that the proba-

bility of error per bit-copy at the end of time step r (0 < r < m) is bounded by a constant,

i.e., we show that

Pr[ error per bit-copy at end of time step T ] < p.

This assumption is certainly true at T = 0 (at time step 0 the probability of error per bit-

copy is zero). It remains true as long as (i) r < m (eventually we will show that it remains

true as long as no propagation failure has taken place), and (ii) /2. [(K - 1)(2p+

3pz)]J/2 + Pv + P is smaller than p. To see why this is the case, consider the following:

* In order to calculate a certain bit-copy in its next-state vector, each of the Jn re-

dundant systems uses at most two bits (bit-copies) from its previous state vector

and performs at most two 2-input XOR operations (one XOR-ing involves the two

bit-copies in the previous state vector, the other one involves the input). Using the

180



union bound the probability of error per bit-copy once state evolution is performed is

bounded above by

Pr[ error per bit-copy after state evolution at time step T ] < 2p + 2p - q.

This is simply the union bound of the events that any of the two previous bit-copies is

erroneous and/or that any of the two XOR operations fails (for simplicity we assume

that the input provided is correct). Note that we do not assume independence here.

* Once all Jn systems transition to their next states, we perform error-correction along

the Jd codewords (see Figure 6-5, there are J copies for each of the d (n, k) codewords).

The correction consists of one iteration of Gallager's modified decoding scheme. Recall

that each bit-copy is corrected using J-1 parity checks, each of which involves K-1

other bit-copies. We will say that a parity check associated with a particular bit-copy

d' (1 < j < J) is in error if bit-copy di is incorrect but the parity check is "0",

or if di is correct but the parity check is "1" (this is because ideally we would like

parity checks to be "0" if their corresponding bit-copy is correct and to be "1" if the

bit-copy is incorrect). Note that this definition decouples the probability of a parity

check being in error with whether or not the associated bit-copy is erroneous. The

probability of an error in the calculation of a parity check (see the error-correcting

mechanism in Figure 6-3) is bounded by

Pr[ parity check in error ] < (K - 1)(q + p) = (K - 1)(2p + 3p,)

(i.e., a parity check for a particular bit-copy is in error if there is an error in any of

the K- 1 other bit-copies or a failure in any of the K- 1 XOR operations).

* A particular bit-copy will not be corrected if one or more of the following three events

happen: (i) J/2 or more of the associated J- 1 parity checks are in error, (ii) there

is a failure in the voting mechanism, or (iii) there is a failure in the XOR gate that

receives the voter output as input (see Figure 6-3). If the parity checks associated

181

_LII__�___ I 1__ �II____ --̂--i---·---··lll�--··1111111�
_I*·- - - IYI II- -



with a particular bit-copy are in error with independent probabilities, then

Pr[ error per bit-copy after correction ] < ( [(K - 1) (2p + 3p)]J/2 +
J/2

+P-Y + P. (B.1)

< p.

We conclude that if the parity checks for each bit-copy are in error with independent

probabilities, we will end up with a probability of error per bit-copy that satisfies

Pr[ error per bit-copy at end of time step r ] < p .

Therefore, p can be viewed as a bound on the "steady-state" probability of error per

bit-copy at the end/beginning of each time step (at least up to time step m).

What we show next is that the probability of error per bit-copy remains bounded by p

for > m under the condition that no propagation failure has taken place. In Section B.3

we bound the probability of initial propagation failure (using p as the probability of error

per bit-copy); this leads to a bound on the probability of an overall failure in our system.

B.2 Conditional Probabilities Given No Initial Propagation

Failure

So far we have established that the probability of error per bit-copy will satisfy

Pr[ error per bit-copy at end of time step r ] < p

for 0 < r < m. This "steady-state" probability of error per bit-copy remains valid for r > mn

as long as the initial propagation failure does not take place. The only problem is that once

we condition on the event that no propagation failure has taken place, the probability of

error per bit-copy may not necessarily be bounded by p. What we do in this section is show

that this assumption remains true. The proof is a direct consequence of our definition of a

propagation failure.

