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Abstract

Lexical Access From Features (LAFF) is a proposed knowledge-based speech recognition
system which uses landmarks to guide the search for distinctive features. The first stage in
LAFF must find Vowel landmarks. This task is similar to automatic detection of syllable
nuclei (ASD).

This thesis adapts and extends ASD algorithms for Vowel landmark detection. In addition
to existing work on ASD, the acoustic theory of speech production was used to predict
characteristics of vowels, and studies were done on a. speech database to test the predictions.
The resulting data guided the development of an improved Vowel landmark detector (VLD).

Studies of the TIMIT database showed that about 94%c of vowels have a peak of energy
in the F1 region, and that about 89% of vowels have a peak in F1 frequency. Energy and
fiequency) peaks were fairly highly correlated, with both peaks tending to appear before the
nlidpoint of the vowel duration (as labeled), and frequency peaks tending to appear before
energy peaks. Landmark based vowel classification was not found to be sensitive to the
precise location of the landmark. Energy in a fixed frequency band (300 to 900 Hz) was
found to be as good for finding landmarks as the energy at F1, enabling a. simple design for
a VLD iwithout the complexity of formant tracking.

The VLD was based on a peak picking technique, using a recursive convex hull algorithm.
Three acoustic cues (peak-to-dip depth, duration, and level) were combined using a multi-
layer perceptron with two hidden units. The perceptron was trained by matching landmarks
to syllabic nuclei derived from the TIMIT aligned phonetic transcription. Pairs of abutting
vowels were allowed to match either one or two landmarks without penalty. The perceptron
was trained first by back propagation using mean squared error, and then by gradient descent
using error rate. The final VLD's error rate was about 12%, with about 3.5% insertions and
8.5% deletions, which compares favorably to the 6% of vowels without peaks. Most errors
occurred in predictable circumstances, such as high vowels adjacent to semivowels, or very
reduced schwas. Further work should include improvements to the output confidence score,
and error correction as part of vowel quality detection.

Thesis Supervisor: Kenneth N. Stevens
Clarence J. LeBel Professor of Electrical Engineering
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Chapter 1

Introduction: LAFF and Vowel

Landmarks

This chapter is an introduction to the LAFF paradigm and the concept of Vowel land-

marks. It includes discussion of the problems which a Vowel landmark detector must face.

metholodogies for testing and validation of a Vowel landmark detector, and the basic theory

that. underlies the definition of Vowel landmarks.

1.1 Motivation

A primary motivation for this thesis is to detect Vowrel landmarks as part of the front end

of a LAFF speech recognition system. LAFF [84] is a knowledge based approach to speech

recognition. in which landmarks (indicating vowels, consonants, or glides) are detected in the

speech signal, and phonetic features are detected and attached to the landmarks. Therefore,

16
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landmark detection is a crucial first step in LAFF processing. Landmark detectors for

Consonants [54] and Glides [86] have already been developed, leaving only Vowel landmarks

yet to be done.

In addition, there are many other uses for automatic syllable detection, which is a task very

similar to detection of Vowel landmarks. Among them are visual speech aids for the hearing

impaired [37], database labeling aids, tools for perceptual studies, and automatic detection

of rate of articulation.

1.1.1 Thesis scope

The goal of this thesis is to create a Vowel landmark detection algorithm that is simple

and reliable, and to test and validate its perforn-a -a :e on a. standard clatabase of continuous

speech (the TIMIT database [47]). The algorithm should be able to accept speech by adult

talkers of either gender, in all the dialects of American English represented in the database.

One of the long term goals of the LAFF paradigm is a speech recognition system which is

insensitive to the production characteristics of the input speech. For this purpose, the system

should be tested on multiple databases, including spontaneous as well a.s read speech, under

differing conditions. Other researchers, notably Liu [54], have focused on this aspect of

development. In the interests of time and complexity, this thesis will use only one database,

leaving input invariance as a task for later consideration.
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1.2 The LAFF paradigm

LAFF (Lexical Access From Features) is a proposal for a model of speech recognition by

humans, intended to reflect how a human listener takes in the speech signal and derives a.

sequence of words from it. As such, it is not primarily a proposal for a commercially viable

speech recognition system (although there is some argument that since speech is created

by humans for humans, modeling the human process of perception is the most reasonable

approach for an automatic speech recognition system).

Linguistic science has established that words are stored in human memory as sequences

of segmental units called phonemes (along with a small amount of additional information,

indicating stress level and other prosodic information). It. is also known that each phoneme

is stored as a collection of Distinctive Features (DFs) which are canonically represented

a.s binary variables. 1 Furthermore, there is evidence that the DFs are not a. disordered

aggregate. but are grouped in an hierarchical structure that reflects the ph-ysical properties

of the speech articulators [43].

In contrast to the segmental nature of phonemes and DFs, the acoustic speech signal is

continuous in nature. Attempts to separate the speech signal into phoneme segments. and

then to detect DFs Awithin each segment, have met Awith only very limited success, due to the

variety of phenomena which transform the discrete phonemes and DFs into the continuous

signal.

IAlmost all DFs are allowed to be unspecified in value, as well as taking on plus and minus values, so
that strictly speaking they are trinarv variables. This is important in implementation, but does not affect.
the structure being presented here.
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1.2.1 Landmarks and Segments

The primary innovation of LAFF is the notion of landmarks. The problem of segmentation

of the speech signal is avoided by using landmarks rather than segments to break the signal

into an ordered sequence of objects that can carry DF information.

The most fundamental distinction among phonemes is between vowels and consonants. Vow-

els are produced with the vocal tract fully open, causing the characteristic pattern of for-

mants, while consonants involve closing the vocal tract to some degree. Consonants may

be further divided into abrupt and nonabrupt consonants. Abrupt consonants are produced

with a constriction that is strong enough to cause acoustic discontinuity (at least in some

region of the spectrum), while nonabrupt consonants are produced without such a severe

constriction. and hence do not exhibit acoustic discontinuity. Nonabrupt consonants are

represented w-ith Glide landmarks, while Consonant landmarks implicitly rc,,resent abrupt

consonants.

So there are three classes of landmarks: Vowel, Glide, and Consonant.. MIost landmarks

(though not all, see below) are located a.t a. specific event in the acoustic signal. A Vowel

landmark, for instance, is located at the maximum of low frequency energy in the vowel. An

intervowel Glide landmark is located at the minimum of low frequency energy between two

vowels. In these cases, each landmark corresponds to a single underlying segment.

Consonant landmarks are located at the closure and release of the (abrupt) consonant. In

general, therefore, there are two Consonant landmarks which correspond to the underlying

consonantal segment. However, it is possible for only one Consonant landmark to appear in

correspondence to the underlying segment, typically in consonant clusters.

There are also ca.ses in which a. landmark is not located at a. specific acoustic event. A pre-
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vocalic Glide which appears after a Consonant and before a. Vowel, for example, corresponds

to an underlying glide segment, but is not located at an acoustic event. Similarly, some

Vowel landmarks will be located where there is no peak in low frequency energy (typically

in vowel-vowel sequences). Such a landmark, which is not located a.t an acoustic event, is a

"floater" which appears somewhere between the events of the landmarks which precede and

follow it. The landmarks are always understood to have a fixed order in time.

This means that not all vowels will have a. landmark that is generated from an acoustic

event. In this thesis, the assumption is that a.ll vowels have landmarks, but not all can be

derived from acoustic events alone. Some landmarks may be generated by subtler acoustic

information, such as formant movements. This assumption, and the conceptual distinction

between acoustic event" and "landmark" ma.y not be shared by other researchers working

on the LAFF project [54]. [12].

1.2.2 Distinctive Features

For each class of landmark (owel, Glide. and Consonant). there are distinctive features 2

(DFs) which should be assigned to them. DFs are determined by measuring acoustic prop-

erties in the vicinity of the landmark and combining the acoustic properties according to

rules. The details of the DFs are rules which are described elsewhere [84] and will not be

covered here.

2 The term "distinctive" refers to linguistic features which can make a distinction between phonetic seg-
mnents. The phrase "distinctive feature" is used here to distinguish these features from acoustic features used
in recognition.
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1.2.3 Matching landmarks to the lexicon

Once the landmarks have been detected and populated with features, they must be matched

to the words in the lexicon. Since words are stored in the lexicon as sequences of phonemes, a

sequence of phoneme segments (perhaps more than one) must be posulated fom the sequence

of landmarks. The details of this process are not yet clear. The process will include phonetic

rules for transformation of features and similar phenomena. See the literature [84] for more

information.

1.3 Issues facing Robust Speech Recognition

There are several issues that complicate the task of robust seech recognition. In general,

these issues pertain to speech recognition systems as a whole. Since a owel landmark

detector is an important part of a speech recognition sstem, a review of these issues is

relevant to this thesis.

1.3.1 Sources of speech variability

There are many sources of variability which can challenge a speech recognition system. We

may group them into the following categories, in roughly increasing order of the difficulty

they pose for robust recognition.

Additiv noise includes background noise from the channel (such as white or pink noise) as

well as background noise from the environment. Environmental background noise is either

nonspeeclike (frequently encountered in an aircraft cockpit or automobile) or speechlike
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(background babble, as in an office or other crowded environment). Additive noise may

be stationary (background hiss, or steady vehicle noise) or nonstationary (pops, crackles,

honking horns, etc.) but it is always uncorrelated with the speech signal.

Convolutive noise includes reverberance or echoes, filtering, clipping or saturation of elements

in the signal chain, and similar phenomena. Unlike additive noise, it is correlated with the

speech signal, and consequently is more difficult to handle.

Talker variability can include both physical and habitual differences. Physical variability,

such a.s the age, size, or gender of the talker, can affect the vocal tract length, FO range, and

the appearance of formants. Habitual variability, such as dialect and speech disorders (such

as lisping) are stable for each talker, but can vary widely between talkers.

Prodiction variability includes some of the most difficult phenomena. to predict or to recog-

nize. Talker stress and speech rate can have significant effects on speech production. Phe-

nomena such a.s lenition, epenthesis, and coarticulation (see section 1.3.2) can drastically

modify the acoustic characteristics which correspond to the underlying phoneme sequence.

W\hile linguistic knowledge can characterize many of these phenomena, the conditions under

which they appear, and the degree to which they manifest, are often unpredictable.

Production variability is notorious for causing difficulty for speech recognition systems. In

particular, the transition from isolated words to continuous speech is a. great challenge,

because variability (which often comes through overlapping of gestures) takes place across

word boundaries as well as within words. Because such phenomena. are especially prevalent in

casual, continuous speech, robustness on continuous speech will be a central test of the vowel

landmark detector in this thesis. Phenomena of production variability follow patterns which

can be expressed via. linguistic knowledge. Therefore, we hope that a LAFF system that can

capture such linguistic knowledge will prove to be relatively robust on casual, continuous
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speech.

1.3.2 Lexical vs. acoustic representations

A speech recognition system is typically evaluated by comparing its output to some sort

of transcription of the input speech signal (which will be called scoring in this thesis, see

section 4.2.2). If the transcription of an utterance were a, straightforward, unambiguous

representation of the information in the speech signal, transcribed databases would be easy

to use for testing, but this is not the case.

Lexical transcriptions

Almost all speech databases include a Ixfical transcription, usually orthograplhic in nature.

which represents the words being spoken. The syllabic nuclei of a lexical transcription (their

number and locations) are generally simple and unambiguous. (We are not primarily con-

cerned with sllable boundaries, which can be much more ambiguous.) Lexical transcriptions

are also relatively easy to generate, which helps to account for their popularity.

Unfortunately, there are many cases where a lexical transcription is not a reliable indicator

of the acoustic representation of syllable structure. For complete speech recognition systems

(whose output is lexical in nature), this may not be a, major problem. But feature extraction

systems (like a Vowel landmark detector) attempt to represent the information in the acoustic

signal, without reference to a. lexicon, and differences between the acoustic information and

the transcription are a. very difficult problem to deal with.

Syllabic nuclei can be inserted by epenthesis, frequently when semivowels are next to stop
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consonants (a.s in "plea.se" becoming similar to "police") or nasa.l consonants ("arm" becom-

ing like "carom"). Epenthetic insertion of vowel-like sounds can also occur at the release of

a, fina.l stop consonant.

Vowels can be reduced when unstressed, almost to the point of total disappearance (as in

"support" becoming similar to "sport" except for aspiration) especially for reduced vowrels

in unvoiced contexts, such as the first vowel in "potato." This type of reduction is called

towel deletion, oission, or elision.

Nowels in sequence with semivowels can be particularly hard to characterize. A word like

"fear" should have one syllable, but it can be pronounced with two and in extreme cases, the

two vowels may appear to be separated by a glide, which is another kind of epenthesis. The

situation is een more complicated with "fire" or file" which are liable to be pronounced

with one syllable in some regional dialects (American Southern) and two syllables in other

dialects (Alnerican Northeast.).

Two vowels in sequence can also be hard to characterize. A word like coerce" (two syllables)

may sound like coarse" or -'quirts" (one syllable), which is an examIple of coalescence, or it

may have two well produced vown-els together, or it may sound like cowers" with two vowels

separated by an epenthetic glide. Coalescence also occurs across word boundaries, as in see

Some lexical transcriptions are time aligned with the acoustic signal, but most are not.

Scoring is much easier with a time aligned transcription. Without it, the only pra.ctica.l

alternative is to match the total number of syllables detected to the transcription, which

does not allow identification of individual detections or errors. NWorse, this scheme cannot

identify a. deletion in one area and an insertion in another area. as an error (bearing in mind

that a. \owel landmark indicates the existence of a syllabic nucleus, without characterizing
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it).

For all these reasons, a lexical transcription is likely to be an inaccurate representation of

the acoustic manifestation of syllable structure.

Acoustic transcriptions

Some speech databases include an acoustic transcription, which is usually a string of phones

or allophones, representing the speech sounds manifested in the speech signal. Only the

LAFF database [10] is transcribed directly as landmarks. Acoustic transcriptions are almost

alays time aligned, which helps in the scoring process.

One problem with acoustic transcriptions is that tey are time consuming to generate. They

require skilled transcribers who have to spend a fair amount of time creating the transcrip-

tions. time aligning them, and cross checking to correct errors. Because of the effort involved,

acoustic transcriptions are rather rare, especially for databases of spontaneous speech and

casual conversations.

A more serious problem is that acoustic transcriptions are often not unique or unambiguous.

A phonetic segment transcription imposes categorical decisions on acoustic information that

varies across a continuum. How these decisions should be made is far from clear.

For instance, Pitrelli [68] describes the process for assigning phone boundaries in the aligned

phonetic transcription of the TIMIT database.

For vowel-vowel transitions, which tend to be gradual, half of the total duration

is allocated to each, unless one of the vowels is reduced, in which case the reduced
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vowel is marked to be one-third of the total and the other vowel, two-thirds. For

transitions between vowels and semivowels, one-third of the duration is allocated

to the semivowel and two-thirds to the vowel. [ibid., p. 134]

While this procedure is unambiguous, it makes no attempt to examine the acoustic char-

acteristics of the speech signal or to generate a transcription which reflects the acoustic

evidence.

Even without such ambiguity, acoustic transcriptions are vulnerable to errors, because there

is no easy waly to check for consistency. Errors can be introduced byr transcribers who have ac-

cess to the orthography; lexical and semantic knowledge will also influence the transcription.

evren Awhen the goal is supposed to be a purely acoustic representation. Different transcribers

may also use different conventions in ambiguous situations. which would introduce even more

inconsistency.

In sum. both lexical and acoustic transcriptions are likely to have problems when used

as a reference to evaluate the performance of a sllable detector. The main problem with

lexical transcription is the variability between the transcription and the acoustic information.

while the main problemn with acoustic transcription is availability. Section 4.9.2 will address

methods for dealing with transcription problems.

1.3.3 Statistical vs. knowledge based recognition

M\Iost of the early work in speech recognition used knowledge-based methods. attempting to

explicitly incorporate speech knowledge. The expectation was that the insights of acoustics,

speech production, and linguistic phenomena would aid in achieving good performance over

a. wide range of speech variations.
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Statistically-based recognition methods have largely supplanted knowledge-based methods

over the course of the last two decades. Although we have a fair amount of qualitative

knowledge about speech, implementing this knowledge in quantitative algorithms is still very

difficult. Statistically-based methods (aptly called "ignorance models") avoid this problem,

and have demonstrated better performance than knowledge-based methods for a variety of

tasks.

Statistically-based methods do have their drawbacks. They generally impose a higher com-

puta.tional load on the system, they require time to train, and they do not generally allow

the use of insight or speech knowledge in their design. None of these are major problems,

except the following. The fundamental problem with statistically-based methods is their

inability to cope with phenomena that are not well represented in their training data.

When the input data consist of clear, read speech, statistically-based methods can achieve

very good performance. as shown by the results of the ARPA SUR, project (section 2.3).

Only recently have statistically-based systems been tested on casual. spontaneous speech

(section 1.3.1), where they perform very poorly (see, for example, Lippmann [53]).

Casual speech, especially spontaneous speech, displays a wide range of variability (phenom-

ena such a.s coalescence, epenthesis, and lenition) in a variety of combinations. Attempts

to represent these phenomena (in all their possible combinations) lead to explosive growth

of the training data set, which rapidly becomes impractical both to create and to use in

training.

IKnowledge-based methods, if they can be made to work well, should be more robust against

the varia.bility in spontaneous speech (because spontaneous speech is characterized by lin-

guistic constraints that a knowledge based approach can incorporate, as discussed in sec-

tion 1.3.1). This thesis will begin with a knowledge-based approach to vowel landmark
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detection, with the understanding that some statistical methods may be added as appropri-

ate, when necessary to achieve good performance (generally, when speech knowledge is not

adequate).

1.3.4 Modular vs. integral architecture

Closely related, but separate, is the question of speech recognition (SR) system architecture.

Statistically based systems generally have an integral architecture, with a single processing

stage (such as an HMIM) generating all the output, without explicit structure. Knowledge

based systems generally have a modular architecture. with several stages of processing which

pass information from one to another via clearly defined interfaces.

Modular architecture is a staple of algorithm design and software engineering ; general. It

allows each module to be developed, tested, and maintained separately, and even ext.ended

or replaced as better algorithms become available. When the interfaces between modules can

be interpreted theoretically (e.g. as landmarks, features, and so on). a. modular architecture

is a natural for knowledge based processing.

The weakness of a. modular architecture is its tendency to impose "hard" (irreversible) deci-

sions on the early stages of processing. Any mistakes made by the first stage of processing

will cause more severe errors in the processing stages that follow it. This problem is well

known [71, p. 15] and will be called "cascade failure" in this thesis.

The primary way to avoid cascade failures, or at least to reduce their impact, is to minimize

"ha.rd" decisions in the early stages. In particular, measurements may be marked with a.

confidence score, which may be interpreted as a likelihood that the measurement is accurate.

MIa.intaining confidence scores, and predicating later processing on the confidence of the
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earlier measurements, helps avoid cascade failure. Therefore, the Vowel landmark detector

should generate confidence scores for its output.

1.4 Theoretical and practical implementation issues

1.4.1 Definition of a Vowel landmark

The precise definition of a. vowel landmark is set forth by Stevens [84] as:

The vowel landma.rks are the places in the signal where there is a. maximum in

amplitude in the raiige of the first formant frequency. These places a.re usually

where the first. formant frequency is maximally high.

An accompanying figure [ibid., fig. 5.1] shows the first formant frequency tracks, as well a.s

the relative amplitude of the first formant prominence. Choi [11, p. 5] states that "the vowel

landmark is placed at a time when the amplitude of the first. formant (F1) is a. maximum."

Thus, the definition gives several acoustic parameters (low frequency energy, first formant

frequency, first formant amplitude) but does not explain how to combine them. As a practical

matter, energy in a. fixed low frequency band is a simple and reliable parameter, but accurate

forma.nt tracking is a notoriously difficult ta.sk (see, for example, [46]).

The definition also says "the time between the landmarks is rarely shorter than 120 ms,

and, except when there is a pause, is rarely longer than about 350 ms in running speech."
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Although not a strict constraint, these times make it clear that duration information should

be used, and give a rough outline of what duration values can be expected.

There is some uncertainty about the relationship between a vowel landmark and a syllabic

nucleus. \hat is the difference? The quote above makes it clear that a vowel la.ndmark is an

acoustically defined entity. Some researchers seem to indicate that they consider a syllabic

nucleus as a lezically defined entity, but this usage may not be consistent. This thesis will

assume that syllabic nuclei are lexical in nature, and vowel landmarks are acoustic in nature

(see the discussion in section 1.3.2).

This definition appears to assume that the presence of a. vowel landmark is independent of the

characteristics or quality of the vowel. That is, the vowel landmark detector (VLD) detects

the vowel landmark without regard to whether the vowel is high, low, fiont, back, etc. Such

an assumption is probably more valid for simple cases (a single owel between obstruent

consonants) than for more complicated cases (several abutting owels in sequence). See

section 2.5.1 for mnore discussion.

There is some question of whether the definition of a. vowel landmark is language independent.

For now, this thesis will be confined to American English (keeping in mind the possibility of

dialectic variation, as discussed in section 1.3.2).

1.4.2 Design goals

Robustness against production variability

The most important goal of the VLD is robustness against production variability. The \TLD

should be able to deal with rapid, casual, continuous speech without major performance
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degradation. (The definition of "performance" will be discussed in section 1.4.3.)

Robustness against cascade failure

The VLD must provide as much information as possible to following stages of processing.

Each landmark consists of a time value (the location of the landmark in the speech signal)

and a confidence score (the strength of acoustic evidence for a landmark, or confidence that

this is a true la.ndmark). The confidence score will help later stages of processing use the

landmark appropriately.

Adaptability to input conditions

Changes in talker. talking rate, or level must not cause problems. The VLD should be

insensitive to these changes or adapt to changing input conditions as necessary.

1.4.3 Optimization criteria

The VLD will be optimized or tuned for best performance. However, the criteria which

define "best" will depend on the intended use of the VLD.

Detection theory describes several decision rules for a generic event detector. A Bayesian de-

tector optimizes the expected cost of a decision, based on a priori probabilities of the event to

be detected, and cost values for insertion and deletion errors. WVhen a. priori probabilities are

not available, a. minimax detector can be used, which minimizes the maximum average cost

across all possible events. When cost values are not available, a. Neyman-Pearson decision
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Figure 1-1: Receiver Operating Characteristic. The curve shows the performance of a. Likeli-
hood Ratio Test as a function of its threshold value. Different threshold values can be chosen
by; different decision rules (dotted lines).

rule call be used. which minimizes the probability of an insertion error while constraining

the proba.bility of a. deletion error to a fixed value (or vice versa).

All these criteria. can be implemented as special cases of a Likelihood Ratio Test, which sub-

jects the measurement to a threshold (the threshold value depends on a priori probabilities

and cost values). Its performance can be characterized by its Receiver Operating Character-

istic (ROC) which shows the tradeoff between insertion and deletion errors as a function of

the threshold value. See figure 1-1. The curve shows the performance of a Likelihood Ra.tio

Test a.s a function of its threshold value. A Bayesia.n or minimax criterion corresponds to a.

line through the origin, as showrn, whose slope is determined by the relative costs of insertion

and deletion errors. A Neyman-Pearson criterion corresponds to a vertical line set by the

desired probability of a.n insertion error (or, a horizontal line for deletion error).
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A priori probabilities for Vowel landmarks, to the degree that they can be well defined (e.

g. average frequency of landmarks in time), may be estimated from statistical studies of a

training database of speech signals. Cost values, however, must be assigned based on the

detector's application.

Criterion 1: Minimize error rate

The classic criterion for SR systems is minimum error rate, where the error rate is the sum of

the insertion rate and deletion rate. Implicitly, this treats insertions and deletions as equal

in cost. e will use this criterion for most (if not all) experiments. in order to achieve results

which can be easily compared to other systems.

Criterion 2: Maximize information output

In order to avoid hard" decisions, a different criterion should be used. Soft" decisions

require that as much information as possible is passed to the following stages of processing.

This implies that the cost of a deletion error is much greater than the cost of an insertion

error. Put another way, the VLD should output practically all its hypotheses for vowel land-

marks, even those of very low confidence. As long as the confidence scores for the landmark

hy1potheses are available, this will allow the following stages of processing to decide which to

keep (using other sources of information, such as phonotactic relations with consonant land-

marks). This criterion is appropriate for applications where the VLD's output will be post

processed by another module, for instance, integration with Consonant and Glide landmarks,

using phonotactic knowledge.
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Criterion 3: Maximize confidence in output

Cascade failure (section 1.3.4) is a concern for systems with modular architecture (charac-

teristic of knowledge based systems). One way to avoid cascade failures is for the VLD to

output only landmarks which have a very high confidence score. This implies that the cost

of an insertion error is much greater than the cost of a deletion error. Put another way, the

\ LD should output only those landmarks which have very high confidence, so that following

stages of processing do not get confused by false landmarks (insertion errors). This criterion

is appropriate for applications where the VLD's output is not post processed or checked for

consistency. In particular, this is a natural criterion for a multipass architecture. in which

the first pass focuses on the most robust landmarks only.

For the purpose of the experiments in this thesis, e will use minimum error rate as the

critelon. which is unambiguous and allows direct comparison with other systems. XWe swill

keep in mlind that other criteria, will probably be more useful when the \LD is integrated

into a prototy;pe system.
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Chapter 2

Background of Automatic Syllable

Detection (ASD)

This chapter is a. review of past research and development of techniques for Automatic

Syllable Detection (ASD) of human speech. Although there is verty little published work

describing Vowel landmarks as a concept, let alone algorithms for detecting them l, ASD is

a very similar task., with extensive research and development history.

2.1 How Vowel landmarks relate to ASD

Is Automatic Syllable Detection the same thing as Vowel Landmark Detection, and if not,

how do they differ? This question depends on the circumstances in which a syllabic center

(the presumed goal of ASD) is different from a. vowel, or a vowel does not function as a.
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syllabic center.

Recall the discussion in section 1.4.1, where it wa.s assumed that syllabic nuclei are lexical

in nature, and vowel landmarks are acoustic in nature. However, ASD as described in the

literature always uses gross acoustic information to find syllables. The differences between

lexical syllables and their acoustic manifestation (see section 1.3.2) are not discussed in

published articles on ASD (see sections 2.2 and 2.4). This section will assume that the goal 4

of ASD is to find the acoustic evidence for a syllable, which may not always correspond to

the underlying lexical presence of a syllable.

Sonorant consonants /m, n, ng, 1/ can appear as syllabic sonorant segments, usually manifes-

tations of a schwa. followed by a sonorant consonant. Syllabic sonorants can act as syllabic

centers. as in the second syllable of '"button." but are not classified as true owels. Pre-

suma-blv ASD will detect syllabic sonorants as syllabic centers. The published literature

on LAFF [80] [84] do not make clear whether or not Vowel landmarks should be placed at

syllabic sonorants. Their gross acoustic characteristics appear fairly vowel-like, with voicing

and some formant structure, and they certainly fulfill the definition of a Vowel landmark,

with a maximum in energy around the range of Fl. A Vowel Landmark Detector would have

to make some rather subtle measurements to differentiate syllabic sonorants from true vow-

els. For the purposes of this thesis, we will assume that syllabic sonorants should be marked

with Vowel landmarks, just like true vowels, and if necessary, later stages of processing can

be added to distinguish the landmarks of true vowels from those of sllabic sonorants.

In careful speech, it seems that all vowels function as syllabic centers. However, in casual,

continuous speech. vowel-vovwel sequences can be elided to various degrees, so tha.t naive"

is pronounced like "knife," or "coerce" becomes "coarse" for example. See section 1.3.2 for

more examples of these phenomena, including examples of words whose syllable count seems

to vary with dialect. \Vowel-vowel and vowel-semivowel sequences deserve careful handling
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for this reason. Section 4.2.2 will describe a scoring technique designed to deal with this

kind of ambiguity.

In sum. it appears that ASD is similar enough to VLD that any differences are open questions

rather than definite distinctions. Therefore, the published work in ASD is a reasonable

starting point for VLD development. However, we want Vowel landmarks to be labeled with

a meaningful confidence level or score, while most ASD techniques make a binary decision,

without an output score. Wve will want to be aware of this requirement when choosing an

algorithm.

2.2 Early work, mostly knowledge based

In the early days of speech recognition (SR), most of the techniques in use were explicitly

knowledge-based. and syllable detection was usually one of the first steps in processing.

Several leading research teams proposed schemes for automatic syllable recognition in the

mid to late 1970's.

NWeinstein and his team at MIT Lincoln Laboratories [88] and IKasuya and Wakita [41] both

used LPC spectra to extract low-to-high frequency energy ratios. Weinstein detected syllabic

nuclei by peak picking, while Kasuya used a conditioned linear discriminant function.

Mermelstein [61] and Redress et al. [58] both used power spectra to derive a. low frequency

energy profile, in the region of the first few formants of vowels. Medress detected syllabic

nuclei by straightforward peak picking, while Mermelstein used a unique "convex hull" al-

gorithm to recursively detect peaks which are prominent relative to their surroundings.
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Zwicker et al. [93] used a critical band filter bank to derive low-to-high energy ratio profile,

and detected syllabic nuclei by peak picking. Rabiner [70] used a normalizing technique on

the total energy profile, and detected syllabic nuclei with a. static threshold.

All of these techniques shared the basic premise of knowledge-based parameter extraction,

followed by fairly straightforward peak detection. Some of them produced quite good results

(see Table 2.1), but it is important to note that all were operating on high quality speech

input: read speech in quiet, usually as isolated words or slow, carefully read sentences.

The few experiments that used spontaneous speech (such as Pfitzinger et al. [69]) show

substantially poorer performance.

If there is any insight to be gained from Table 2.1, it is that comparisons between different

schemes are difficult to make. The wide variety of testing conditions and criteria make the

performance numbers hard to compare directly.

2.3 The ARPA SUR project and its aftermath

By 1970, great progress had been made on talker-dependent recognition of isolated words

from a limited vocabulary. Extending these techniques to multiple talkers, continuous speech,

and large vocabularies was proving to be a very difficult ta.sk. Critics questioned the value

of the speech recognition research being done [67].

In 1971, the Advanced Research Projects Agency (ARPA) initiated a massive research effort

to develop speech recognition systems that would overcome these problems. Specifically, the

goals of the Speech Understanding Research (SUR) project were stated as "Accept connected

speech from many cooperative speakers in a quiet room using a good microphone with slight
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Front end Parameters Detection Corpus Error Rate

MIermelstein short term RMS energy convex hull slow careful 9.5%
1975 power spectrum 500-4000 Hz recursion speech in quiet
Weinstein LPC 1. FO detection dip detection clear read 3.0%
et a.l 10 kHz SR 2. RMS ratio peak picking sentences
1975 5 ms FP LF/HF in quiet
Medress FFT LF energy peak picking ?
et al 10 kHz SR and post proc (WER only)
1978 10 ms FP for consonants
IKasuva : LPC autocorr 1. RAIS energy conditioned 7.69%
Wakita 10 kHz SR 2. LF/HF ratio 2D linear
1979 12.8 ms FP 3. LPC ratios discriminant
Zwicker .k critical band LF/HF ratio peak picking German cities 1.43%
Terha.rdt filter bank (?) one talker
1979 in quiet.
Ilunt. mel-scale loudness dip detection ?
et al cepstral , rofile (with duration (SER only)
1980 coefs constraint)
Rabiner RMS energy 1. ST envelope static threshold ?
1984 (zeroth order 2. median smooth (string error

autocorrelation) 3. normalize rate only)

Hermes Pitch snch FFT "Vowel strength'; peak picking fluent Dutch 11.1%
1990 5 kHz SR (sum of spectral with duration c& Dutch words 5.2%

10 ms FP peak factors) level constraints English words 4.7%
Fakotakis short term peak picking
et a.l energy with
1993 constraints
Pfitzinger FIR bandpass log energy, peak picking read German 12.9%
et al 250-2500 Hz smoothed, with duration spon German 21.0%
1996 lowpass 9 Hz constraint
Bitar 16 kHz SR mid freq Mermelstein TIMIT 20.1%
1997 25.6 ms Hamming energy convex hull read English

5 ms FP (two bands) (sonorant only) in quiet

Table 2.1: Knowledge Based Syllable Detectors
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tuning/speaker accepting 1000 words using an artificial syntax in a constraining task yielding

less than 10% semantic error in a few times real time on a 100 MIPS machine." [45] The

project lasted five years, involved hundreds of people, and resulted in the development of

four major speech understanding systems as well as a number of supporting efforts.

All four systems were significant improvements over the previous generation of speech rec-

ognizers, but only Harpy, one of two systems designed at Carnegie-Mellon University, sub-

stantially met the SUR project's goals. As will be described below, Harpy achieved its

impressive performance by relying heavily on strong grammatical constraints, rather than

improved front end algorithms such as syllable detection.

W\-hat follows is a more detailed examination of the four final systems, with particular at-

tention to the fiont ends (initial stages of signal processing).

The SDC speech understanding system

The SDC speech understanding system [1] performed bottom-up analysis on the speech signal

and produced an array of acoustic-phonetic data called the A-matrix, which was the only

representation of the input used by the rest of the system.

The first task performed by the front end is to compute a pitch track [ibid, p. 273] . This

is done in three stages: (1) the signal is lowpass filtered at 1000 Hz, (2) the autocorrelation

spectrum is computed using a 50 ms window and peaks of the spectrum are picked as

pitch candidates, (3) the pitch candidates are processed with median smoothing (to remove

anomalous values) and RMS smoothing (to remove small irregularities). The second task of

the front end is LPC analysis on 25.6 ms frames with a Hamming window, followed by peak

picking and formant tracking. The next pass calculates the number of slope changes in the
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digitized speech and marks dip areas, which will be used in segmentation. The next pass

segments and labels sonorant regions that can be reliably handled. Besides the ARPABET

phoneme labels, the system also used binary feature labels (such as retroflexion, nasalization,

etc.) and rough labels for use in labeling ambiguous areas. Distance measures are computed

from known points in a talker-dependent vowel table, areas of minimal change are located,

rough segment boundaries are determined, and the distance measure is used to produce labels

and scores. Another pass segments and labels non-sonorant regions (fricatives and stops)

using special LPCs with short windows, matching the resulting spectra to stored templates.

The next pass calculates prosodic information using intensity, duration, pitch, and other

computations. Finally, each 10 ms frame of the speech signal is marked with a. single "best"

label. The resulting A-matrix contains all the information available to the rest of the system.

The rest of the system includes a. top-down word hypothesizer with the ability to find coarse

subsets. a detailed word verifier, and a phrase verifier with abutment rules. Lexical items

are stored as directed graphs of phonemes; each path through the graph is an alternate

pronunciation. The grammar is a set of context-free top-down production rules. The control

system pursues a best-first search strategy.

The system as a whole recognized 30%o of utterances exactly, with another 15% recognized

as very similar (for instance, "is" substituted for "was") on the 1000 word vocabulary task,

using a grammar with a branching factor of 105. The system was not trained to the talker's

voice. This system Nwa.s originally meant to work with a top end designed by SRI, which was

not completed, forcing SDC to develop their own version, which was admittedly the weakest

link in the project. Full performance evaluation of the final system was not done due to

lack of funding. The experimenters, while recognizing that the top end (lexical access and

grammatical engines) was the major weak part of their system, emphasize the importance

of improving bottom end performance, noting "...there is more leverage to gained at the

bottom end for a given effort than almost anywhere else in the total system." [ibid, p. 290]
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HWIM

BBN developed a system called "Hear What I Mean" (HWIM) [89] which operated by bottom

up phonetic hypothesis by rule. The resulting hypotheses are arranged in a segment lattice

with likelihood scores.

Speech was digitized at 20 kHz, preemphasized by first differencing and subjected to LPC

analysis using 13 poles with a 20 ms Hamming window at 100 frames per second. Formant

frequencies were estimated from the lowest bandwidth poles of the LPC results. Total en-

ergy, energy in low, mid, and high frequency bands, zero crossing rate, and spectral shape

were also computed at 100 frames per second. All these parameters were directly available

to higher levels for detailed top down word verification; in addition, the frame based pa.ram-

eters were used by a. rule based system for bottom up phoneme hypotheses. The first rules

to be applied performed very gross segmentation and classification (typically manner clas-

sification) and later rules operated on the results of the earlier ones by modifying segment

boundaries, creating new segments, and modifying segment labels to generate a segment

lattice. Finally, scores for the lattice segments were computed as likelihood ratios, based on

confusion statistics and refined using acoustic analysis dependent on the segment label. [ibid,

p. 322] The segment lattice allows multiple segmentation paths for cases where the acoustic

evidence is not sufficient for unique segmentation decisions. However, there appears to be

no explicit allowance for coarticulatory effects in the HWIM system, whereby one segment's

label would depend on the labels for adjacent segments.

The bottom up hypotheses in the segment lattice are matched to a. tree structured pronunci-

a.tion dictionary. Some word boundary effects are captured in the dictionary by paths which

link certain terminal nodes back to certain initial nodes in the network. For example, a

word ending in /st/ can be pronounced without the final stop, but only when followed by

a word beginning with /s/ [ibid, p. 323]. The word candidates generated by this bottom
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up procedure are then verified against the frame-based acoustic parameters by top down

synthesis by rule, using the Itakura distance metric and dynamic time warping. [ibid, p.

324]

An augmented transition network (ATN) captured the structure of the grammar. Syntactic

and discourse information were incorporated after the initial lexical hypotheses were gener-

ated by an event-based control structure which built single-word matches progressively into

larger parse structures using either left-to-right or island driven search strategies.

\Vhen tested in isolation, the front end of HWITM (everything up to the segment lattice)

detected segment boundaries in the best path through the lattice with 1.7% deletion errors

and 2.3% insertion errors. The correct label had the highest score about 57% of the time,

but. was among the top seven scores over 90(70 of the time. The entire system recognized

41( of utterances exactly, with another 2%o semantically correct. on a vocabulary of 1097

words with a. branching factor of 196. The experimenters note that H\WIM's performance.

unlike Harpvrs, did not seem to be strongly dependent on high level constraints (ocabulary

size and grammar branching ratio), and also that a great deal of tuning would have been

possible with more time and funding, as opposed to Harpy which had been tuned to near

optimum.

Hearsay-II

Carnegie-'Mellon University developed a system called Hearsay-II [21] around a global data.

structure called a blackboard, which serves to integrate knowledge sources. Each knowl-

edge source watched for a hypothesis (from some other knowledge source) to appear on the

blackboard; and awhen it does, it applies its knowledge to write new hypotheses onto the

blackboard (where they will be used in turn by other knowledge sources). Other knowledge
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sources test the plausibility of extant hypotheses. In this way, diverse processes and sources

of information interact through the data. This scheme offers great flexibility for developing

and testing knowledge sources, alone and in various combinations.

Speech signals were digitized at 10 kHz, and a set of parameters referred to as ZAPDASH

(Zero crossing rate And Peaks in Differenced And Smoothed waveforms [29]) was extracted.