182

* _�_ �



At the end of time step r = m, the probability f error per bit-copy is bounded by

p. However, in order to derive the same bound for the probability of error per bit-copy

at the end of time step r = m + 1, we have to assume that different parity checks for a

particular bit-copy are in error independently. To ensure this, it is enough to require that

no component failure which took place at time step r = 0 has propagated all the way up

to time step m (so that it causes a propagation failure at time step r = m + 1).

We will show that the probability that a particular bit-copy di (1 j < J) is in error

at the end of time step T = m given that no propagation failure (PF) takes place at time

step r = m, denoted by

Pr[ error per bit-copy at the end of time step r = m I no initial PF at r = m ],

is smaller or equal to the "steady-state" probability of error per bit-copy (i.e., smaller than

P).

Consider the set of primitive events (i.e., patterns of component failures at time steps

r = 0, 1,..., m) that cause bit-copy d to be erroneous at the end of time step m. Call

this set of events A (i.e., Pr(A) = Pr[ do is erroneous at end of time step r = m ]). Clearly,

from our discussion in the previous section we know that Pr(A) < p. Let B denote the set

of primitive events (patterns of component failures at time steps r = 0,1, ..., m) that lead to

a propagation failure at bit-copy di. Note that by definition set B is a subset of A (B C A)

because a propagation failure at time step r = m has to corrupt bit d~. Therefore,

Pr(A) - P(B)Pr[ d is erroneous at end of r = m I no PF at d at time m = - P(B)
1- Pr(B)

< Pr(A) p.

We conclude that the steady-state" probability of error per bit-copy remains bounded

by p given that no propagation failure takes place. Note that we actually condition on the

event that "no propagation failure takes place in any of the bit-copies at time step m",

which is different than event B. The proof goes through in exactly the same way because a

pattern of component failures that causes a propagation failure to a different bit-copy can

either cause an error in the computation of bit-copy d or not interfere with it at all.

183

- _ ~ _ _ _~I_



B.3 Bounds on the Probabilities of Failures

Recall that our analyses in the previous sections hold as long as there has not been a

propagation failure (otherwise, eq. (B.1) is not valid because errors in parity checks are

dependent). What we do next is bound the probability of the initial propagation failure.

This gives us an analytically tractable way of guaranteeing the validity of the probabilities

we derived in the previous sections and eventually obtaining a bound on the probability of

an overall failure in our system.

B.3.1 Bounding the Probability of Initial Propagation Failure

Given that no propagation failure has taken place up to time step T. we have a bound

on the probability of error per bit-copy and we know that different parity checks for any

given bit-copy are in error with independent probabilities. Using this we can focus on a

particular bit-copy di (1 < j < J) and calculate the probability that a component failure

which took place at time step T - M propagates up to time step r (so that it causes the

initial propagation failure). We call this the "probability of initial propagation failure at

bit-copy d'".

Note that in order for a component failure to propagate for m time steps it is necessary

that it was critical in causing a wrong decision during the correcting stage of m consecutive

time steps. In other words, without this particular component failure the decision/correction

for all of these time steps would have had the desired effect.

Assume that no propagation failure has taken place up to time step r (where r > mn). Let

us denote by Pm the probability that a component failure has propagated for m consecutive

time steps in a way that causes the value of bit-copy d at time step r to be incorrect.