These parameters were used for segmentation by an iterative refinement technique: the

signal was separated into silent and nonsilent regions, the nonsilent regions were separated

into sonorant and nonsonorant, sonorant regions were separated into peak and nonpea.k areas,

and nonsonora.nt regions were separated into fricatives and flaps. The resulting segments

(contiguous and not overlapping, i. e. not a lattice) were labeled lby matching the central

portion of the segment against phone templates using the Itakura metric, producing a. ector

of scores. one for each template. This rather crude labeling procedure is not justified in

the literature; it may be that the experimenters did not feel that sufficient knowledge was

available for the design of a more detailed scheme.

Bottom-up word hypotheses were generated by knowledge sources which parsed the labeled

segments into syllables with a probabilistic production grammar, and grouped syllables into

words according to a syllable-class dictionary. The words were scored with a top-down

pronunciation network, adjusting their endpoints at the same time. Higher level knowledge

sources embodied word sequence statistics (bigram model), phrase structure, semantic and

discourse constraints, and halting criteria..

The experimenters claim 90% correctly or nearly correctly recognized utterances on a. 1011

word vocabulary; however, this result was obtained with fairly extensive training and a

restricted grammar whose branching factor was reported at about 33 [49, p. 69]. Apparently,

high level task constraints can effectively overcome the handicap of simplistic front end

processing for tasks of this magnitude.
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Harpy

Harpy was also developed at CMU, and shared many features with Hearsay-II, particularly

in the front end. Like Hearsay, Harpy used a sampling rate of 10 kHz, computed ZAPDASH

parameters for segmentation, and detected segment boundaries using an iterative refinement

procedure. The coefficients of LPC analysis at the midpoint of each segment were matched to

speaker dependent templates using the Itakura metric. As in the Hearsay system, this front

end is simplistic and fairly crude, discarding much spectral information. The experimenters

acknowledge this, relying on language constraints to recover from errors [55, p. 353].

All the knowledge sources used in Harpy - alternate word pronunciation, word boundary

effects. and finite state syntactic grammar - were compiled in to a. massive network. This

compilation is convenient because the rule systems are typically written for generation (top

downI). The resulting network of allophones is matched to the input segments via a. beam

search (best-few search). Although the network requires a large amount of memory. and any

change in the lexicon or grammar Nwould necessitate recompilation of the entire network, the

computation is straightforward.

Harpy was the clear winner of the ARPA SUR "contest," with 95% of utterances recognized

as substantially correct on a. 1011 word vocabulary with a grammar branching factor of 33.

Even results with telephone speech were reported as favorable (increase in word error rate

by a factor of 3 to 4). Ha.rpy also was the most computationally efficient system.

2.3.1 Results of the ARPA SUR project

The results of the ARPA SUR project are summarized in table 2.2, after [49, p. 69]. Clearly,

the best results are associated with constraining language models (low branching factor),
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GOAL

Accept continuous speech,
from many cooperative speakers,

RESULTS WITH 1976 ARPA SUR SYSTEMS
HARPY HEARSAY II HWIT\ SDC

184 sentences 22 sentences 124 sentences 54 sentences
3 male, 1 male 3 male 1 male
2 female

in a quiet room, computer terminal room
with a good microphone, inexpensive close-talking mike
with slight adjustments for each speaker, 20 training 60 training no training

sentences sentences
accepting 1000 words, 1011 1011 1097
using an artificial syntax, BF=33 BF=33 or 46 BF=196
yielding less that 10% semantic error, 5% 9% or 26% 56%
in a few times real time (=300 MIPSS) 28 MIIPSS 85 MIPSS 500 MIPSS

Table 2.2: Goals and Final (1976) System Results for the ARPA SUR.

quiet room
good mike
no training

1000
BF=105
76%
92 MIIPSS

Project

use of training sentences, and high computational efficiency. The CMIU systems were also

much more highly optimized and tuned than either HNWII or the SDC recognizer. which

were displaying steady improvements up until the deadline with no sign of reaching peak

performance.

2.3.2 Impact of the ARPA SUR project

"There exists a. real danger that Harpy's success may overshadow other equally important

contributions of the ARPA SUR project [50, p. 390]." In reviewing the contributions of

the project, most prominent scientists agreed that improvement of the initial signal process-

ing performance was one of the most important directions for future research (despite the

demonstrated utility of high level constra.ints for the ARPA SUR task). Lea. ranks acoustic

phonetic analysis first in priority for further work. "... The front end' analysis routines

which transform from a.coustics to phonetics, phonology, words, and prosodics are among

the top priority components on which to focus." [49, p. 86] In summarizing needs for future

work. the same author notes "... the diversion tha.t such higher-level modules have been,

in detracting fiom needed work on the acoustic 'front ends' of recognizers [51. p. 563]'" and

"Primary attention should be on the front end ... of the recognition process, where the
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critical gaps in current capabilities are known to exist [ibid, p. 567]."

Humans who listen to nonsense utterances (with no syntactic or semantic constraints) can

recognize 85% of content words correctly, as opposed to 34% by Hearsay-II, which has the

best performing word hypothesizer [78, p. 152]. This indicates that there is much more

information in the acoustics alone than machine algorithms were using. Lea concludes his

monograph by emphasizing the need for deeper understanding of acoustic phonetics once

again:

Repeatedly throughout this book, I (and several other authors) have advocated

work on the front-end of a recognizer. Yet, there is need for basic research projects

to gather more necessary knowledge about characteristic features of continuous

slpeech. This research will typically take years before it has direct impact on

speech recognizers, so work should begin soon on these topics. [51, p. 56S]

Nevertheless. Harpy's dramatic performance for the ARPA SIUR task spurred a great amount

of interest in statistically based algorithms such as Hidden Markov Modeling and artificial

neural networks. In a, fairly short period of time, knowledge based systems (with or Nwithout

automatic syllable detection) fell out of general use.

It is certainly true that knowledge based systems needed improvement. Several researchers

examined Mermelstein's convex hull algorithm around this time, and either rejected it as

too error prone, or manually reviewed its output to correct errors [62], [56].

However, the outcome of the ARPA SUR project was far from a definitive endorsement

of statistically-based methods over knowledge-based methods. First and foremost, its time

limit allowed only a very short development cycle, which effectivelS biased its outcome in

favor of a "cquick fix." Second, the speech input used was regular, clear read speech in
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quiet, minimizing many of the phenomena (coarticulation, lenition and epenthesis) which

characterize casual speech.

In any case, almost all of the SR work after the ARPA SUR project has been devoted to

statistically based techniques. Since most such algorithms have an integral architecture (see

section 1.3.4), separate syllable detectors were no longer required.

2.4 Recent work, mostly statistically based

Although not at the pace of the 1970's, work on syllable detection has continued in recent

years. Mluch of the recent work has applied statistical recognition methods to the problem,

following the general trend. Some of the recent work appears to be intended to add supple-

mental information to statistically based systems [91]. Other applications are visual aids for

the hearing impaired [37], or studies of the talker's rate of articulation [15].

Reichl and Ruske [72] used log energy spectra (grouped into critical bands and normalized)

as input to a multilayer perceptron, and produced good results in syllable detection on read

German sentences, as shown in Table 2.3. Pfitzinger et al. [69], however, used low frequency

energy, smoothed and filtered, and detected syllabic nuclei by peak picking, similar to older

approaches.

The International Computer Science Institute has been directing effort towards incorporating

syllable information (onsets rather than nuclei) into English SR systems. Shire [77] and VWu

et al. [90] use auditory models (RASTA [36] and modulation spectrograms [33]) as input to a.

multilayer perceptron, in a particular effort to deal with spontaneous input (OGI Numbers95

database [14]).
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Features Detection Corpus Token Error Rate

Reichl & FFT in critical bands ANN (LP) read German 5.2%
Ruske 16 kHz SR
1993 10 ms FP
Green bark scale HMM TIMIT ?
et al filter (SER only)
1993 bank
Hunt energy in CBs RNN TIMIT ?
1993 and

cepstra
Shire 1. RASTA PLP ANN (LP) spontaneous digits threshold 19.9%
1997 2. Modulation three layer (Numbers95) DP 11.7%

spectrogram

Wu et al 1. RASTA PLP ANN (MLP) 21.0%
1997 2. Modulation three layer (?)

spectrogram

Table 2.3: Statistically Based Syllable Detectors

Hermes [37], however, used a novel measure of spectral resonance peaks to produce a profile

of "vowel strength." Like Shire, he searches for syllable onsets rather than nuclei. The

spectral p)eak measure requires pitch synchronous FFTs, but its performance is fa.irly good

(see Table 2.1). Since his application is visual speech aids for the hearing impaired, low

latency in real time is an important design goal. His scheme finds vowel onsets (not centers).

justifying the more complicated signal processing.

Bitar [6] uses a syllabic feature2 detector which is based somewhat on MIermelstein's al-

gorithm; however, it is used together with a sonorant feature detector. First the feature

sonorant is estimated (its acoustic cues are periodicity and strong low frequency energy).

Then the syllabic feature is sought only in regions which have been judged sonorant. Two

energy bands are used (2.8 - 6.4 kHz and 2 - 3 kHz) and combined using a fuzzy logic algo-

rithm. The recursive convex hull algorithm of M-ermelstein is used to find peaks, but without

secondary constraints (duration, absolute level, or fricative detection).

2Strictly speaking, Bitar's algorithm is a detector for events associated with "syllabicity" which seeks the
acoustic correlates of the phonetic feature [syllabic] [6, p. 132].
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2.5 Summary

This survey shows that a fair amount of effort has been directed to the problem of automatic

syllable detection over the last several decades. However, it is far from a. solved problem.

Few of the published authors compare their techniques to each other, and most of them use

rather casual or ad hoc evaluation schemes, making it difficult to compare the performance

of different systems.

2.5.1 Detectable characteristics of vowels

Review of the theory of acoustic phonetics, and of the published literature on automatic

syllable detection, suggests that there are three different characteristics that indicate the

presence of a. vowel. The three characteristics proceed from the simplest in definition (but

least accurate), to the most complex in definition (but most accurate).

The term "track" will be used here to mean the time course of a scalar parameter. For

examllple, the first formant (F1) frequency is a scalar, measured at a particular point in time.

The trajectory of F1 over time will be called the F1 track.

Here are the three detectable characteristics of vowels.

Prominence of a low frequency energy track

Prominence of a low frequency energy track is the characteristic used by Mermelstein [611

a.s well as most following work. This should separate vowels a.nd sonorant regions between
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obstruent regions, but not sequences of vowels and sonorant consonants. This is the simplest

computationally and conceptually, but liable to perform poorly in sonorant regions.

Prominence of a formant-presence track

Prominence of a formant-presence track is the characteristic used by Hermes [37]. The

author's intuition when reading spectrograms, that the presence of a vowel is most often

characterized by clear formant structure, supports this idea.

This characteristic should separate vowels from most sonorant consonants (with the possible

exception of some postvocalic liquids) and hopefully intervowel glides as well. Stevens [S3]

remarks that semivowels are characterized by at least two formants moving close together,

so .. l ideal formant-presence measure should emphasize formants that are well separated.

A detector for this characteristic will involve more computation than for the low frequency

energy track, however. Hermes' system includes pitch synchronous spectral analysis, which

requires a. pitch detector, a.s well a.s several types of post processing.

Movements of formant tracks

Movements of formant tracks, especially F1, are theoretically appealing but difficult to im-

plement. This includes Stevens' proposal of prominence of the F1 track, but might not be

limited to prominences, and may include higher formants as well. This should detect prac-

tically all vowels, including abutting vowels in sequence. Because of the need for a formant

tracker, however, this characteristic is the most involved computationally, and the most dif-

ficult to implement. Indeed, this characteristic has never been reduced to practice in any

implementation of an automatic vowel or syllable detector.
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This thesis proposes to implement and investigate the first characteristic (low frequency

energy), and establish its performance capabilities and drawbacks. The second characteristic

(formant presence) and the third characteristic (formant movements) are beyond the scope of

this thesis, because of their computational complexity. It is possible to envision three stages

of analysis which reflect these three characteristics, with each stage refining the output of the

previous stage. To the degree that algorithms can be implemented for the second and third

characteristics, they may be implemented and investigated in following work, to compare

their performance to the first characteristic.

Observe that the discussion of the three characteristics has emphasized the importance of

context for vowel detection (for instance, interobstruent vowels are easier to detect than

intersonorant vowels, and abutting vowels in sequence are een more difficult). This thesis

will also investigate the effects of context, in order to understand the issues involved with

integration of the VLD into a. speech recognition syste--. See section .1.4 for details.
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Chapter 3

Statistical Study of Database Vowels

A formal definition of a vowel landmark is ' a. maximum in amplitude in the range of the first

formant frequency. These places are usually where the first formant frequency is maximally

high.' [84] As this definition is somewhat vague, we have performed a statistical study of

the TIMIIT databa.se, searching for maxima. in F frequency and amplitude. This chapter

presents the predictions of acoustic theory, the experimental methodology. and analysis of

the results of the experiments.

3.1 Predictions of F1 behavior in vowels

According to acoustic perturbation theory [83, p. 148], the first formant should be reduced

in frequency whenever a constriction is made in the front half of the vocal tract. Since all

English consonants are articulated in the front half of the vocal tract, we expect that all

consonants will cause F1 to drop in frequency (in English). Conversely, F1 frequency is

53

__LI_ �L__I··___^·__·· �_^�_ �I___ �___i· -------3�---. ·--�pl·��·LI--------���-l_-·IC-�·-_l·lll



maximally high when the front half of the vocal tract is maximally open, making the F1

maximum a natural choice for the location of the Vowel landmark. 1

Also according to basic acoustic theory, an increase in the first formant frequency should

be accompanied by an increase in amplitude, both of the first formant itself and the overall

spectrum [25, p. 55], assuming that the glottal source is fixed in amplitude and spectral

shape. To the degree that this holds true, either Fl's frequency or amplitude may be used

to determine the Vowel landmark.

Two assumptions underlie these predictions. First, the glottal source should be fixed, without

major changes in either amplitude or spectral content. Second. the influence of secondary ar-

ticulation (in particular, nasalization and glottalization) should be minimal. A major change

in the glottal source, or major influence of secondary articulators (such as nasalization), will

invalidate the predictions.

There are also several pragmatic concerns when performing experiments. For instance. the

database labeling ma-y describe an underlying vowel, preceded and followed by underlying

consonants, but may not correspond to the acoustic realization of the speech signal (for

example, a nasal murmur instead of a. vowel, or an elided consonant). Also, errors in the

formant tracking algorithm will cause incorrect values for F1 frequency, which may also affect

the computation of F1 amplitude.

The experimental studies on the database are intended to test the theoretical predictions.

The experiments will be numbered as follows.

1A possible exception occurs when semivowels like /r 1/ are adjacent to high vowels like /i u/. In these
cases, the source is liable to be reduced in the semivowel relative to the vowel, so that F1 amplitude may
peak in the vowel even if F1 frequency does not.
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3.1.1 (1) Presence of F1 peaks in the vowel

What percentage of vowels have a proper maximum in F1 (amplitude or frequency)? That

is. how often does a maximum occur within the body of the vowel, and not at its endpoints?

If a significant fraction of the vowels have only a degenerate maximum (at an endpoint), we

will want to investigate aspects of how such vowels are produced, in search of violations of

the assumptions which underlie the theoretical predictions.

3.1.2 (2) F1 amplitude and frequency peak together

How do the locations of the F1 amplitude maxima compare to those of the F1 frequency

maxima? Basic acoustic theory predicts that they should occur together. If and when there

are differences. we will look for reasons for the diffecnces. as well as systematic effects

dependent on context, or other factors.

3.1.3 (3) F1 peak is better than midpoint for vowel quality

Where do the F1 maxima appear (close to the center of duration, early, or late)? What is

their distribution, and how does it depend on context? Although the definition of the Vowel

landmark does not say anytthing about position, it appears that human labelers place the

landmark around the center of duration.2 We will look for patterns or systematic variations.

If the F1 pea.k occurs where the vowel is least influenced by adjacent consonants, we may

2This hypothesis arises from the author's observations of the LAFF database. Objective measurements
are not easy to make, because the beginnings and ends of vowels are not labeled.
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suppose that the F1 peak is a better point in time for vowel characterization than the mid-

point of the vowel's duration (although the midpoint is fairly good for vowel characterization

[38]). NWe will use an automatic vowel recognition scheme to perform a recognition task on

both points and investigate the difference.

3.1.4 (4) F1 peak can be approximated without formant tracking

Can we find an energy band whose peaks more or less coincide with the peaks of F1 ampli-

tude? This would mean a VLD that doesn't need a formant tracker. W e will investigate how

much performance is sacrificed by using a fixed energy band rather than a formant tracker.

and attempt to characterize the places where differences are likely to occur.

3.2 Corpus

The TIIIT database was used for these experiments. The entire database was used (all

utterances from all talkers and dialects, both training and test sets). Each utterance includes

an aligned phonetic transcription file (*.phn) and an aligned word transcription file (*.wvrd)

as well as the signal waveform itself (*.wav).

3.3 Methodology

Entropic ESPS tools were used to process and examine the files. In order to use these tools,

the transcription files must be converted to the ESPS label file format. The ESPS tool
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cnvla.b(l-esps) does this. cnvlab(1-esps) generates error messages on some of the TIMIT

transcription files, including (1) "first label doesn't start at time 0" (2) "labels not contigu-

ous" and (3) "WARNING: labels overlap." None of the errors were judged to be severe

enough to interfere with the experiment.

3.4 Signal processing

3.4.1 Formant tracking

The first step of signal processing was to extract the F1 frequency track for ea.ch utterance.

The Entropic formant tracker called formant(l-esps) was used. This formant tracker gener-

ates formant frequency candidates by frame based LPC analysis of the waveform The local

costs of mapping LPC roots to formant frequencies are computed at each frame based on

the frequencies and bandwidths of the component formants for each mapping. The cost of

connecting each of these mappings with each of the mappings in the previous frame is then

minimized using dynamic programming (a modified Viterbi algorithm). For a more detailed

description of the formant tracking algorithm, see the Entropic documentation [20] or the

published description [74].

Most of the parameters of the formant tracker were left at their default values, which were

judged to be adequate for this experiment. However, the frame period was changed to 5 ms

(from the default value of 10 ms) to allow finer time resolution of the peaks. First, the signal

was downsampled to a sampling rate of 10 kHz, and highpass filtered at 80 Hz to remove low

frequency rumble and hum. For each frame, the signal waveform was preemphasized (with

a coefficient of 0.7) and then windowed with a 49 ms cos**4 window (effective duration

about 18 ms). On this data, a twelfth order LP analysis was computed by a.utocorrelation.

57

___ I�IIP_ ___II_�__^··_ _I IC· �I_ II�--_X.I_-�XI--.. -�--- �II _911�- -_



Labels Category

ix ax ux axr ax-h schwa
em en eng el sonorant
ih eh ae ah uh lax
iy ey aa a.o ow uw er tense
aw ay oy diphthong

Table 3.1: Experiment vowel labels and categories.

Tracks for the first four formants were computed from the LPCs by minimum cost dynamic

programming.

F1 was extracted from the resulting formant tracks, and its frequency track was filtered to

isolate the vowels. First. all F1 frequency values which do not appear in labeled vowels were

set to zero. The TIMIT labels which are considered vowels for this purpose are shown in

table 3.1, column 1. Note that this table includes syllabic nasal consonants and syllabic

laterals. because in most cases, the automatic syllable detector will be expected to find these

tokens.

Second, F1 frequency values for all frames whose F1 bandwidth was greater than 300 Hz

Dwere set to zero. This was intended to eliminate obvious errors of the formant tracker. In

particular, vowels which are adjacent to fricatives often have some fricative noise on the

vowel side of the boundary. If this stage was not used, the F1 frequency track would often

have erroneous peaks at these boundaries. The 300 Hz threshold was chosen after a manual

inspection of several cases chosen at random from the database.

Of course, formant tracking is a notoriously difficult task, and this loose constraint on band-

width could not eliminate all errors. Manual inspection of the formant tracks to screen out

errors was judged impractical on a database of this size (about 80,000 vowel tokens). In-

stea.d, the experiments were done on the automatically generated formant tracks, and when

unexpected results were found, manual inspection was be used to ensure that the formant
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tracks were not wildly inaccurate.

3.4.2 Amplitude computation

Once the formant frequency tracks were computed, they were used to direct the computation

of the formant amplitude tracks. The formant amplitude was estimated by summing the

energy of spectrogram bins in a narrow band around the formant frequency.

The first step was to compute the spectrogram using the ESPS tool sgram(l-esps). For this

task, the spectrogram used a 6.0 ms Hamming window with no preemphasis. and a 10th

order FFT, at a frame period of 1 ms. The short window was intended to ensure a. frequency

resolution low enough to smooth out the individual harmonics.

Next, the spectrogram's spectral bins were smoothed in time. This operation was intended to

ensure a time resolution low enough to smooth out individual pulses of the glottal excitation.

Averaging was done across 15 frames (rectangular window) at 1 ms per frame. The average

,values were output every 5 input frames, resulting in output frames at 5 ms per frame (same

a.s the formant tracker). The center frame of the 15 frame average was time aligned with

the formant tracker's frame, so that the average values were synchronized with the formant

tracker's output.

For each frame, the formant tracker's F1 frequency was used to compute F1 amplitude. The

spectral bins were summed across a 100 Hz band centered on the F1 frequency. Since the

summation was done in the magnitude squared domain, the resulting value is dominated

by the strongest amplitude bin. In this way, the F1 amplitude is well approximated even if

the F1 frequency has a moderate error. The resulting amplitude value was converted to dB.

(The decibel computation was not calibrated to any particular reference value, because only
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the relative values are needed to find the peak.)

3.4.3 Peak detection
-I

Peaks of both frequency and amplitude values for F1 were found by a straightforward search.

Peaks were found for each vowel in the aligned phonetic transcription (including all segments

considered as vowels, as shown in table 3.1, column 1). The peak search was not constrained

in any other way, and the resulting peak may be located anywhere from the beginning of

the segment to the end.

In general, the time of the resulting peak was placed at the midpoint of the 5 ms frame of

the formant tracker. Care was taken to handle the possibility of flattops,"' or peaks which

span more than one frame with the same value. In this case, the time of the resulting peak

was placed midway between the beginning of the flattop" and its end.

There is a possibility of two different peaks of the exact same value in one vowel. It is

extremely unlikely, given the floating point representation of frequency and amplitude, but

possible. At the time, the algorithm would pick the first such peak, if there is more than

one.

W\hen these computations were complete, the resulting values were stored in a database for

further processing. The database fields included the talker, the sentence, the number of the

vowel in the sentence, segment labels for the previous and following segments (as well as

for the vowel itself), start and end times for the vowel (in milliseconds), time and value of

the frequency peak, and time and value of the amplitude peak. This database can then

be conveniently analyzed to discover characteristics of the peaks, and is referred to as the

"Raw"' experimental data in subsequent sections.
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Category Count Mean duration (ms)
Schwa 24314 62.3
Sonorant 2482 85.3
Lax 21398 100.8
Tense 27528 111.6
Diphthong 5134 151.8
All 80856 95.6

Table 3.2: Experiment vowel categories, counts and mean durations.

3.4.4 Basic data

The experiment on the entire TIMIT database yielded a total of 80856 vowel tokens. The

first look at the data investigates how duration varies with vowel category.

Duration statistics

The mean duration for each category is shown in Table 3.2. Clearly schwa, lax, and tense

are the most populous categories, while syllabic sonorants and diphthongs are far fewer in

number. The categories are sorted by mean duration, schwa being shortest and diphthong

being longest. Histograms of duration for each category are shown in Figure 3-1.

This figure clearly shows how much variation exists within each category, and how much

overlap exists between categories. Duration information alone cannot separate any ca.te-

gories. In fact, duration information alone is not much help in determining the presence or

absence of one or more vowels. From this data, we can only conclude the order of magnitude

of vowel duration (from about 25 ms to 250 ms) that a. vowel detector should be adjusted to

look for.

The vowel duration data presented here compare well with published data. on vowel duration,
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Vowel Duration Histogram (separated by category)

0 50 100 150 200 250

Duration (ms)

Figure 3-1: Vowel duration histogram
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such as Crystal & House [15], a subset of whose data appears in table 3.3. (Vowel duration

data are reprinted here, but not syllable duration data.) Crystal & House separate their data

by stress, which is not available in the TIMIT labeling. However, the mean vowel duration

for non prepausal syllables (127.6 ms stressed, 58.9 ms unstressed) is well within the bounds

shown in Figure 3-1, while the mean vowel duration for the much less numerous prepausal

syllables (185.9 ms stressed, 84.1 ms unstressed) is still reasonable. The mean duration for

all vowels (103.8 ms) is very close to the mean duration for all vowels shown in Table 3.2

(95.6 inms, difference is about 8%).

Amplitude statistics

The amplitudes of vowels also carry information which is valuable to the process of landmark

dletection. In analyzing amplitude, it is important to note that amplitudes can vary sub-

stantially from one sentence to another, and that amplitudes tend to fall during the course

of the sentence.

To examine amplitude phenomena., vowel tokens were grouped by their position in the sen-

tence, and their amplitudes were normalized against the strongest token in the sentence.

(This means that, after normalization, each sentence will have exactly one token whose

normalized amplitude is 0 dB, and the other tokens will have values below it.)

The number of tokens in each sentence position is shown in figure 3-2. There are 80S56

tokens in 6299 utterances, for an average of 12.8 vowel tokens per sentence. The figure

shows that very few sentences have more than 20 vowels. None have over 24 tokens.

First and second order statistics for vowel amplitudes are shown in figure 3-3. The mean

values decrease gradually over the course of the sentence (only about 0.35 dB per position
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r

+ stress - stress

Syllable type N ms N ms
Not prepausal

V 29 130 139 70
VC 93 127 383 64

VCC 12 133 8 60
CV 109 131 504 55

CVC 678 129 351 55
CVCC 354 126 11 52

CVCCC 13 113 0 -
CCV 34 133 0 -

CCVC 139 122 7 39
CCVCC 45 128 0 -
CCCVC 4 104 0 -

All 1510 127.6 1403 58.9
Prepausal

NV 1 243 2 89
VC 19 197 20 95

VCC 6 135 0 -
CN/ 34 273 4 65

CVC 176 189 11 72
CVCC 47 149 1 84

CVCCC 3 104 0 -
CCV 1 308 0 -

CCVC 35 166 1 67
CCNrCC 7 135 0 -
CCCVC 12 139 0 -

All 341 185.9 39 84.1

Table 3.3: Crystal & House data on
the vowel duration data from the
reprinted here.

vowels, counts and mean durations. This figure reprints
publication, Table 1. Syllable duration data are not
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Token Counts by Sentence Position

5 10 15

Token Position in Sentence

Figure 3-2: Token Counts by Sentence Position
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Normalized Amplitude
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Figure 3-3: Amplitude Statistics by Sentel
for all positions except the first (at zero).

nce Position. A slight downward trend is noticable
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Vowel Amplitude Histogram b Sentence Position
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Figure 3-4: Vowel Amplitude Histogram by Sentence Position

increment) but the standard deviations seem to be relatively constant (7 to 8 dB). The

statistics do show exceptions for the latest positions, but these are where the data are sparse

(as shown in figure 3-2). Also, the very first vowel tends to be a few dB lower.

Histograms of vowel amplitudes for each sentence position are shown in figure 3-4. From

this figure, it appears that most of the vowels have amplitudes between 0 and 25 dB below

the overall peak. These data are relevant because amplitude (relative to overall peak) is a.n

important cue for vowel landmarks (Mermelstein, in fact, requires that vowels be no more

than 25 dB below the overall peak [61]).
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3.5 Experiment 1: Presence of F1 Peak in Vowels

Prediction:

F1 will show a peak in a vowel between consonants (specifically, consonants with closures in

the oral cavity) if the assumptions are accurate. The theoretical basis for this prediction is

described in more detail in section 3.1.

Assumptions:

(a) The vowel is in fact an orally open vowel (not a. syllabic nasal or lateral) between orally

closed consonants (without elision, lenition, or other modifications). Exceptions are essen-

tiallv failures of the database labeling to adequately represent the acoustic information (a

syllabic sonorant not labeled as such, or a consonant not orally closed).

(b) FI is clear and measurable, without interference by phenomena such as nasalization.

glottalization. or aspiration. Also. the vowel is not reduced to the point where F1 is difficult

to measure because of its short duration. Exceptions are likely to cause failure of the formant

tracking algorithm.

(c) The vowel is produced with the oral cavity relatively open, and the consonants are

produced with the oral cavity relatively closed. Also, the oral gesture is simply opening and

closing, without complicated details such as lateralization. For amplitude measurements

the voicing source should be stable.
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b d g p t k bcl dcl gcl pcl tcl kcl Closed
jh ch s sh z zh f th v dh
m n ng em en eng

r w y el Open
iy ih eh ey ae aa aw ay ah ao
oy ow uh uw ux er ax ix axr
dx q nx hh hv ax-h pau epi h# Other

Table 3.4: Experiment 1 classes for vowel contexts.

3.5.1 Methodology

\Vowel tokens in the Raw experimental data (section 3.4.3) were classified for amplitude and

frequency peak location (beginning, middle, or end). The classifications for amplitude and

firequency were done separately, without referring to each other, because the expectation

that amplitude and frequency peaks should coincide ill be tested in Experiment 2 below.

The peak locations in time were quantized to 5.0 ms increments, because that was the

fiame period of the formant tracker. However. the aligned phonetic transcriptions were not

quantized in time (floating point representation). Therefore. each pealk was classified as

"beginning if it was within 5.0 ms of the vowel's beginning, as labeled in the transcription,

and "end" if it was within 5.0 ms of the vowels end. These data are referred to as the

"Processed" data in following sections.

These Processed experimental data were analyzed for preceding and following context of

vowels. For each vowel, the preceding and following tokens were classified as Closed oral

cavity, Open oral cavity, or Other. The Closed class includes stops, fricatives, affricates, and

nasals. The Open class includes vowels and semivowels. The Other class includes glottal

stops (/q/), flaps (/dx nx/), aspirants (/hh hv/ and devoiced vowel /ax-h/), and silences.

See Table 3.4 for the list.
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3.5.2 Experiment 1A: Amplitude peaks against context

For Experiment 1A, context is compared to the location of the F1 amplitude peak. We

begin with amplitude peaks, rather than frequency peaks, because we believe that amplitude

peaks are likely to be more robust against error than frequency peaks (see discussion in

section 3.4.2).

Preceding context mnay be C (closed), O (open), or X (other), and following context may

also be C, O, or X. This gives a total of nine context categories. For each category, the

amplitude peak may be at the beginning, middle, or end.

The theoretical prediction is that the amplitude peak should not appear at the beginning of

the Nowel in CV- contexts, and should not appear at the end of the vowel in -VC contexts. If

the amplitu(le peak does appear in these unpredicted contexts. we expect that one or more

of the underlying assumptions is not true.

Results

The basic statistics for the data set are shown in Table 3.5. Values representing unpredicted

results are printed in emphatic typeface.

The data show that, in general, the theoretical prediction holds true. Of the CVC tokens

in the database, almost all show an amplitude peak in the middle (27566 out of 27712, or

99.5%). When an amplitude peak appears at the beginning, it is almost always in OV-

context (1622 out of 1639, or 99.0%), and when an amplitude peak appears at the end, it is

almost always in -VO context (2636 out of 3015, or 87.4%).
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Overall

C | X | All
C 27712 (34.3%) 9846 (12.2%) 5614 (6.94%) 4:3172 (53.4%)
O 16020 (19.8%) 5314 (6.57%) 3636 (4.50%) 24970 (30.8%)
X 8361 (10.3%) 2993 (3.70%) 1359 (1.68%) 12713 (15.7%)
All 52093 (64.4%) 18153 (22.5%) 10609 (13.1%) 80855 (100%)

Amplitude peak at beginning
C |O X All

C 4 (0.00494%) 0 0 4 (0o.0oo0494%)
O 1091 (1.35%) 166 (0.205%) 365 (0.451%) 1622 (2.007c%)
X 12 (0.0148%) 1 (0.00124%) 0 13 (0.0161%)
All 1107 (1.37%) 167 (0.207%) 365 (0.451%) 16:39 (2.03%)

Amplitude peak in middle
C O All

C 27566 (34.1%) S252 (10.2%) 5d6 (6.76%) 41255 (51.1%)O 1491 (18.4%) 4541 (5.62%) 3249 (4.02%) 22707 (28.1%)
X S 323 (10.3%) 2557 (3.16%) 1:329 (1.64%) 12209 (15.1%)
All 50806 (62.8%) 15350 (18.9%) 10045 (12.4%) 76201 (94.2%)

Amplitude peak at end
C X [AIl

C 142 (0.176'%) 1594 (1.97%) 147 (0.182%) 1883 (2.33%)
O 12 (0.0148%,) 607 (0.751%) 22 (0.0272%) 641 (0.793%)
X 26 (0.0322%) 435 (0.538%) 30 (0.0371%) 491 (0.607%)
All T180 (0.223%) 2636 (3.26%) 199 (0.246%T) 3015 (3.73(,)

Table 3.5: Experiment 1A statistical results. For each category, the preceding context is
shown on the vertical axis, and the following context is shown on the horizontal axis. Results
which violate theoretical predictions are shown in emphatic typeface.
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Fully 94.2% of all the vowels in the database show an amplitude peak in the middle. This

supports the practice of using the amplitude peak as the primary indicator of vowel presence.

Anomalous or unexpected results

As theory predicts, very few of the amplitude peaks show up in unexpected contexts (184

tokens out of S0855, or 0.228S%). For the peaks that do violate the theoretical prediction,

each token was examined by hand for assumption violations. A small table of assumption

violations was prepared (see Table 3.6, column 1) for this purpose. The table is organized

to reflect the assumptions as described in section 3.5.

It should be pointed out that condition b3 "reduced" means that the vowel's duration is so

short that, formant tracking is problematic, typically with only a few 5 millisecond estimates

of formants. This indicates a problem which might be overcome by a. different implementation

of formant tracking, as opposed to the more theoretical reasons for formant tracking difficulty

(nasalization, glottalization, or aspiration).

Each token wa.s given a label from Table 3.6 if it appeared to violate the corresponding

assumption. or two labels if it appeared to violate more than one. No token was given

more than two labels, primarily because the labeling process is time consuming, and because

adding more labels does not appear to provide significant new insights.

It wa.s found that all of the tokens which produce unexpected results had at least one as-

sumption violation, and many had two or three, or even more (see Table 3.6, column 3).

Combinations of the B class (reasons why F1 is not clear or measurable) were especially fre-

quent, with nasalization, glottalization, reduction, and aspiration occurring in combination.

A typical example is the sequence / sh ix n /, frequently seen in words such as "motion," in
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Label Meaning Count
al Mislabeled 4
bl Nasalized 114
b2 Glottalized 22
b3 Reduced 123
b4 Devoiced 84
cl High vowel 2
c2 Source change 2
c3 Liquid context 10

Table 3.6: Experiment 1A assumption violations, labeled by hand.

which the vowel often displays several of these characteristics.

A total of 361 labels (from Table 3.6) were assigned to the 184 tokens which violated the

theoretical prediction (averaging 1.96 per token). If more than two labels were assigned to

each token, this av erage would probably be even higher.

To explore further. an automatic procedure was developed to look for evidence of some of

these phenomena. The procedure uses only the Aligned Phonetic Transcription (APT) of

the TIMIT database.

The automatic procedure is applied to each of the 184 anomalous tokens. It simply examines

the segment label of the vowel, and the segment labels preceding and following the \vowel,

and looks for evidence that might indicate an assumption violation. Such evidence may be

either in the vowel itself (for example, a syllabic nasal) or in its context (for example, a nasal

segment following a vowel which has the F1 peak at the end).

The automatic procedure will not be nearly as accurate as hand labeling, because the APT

does not capture all the nuances of vowel production. For instance, a vowel labeled as a schwa

will probably be found to be more or less reduced, but whether the reduction is enough to

justify a violation of the theoretical prediction is unclear. Conversely, many owels which are
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Label Meaning Count

al syllabic nasal 21
a2 consonant not closed 0
bla preceding nasal 13
bib following nasal 102
b2a preceding glottal 18
b2b following glottal 0
b3 schwa 154
b4a devoiced 46
b4b preceding aspirant 3
b4c following aspirant 0
cia high 1
c1b preceding high 1
cc following high 0
c2 'voice source not stable 0
c3a rhotic 1
c3b preceding rhotic 4
c3c following rhotic 0
c3d syllabic lateral 2
c3e preceding lateral 4
c3f following lateral 0

Table 3.7: Experiment 1A assumption violations, labeled automatically.

heavily aspirated are not marked as such in the labeling. Therefore, the automatic procedure

will be oversensitive to some phenomena and undersensitive to others. Still other phenomena.

are not captured by the automatic procedure a.t all. For instance. vowels in function words

are more likely to be heavily reduced, and vowels a.t the end of the utterance are more likely

to be glottalized.

The intent is to use the automatic procedure to winnow out those violations of theory which

can be easily explained from context, and focus the hand labeler's attention on a small subset

for further study.

A table of conditions was prepared, designed to follow the labels of Table 3.6 as much a.s

possible. See Table 3.7, column 2.
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The results are shown in Table 3.7, column 3. A total of 370 labels were assigned to the

184 tokens which violated the theoretical prediction (averaging 2.01 per token). Some of the

results agree with current data on speech production. For instance, when nasal context is

found, it is usually a following nasal, indicating that anticipatory nasalization of the vowel

is more common and stronger than residual nasalization resulting from a preceding nasal

consonant (see, for instance, [64]). Likewise, syllabic nasals usually have no other labels,

indicating that this property alone is enough to confound the theoretical prediction, which

makes sense because they are produced with oral closure (violating the first assumption in

section 3.5).

Some other results are less compelling. For instance, many of the owels are found to be

schwas, but this does not mean that reduction is the principal mechanism at work, because

there is no information about the length of these schwas.

Out of the 154 schwas found, 20 had no other labels attached, and these are the obvious

candidates for further study. All showed an amplitude peak at the end of the owel. Out

of the 20 tokens labeled only as schwas, 10 were found to be shorter than 30 milliseconds

in duration, short enough to be judged a sufficient reason for the peak location to be found

close to a. boundary (although many vowels shorter than 30 ms have peaks in the middle).

The remaining 10 schwas were reexamined by hand and labeled for exception conditions. as

shown in Table 3.8.

From the last column of Table 3.8 we can see that all the tokens in question have a.t least

one characteristic that indicates an assumption violation. Interference with Fl's measurabil-

ity (the "B" category) is most common, primarily through glottalization and/or devoicing.

There are two instances of mislabeling (the "A" category) and two instances of interference

with oral opening (the "C" category).
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Talker Sent # I ms Ortho Phonetic J Manual Label
fbcgl sx442 11 30.4 thE gab dh ix gcl c2 function word pre stress
mctm0 si1350 16 33.7 -rams Of z ax v c2 function word pre stress
mdac2 sx369 5 39.2 ovEr the v ax dh a2 consonants very elided
mgak0 si1036 4 38.1 antithEsis th ix s b4a aspirated
mgsl0 sx354 10 44.9 exEcute s ix k a2 b4a consonants elided, aspirated
mjhi0 si1328 18 50.0 thE six dh ax s b2 heavily glottalized
mpgh0 sx114 9 46.4 and A tad- nx ax tcl b2 b4 glottalized and devoiced
mpghO sx384 4 40.9 -en thIs dh ix s bl b4 nasalized and devoiced
mrflO si1156 2 36.6 this Is s ix z b4 devoiced
msesO sx329 16 32.8 possIble s ax v a,2 consonant heavily elided
medrO sx384 4 35.8 -en thIs dh ih s bl b4 nasalized and devoiced

Table 3.8: Experiment 1A residua.l assumption violations, labeled by hand. The Talker and
Sentence identify the utterance, and the Index identifies the vowel in question, numbered
sequentially from the beginning. The vowel length is in milliseconds. The vowel in question
is capitalized in the Orthographic fragment.