In order for this situation to happen, we require both of the following two independent

conditions:

1. The value of one or more of the (J-1) (K-1) bit-copies involved in the parity checks of

bit-copy dJ is incorrect because of a component failure that has propagated for m-1

time steps. Since each such bit-copy was generated during the state evolution stage of

time step r based on at most two bit-copies from the previous state vector (the input

184



bit is irrelevant in error propagation), the probability of this event is bounded by

(J- 1)(K - 1)2Pm_,

where Pm,-1 is the probability that a component failure has propagated for m -1

consecutive time steps (causing an incorrect value to one of the bit-copis i. td ir -e

parity checks for di). The factor of two comes in because the failure that propagates

for m-1 time steps could be in any of the at most two bit-copies used to generate di

during the state evolution stage. This is due to the fact that the system matrix A in

eq. (6.1) is in standard canonical form.

2. There were at least J/2 - 1 erroneous parity checks (among the J-2 remaining1 parity

checks). The probability of this event is bounded by

J 2 [(K- 1) (q + px)]J/2-.

Since no propagation failure has taken place yet, errors in parity checks are independent.

Therefore, the probability of a failure propagating for m consecutive time steps is bounded

by

Pm < (J-1)(K-1)2Pm-i (J- 2 )[(K -1)(q+ p)] J /2- 1

J/2 - 1

Pm-I < (J - 1)(K - 1)2Pm-2( J [(K - 1) (q +p)] 'l 2- 1

J/2-1 )

'One parity check is associated with the failure that has propagated for m-1 time steps.

185

___ _^- _I _



and so forth. We conclude that

The union bound can be used to obtain an upper bound

initial propagation failure takes place at time step r. We need

nent failures that propagates for m time steps in at least one

redundant construction, i.e.,

on the probability that the

to have a pattern of compo-

of the Jnd bit-copies of our

Pr[ initial prop. failure at time step r ] < JndP, .

Our LDPC codes were constructed so that the following conditions are satisfied:

log n + log KJ-K-J

2 log[(J- 1)(K- 1)]

m < log[(-log n
- log[(J - 1) (K - 1)] '

n <
k

1 - J/K'

(See [37, 104] for more details.)

Using the first inequality we obtain the bound

Pr[ initial prop. failure at r ] Jnd(q + p) 2 m

(J-1)(K - 1) J - 2 [(K - 1)(q + p)]J/ 2-

< Jnd(q + p)2m 2K 2 J( - 1 )] 

186

5-2~~~~~~~ 

P, 5 (g~~~p,) 5/J2 - 1

i.'-i·[ 5~~~~/2 - 1 [(K - 1) (q + p.



where 8' is given by

log (J- 1)(K- 1) J -2 )[(K- 1)(q+ p.)]J/ 2- 1

2/2 - 1
2log[(J- 1)(K- 1)]

Since k < n and n < j--r, we get

Pr[ initial prop. failure at r ] J { J/K} d (q + p)2 m

{ [2K 2J(K - 1)] 

Since m < log n (because K > J > 4), we obtain the bound

2m < 21og n < n< 
- - J/K'

which leads to

Pr[ initial prop. failure at r ] dC'k -' + 2 ,

where

c' - (q + p.) (1 - J/K)2 - 2J(K -1)]

B.3.2 Bounding the Probability of Overall Failure

Let us assume that no propagation failure has taken place in the time interval 0 < t < r.

We want to find out an upper bound on the probability that the initial propagation failure

takes place at time step r. This means that if we were to apply a fault-free iterative decoding

scheme at the state of our systems (all Jd codewords) at time step , then no failure would

be critical in causing consecutive erroneous decisions in all m decoding iterations that may

follow.

An upper bound on the probability that the initial propagation or decoding failure takes

187

^__II�II____UII__IIIIX�III._-LI-I-� - I·-- L··I- - -LI--~--· I



place is given by

Pr[ overall failure at time step ] < mdC'k - i '+ 2

or, since m < log n n 1--fg,

Pr[ overall failure at time step ] < dCk - ,

where

log (J - 1)(K -1) (

C C - (q + p) J1 - J/K (1- JIK

J-2

J/2 - 1

2log[(J- 1)(K- 1)]

y)3 - 2J(K- 1)

Using the union bound we see that the probability of an overall failure at or before time

step L is bounded by

Pr[ overall failure at or before time step L ] < LdCk- .