Only one token (medrO sx3S4 4) received no automatic label at all - it appears on the last

line of table :3.8. The word is "this" with a high front vowel. which the phonetic transcription

marks as lax but not reduced (even though it is only 35 Ins long). The vowel appears rather

nasalized (fiom the preceding word shorten") and dlevoiced (firom the following fricative

cluster in "this skirt").

It is evident from Table 3.7 that nasalization (especially from following nasals) is a relatively

frequent problem. Acoustic theory predicts that nasalization will often cause reduction of

F1 amplitude. Ultimately, the first pass of a, Vowel Landmark Detector will probably need

to be followed by a second pa.ss, after nasal context ha.s been detected by other means. See

section 5.3.2 for more discussion of error recovery.
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Conclusions to Experiment 1A

Overall, the experimental results agree very well with the theoretical prediction. Over 94%

of all vowel tokens in the database show an amplitude peak somewhere in the middle of the

vowel, which is the most important finding for a Vowel landmark detector.

Of the vowel tokens which do not show an amplitude peak in the middle, all were found

to have one or more violations of the assumptions which underlie the theoretical prediction.

MIost of these conditions were detectable by a simple automatic procedure which examines

the token's context and duration, and the rest were detectable by manual inspection.

3.5.3 Experiment 1B: Frequency peaks against context

For Experiment 1B, context is compared to the location of the F1 frequency peak. As

described above (section 3.5.2). there is reason to expect that the frequency peaks will be

less well behaved than the amplitude peaks, because of errors from the formant tracker.

The database. context categories (as shown in table 3.4), and processing are the same as for

Experiment 1A, but applied to the frequency peaks instead of the amplitude peaks.

Results

The basic statistics for the data set are shown in Table 3.9. Values representing unpredicted

results are printed in emphatic typeface.
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Overall
C O X All

C 27712 (34.3%) 9846 (12.2%) 5614 (6.94%) 43172 (53.4%)
O 16020 (19.8%) 5314 (6.57%) 3636 (4.50%) 24970 (30.9%)
X 8361 (10.3%) 2993 (3.70%) 1359 (1.68%) 12713 (15.7%)
All 52093 (64.4%) 18153 (22.5%) 10609 (13.1%) 80855 (100%)

Frequency peak at beginning
C 0 X All

C 35 (0.0433%) 11 (0.0136%) 2 (0.00247%) 48 (0.0594%)
O 1:350 (1.67%) 211 (0.261%) 173 (0.214%) 1734 (2.14%)
X 142 (0.176%) 53 (0.0655%) 10 (0.0124%) 205 (0.2-54%)
All 1.527 (1.S9%) 275 (0.340%) 185 (0.229%) 1987 (2.46%)

Frequency peak in middle
C 0 X All

C 26734 (33.1%) 7800 (9.65%) 4915 (6.08%) 39449 (48.8(°%)
O 14187 (17.5%) 3705 (4.58%) 3168 (3.92%C) 21060 (26.0%)
X 7984 (9.87% ) 2448 (3.03%) 1100 (1.36%) 11.532 (14.3%)
All 4S905 (60.5%) 13953 (17.3%) 9183 (11.4%) 72041 (89.1%)

Frequency peak at end
C 0 X All

C 943 (1.17%) 2035 (2.52%) 697 (0.862%) 3675 (4.5.5%)
O 483 (0.597%) 1398 (1.73%) 295 (0.365%) 2176 (2.69%)
X 235 (0.291%) 492 (0.608%) 249 (0.308%) 976 (1.21%)
All 1661 (2.05%) 3925 (4.85%) 1241 (1.53%) 6827 (8.44%)

Table 3.9: Experiment 1B statistical results. For each category, the preceding context is
shown on the vertical axis, and the following context is shown on the horizontal axis. Results
which violate theoretical predictions are shown in emphatic typeface.
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The data show that the theoretical prediction holds true, for the most part. The results

of this experiment show roughly an order of magnitude more unexpected peaks than the

amplitude experiment did. Of all the tokens in the database, most show a frequency peak

in the middle (89.1%). Of the CVC tokens in the database, almost all show a frequency

peak in the middle (26734 out of 27712, or 96.5%). When a frequency peak appears at the

beginning, it is usually in OV- context (1734 out of 1987, or 87.3%), and when a frequency

peak appears at the end, it is often in -VO context (3925 out of 6827, or 57.7%). However,

these data are far more ambiguous than the results of the amplitude experiment.

Presumably, most of these unexpected results come from errors in the formant tracker.

One characteristic of most formant trackers is increased error rates for higher pitched voices,

vwhose Awider spacing of harmonics makes the formants more difficult to track. To see whether

this is a factor in the current experiment, we separate the results by talker gender. If xwidely

spaced harmonics are contributing to formant tracker error, rwe expect to see female voices

show higher error rates.

Results for female talkers only (24725 tokens) are shovwn in table 3.10, and results for mlale

talkers only (56131 tokens) are shown in table 3.11. There is not much evidence for a.

systematic effect of talker gender on these statistics. TMost of the percentages are very close.

and the predicted data for males are not consistently better than for females (which would

be the case if higher pitch were a major cause of formant tracker errors). Thus, we conclude

that higher pitch alone is not a major contribution to errors of the formant tracker.

Another possible source of error is boundary phenomena. The formant tracker is probably

more likely to make errors at the edges of vowels, where the influence of adjacent consonants

(nasalization, frication, and so forth) is greatest. Such problems are especially likely if the

segment labels are not placed accurately in time, which has been observed as a persistent

problem with the TIMIIT database.
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Overall
C 0 X All
8616 (34.8%) 2935 (11.9%) 1689 (6.83%) 13240 (53.6%)
4890 (19.8%) 1551 (6.27%) 1081 (4.37%) 7522 (30.4%)
2633 (10.6%) 896 (3.62%) 433 (1.75%) 3962 (16.0%)
16139 (65.3%) 5382 (21.8%) 3203 (12.9%) 24724 (100%)

Frequency peak at beginning
C 0 X All
11 (0.0445%) 4 (0.0162%) 1 (0.00404%) 16 (0.0647%)
420 (1.70%) 36 (0.146%) 52 (0.210%) 508 (2.05%)
45 (0.182%) 14 (0.0566%) 2 (0.00809%) 61 (0.247%)
476 (1.93%) 54 (0.218%) 55 (0.222%) 585 (2.37%)

Frequency peak in middle

C 0 X All
8344 (33.7%) 2376 (9.61%) 1487 (6.01%) 12207 (49.40%)
4349 (17.6%) 1119 (4.53%) 939 (3.80%) 6407 (25.9%)
2529 (10.2%) 764 (3.09%) 333 (1.35%) 3626 (14.7%)
15222 (61.6%) 4259 (17.2%) 2759 (11.2%) 22240 (89.9%)

Frequency peak at end
C 0 X All
261 (1.06%) 555 (2.24%) 201 (0.S13%) 1017 (4.11%)
121 (0.489%) 396 (1.60%) 90 (0.364%) 607 (2.46%)
59 (0.239%,) 118 (0.477%) 98 (0.396%) 275 (1.11%)
441 (1.78`%) 1069 (4.32%) 389 (1.57%) 1899 (7.68%)

Table 3.10: Experiment 1B statistical results, female talkers only
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Overall
C O X All

C 19096 (34.0%) 6911 (12.3%) 3925 (6.99%) 29932 (53.3%)
O 11130 (19.8%) 3763 (6.70%) 2555 (4.55%) 17448 (31.1%)
X 5728 (10.2%) 2097 (3.74%) 926 (1.65%) 8751 (15.6%)
All 35954 (64.1%) 12771 (22.8%) 7406 (13.2%) 56131 (100%)

Frequency peak at beginning
C 0 X All

C 24 (0.0428%) 7 (0.0125%) 1 (0.00178%) 32 (0.0570%)
O 930 (1.66%) 175 (0.312%) 121 (0.216%) 1226 (2.18%)
X 97 (0.173%) 39 (0.0695%) 8 (0.0143%) 144 (0.257%)
All 1051 (1.87%o) 221 (0.394%) 130 (0.237%) 1402 (2.50%)

Frequency peak in middle
C 0 X All

C 18S390 (32.8%) 5424 (9.66%) 3428 (6.11%) 27242 (48.5%)
O 9838 (17.5%) 2586 (4.61%) 2229 (3.97%) 14653 (26.1%)
X 5455 (9.72%) 1684 (3.00%) 767 (1.37%) 7906 (14.1%)
All 33683 (60.0%) 9694 (17.3%) 6424 (11.4%) 49801 (88.7%)

Frequency peak at end
C O X All

C 682 (1.22%) 1480 (2.64%) 496 (0.S84%) 265S (4.74%)
o 362 (0.645%) 1002 (1.79%) 205 (0.365%) 1569 (2.80%)
X 176 (0.314%) 374 (0.666%) 151 (0.269%) 701 (1.25%)
All 1220 (2.17%) 2856 (5.09%) 852 (1.52%) 4928 (S.78%)

Table 3.11: Experiment B statistical results, male talkers only

iy ih uh uw High
eh ey a o ow er Mid
ae aa ah Low

Table 3.12: Vowel height classes. Schwas, diphthongs, and syllabic sonorants are not in-
cluded, because their acoustic manifestation of height is liable to be uncertain or ambiguous.
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Vowel F1 Peak Location
Height Begin Middle End

Token Counts
High 250 14668 2986
Mid 392 16695 1149
Low 93 12421 272

Mean Frequency (Hz)
High 483 478 535
Mid 564 607 655
Low 649 702 861

Table 3.13: Experiment B statistical results, by vowel height

Peak Frequency Histogram separated by vowel height)

300 400 500 600 700 800 900 1000 1100

Frequency of F1 Peak (Hz)

Figure 3-5: Beginning Peak Frequency Histogram. This plot shows the frequency of the peak
of the F1 track, for vowels with the peak at the beginning, separated by vowel height. Some
few tokens are outside the frequency bounds of this histogram.
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Peak Frequenc HistoQram (separated b vowel height)
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Figure 3-6: Middle Peak Frequency Histogram. This plot shows the frequency of the peak
of the F1 track, for vowels with the peak in the middle, separated by vowel height. Some
few tokens are outside the frequency bounds of this histogram.
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Figure 3-7: End Peak Frequency Histogram. This plot shows the frequency of the peak of
the F1 track, for vowels with the peak at the end, separated by vowel height. Some few
tokens are outside the frequency bounds of this histogram.
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An erroneously high F1 measurement at the boundary is likely to be detected as the F1

peak. (An erroneously low measurement will not affect the data in this experiment.) If this

phenomenon is present in the data, we expect the peak frequency values which are detected

at the endpoints to be higher (on average) than the peak values detected in the middle of

the vowel. Also, we expect the peak values in the middle to correlate well with the vowel

height, while the peak values at the endpoints should not correlate as well with vowel height.

Vowel height was assigned to the TIMIT labels as shown in table 3.12. 3 For this experiment,

vowels whose height is liable to be uncertain or ambiguous (schwa.s, diphthongs, and syllabic

sonorants) are excluded, and only the tabulated vowels are used.

Basic statistics for the peak frequency values (separated by peak location and vowel height)

are shown in table 3.13. The peaks located at the end of the vowels are significantly higher

in frequency than the peaks located in the middle of the vowels, for all vowel heights. (The

peaks located at the beginning of vowels do not show a consistent pattern. but they are

much less numerous.) This indicates erroneous formant estimates at the vowel boundaries

(at least at the ending boundaries). Perhaps postvocalic segments (which are liable to be

weaker than prevocalic segments) tend to be labeled erroneously.

Table 3.1:3 also shows that peaks at the end of vowels occur much more frequently for high

vowels than for mid vowels, and much more frequently for mid vowels than for low vowels.

This makes sense because F1 is intrinsically lowest in high vowels, and therefore it's more

likely to see it peak at the boundary.

The mean frequency of the peaks does correlate fairly well with vowel height, for all pea.k

locations. There does not seem to be a clear difference between the different peak locations.

Histograms of peak frequency for the different peak locations are shown in figures 3-5 (begin-

3 The vowel /ah/ is sometimes considered non low.
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ning), 3-6 (middle), and 3-7 (end). Figure 3-6 does show a clear correlation between vowel

height and frequency for middle peaks, as expected, and the frequency values are in good

agreement with previous studies of how F1 frequency varies with vowel height (for example,

[66, p. 183]). Figure 3-7 shows (again) that end peaks are more frequent for higher vowels,

but there is still correlation between vowel height and frequency. Figure 3-5 does not show

much consistency, probably because of the sparseness of the data.

All of these figures show rather more spreading of the peaks than some other studies [18],

which may be partly due to the data including both male and female talkers. Female talkers

tend to have a. slightly shorter vocal tract, and therefore slightly higher average formant

values. Genders are not separated in this experiment. because our goal is a vowel landmark

detector that is gender independent. Also, the TIMIT labelling mady not adequately represent

phenomena such as reduction and assimilation, which will also cause nmore variation in the

F1 frequency.

As in Experiment 1A, there are substantially fewer peaks at the beginning than at the end.

Syllable-initial consonants, especially when prestressed or word initial [30]. are acoustically

clearer and phonologically more robust than syllable-final consonants, and therefore more

likely to contrast with the following \vowel.

In summary. there is some evidence for erroneous formant estimates at the vowel boundaries,

but it is not conclusive. To explore further, the peak picking search wa.s redone. with the

vowel boundaries moved inward from the time points given in the TIMIT transcription. The

vowel boundaries were moved inward 10 milliseconds from each end. Some owels (about

850) are short enough that the resulting duration is too short for the formant tracker to

operate accurately, and these were discarded before the statistical analysis.

Results of this experiment are shown in table 3.14. In comparison with table 3.9, the
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Overall

C O X All
C 27164 (33.9%) 9798 (12.2%) 5549 (6.94%) 42511 (53.1%)
O 15929 (19.9%) 5300 (6.62%) 3627 (4.53%) 24856 (31.1%)
X 8295 (10.4%) 2984 (3.73%) 1356 (1.69%) 12635 (15.8%)
All 51388 (64.2%) 18082 (22.6%) 10532 (13.2%) 80002 (100%)

Frequency peak at beginning
C O X All

C 7567 (9.46%) 1453 (1.82%) 1137 (1.42%) 10157 (12.7%)
O 6243 (7.80%) 1315 (1.64%) 883 (1.10%) 8441 (10.6%)
X 2664 (3.33%) 754 (0.942%) 228 (0.285%) 3646 (4.56%)
All 16474 (20.6%) 3522 (4.40%) 2248 (2.81%) 22244 (27.8%)

Frequency peak in middle
C O X All

C 17192 (21.5%) 5715 (7.14%) 3407 (4.26%) 26314 (32.9%)
O 8666 (10.8%) 2331 (2.91%) 2259 (2.82%) 13256 (16.6%)
X 5066 (6.33%) 1612 (2.01%) 786 (0.982%) 7464 (9.33%)
All 30924 (3S.7%) 9658 (12.1%) 6452 (8.06%) 47034 (58.8%)

Frequency peak at end
C 0 X All

C ~2405 (3.01%) 2630 (3.29%) 1005 (1.26%) 6040 (7.55%,)
O 1020 (1.27%) 1654 (2.07%) 485 (0.606%) 3159 (3.95(/,)
X 56.5 (0.706%) 618 (0.772%) 342 (0.427(c,) 1525 (1.91%)
All 3990 (4.99%) 4902 (6.13%) 1832 (2.299%c,) 10724 (13.4%)

Table 3.14: Experiment lB statistical results for truncated vowels. For each category. the
preceding context is shown on the vertical axis. and the following context is shown on the
horizontal axis. Results which violate theoretical predictions are shown in emphatic typeface.

truncated vowels show substantially more tokens which violate theoretical predictions. Also,

the truncated vowels show substantially more peaks at the beginnings of vowels than at

the ends, in direct contrast to table 3.9. This is (at least) an indication that very different

phenomena are at work in the truncated vowel data set, which is some evidence for erroneous

formant estimates at the vowel boundaries (but what phenomena, is not clear).

Presumably, many (if not most) of the vowel tokens which do not show a peak in the middle

should have predictable characteristics. High vowels are liable to have lower F1 frequency
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stop
fric

affric
nasal
semi

vowel
other

All

Frequency peak at beginning
high mid low schwa sonorant diphth All
0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
0 (0) 0 (0) 0 (0) 1 (0.05) 0 (0) 0 (0) 1 (0.05)
0 () 0 (0) 0 () 0 (0) 0 () 0 (o) o (O)
7 (0.35) 4 (0.20) 3 (0.15) 28 (1.41) 5 (0.25) 0 (0) 47 (2.37)
30 (1.51) 9 (0.45) 5 (0.25) 46 (2.32) 0 (0) 2 (0.10) 92 (4.6)
186 (9.36) 335 (16.9) 49 (2.47) 1027 (51.7) 35 (1.76) 10 (0.50) 1642 (82.6)
27 (1.36) 44 (2.21) 36 (1.81) 86 (4.33) 1 (0.05) 11 (0.55) 205 (10.3)
250 (12.6) 392 (19.7) 93 (4.68) 1188 (59.8) 41 (2.06) 23 (1.16) 1987

Table 3.15: Experiment B context statistics, for frequency peaks at beginning of segment.
Columns show the class of the vowel token, and rows show the manner of the preceding
segment. Each entry shows the token count followed by the percent in parentheses.

than an adjacent semivowel, for instance. Such phenomena. should appear ill a study of all

vowel tokens which do not show a peak in the middle.

1987 out of the SOS56 vowel tokens (2.46%) show a frequency peak at the beginning of the

labeled segment. Table 3.15 shows the statistics of these toker - , by type of vowel and by

manner of the preceding segment.

Over SO80 of these tokens are preceded by vowels (over 50% are schwas preceded by vowels).

Of the remainder, most are preceded by segments with manner "other" (which includes

pauses and sentence boundaries). Semivowels are the most frequent context other than

vowels. High and mid vowels are more frequent than low owels.

6827 out of the 80856 vowel tokens (8.44%) show a frequency peak at the end of the labeled

segment. Table 3.16 shows the statistics of these tokens, by type of vowel and by manner of

the preceding segment.

High vowels (43.7%) and schwa.s (28.0%) account for over to-thirds of these tokens. Most

occur in the context of other vowels (40.7%) and semivowels (21.4%o). High vowels followed
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Frequency peak a.t end
high mid low schwa sonorant diphth All

stop 246 (3.60) 169 (2.48) 70 (1.03) 436 (6.39) 91 (1.33) 19 (0.28) 1031 (15.1)
fric 270 (3.95) 130 (1.90) 112 (1.64) 334 (4.89) 55 (0.81) 33 (0.48) 934 (13.7)

affric 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
nasal 44 (0.64) 29 (0.42) 20 (0.29) 298 (4.37) 3 (0.04) 6 (0.09) 400 (5.86)
semi 626 (9.17) 417 (6.11) 60 (0.88) 297 (4.35) 49 (0.72) 12 (0.18) 1461 (21.4)

vowel 1747 (25.6) 378 (5.54) 4 (0.06) 442 (6.47) 192 (2.81) 13 (0.19) 2776 (40.7)
other 53 (0.78) 26 (0.38) 6 (0.09) 103 (1.51) 31 (0.45) 6 (0.09) 225 (3.30)

All 2986 (43.7) 1149 (16.8) 272 (3.98) 1910 (28.0) 421 (6.17) 89 (1.30) 6827

Table 3.16: Experiment lB context statistics, for frequency peaks at end of segment.
Columns show the class of the vowel token, and rows show the manner of the following
segment. Each entry shows the token count followed by the percent in parentheses.

by either vowels or semivowels are by far the most frequent examples. confirmiogg the general

prediction.