188

__� _ __ I

- 3,

- 1)(q + P.)]J/2-



Bibliography

[1] J. A. Abraham, P. Banerjee, C.-Y. Chen, W. K. Fuchs, S.-Y. Kuo, and A. L. N.
Reddy. Fault tolerance techniques for systolic arrays. IEEE Computer, pages 65-75,
July 1987.

[2] M. A. Arbib, editor. Algebraic Theory of Machines, Languages, and Semigroups.
Academic Press, New York, 1968.

[3] M. A. Arbib. Theories of Abstract Automata. Prentice-Hall, Englewood Cliffs, New
Jersey, 1969.

[4] P. Ashar, S. Devadas, and A. R. Newton. Optimum and heuristic algorithms for an
approach to finite state machine decomposition. IEEE Transactions on Computer-
Aided Design, 10:296-310, March 1991.

[5] A. Avizienis. Toward systematic design of fault-tolerant systems. IEEE Computer,
pages 51-58, April 1997.

[6] A. Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, and D. K. Rubin.
The STAR (self-testing and repairing) computer: An investigation of the theory and
practice of fault-tolerant computer design. In Proceedings of the 1st Int. Conf. on
Fault-Tolerant Computing, pages 1312-1321, 1971.

[7] F. Baccelli, G. Cohen, G. J. Olsder, and J. P. Quadrat. Synchronization and Linearity.
Wiley, New York, 1992.

[8] P. E. Beckmann. Fault-Tolerant Computation Using Algebraic Homomorphisms. PhD
thesis, EECS Department, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, 1992.

[9] P. E. Beckmann and B. R. Musicus. A group-theoretic framework for fault-tolerant
computation. In Proceedings of IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, volume V, pages 557-560, 1992.

[10] P. E. Beckmann and B. R. Musicus. Fast fault-tolerant digital convolution using a
polynomial residue number system. IEEE Transactions on Signal Processing, 41:2300-
2313, July 1993.

[11] R. E. Blahut. Theory and Practice of Data Transmission Codes. Addison-Wesley,
Reading, Massachusetts, 1983.

189

��______11__11_�_1___·_1-1�-1_______� ^1·11 11 II -�---�II· go n 4 -.·_____·---- 11 11~--. -



[12] W. G. Bliss and M. R. Lightner. The reliability of large arrays for matrix multipli-
cation with algorithm-based fault tolerance. In M. Sami and F. Distante, editors,
Proceedings of Wafer Scale Integration III, pages 305-316, 1990.

[13] T. L. Booth. Sequential Machines and Automata Theory. Wiley, New York, 1968.

[14] J. W. Brewer, J. W. Bunce, and F. S. Van Vleck. Linear Systems Over Commutative
Rings, volume 104 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker
Inc., New York, 1986.

[15] R. W. Brockett and A. S. Willsky. Finite group homomorphic sequential systems.
IEEE Transactions on Automatic Control, AC-17:483-490, August 1972.

[16] G. Caire and E. Biglieri. Linear block codes over cyclic groups. IEEE Transactions
on Information Theory, 41:1246-1256, September 1995.

[17] C. G. Cassandras. Discrete Event Systems. Aksen Associates, Boston, 1993.

[18] C. G. Cassandras, S. Lafortune, and G. J. Olsder. Trends in Control: A European
Perspective. Springer-Verlag, London, 1995.

[19] K. Cattell and J. C. Muzio. Analysis of one-dimensional linear hybrid cellular au-
tomata over GF(q). IEEE Transactions on Computers, 45:782-792, July 1996.

[20] S. Chakraborty, D. R. Chowdhury, and P. P. Chaudhuri. Theory and application
of nongroup cellular automata for synthesis of easily testable finite state machines.
IEEE Transactions on Computers, 45:769-781, July 1996.