Anomalous or unexpected results

Even though the frequency peak data show an order of magnitude more errors than the

amplitude data (section 3.5.2), it is still true that very few of the frequency peaks appear

in unexpected contexts (1709 out of 80855, or 2.11%). Those peaks that do violate the

theoretical prediction were examined with the same automatic procedure that was used on

the amplitude data (as shown in Table 3.7).

The results are shown in Table 3.17. A total of 2182 violation labels were assigned to the

1709 tokens (averaging 1.28 per token).

Of the 326 tokens which received no label at all, only 2 are shorter than 30 milliseconds.

Of the 226 tokens which received only the label b3 (schwa), only 41 are shorter than 30

milliseconds. The remaining tokens (324 unlabeled and 185 long schwas) total 509, which is
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Label Meaning Count
al syllabic nasal 82
bla preceding nasal 207
blb following nasal 347
b2a preceding glottal 82
b2b following glottal 1
b3 schwa 704
b4a. devoiced 52
b4b preceding aspirant 38
b4c following aspirant 0
cla. high 196
clb preceding high 39

c1c following high O

c3a rhotic 103
c3b preceding rhotic 1S9
c3c following rhotic 5
c3d sllabic lateral 33
c3e preceding lateral 99
c3f following lateral 5

Table 3.17: Experiment 1B assumption violations, labeled automatically.
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a substantially higher number of residual anomalies than in the amplitude data.

To examine all 509 of these residuals by hand would be tedious and time consuming, and

only limited insight would be gained. Hand examination was judged to be unnecessary in

this case.

Conclusions to Experiment 1B

Overall, the experimental results agree fairly well with the theoretical prediction. Over 89%

of all vowel tokens in the database show a frequency peak somewhere in the middle of the

vrowel.

3.5.4 Conclusions to Experiment 1

The experimental results agree with the theoretical prediction. The vast majority of vowlel

tokens show peaks (in both frequency and amplitude) somewhere in the middle of the vowel.

Amplitude peaks are more consistent than frequency peaks.

3.6 Experiment 2: Coincidence of Amplitude and Fre-

quency Peaks in Vowels

Prediction:
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schwa 20470
sonorant 1908
lax 19235
tense 23361
diphthong 4980

All 69954

Table 3.18: Experiment 2 vowel categories and counts. For each category, these data are
counts of all vowels with amplitude and frequency peaks both in the middle of the vowel.

Fl's amplitude peak and frequency peak will occur at the same place in time.

Assumptions:

(a) F1 has in fact a, definite peak, not at the endpoints.

(b) F1 is clear and measurable, without interference by phenomena such as nasalization.

glottalization. extreme reduction, or aspiration. Exceptions are likely to cause failure of the

formant tracking algorithm.

(c) The voicing source is stable (not changing in amplitude or in spectral shape), nasalization

is not affecting the F1 peak, and higher formants (particularly F2) are not extremely close to

Fl. Exceptions are likely to affect the amplitude peak, so as to make it appear in a different

place from the frequency peak.

3.6.1 Methodology

The Processed experimental data (see section 3.5.1) were filtered to keep only those tokens

which have amplitude and frequency peaks both in the middle of the vrowel. Table 3.18 shows

the counts of vowel tokens in each category.

92



For each vowel, the peak location was computed as a percentage of the vowel's duration. In

this way, the peak locations were normalized for duration, and histograms of peak location

in normalized duration were plotted (figures 3-8 and 3-9).

The peak times are quantized to 5 millisecond intervals (because the formant tracker outputs

a value every 5 ms). Such quantization causes an artifact in the histogram, whereby short

vowels cause a preponderance of counts in the bins which are low divisors of the normalized

duration (1/2 and 1/4 of duration are most evident, 1/3 and 2/3 less evident but still

visible). The resulting artifacts might be called "crenellation," since they look somewhat

like the ramparts of a medieval castle.

In order to avoid crenellation artifacts and produce a smoother appearing histogram, a

'dithering" algorithm was used. When a vowel is short enough that the 5 ms quantization

v-alue spans N histogram bins, each of N bins (centered on the peak location) has its count

increased by 1/N. This technique avoids crenellation and yields a smooth histogram, as see,

in figures 3-8 and 3-9.

Results

The data in figures 3-8 and 3-9 clearly show that peaks (both frequency and amplitude)

tend to appear early in the vowel rather than late (although there are examples of peaks at

all times). This phenomenon is most apparent for tense vowels, and least apparent for lax

vowels. Tense vowels (at least those which are not +low) tend to offglide towards /i/ or /u/,

i. e. towards a low F1, while lax vowels do not.

The data also show that the frequency peaks tend to appear earlier than the amplitude peaks.

This phenomenon is in contrast to the theoretical prediction. To examine it further, a joint

two-dimensional histogram of frequency and amplitude peaks was created, and plotted in
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Figure 3-8: F1 Amplitude Peak Histogram. The data include all vowels in table 3.18. The
horizontal axis is the amplitude peak location, normalized against the duration of the vowel.
The histogram is dithered to avoid crenellation artifacts.
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Figure 3-9: F1 Frequency Peak Histogram. The data include all vowels in table 3.18. The
horizontal axis is the frequency peak location, normalized against the duration of the vowel.
The histogram is dithered to avoid crenellation artifacts.
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F1 Peak Cross Histogram
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Figure 3-10: F1 Amplitude and Frequency Peak Cross Histogram. The data include all
vowels in table 3.18. The horizontal axes are amplitude and frequency peak locations, re-
spectively, normalized against the duration of the vowel.

a three dimensional projection as shown in figure 3-10. In this depiction, the theoretical

prediction is that all points should lie along the diagonal.

The cross histogram clearly shows a preponderance of tokens along the diagonal (as predicted

by theory), especially with peaks towards the beginning of the vowel. It also shows some

tokens off the diagonal (in contrast to the theoretical prediction), but this projection does

not clearly show what patterns may be evident in the off-diagonal tokens. Several attempts

to make this projection clearer (by rotation and scaling) were not very successful.

In an effort to see the patterns more clearly, a histogram of tokens' separation from the
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Frequency minus amplitude

Figure 3-11: Schematic of expected histogram of F1 peaks on the difference diagonal.

diagonal was computed. In essence, this consists of rotating the histogram of figure 3-10 by

45 degrees, to place the diagonal along one axis, and summing the histogram bins along the

other axis. Such a rotation is properly performed by multiplication by a. rotation matrix of

the form

cos 0 sin 0
(3.1)

- sin0 cos0

However, for a rotation angle of 45 degrees, cos 0 = sin 0 and a simple difference of frequency

and amplitude is sufficient. (There is a scale factor of 0.7071 which may be included, but

merely changes the histogram's horizontal axis.) We expect the resulting "difference diago-

nal" histogram to have a high peak at zero, and taper off rapidly on both sides, as shown

schematically in Figure 3-11.

The "difference diagonal" histogram was computed from the same data set as the two dimen-

97

��_____1111_11�___1_11_11-. -� ^_·. 111^--�-�---�--_1 -^11----_-·�_�__��11I-� ---1_ · ~ ~ 1_·s ~ 1 1



F1 Peak Difference-Diaoonal HistoQram
Count

7000

6000

5000

4000

3000

2000

1000

-1 -0.5 0

Frequency Minus Amplitude (Normali

Figure 3-12: F1 Peak Difference-Diagonal Histogram.
ble 3.18. The horizontal axis is the difference between
cations, normalized against the duration of the vowel.
tokens per bin.
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Figure 3-13: F1 Peak Difference-Diagonal Histogram. The data, include all vowels in ta-
ble 3.18S. The horizontal axis is the difference between frequency and amplitude peak loca-
tions, in milliseconds. The vertical axis is the number of tokens per bin.

sional histogram, and the result is shown in figure 3-12. The basic prediction is validated, as

the data show a high peak on the diagonal, and taper off rapidly for tokens off the diagonal.

However, the figure also shows a pronounced "shoulder" just below zero on the horizontal

axis, indicating a tendency for frequency peaks to occur earlier than amplitude peaks.

Figure 3-13 shows the same data, plotted as a function of the literal difference (frequency

minus amplitude in milliseconds). It shows the same general pattern as Figure 3-12, with

the "shoulder" for frequency peaks occuring earlier than amplitude peaks, but appears more

concentrated around the zero point. By comparison, Figure 3-12 appears more spread out,

because the normalized duration emphasizes the difference in short segments.
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Figure 3-14: Schematic of expected assumption violations among F1 peaks on the difference
diagonal.

Although most of the tokens are close to the diagonal in figure 3-12, there are a significant

number off the diagonal, in violation of the theoretical prediction. N, may be surmised that

these anomalous tokens should show violations of the assumptions underly ing the theoretical

prediction. and that there should be more assumption violations (or more extreme violations)

for tokens very far from the diagonal. If a histogram of assumption violations per token were

plotted in the same way as figure 3-12, it should show a minimum at zero, and rising values

towards both positive and negative extremes, as shown schematically in Figure 3-14.

Violations of theoretical assumptions were detected using the same procedure as in sec-

tion 3.5.2, and tabulated as in Table 3.7. Using these data, the assumption violation his-

togram was computed from the same data set as the diagonal histogram, and the result is

shown in figure 3-15. Aga.in, the basic prediction is validated, as the data show rising values

towards both positive and negative extremes.

However, there is a noticable bump a.t the zero point, which is not part of the prediction. It
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Figure 3-15: Assumption Violation Difference-Diagonal Histogram. The data include all
vowels in table 3.18. The horizontal axis is the difference between frequency and amplitude
peak locations, normalized against the duration of the vowel. The vertical axis is the average
number of assumption violations per token, for tokens in that bin.
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Figure 3-16: F Peak Sum-Diagonal Histogram. The data. include all vowels in table 3.18.
The horizontal axis is the sum of frequency and amplitude peak locations, normalized against
the duration of the vowel. The vertical axis is the number of tokens per bin.

is evident from Figure 3-12 that there is a. preponderance of vowel tolens at the zero point,

but why this should be is not clear.

IWe can also plot the other diagonal of the cross histogram in Figure 3-10. The result is

shown in Figure 3-16. In this case. we see the histogram along the diagonal that represents

the average of the frequency and amplitude peaks (absent a scale factor). As in Figures 3-8

and 3-9, this figure clearly shows that peaks tend to occur before the midpoint of the vowel

(at least, as the vowel's endpoints are labeled in the aligned phonetic transcription), which

is not a violation of any prediction, but is a phenomenon worth noting nonetheless.
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F1 Peak Sum-Diaqonal HistoQram. Voiceless and Voiced Context
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Figure 3-17: F1 Peak Sum-Diagonal Histogram, Voiceless and Voiced Context. The data
include all vowels in table 3.18 which are preceded by stop consonants. The horizontal axis
is the sum of frequency and amplitude peak locations, normalized against the duration of
the owel. The vertica.l axis is the number of tokens per bin, computed separately for vowel
tokens preceded by voiceless and voiced stop consonants.

One possible explanation of this phenomenon is that, in the TIMIT aligned phonetic tran-

scription, the beginning of the vowel is marked at the onset of voicing energy from the glottal

source [47]. This means that a vowel which is preceded by a voiceless aspirated consonant has

its beginning marked later than it would be otherwise, presumably later than the beginning

of the vowel gesture. The result would be that the center of the vowel gesture would appear

before the midpoint of the (labeled) vowel.

To test this idea, the sum diagonal histogram of Figure 3-16 is computed separately for
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vowels preceded by voiceless and voiced stop consonants. The result is shown in Figure 3-

17. It does appear that voiceless context causes the F1 peak to appear earlier in the vowel

than voiced context. However, even in voiced context, the peak tends to appear before the

midpoint. Thus, preceding voiceless context seems to account for part of the early skewing

of the F1 peak but not all of it. This phenomenon is worthy of further study.

3.7 Experiment 3: Vowel quality better at F1 peak

than midpoint

Hypothesis:

F1 peak is a better location for vowel classification than the midpoint of the vowel's durat;in.

Assumptions:

(a) F1 has in fact a definite peak, not at the endpoints.

(b) F1 is clear and measurable, without interference by phenomena such as nasalization.

glottalization, reduction, or aspiration. Exceptions are likely to cause failure of the formant

tracking algorithm.

-Motivation:

If F1 is pulled down by consonants at the beginning and end of the vowel, it is reasonable

to assume that the F1 peak is the place where the vowel is least affected by the surrounding

consonants, and therefore it should be a good starting point for "vowel recognition.

104

_ ___



The results of Experiment 2 show that the F1 peak is usually not at the midpoint of duration

of the vowel, and frequently is significantly earlier. This fact is significant because the hand

labels for the LAFF database seem to be placed at the vowel's midpoint of duration, in

general [10]. If there is a significant difference between a vowel recognizer's performance at

the F1 peak and its performance at the midpoint, the LAFF database labeling may need to

be revised.

(On the other hand, the main point is to find a landmark somewhere in the vowel. If the

vowel classification process is intelligent enough to use the entire extent of the vowel for

classification, the precise location of the landmark may not be very important.)

3.7.1 Methodology

The Processed experlimental data (see section 3.5.1) were filtered to remove schwas and

syllabic sonorants. Out of the total of S0856 vowel tokens. 54060 tokens (about 67%) were

retained at this stage.

As in Experiment 2, the data were also filtered to keep only those tokens which have ampli-

tude and frequency peaks both in the middle of the vowel. Out of the 54060 proper vowels.

47576 (about SS%) were retained at this stage.

In addition, all of the shibboleth utterances (sal and sa.2) were removed from the data, as

they have the potential to skew the results of the recognition experiment. (Since all the sal

and sa2 utterances are of the same sentence, they can skew the statistics of coarticulatory

environment.) Out of the 47576 tokens, 3700S (about 717%) were retained.

Finally, the data set was separated into training and test sets, using the division in the
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Label Height All Train Test
iy high 4925 3546 1379
ih high 5028 3747 1281
eh mid 4107 2990 1117
ey mid 2785 2038 747
a.e low 2967 2227 740
a.a low 2967 2160 807
aw diphthong 914 704 210
ay diphthong 2545 1869 676
ah low 2994 2165 829
ao mid 2254 1605 649
oy diphthong 406 286 120
ow mid 2045 1502 543
uh high 669 467 202
uw high 435 329 106
er mid 1967 1427 540

Table 3.19: Experiment 3 vowel categories and counts.

original TI-MIT database. Since the original data were generated by merging the TIAIIT

training and test sets, this operation restores the original dlivision. Out of the 3700S tokens.

27062 are in the training set, and 9946 are in the test set. Table 3.19 shows the counts of

vowel tokens in each category.

Two time points were generated for each vowel token: the midpoint of duration (halfway

between the beginning and end points in the TIIIT aligned phonetic transcription), and the

peak of F1 amplitude. (The amplitude peak has been shown to be better than the frequency

peak for vowel detection, in Experiment 1.)

For each time point, the formant frequency values generated by the formant tracker (see

section 3.4.1) form the basic feature set to be used for classification. The formant tracker

produces estimates for the first four formants, but only the first three will be used in this

experiment.
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Since the formant tracker produces a frame of data every 5 milliseconds, the experiment

uses the frame nearest in time to the desired time point. In addition, the formant values

are linearly interpolated between the 5 millisecond frames, for maximum accuracy in time.

Both non-interpolated (time quantized) and interpolated data are used in the experiment,

and the results compared.

3.7.2 K Nearest Neighbors (KNN) Classification

VoNwel classification is done using a IK Nearest Neighbors (IKNN) paradigm. This classifier is

straightforward to implement and has good performance for large sets of training data [19.

section 4.7]. It is rarely used in real-time speech recognition because it is comlputationallv

intensive (much more so than many other classifiers), but computation time is not a problem

for the experiment at hand. Leung [52] provides a fairly recent example of INN classifica:> n

of the TIIIT vowels, which helps inform the present experiment.

To classify a. test token using IKNN requires a set of N training tokens and a distance metric.

The test token is compared to each of the training tokens, using the distance metric, and the

I1 nearest training tokens are found (where K is some number less than N). The token class

which appears most frequently amongst the IK nearest neighbors is chosen as the output

class for the test token.

Besides the training data, this algorithm clearly depends primarily on the distance metric

and the choice of value for K. Leung suggests K = afN based on the theoretical analysis

of the algorithm's asymptotic behavior for large training sets [52, pp. 110-116], and reports

best results for a = 1 [ibid., pp. 118-122].

Leung's feature set (for most of his experiments) is the snchrony spectrum envelope gener-
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ated by the auditory model of Seneff [75], which is then normalized for inter-talker differences

by shifting the spectrum down (on a bark scale) by an amount dependent on the median

value of FO across the vowel [52, p. 42]. This is intended to reduce the variability of formant

locations because of differences in gender and vocal tract size and shape. The result is a

100 element vector of spectral data. Leung uses a Euclidean distance metric for this feature

data..

In contrast, the present experiment uses only a. 3 element vector (the frequencies of the

first three formants). For initial experiments, we will use Euclidean distance as the distance

metric. Euclidean distance on the frequency scale would tend to emphasize differences in

higher formants, especially F3, since they tend to vary more widely in frequency, so these

experiments use Euclidean distance on a. bark scale. Initially we will use the value I =

165 = 27062.

Extension for Ki

Leung also describes an extension to the basic algorithm, allowing the va.lue of I to vary for

different training classes. The K values are computed as before from the size of the training

class. ki = / c where ni is the number of tokens in the ith training class. The decision rule

must be normalized by the dispersion of the training class, which (for a Euclidean distance

metric) is characterized as a sphere whose radius is the median distance to the ki nearest

neighbors. See [ibid., p. 116] for the details.
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First results

Using the non-interpolated (time quantized) data, this IKNN vowel classifier yields perfor-

mance on the order of 50% correct, in most experiments. This is not as good as most of the

results reported in the literature over the last ten years, which is not surprising, since those

systems are much more complicated than this simple classifier. In fact, the classifier under

test performs remarkably well, given its simplicity.

Leung [ibid.] reports about 57% correct for his KINN system, and about 60% correct for

his multilaver perceptron, on the TIMIT vowels. Other vowel classification systems yield

roughly similar results on the TIMIT vowels.

MIeng and Zue [60] used an auditory model to provide a basic spectral representation, op-

tionally followed by extraction of acoustic attributes (spectral moments and amplitude) and

estimation of distinctive features. classified b a multilaer perceptron. They demonstrated

about 64% correct, slightly dependent on inclusion of acoustic attributes and features. Per-

formance degraded to about 59% when the MLP was replaced by a simpler binary decision.

Chun [13] proposed an hierarchical representation for phonetic classes, with broad decisions

made early, followed by finer subclassifications. His system used Mlel-cepstrum coefficients

and their derivatives as a spectral representation, and Gaussian mixture acoustic models,

trained using IK means clustering, for classification. On the TIMIT vowels, he reported

67.6% correct for this baseline system [p. 44], but only 52.6% when using the first three

formant estimates from the ESPS formant tracker (as my KNN classifier does). Adding FO

to the baseline representation (as an indirect normalization for vocal tract length) improved

performance to 70.2% [p. 46].