[21] A. Chatterjee. Concurrent error detection in linear analog and switched-capacitor
state variable systems using continuous checksums. In Proceedings of Int. Test Con-
ference, pages 582-591, 1991.

[22] A. Chatterjee and M. d'Abreu. The design of fault-tolerant linear digital state variable
systems: Theory and techniques. IEEE Transactions on Computers, 42:794-808, July
1993.

[23] C.-Y. Chen and J. A. Abraham. Fault tolerance systems for the computation of
eigenvalues and singular values. In Proceedings of SPIE, pages 228-237, 1986.

[24] K.-T. Cheng and J.-Y. Jou. A functional fault model for sequential machines. IEEE
Transactions on Computer-Aided Design, 11:1065-1073, September 1992.

[25] Y.-H. Choi and M. Malek. A fault-tolerant systolic sorter. IEEE Transactions on
Computers, 37:621-624, May 1988.

[26] G. Cohen, P. Moller, J.-P. Quadrat, and M. Viot. Algebraic tools for the performance
evaluation of discrete event systems. Proceedings of the IEEE, 77:39-85, January
1989.

[27] R. Cuningham-Green. Minimax Algebra. Springer-Verlag, Berlin/Heidelberg/New
York, 1979.

190



[28] W. Daehn, T. W. Williams, and K. D. Wagner. Aliasing errors in linear automata used
as multiple-input signature analyzers. IBM Journal of Research and Development,
34:363-380, March-May 1990.

[29] M. Damiani, P. Olivo, and B. Ricco. Analysis and design of linear finite state ma-
chines for signature analysis testing. IEEE Transactions on Computers, 40:1034-1045,
September 1991.

[30] A. A. Desrochers and R. Y. Al-Jaar. Applications of Petri Nets in Manufacturing
Systems. IEEE Press, 1994.

[31] S. Devadas, A. Ghosh, and K. Keutzer. Logic Synthesis. McGraw Hill, New York,
1994.

[32] R. L. Dobrushin and S. S. Ortyukov. Upper bound on the redundancy of self-correcting
arrangements of unreliable functional elements. Problems of Information Transmis-
sion, 13:203-218, July-September 1977.

[33] P. Elias. Computation in the presence of noise. IBM Journal of Research and Devel-
opment, 2:346-353, October 1958.

[34] F. Fagnani and S. Zampieri. Dynamical systems and convolutional codes over finite
abelian groups. IEEE Transactions on Information Theory, 42:1892-1912, November
1996.

[35] V. Y. Fedorov and V. O. Chukanov. Analysis of the fault tolerance of complex systems
by extensions of Petri nets. Automation and Remote Control, 53:271-280, February
1992.

[36] P. Gics. Reliable computation with Cellular Automata. Journal of Computer and
System Sciences, 32:15-78, February 1986.

[37] R. G. Gallager. Low-Density Parity Check Codes. MIT Press, Cambridge, Mas-
sachusetts, 1963.

[38] R. G. Gallager. Information Theory and Reliable Communication. John Wiley &
Sons, New York/London/Sydney/Toronto, 1968.

[39] M. Geiger and T. Miiller-Wipperfirth. FSM decomposition revisited: Algebraic struc-
ture theory applied to MCNC benchmark FSM's. In Proceedings of the 28th Design
Automation Conference, volume 6, pages 182-185, 1991.

[40] A. Ginzburg. Algebraic Theory of Automata. Academic Press, New York, 1968.

[41] S. W. Golomb. Shift Register Sequences. Holden-Day, San Francisco, 1967.

[42] P. A. Grillet. Semigroups. Marcel Dekker Inc., New York, 1995.

[43] C. N. Hadjicostis. Fault-Tolerant Computation in Semigroups and Semirings. M.
Eng. thesis, EECS Department, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1995.

191

--- ·-------- · I �-----L ---- i-W- IL ·- _ ·- -_ -· I__r� ·------IP-�Ll�rsll-L�X.-·-� -



[44] C. N. Hadjicostis and G. C. Verghese. Fault-tolerant computation in semigroups and
semirings. In Proceedings of Int. Conf. on Digital Signal Processing, volume 2, pages
779-784, 1995.

[45] R. E. Harper, J. H. Lala, and J. .. Deyst. Fault-tolerant parallel processor architecture
review. In Eighteenth Int. Symposium on Fault-Tolerant Computing, Digest of Papers,
pages 252-257, 1988.

[46] M. A. Harrison. Lectures on Linear Sequential Machines. Academic Press, New
York/London, 1969.

[47] J. Hartmanis and R. E. Stearns. Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, Englewood Cliffs, New Jersey, 1966.

[48] J. T. Histad. Computational Limitations for Small-Depth Circuits. MIT Press, Cam-
bridge, Massachusetts, 1987.

[49] I. N. Herstein. Topics in Algebra. Xerox College Publishing, Lexington, Massachusetts,
1975.

[50] K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix opera-
tions. IEEE Transactions on Computers, 33:518-528, June 1984.

[51] M. Ikeda and D. D. Siljak. Generalized decompositions of dynamic systems and vector
Lyapunov functions. IEEE Transactions on Automatic Control, AC-26:1118-1125,
October 1981.

[52] M. Ikeda and D. D. Siljak. An inclusion principle for dynamic systems. IEEE Trans-
actions on Automatic Control, AC-29:244-249, March 1984.

[53] M. Ikeda, D. D. Siljak, and D. E. White. Expansion and contraction of linear time-
varying systems. In Proceedings of 21st IEEE Conf. on Decision and Control, pages
1202-1209, 1982.

[54] V. S. Iyengar and L. L. Kinney. Concurrent fault detection in microprogrammed
control units. IEEE Transactions on Computers, 34:810-821, September 1985.

[55] N. Jacobson. Basic Algebra I. W. H. Freeman and Company, San Francisco, 1974.

[56] J.-Y. Jou and J. A. Abraham. Fault-tolerant matrix arithmetic and signal processing
on highly concurrent parallel structures. Proceedings of the IEEE, 74:732-741, May
1986.

[57] J.-Y. Jou and J. A. Abraham. Fault-tolerant FFT networks. IEEE Transactions on
Computers, 37:548-561, May 1988.

[58] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

[59] I. Koren and A. D. Singh. Fault-tolerance in VLSI circuits. IEEE Computer, pages
73-83, July 1990.

192

j



[60] A. V. Kuznetsov. Information storage in a memory assembled from unreliable com-
ponents. Problems of Information Transmission, 9:254-264, July-September 1973.

[61] R. W. Larsen and I. S. Reed. Redundancy by coding versus redundancy by replication
for failure-tolerant sequential circuits. IEEE Transactions on Computers, 21:130-137,
February 1972.

[62] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines.
Proceedings of the IEEE, 84:1090-1123, August 1996.

[63] R. Leveugle, Z. Koren, I. Koren, G. Saucier, and N. Wehn. The Hyeti defect tolerant
microprocessor: A practical experiment and its cost-effectiveness analysis. IEEE
Transactions on Computers, 43:1398-1406, December 1994.

[64] S. C. Liang and S. Y. Kuo. Concurrent error detection and correction in real-time
systolic sorting arrays. In Proceedings of 20th IEEE Int. Symposium on Fault-Tolerant
Computing, 1990.

[65] R. Lidl and G. Pilz. Applied Abstract Algebra. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 1985.

[66] E. S. Ljapin. Semigroups, volume Three of Translations of Mathematical Monographs.
American Mathematical Society, Providence, Rhode Island, 1974.

[67] D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, & Applications.
John Wiley & Sons, New York, 1979.