All these systems report better performance on the TIMIT vowels than the simple IKNN
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Midpoint F1 Peak
count percent count percent

Identical 4903 49.3 4513 45.4

High 2136 21.5 2223 22.4
Mid 2304 23.2 2214 22.3
Low 1511 15.2 1424 14.3

Height correct 5951 59.8 5861 58.9

Table 3.20: Experiment 3 vowel recognition rates by height, using non-interpolated formant
tracks. Diphthongs are not included in these statistics.

classifier proposed in this experiment. They all use rich spectral information to characterize

the acoustic signal, rather than just the first three formants, more sophisticated feature

extraction (such a.s normalization for vocal tract length, principal component analysis, etc.),

and powerful classification techniques such as multilayer perceptrons. Our INN classifier

could certainly be enhanced to improve performance, but optimum performance is not the

goal of this experiment. The IKNN classifier appears to be adequate to characterize the

difference be.--.:een the F1 peak and the midpoint of the vowel.

Results by features [high] and [low]

In addition to identically correct matches, we also examine statistics for how many vowels

had the features [high] and [low] recognized correctly. Table 3.19 gives the height values for

each vowel label. Table 3.20 shows how many High, Mid, and Low owels were correctly

recognized for their height. Diphthongs are not included in these statistics.

The results in Table 3.20 show that the F1 peak is not as good as the midpoint of the

vowel. which disagrees with the hypothesis. However, the difference is slight, and may not

be particularly significant. See also Huang's finding that the vowel midpoint is fairly good

for classification [38].
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Midpoint Fl Pea.k
count percent count percent

Identical 4897 49.2 4537 45.6

High 2141 21.5 2213 22.3
Mid 2318 23.3 2243 22.6
Low 1504 15.1 1422 14.3

Height correct 5963 60.0 5878 59.1

Table 3.21: Experiment 3 vowel recognition rates by height, using interpolated formant
tracks.

Table 3.21 shows the experimental results when using interpolated formant data. The data.

are very similar to Table 3.20 in general. As before, performance is usually slightly higher

for the midpoint than for the F1 peak, in opposition to the hypothesis.

W\hy performance should be lower at the F1 peak is a matter of conjecture. It is possible

that the formant tracker is making occasional errors. and that some of those errors cause

false Fl peak detections which degrade the performance at F1 peaks relative to performance

at midpoint (which is not subject to such problems).

From these results, it appears that the midpoint and the F1 peak provide about the same

performance for vowel characterization. This is reassuring for the LAFF database labeling

project, since it implies that precise location of the Vowel landmarks is not critical.

However, similar performance is not enough to imply that there is no significant difference

between the midpoint and the F1 peak for vowel characterization. If the two algorithms are

failing on different tokens or in different ways, their difference can be significant een if the

failure rates are similar. McNemar's Test [27] is an appropriate test of statistical significance

for two algorithms tested on the same data set.

The joint performance of the two algorithms is summarized in Table 3.22. This table shows

the number of tokens which both algorithms recognize correctly (upper left corner) or incor-
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Midpoint
Peak Correct Incorrect

Correct 3742 795
Incorrect 1155 4254

Table 3.22: McNemar Test results. The measurements made at the F1 peak are separated
on the vertical axis, and the measurements made at the midpoint are separated on the
horizontal axis.

rectly (lower right corner), as well as those which are recognized correctly by one algorithm

and incorrectly by the other (minor diagonal). 4 There are quite a few tokens which are

recognized correctly by one algorithm and incorrectly by the other (1950 out of 9946, or

19.6%). which indicates that the two algorithms are behaving quite differently.

For McNemar's Test, we compute the probability of this observation under the assumption

that the two algorithms are essentially the same. Using the Normal approximation to the

Binomial distribution [27, p. 533], the result is very close to zero; that is, there is almost no

chance of this observation if the two algorithms are the same. Therefore. the two algorithms

are significantly different. even though their performances are similar.

Conclusions

The results of this experiment are rather ambiguous. The significant difference between the

F1 peak and the midpoint implies that the location of the Vowel Landmark is important. If

so, researchers who are labeling the LAFF database by hand should be aware of the potential

impact of Landmark placement. (Apparently, most Vowel Landmarks are being placed at

the midpoint of duration, so far.)

However, it cannot be said from these results that one placement yields substantially better

4 This data shows results for identification only, not by vowel height.

112



performance than the other, for this experiment. In addition, in any realistic recognition

system, the V\owel Landmark will be only a starting point for vowel classification. More

detailed analysis of the duration of the vocalic region, prosodic information, and formant

movements will be desirable for the detection of diphthongs, vowel - vowel sequences, and

semivowels. In this light, the exact placement of the Vowel Landmark ought not to be

critical.

3.8 Experiment 4: Fixed energy band is comparable

to formant tracking

Hypothesis:

A fixed energy band (without formant tracking) can be found that provides performance

comparable to the energy around the frequency of F1 (which requires formant tracking).

Assumptions:

Performance, in this context, means the degree to which peaks appear in the vowels as

marked by the TIMIT labeling. It does not mean lack of peaks in the nonvowels, because

the formant tracker cannot perform reliably in most nonvowel regions. In other words,

we are looking at detection rates, not at insertion error rates. Insertion errors (and their

elimination) will be addressed in the next chapter.

Performance can be measured either by the percentage of vowels (as marked in the TIMIT

aligned phonetic transcription) which show a proper peak in the energy track, or by the

percentage of violations of the theoretical prediction (peak appearing at the end of the vowel
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adjacent to an orally closed consonant). Both measures will be used.

Motivation:

Formant tracking is a notoriously difficult task to do reliably, especially under variable con-

ditions (multiple talkers, background noise, and so on). Formant tracking is also computa-

tionally burdensome. Since Vowel Landmark Detection is one of the first stages of processing

in a LAFF paradigm, we desire a technique which is as simple and robust as possible. The

elimination of formant tracking will certainly make the Landmark Detector simpler, and

hopefully more robust as well.

3.8.1 Methodology

The experiment seeks to reproduce the results of Experiment 1, looking for peaks in all

intensity track derived from a fixed frequency band, rather than the intensity around Fl.

The intensity track was computed b3 a. weighted sum of spectral bins from the spectrogram.

(Of course. the data were converted to linear intensity representation for the summation,

and then converted back to decibels.)

A trapezoidal window (in frequency) was used for the weighting operation. It was controlled

by four parameters: upper and lower passband edges, and upper and lower transition band

widths (all in Hertz, which were converted to bin numbers for the computation). The

trapezoidal window and its parameters are shown schematically in Figure 3-18.

For each vowel in each utterance in the TIMIT database, the track was searched for peaks

as in Experiment 1, and statistics gathered in the same way.
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Figure 3-18: Trapezoidal window for weighting.
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Unlike Experiment 1, part of the task is to determine what are the optimal parameters

for the computation. There are several different values which could be used to quantify

performance. For this experiment, two measures of performance were used: percent of all

vowel tokens which show a proper intensity peak in the middle of the vowel (which we wish

to maximize), and percent of prediction violations (which we want to minimize).

Results

Initially, the values were set as LowerFrequency = 300 Hz, LowerWidth = 0, UpperFrequency

= 900 Hz. UpperNWidth = 0, which are considered to be fairly canonical for F1 [83]. The

statistical results for these canonical values are shown in Table 3.23. Values representing

unpredicted results (contrary to theoretical prediction) are printed in emphatic ty peface.

The data show performance results which are very similar to the Experiment 1 data shown

in Table :3.5. Of the CVC tokens in the database, almost all show an amplitude peak in the

middle (27542 out of 27712, or 99.4%). When an amplitude peak appears at the beginning,

it is almost always in OV- context (952 out of 978, or 97.3%), and when an amplitude peak

appears at the end, it is almost always in -O context (1711 out of 2115. or 80.9%). These

values are comparable to those derived from the Experiment 1 data in section 3.5.2.

Over 96% of all the vowels in the database show an amplitude peak in the middle. This

value is even higher than in the Experiment 1 data. The conclusion after this initial test

is that the fixed band of frequencies can provide comparable performance without use of a

formant tracker.

Optimization
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Overall
C O X All

C 27712 (34.3%) 9846 (12.2%) 5614 (6.94%) 43172 (53.4%)
O 16020 (19.8%) 5314 (6.57%) 3636 (4.50%) 24970 (30.9%)
X 8361 (10.3%) 2993 (3.70%) 1359 (1.68%) 12713 (15.7%)
All 52093 (64.4%) 18153 (22.5%) 10609 (13.1%) 80855 (100%)

beginning
C 0 X All

C 13 (0.0161 ) 0 (0%) 0 (0%) 13 (0.0161%)
O 661 (0.818%) 97 (0.120%) 194 (0.240%) 952 (1.18%)
X 13 (0.0161%) 0 (0%) 0 (0%) 13 (0.0161%)
All 687 (0.850%) 97 (0.120%) 194 (0.240%) 978 (1.21%)

middle
C O X All

C 27542 (34.1%) 8859 (10.9%) 5497 (6.80%) 41898 (51.S%)
o 15314 (18.9%) 4788 (5.92%) 3419 (4.23%) 23521 (29.1%)
X 8306 (10.3%) 2698 (3.34%) 1339 (1.66%) 12343 (15.3%)
All 51162 (63.3%) 16345 (20.2%) 10255 (12.7%) 77762 (96.2%)

end
C O X All

C 157 (0.194%) 987 (1.22%) 117 (0.145%) 1261 (1.56%)
O 45 (0.0556%) 429 (0.531%) 23 (0.0284%) 497 (0.615%)
X 42 (0.0519%) 295 (0.365%) 20 (0.0247%) 357 (0.442%)
All 244 (0.302%) 1711 (2.12%) 160 (0.198%) 2115 (2.62%)

Table 3.23: Experiment 4 statistical results, for the canonical parameters. For each category,
the preceding context is shown on the vertical axis, and the following context is shown on
the horizontal axis. Results which violate theoretical predictions are shown in emphatic
typeface.
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Peaks as a function of LowerFrequency
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Figure 3-19: Performance as a function of LowerFrequency
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Peaks as a function of UpperFrequency
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Figure 3-20: Performance as a function of UpperFrequency
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Peaks as a function of LowerWidth I
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Figure 3-21: Performance as a function of LowerWidth
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Peaks as a function of UDDerWidth
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Figure 3-22: Performance as a function of UpperWidth
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To investigate further, each parameter value was varied in turn to investigate its effect on

performance. Two values were used to gauge performance: the number of all vowel tokens

which show a proper intensity peak in the middle of the vowel (which we wish to maximize),

and the number of prediction violations (which we want to minimize). Both were expressed

a.s a percentage of the total number of vowel tokens.

Initially, the values were set to their canonical values (LowerFrequency = 300 Hz, Lower-

Width = 0, UpperFrequency = 900 Hz, UpperWidth = 0). Each parameter was varied while

the other three were kept at canonical values.

LowerFrequency was varied from 0 to 600 Hz, and the results are shown in Figure 3-19 (which

shows both proper peaks and prediction violations). UpperFrequency waas varied from 400

to 1400 Hz, and the results are shown in Figure 3-20 (which shows both proper peaks and

prediction violations).

Both of these figures show performance that is remarkably insensitive to variations in the

frequency values. The variations are fairly wide, but performance changes only by fractions

of a percent. This is encouraging for a Vowel Landmark detector, as it implies that the

precise values for a fixed frequency band are not critical.

LowerFrequency appears to provide best peak detection between 0 and 300 Hz, and fewest

prediction violations between 300 and 400 Hz. Therefore, 300 Hz appears to be a good choice

for LowerFrequency.

tpperFrequency appears to provide best peak detection between 800 and 1000 Hz, and

fewest prediction violations between 800 and 1100 Hz. Therefore, 900 Hz appears to be a

good choice for UpperFrequency.
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LowerWidth and UpperWidth were varied from 0 to 600 Hz. The results for LowerWidth

are shown in Figure 3-21, and they indicate very little sensitivity to the variation, with

performance changes only by fractions of a percent. The results for UpperWidth are shown

in Figure 3-22, and they indicate slightly more sensitivity (but still very little), with best

performance at low values, between 0 and 100 Hz.

3.8.2 Conclusions

The experimental results show that using a fixed frequency band for this task (finding peaks

in TIMIT labeled vowels) syields performance comparalble to using the formant tracker. The

performance is quite insensitive to the exact values for the frequency band edges and tran-

sition widclths. The results are encouraging because a fixed frequency band is much easier to

implement than a formant tracker, allowing sinmpler and easier implementation of a. Vowel

Landmark Detector.

3.9 Conclusions of the statistical study

In general, the predictions of acoustic theory are supported by the experiments in this

chapter.

3.9.1 (1) Presence of F1 peaks in the vowel

Overall. the experimental results agree very well with the theoretical prediction. As seen in

Table 3.5, over 94% of all the vowels in the database show an amplitude peak in the middle.
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Amplitude peaks are more consistent than frequency peaks. This supports the practice of

using the amplitude peak as the primary indicator of vowel presence.

Of the vowel tokens which do not show an amplitude peak in the middle, all were found to

have one or more violations of the assumptions which underlie the theoretical prediction, as

seen in Tables 3.7 and 3.8. Most of these conditions were detectable by a simple automatic

procedure which examines the token's context and duration, and the rest were detectable by

manual inspection.

3.9.2 (2) F1 amplitude and frequency peak together

The experimental results agree with the theoretical prediction. As seen in Figure 3-12,. the

locations of F1 amplitude and frequency po-ks of F1 are strongly correlated. The shoulder"

just below zero on the horizontal axis indicates a tendency for frequency peaks to occur earlier

than amplitude peaks.

The exceptional vowel tokens (in which F1 amplitude and frequency do not peak together)

tend to violate the assumptions which underlie the theoretical prediction. The greater the

difference between amplitude and frequency peaks, the more assumption violations occur on

average, as seen in figure 3-15.

On average, the maxima of F1 tend to appear early in the vowel, as seen in Figure 3-16, rather

than at the midpoint, for both amplitude and frequency. The effect is more pronounced for

frequency peaks than for amplitude peaks. Contextual variations (specifically, the voicing of

preceding consonants) account for part of the effect, but not all of it.
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3.9.3 (3) F1 peak compared to mlidpoint for vowel quality

For a simple spectral classification task, the F1 peak does not appear to be substantially

better than the midpoint of the vowel. This result holds for both a vowel identity ta.sk and

a height-only task. Statistical analysis of the classifier indicates that there is a significant

difference between the two methods, as seen in Table 3.22. However, the classification

performance is not noticably different, as seen in Tables 3.20 and 3.21.

The implication is that the precise location of the Vowel landmark is not critical. This is

good news for the LAFF database labeling project, allowing labelers to be unconcerned with

the exact. location of Vowel landmarks.

3.9.4 (4) Fi peak can be approximated without form-ant tracking

The experimental results show that using a fixed frequency )and yields performance com-

parable to using the formant tracker. The performance is not sensitive to the exact values

for the frequency band edges and transition widths. The results enable a \oowel Landmark

Detector without formant tracking.
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Chapter 4

Vowel Landmark Detector (VLD)

Implementation

\¥ith the blackground information about automatic syllable detection. and statistical studies

of the TIMIT database, a V'owrel Landmark Detector (LD) was implemented and its perfor-

mance evaluated. This chapter describes the implementation of the \LD and its performance

evaluation.

The approach wa-s to build a. baseline VLD first, and then to make a number of modifications

to it. in order to gauge the effect that the different modifications have on the detector, their

relative utility, and so forth.

As part of the effort, the method used for evaluation of the performance of the VLD wals

also modified and enhanced to take into account phenomena which can lead to inappropriate

error scoring.
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Parameter Value

Lower band edge 300.0 Hz
Lower transition width 0 Hz
Upper band edge 900.0 Hz
Upper transition width 0 Hz
Frames in smoothing average 10 frames

Peak-to-dip threshold 2 dB
Duration threshold 80 ms
Level threshold 25 dB (below overall maximum)

Table 4.1: Parameters for Vowel Landmark Detector, with typical values.

4.1 The Baseline VLD

The baseline detector was designed to reproduce the automatic syllable detector described

by Mlermelstein [61]. MVermelstein's prototype is a simple knowledge based detector that

works by detecting peaks and dips in an intensity track. It appears to be one of the most

straightforward and reliable algorithms in the literature, and the most referenced by other

researchers.

The VLD is controlled by several parameters which may be adjusted for good performance.

The parameters are constant values, and do not change during operation. They include

thresholds, fiequency band edges, and the like. A list of parameters with typical values

appears in Table 4.1. The band frequencies and transition widths are the same as previously

shown in figure 3-18.
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4.1.1 Front end processing

The first step in processing is to compute a spectrogram of the speech signal. The signal is

not preemphasized. The signal is windowed at a frame rate of 200 Hz (or a frame period

of 5.0 ms, like most of the algorithms in table 2.1). A 16.0 ms Hamming window is used,

with the intent of including at least one full pitch period for male voices. The spectrum

is computed from the windowed data with a. 256 point FFT. The spectral data are then

converted to log magnitude (decibel) representation.

4.1.2 Feature extraction

The second step in processing is to compute an intensity track, summing energy over a. bland

of frequencies to provide a. single measure of intensity. Mermelstein's original algorithm used

a fairly broad band (500 Hz to 4 kHz. with 12 dB/octave rolloff outside that band). The

baseline detector for this thesis, however, was adjusted to track low frequency energy (in

the neighborhood of F1, canonically around 300 to 900 Hz). See section 4.3 for a. justifi-

cation of this change. The intensity track is computed by a weighted sum of spectral bins

from the spectrogram. (Of course, the data are converted to magnitude squared intensity

representation for the summation, and then converted back to decibels.)

A trapezoidal window (in frequency) is used for the weighting operation. It is controlled

by four parameters: upper and lower passband edges, and upper and lower transition band

widths (all in Hertz, which are converted to bin numbers for the computation).

The resulting intensity track is lowpass filtered in time, to help reduce small peaks and noise.

The lovwpass filter is a. simple rectangular window. One parameter controls the number of

frames in the lowpass filter window. In practice, only a few frames (five or so) need to be
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D

Figure 4-1: Convex hull algorithm (after AMermelstein). See the text for a. description of the
proceclure.

averaged for good results.

4.1.3 Detection

Peaks and dips are detected using a recursive convex hull algorithm [61]. The convex hull

is computed by traversing the track from its endpoints inward towards its maximum, main-

taining intermediate maxima along the way. The deepest dip is compared to a threshold

parameter. If it is deeper than the threshold, the dip is accepted as a boundary, and the

process recurses on the two segments thus generated. If not, the recursion ends, and the

maximum is accepted as a vowel landmark (or, in Mermelstein's original work, a sylla.bic

center).
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For an example, see figure 4-1. The convex hull (dotted line) is computed on the segment

A-G. The deepest dip to the left of the peak (B-C) is compared to the deepest dip to the right

of the peak (E-F). If the depth of the deeper of the two (say, E) is greater than the threshold.

the algorithm divides the segment into two at that dip, and recurses on the segments A-E

and E-G. If not, the algorithm returns the peak (D).

XMermelstein's original algorithm also included durational and absolute level constraints.

In order to prevent segmentation into fragments that do not contain adequately

strong syllabic peaks, we reject any segment whose intensity maximum is more

than a given threshold below the overall intensity maximum, the syllabic peak

of the strongest syllable of the utterance. Similarly a minimum syllabic-unit

duration of SO ms is imposed, and segmentation that would result in shorter

fragments is rejected. [ibid, p. 880]

The "given threshold"' for level is chosen at 25 dB later in the paper (however, Mermelstein

does not give a rationale for either the duration or level cutoff values). These constraints

appear to be imposed during the convex hull recursion, as additional conditions which can

terminate recursion, but this is not entirely clear from the written description.