[68] D. J. C. MacKay and R. M. Neal. Good codes based on very sparse matrices. In
Colin Boyd, editor, Cryptography and Coding, 5th IMA Conference, volume 1025 of
Lecture Notes in Computer Science, pages 100-111, 1995.

[69] G. A. Margulis. Explicit construction of concentrators. Problems of Information
Transmission, 9:71-80, October-December 1974.

[70] R. L. Martin. Studies in Feedback-Shift-Register Synthesis of Sequential Machines.
MIT Press, Cambridge, Massachusetts, 1969.

[71] J. O. Moody and P. J. Antsaklis. Supervisory control using computationally efficient
linear techniques: A tutorial introduction. In Proceedings of 5th IEEE Mediterranean
Conf. on Control and Systems, 1997.

[72] J. O. Moody and P. J. Antsaklis. Supervisory Control of Discrete Event Systems
Using Petri Nets. Kluwer Academic Publishers, Boston/Dordrecht/London, 1998.

[73] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77:541-580, April 1989.

[74] V. S. S. Nair and J. A. Abraham. Real-number codes for fault-tolerant matrix op-
erations on processor arrays. IEEE Transactions o Computers, 39:426-435, April
1990.

193

L r-------------�� C-- ... ~ ~ ~ ~ ~ ~ ~ ~ .·^--_-11 I_ _- I I 



[75] S. Niranjan and J. F. Frenzel. A comparison of fault-tolerant state machine architec-
tures for space-born electronics. IEEE Transactions on Reliability, 45:109-113, March
1996.

[76] J. P. Norton. Structural zeros in the modal matrix and its inverse. IEEE Transactions
on Automatic Control, AC-25:980-981, October 1980.

[77] R. A. Parekhji, G. Venkatesh, and S. D. Sherlekar. A methodology for designing
optimal self-checking sequential circuits. In Proceedings of Ipt. Conf. VLSI Design,
pages 283-291. IEEE CS Press, 1991.

[78] R. A. Parekhji, G. Venkatesh, and S. D. Sherlekar. Concurrent error detection using
monitoring machines. IEEE Design and Test of Computers, 12:24-32, March 1995.

[79] B. Parhami. Voting algorithms. IEEE Transactions on Reliability, 43:617-629, De-
cember 1994.

[80] M. Peercy and P. Banerjee. Fault-tolerant VLSI systems. Proceedings of the IEEE,
81:745-758, May 1993.

[81] W. W. Peterson and E. J. Weldon Jr. Error-Correcting Codes. MIT Press, Cambridge,
Massachusetts, 1972.

[82] N. Pippenger. On networks of noisy gates. In Proceedings of the 26th IEEE FOCS
Symposium, pages 30-38, 1985.

[83] N. Pippenger. Developments in the synthesis of reliable organisms from unreliable
components. In Proceedings of Symposia in Pure Mathematics, volume 50, pages
311-324, 1990.

[84] D. K. Pradhan, editor. Fault-Tolerant Computing, Theory and Techniques, chapter 5.
Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

[85] D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice Hall, Englewood
Cliffs, New Jersey, 1996.

[86] P. J. Ramadge and W. M. Wonham. Th. control of discrete event systems. Proceedings
of the IEEE, 77:81-97. January 1989.

[87] T. R. N. Rao. Error Coding for Arithmetic Processors. Academic Press, New York,
1974.

[88] T. R. N. Rao and E. Fujiwara. Error-Control Coding for Computer Systems. Prentice-
Hall, Englewood Cliffs, New Jersey, 1989.

[89] G. R. Redinbo. Finite field fault-tolerant digital filtering architecture. IEEE Trans-
action on Computers, 36:1236-1242, October 1987.

[90] G. R. Redinbo. Signal processing architectures containing distributed fault-tolerance.
In Conference Record - Twentieth Asilomar Conf. on Signals, Systems 1 Computers,
pages 711-716, 1987.

194

I



[91] C. Reutenauer. The Mathematics of Petri Nets. Prentice Hall, New York, 1990.

[92] R. A. Roberts and C. T. Mullis. Digital Signal Processing. Addison-Wesley, Reading,
Massachusetts, 1987.

[93] A. Roy-Chowdhury and P. Banerjee. Algorithm-based fault location and recovery for
matrix computations on multiprocessor systems. IEEE Transactions on Computers,
45:1239-1247, November 1996.

[94] A. Sengupta, D. K. Chattopadhyay, A. Palit, A. K. Bandyopadhyay, and A. K. Choud-
hury. Realization of fault-tolerant machines - linear code application. IEEE Trans-
actions in Computers, 30:237-240, March 1981.

[95] C. E. Shannon. A mathematical theory of communication (Part I). Bell System
Technical Journal, 27:379-423, July 1948.

[96] C. E. Shannon. A mathematical theory of communication (Part II). Bell System
Technical Journal, 27:623-656, October 1948.

[97] J. Sifakis. Realization of fault-tolerant systems by coding Petri nets. Journal of
Design Automation and Fault-Tolerant Computing, 3:93-107, April 1979.

[98] M. Silva and S. Velilla. Error detection and correction on Petri net models of discrete
events control systems. In Proceedings of the ISCAS, pages 921-924, 1985.

[99] M. Sipser and D. A. Spielman. Expander codes. IEEE Transactions on Information
Theory, 42:1710-1722, November 1996.

[100] D. A. Spielman. Highly fault-tolerant parallel computation. In Proceedings of the
Annual Symposium on Foundations of Computer Science, volume 37, pages 154-160,
1996. Also available at ww-math.mit. edu/spielman/.

[101] D. A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42:1723-1731, November 1996.

[102] J. Sun, E. Cerny, and J. Gecsei. Fault tolerance in a class of sorting networks. IEEE
Transactions on Computers, 43:827-837, July 1994.

[103] D. L. Tao and K. Kantawala. Evaluating the reliability improvements of fault-tolerant
array processors using algorithm-based fault tolerance. IEEE Transactions on Com-
puters, 46:725-730, June 1997.

[104] M. G. Taylor. Randomly Perturbed Computational Systems. PhD thesis, EECS
Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1966.

[105] M. G. Taylor. Reliable computation in computing systems designed from unreliable
components. The Bell System Journal, 47:2239-2366, December 1968.

[106] M. G. Taylor. Reliable information storage in memories designed from unreliable
components. The Bell System Journal, 47:2299-2337, December 1968.

195

IA- IY *~P·U - - -- -- -



[107] J. von Neumann. Probabilistic Logics and the Synthesis of Reliable Organisms from
Unreliable Components. Princeton University Press, Princeton, New Jersey, 1956.

[108] J. Wakerly. Error Detecting Codes, Self-Checking Circuits and Applications. Elsevier
Science, Amsterdam/New York, 1978.

[109] G. X. Wang and G. R. Redinbo. Probability of state transition errors in a finite
state machine containing soft failures. IEEE Tiansactions on Computers, 33:269-277,
March 1984.

[110] S. A. Ward and R. H. Halstead. Computation Structures. MIT Press, McGraw-Hill
Company, Cambridge, Massachusetts, 1990.

[111] S. B. Wicker. Error Control Systems. Prentice Hall, Englewood Cliffs, New Jersey,
1995.

[112] S. Winograd and J. D. Cowan. Reliable Computation in the Presence of Noise. MIT
Press, Cambridge, Massachusetts, 1963.

[113] W. M. Wonham. Linear Multivariable Control: A Geometric Approach. Springer-
Verlag, New York, 1985.

[114] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis. Feedback control of Petri
nets based on place invariants. Automatica, 32:15-28, January 1996.

[115] B. P. Zeigler. Every discrete input machine is linearly simulatable. Journal of Com-
puter and System Sciences, 7:161-167, April 1973.

196

_ � _�__