None of the later published work using Mlermelstein's algorithm seems to implement the du-

ration and level constraints, or indeed to address their existence. In the absence of any other

information, the baseline system will implement these constraints a.s additional conditions

which can terminate the convex hull recursion.
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4.1.4 Post processing

Mermelstein's original algorithm also included post processing to remove fricative peaks [63].

This was necessitated by the fairly broad frequency band he used (see section 4.1.2), which

included the high frequencies characteristic of frication. Our frequency band, encompassing

the nominal range of F1, does not include typical frication energy. Therefore, the baseline

algorithm did not include post processing to remove fricative regions, except for the very

first experiment, which attempted to reproduce Mermelstein's results exactly (as described

in section 4.3, which gives the details of the fricative detection process).

4.2 Experimental Issues

The \VLD is evaluated by tests which compare its output (the detected landmarks) to an

aligned phonetic transcription of the input speech. The relative utility of the extensions

and modifications is assessed in the same way. As discussed in section 1.4.3. error rate was

chosen to be the measure of performance, with insertion and deletion errors weighted equally.

(Other Nweightings of the errors may be desirable, depending on the needs of the system using

the NVLD. as was discussed in section 1.4.3.)

4.2.1 Failure modes

There are three general categories of phenomena that could cause the scoring procedure to

detect an error (either insertion or deletion).
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an effort to avoid scoring artifacts, we introduce the notion of Reference Vowel Landmarks

(RVLMs) which are derived from the transcription, and which may be compared to Detected

Vowel Landmarks (DVLMs) which are the output of the VLD.

RVLMs are VTowel landmarks, just like the output of the VLD, but they are derived from the

database transcription. Different databases have different transcription formats (orthogra-

phy, aligned phonetic segments. landmarks) which would require different scoring techniques

if they were used directly. By converting them to RVLMs, we can use the same scoring tech-

nique across all databases, permitting direct comparison of the results. The exact method

for deriving RVLMs depends on the format of the database transcription. See section 4.2.3

for details.

The RVLMs are stored in a file which includes V\owel landmarks as well as intervowel clips

(roughly corresponding to syllable boundaries). Scoring is done by searching for DVLMs that

appear between the intervowel dips for a given RVLM. If none appear, the RVLM is marked

as a deletion error. and if too many appear. the extra D LMs are marked as insertions.

The RVLM format allows for optional matching. Every R;LM must match at least one

DVLM to avoid a deletion error. Some R\'VLMs may be marked to allow matching to more

than one DVLTM. Such R\VLMs include a maximum number N. and may match any number

of DVLMs between 1 and N without error. This enables the scoring procedure to avoid

penalizing marginal cases, epenthetic vowels, and the like.

At present, we allow optional landmarks only for directly abutting vowels. which mna be

subject to coalescence (see section 1.3.2). These are the places where the database transcrip-

tions seem to be questionable or inconsistent. Other phenomena, such as vowel deletion or

epenthetic insertion. ought to be represented in the acoustic transcription, and we will trust

that the transcription is accurate enough for experiments. (If at any point we decide to use

133





to as the Core Test set in the remainder of this chapter.

4.3 Baseline Experiment

The first experiment started with Mermelstein's original parameters. The object of the

experiments was to provide a baseline of performance, against which further changes and

enhancements can be compared.

Results

The fundamental value used to characterize performance is Token Error Rate (TER), which

is the sum of insertions and deletions as a. percentage of RN\LAIs (or. in Mermelstein's original

work. sllable tokens).

The first experiment attempted to reproduce Mermelstein's algorithm exactly as described

in [61]. The algorithm was tested on both the training and test sets (although no training

wa.s done). Experimental results are shown in the first row of table 4.2. Overall performance

was 26.2% TER, substantially worse than Mermelstein reported (9.5% errors, 6.9% deleted,

2.6% inserted). Part of this difference may be due to the more comprehensive data set.

MIermelstein's original work used only eleven sentences spoken ca.refully by two male talkers.

while TIMIIT includes hundreds of sentences spoken casually by many talkers of both genders

and diverse dialects. There may also be differences in the details of implementation.

AMermelstein's algorithm tracked energy in a frequency range of 500 Hz to 4 kHz, which is

marked in table 4.2 as broadband." It was felt that the broadband intensity measure was

135



not optimal. The definition of vowel landmarks specifies that they should be located around

peaks in energy in the region of Fl. If so, the performance should improve when the intensity

is measured in a band around F1, nominally about 300 to 900 Hz.

To investigate the effect of this band, the upper and lower band edges and their rolloff values

were varied independently. As each parameter was varied, the score (on the Core Training

set) was observed, and the best value chosen manually. Then the next parameter wa.s varied

in the same way. After several repetitions over the parameter set, convergence to a set of

values was observed, and these values were taken as the optimal parameter values.

The optimal frequency band (0 to 650 Hz) does indeed delineate the region where F1 is

likely to be found. Performance on this band is 13.4% train, 14.6%, test TER. (second row

of table 4.2). This performance is not noticably better than the performance using the

canonical band (300 to 900 Hz) so either parameter set can be used with essentially the

same results.

Mermelstein's original algorithm used post processing for fricative detection, to remove peaks

in fricative regions. Mermelstein gives no details of the fricative detection procedure. For this

experiment, zero crossing rate was computed and compared to a threshold. When the zero

crossing rate around a peak was greater than the threshold, the peak was discarded. NMa.nual

adjustment of the threshold, with attention to the score output, resulted in a threshold of

6000 crossings per second, for speech data sampled at 16 kHz.

Observring that fricative regions are much less likely to be detected when using the F1 band,

Nwe investigated performance without fricative detection. As expected, performance is very

poor when using broadband intensity (third row of table 4.2, 34% TER!), but much better

when using F1 intensity (fourth row of table 4.2, 14.8% TER). It appears that fricative de-

tection offers essentially no performance gain when using the F1 frequency band. Therefore,
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Train Test
Tokens Detect Insert Delete TER Tokens Detect Insert Delete TER

broadband 7585 76.2% 2.40% 23.8% 26.2% 4404 77.7% 2.61% 22.3% 24.9%
F1 range 7585 88.4% 1.82% 11.6% 13.4% 4404 87.1% 1.73% 12.9% 14.6%

without post processing for fricative detection
broadband 7585 87.8% 21.8% 12.2% 34.0% 4404 87.8% 19.7% T 12.2% 31.9%
F1 range 7585 88.4% 1.96% 11.6% 13.6% 4404 87.1% 1.88% 12.9% 14.8%

Table 4.2: Scores by frequency range, with and without fricative detection. The "broadband"
condition is Mermelstein's original frequency range (500 Hz - 4 kHz), and the "Fl" range is
0 - 650 Hz.

Train Test
Tokens Detect Insert Delete TER Tokens Detect Insert Delete TER

Overall 7585 88.4% 1.96% 11.6% 13.6% 4404 87.1% 1.88% 12.9% 14.8%
Tense 3168 91.7% 3.22% 8.27% 11.5% 1838 89.6% 2.99% 10.4% 13.4%
Lax 1704 92.8% 0.59% 7.22% 7.81% 1001 91.7%( 1.10% 8.29% 9.39%
Schwa 2458 81.9% 1.42% 18.1% 19.5% 1446 81.2% 1.11% 18.8%7 19.9%
Sonor 255 80.4% 0.784% 19.6% 20.4% 119 83.2% 0.00% 16.8% 16.8% 

Table 4.3: Scores b vowel stress. In general, less stressed owels are more difficult to detect.
The exception is lax vowels, which are easier to detect in context (because they are always
followed by consonants).

all subsequent experiments were done using the F1 band without fricative detection.

Details of the detector's performance by vowel stress are shown in table 4.3. As one might

expect, full vowels (tense and lax) are easier to detect than schwas or syllabic sonorants.

Lax vowels are the most easily detected, even more so than tense vowels, which may result

from the fact that lax vowels must be followed by consonants, whereas tense vowels may not

be. The consonants provide clear boundaries for segmentation, making detection easier.

In all cases, performance on the test set is very close to performance on the training set,

which indicates that this amount of data is more than adequate.
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4.4 Combination of Acoustic Measurements

The decision to terminate the convex hull recursion is based on three values: the peak-to-dip

level difference, the duration of the segment which would be created, and the absolute level

of the peak (relative to the overall peak level). Mermelstein combines these three values in a

very simple way - each is compared to a threshold value, and if any one of the three does not

meet its threshold criterion, the recursion terminates. This is what was done in the baseline

experiment, as described in section 4.1.3.

I-owever, this simplistic combination may not adequately represent the interdependence

between these values. For example, a short duration is a. fairly good indication that the

segment is not a vowel, but a long duration is not a good indication that the segment is a

vowel (as in pauses. prepausally lengthened murmurs, and so on). In this case. we want a.

short duration to terminate the recursion. but a. long duration to caur- more weight to be

given to the other values.

On the other hand. a high absolute level is a good indication tha.t the segment is a vorwel, but

a low level is not a. good indication that the segment is not a. vowel. Reduction and devoicing

can cause levels low enough to be comparable to nonvoxwel phenomena. such as murmurs or

velar stop bursts. The evidence in the absolute level measurement seems different in polarity

from the evidence in the duration measurement, undermining confidence in XMermelstein's

Boolean test. Furthermore, there may be subtler interactions between the values which are

not immediately obvious to intuition.

This issue becomes even more important if we recall that we want the VLD to generate some

kind of quantitative measure of strength or confidence in the \owel landmarks. AMermelstein's

scheme implements only a binary decision, yes or no. It is not at all obvious how to combine

the three values into a single quantitative score, and even less obvious how to demonstrate
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that the computation is optimal in any meaningful sense.

4.4.1 Using intuitive nonlinear combinations

Some time and effort was spent on attempts to compute nonlinear combinations of the acous-

tic measurements, and then to optimize the coefficients of the combination for best results.

The general approach was to normalize each measurement using a linear transformation (y

= ax + b) and then to pass each normalized measurement through a saturating nonlinearity

(such as the arctangent function) and sum the results. The hope was that the transformation

coefficents could be optimized using manual inspection or automatic methods. Unfortunately

such optimization turned out to be very difficult, primarily due to a lack of a principled pro-

cess to improve performance from a given starting point. For example, there seems to be no

way to demonstrate that the basic architecture (linear transformation of each measurement.

saturating nonlinearity, and addition) either is or is not the best method to use for this com-

bination. For instance, when the duration of a candidate vrowel is very short, the absolute

level may be more important (to distinguish schwas from sonorant consonant phenomena),

but it does not follow that when duration is very long, absolute level is unimportant. The

conclusion was that there was insufficient insight into the interrelations between parameters

to develop a. justifiable strategy.

4.4.2 Using Neural Networks

In order to explore the possible nonlinear dependencies between the values in a more princi-

pled way, a multi layer perceptron (MLP), one kind of neural network [2], was used. MLPs

are capable of discovering nonlinear relationships among their inputs and making optimal

decisions based on training data.
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The MLP results will serve as an existence proof for the performance we can expect, detecting

Vowel landmarks with these three parameters. It is possible that insight may be gained by

examining the weights of the trained network, which can then be used to guide the design

of an explicit decision stage. The performance of the rule-based decision stage can then be

compared to the MLP performance, to see how close it can get. It is also possible to build

the MLP into the Vowel landmark detector, and use it to make the decision directly.

There is some philosophical difference of opinion about the use of "ignorance models" (statis-

tically based techniques) in speech recognition. This author believes that ignorance models

are entirely appropriate for use when we are ignorant about how information should be

used. The widespread use of wholesale ignorance modeling in commercial speech recogni-

tion neglects the substantial knowledge that we have about speech through linguistic study

and acoustic theory. Indeed, a central motivation for the LAFF paradigm is to incorporate

linguistic knowledge and acoustic phonetics into a viable speech recognition technique. How-

ever, such knowledge is still incomplete, and ignorance modeling is a useful and appropriate

method for filling in the gaps in our knowledge.

Methodology

Convenient tools are readily available for applying neural networks to database detection

and classification problems 185]. These tools require a database of input values and output

targets, for training and testing. In order to create a database suitable for use with these

tools, the VLD of section 4.3 was used in a slightly modified form.

The detection parameters were modified from their optimal values, in the direction of le-

niency, so that the VLD overgenerated landmarks to a large degree. The parameters chosen

were PeakToDip = 0.5 dB, Duration = 20 ms, and Level = 50 dB below peak. The purpose
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I Train Test

Files 619 373
Vowels 8104 4709
Landmarks 9953 5830
Detections 6471 3760
Deletions 1633 949
Insertions 3482 2070

Table 4.4: Basic statistics for the Vowel Landmark Detector, using very lenient parameters
to minimize deletion errors.

was to minimize deletion errors, even at the expense of a great increase in insertion errors.

The modified VLD was run on the Core training and Core test subsets of the TIMIT database

(described in Section 4.2.3). Basic statistics on the Vowel landmarks generated by this pro-

cedure are shown in Table 4.4. It is evident from the table that, even though the parameters

were adjusted to minimize deletions, there are still a fair number of deletion errors (20.170

in both training and test sets). ie may assume that most of these deletion errors will re-

main, regardless of the choice of parameters. Although the results of the experiment will

not be entirely definitive, we will proceed on the assumption that most of these deletion

errors are unavoidable, and may be regarded as constant against variations in the detection

parameters.

For each landmark, four values were stored in the database: the time index of the landmark

(seconds), the peak-to-dip difference (dB), the segment duration (milliseconds), and the

absolute level of the peak (dB below the strongest peak in the sentence).

To generate the targets, the VLD's output landmarks (DVLMs) were compared to the TIMIT

database labeling. Each landmark that fell within a labeled vowel was given a target value

of +1.0, and each landmark that did not was given a target value of -1.0. The goal was to

train a network which would generate high values for vowels and low values for nonvowels.
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MLP Performance with one hidden layer
Percent error

41.4

41.2

41

40.8

40.6

40.4

40.2

An

O 1 2 3 4 5 6 7 8 9

Number of hidden units

Figure 4-2: Experiment 5 MLP Performance by number of hidden units

A neural network was created, having four input units and one output unit. Because the task

required only a static combination of the inputs (without dynamics or state information), a

multi layer perceptron (ILP) architecture was chosen. MILPs have only feed-forward paths,

without feedback loops or state variables.

MLPs may have one or more hidden layers of units, in addition to the input and output

units. One hidden layer is enough to capture very general nonlinear relationships between

the inputs, although several hidden layers may be more efficient. Since this task is a very

simple one as MLP applications go, one hidden layer was used.

Results
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The MILP network was trained on the Core training set (described in section 4.2.3). With

one hidden layer, the primary design variable was the number of hidden units. Training was

done on versions of the MILP with different numbers of hidden units (one through eight), and

the results are shown in Figure 4-2. This figure indicates that one hidden unit is not enough

to capture the complexity of the data, and that more than two hidden units do not provide

substantial benefit. Therefore, two hidden units were used for subsequent experiments.

Also, the time index was removed as an input. The time index provides information about

where in the sentence the vowel appears (since each utterance in the TIMIIT database is one

complete sentence). An actual VLD in "field" conditions will not have sentence boundary

information to work with, and therefore no time index.

The MLP without time information was retrained on the Core training set. Without the

time information, error rate increased slightly (from 40.2% to 40.6%), which may reflect the

slight decrease in average level over the course of the sentence (see Figure 3-3).

The network values after training are shown in Figure 4-3. The upper part of the diagram

shows the input parameter normalization. whose function is to transform the input param-

eters so that they have uniform distributions (in this case. zero mean and unity standard

deviation). The values are based on the mean and standard deviation of the data in the

training set. For example, the duration values in the training set have a standard deviation

of 63.5 ms, and when divided by this value, the result has mean of 0.56 (or 35.6 ms). In

this case, the duration is the length in milliseconds of the subsegment when recursion is

terminated, i. e. the first subsegment which does NOT appear to be a vowel. (This is not

the vowel duration.)

These statistics implicitly assume a Gaussian distribution, which may be a. good approxima-

tion for the Duration parameter, since it does not take values close to zero. A Gaussian can
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Figure 4-3: Experiment 5 MLP network weights. These weights result from training using
back propagation on a sum-of-squares error criterion. See the text for interpretation of the
values.
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Figure 4-4: Hyperbolic tangent, which is used as saturating nonlinearity for MLP units.

only approximate the distributions of the PeakToDip and Level parameters, which take non-

negative values down to and including zero. We will assume the approximation is adequate

for now.

The lower part of the diagram is the network proper. Each unit is represented by a rectangle.

The unit's function is to sum the unit's inputs (weighted by the connection sweights as shown)

and pass the result through a saturating nonlinearity. In this case, the nonlinearity is the

hyperbolic tangent, which has unity slope at the origin, and saturates to within 5% of unity

at around +/- 2.0 (see Figure 4-4).

The output is strongly activated by a positive output from the lower hidden unit (0.94) and

less strongly activated by a negative output from the upper hidden unit (0.66). We will call

the lower hidden unit the "Yes" unit (evidence that there is a. landmark), and the upper

hidden unit the "No" unit (evidence that there is no landmark). The bias means that the
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output tends to be positive unless strongly negatively activated (0.86).

Recall that Level is the level of the vowel peak in dB below the overall highest level, so

that high Level values indicate low level peaks. The "Yes" unit is strongly activated by a

high absolute level (1.37), less strongly activated by a high Pea.kToDip value (0.57), and not

strongly activated by a long duration (0.18), with a bias of about -1.0 meaning that there

must be at least +1.0 of evidence before this unit achieves positive activation.

The "No" unit is somewhat activated by a high absolute level (0.53), somewhat less strongly

activated by a long duration (0.37), and by a low PeakToDip value (0.31), with essentially

no bias.

Interpreting these values, even in such a small network, is a rather vague and uncertain task.

It. seems surprising, for instance, to see high absolute levels activating the "No" unit, since

we expect high level to indicate the presence of a. vowel, not its absence. Presumably the

negative effect of level vria the ':No" unit is overwhelmed by the positive effect of level via

the "Yes' unit.. It is important to keep in mind that designating the units No" and "Yes"

are merely approximations to their true functions in the network, and the contribution of

each input parameter is spread throughout the network.

Hoiwever, we can draw some tentative general conclusions. A high absolute level and a high

Pea.kToDip value are strong indicators of the presence of a Vowel landmark. A short duration

is a good indicator of the absence of a Vowel landmark, but a long duration is not a good

indicator of the presence of a Vowel landmark.
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4.5 Incorporating Neural Network into Vowel Land-

mark Detector

In the previous section, we showed that a neural network, specifically a multi layer perceptron

(MLP), can be used to classify landmarks which are output from the VLD, and that only a

small network is necessary to do this (two hidden units). The performance values are rather

poor in that section, because the sum-of-squares error function does not capture quite the

same information as error rate.

4.5.1 Issues

As the MLP is a general and powerful tool for capturing nonlinear dependencies, and mak-

ing decisions thereby, it is reasonable to consider incorporating this network directly illto

the VLD as its final decision making apparatus. The optimum values of the MLP can be

incorporated directly into the VLD, but even so, we will want to be able to train the network

in situ, as an integral part of the VLD.

The experiment demonstrates the effectiveness of training techniques; however, there are

two issues that must be addressed in order to integrate the MILP into the V\LD. Both issues

have to do with the choice of error function to minimize.

Back propagation and choice of error function

In order to optimize the MLP, we

has used the sum of squares of the

must have an error function to minimize. The experiment

differences between the target and the MILP output, which
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is a fairly common and traditional error metric. However, it does not seem to be completely

appropriate for this task.

With the target values set at +1 for "vowel" and -1 for "not vowel," the sum of squares

error metric will weight output values close to zero as substantially worse errors than output

values close to unity (of the appropriate polarity). However, this does not entirely capture

the desired behavior of the VLD. If the desired result is correct detection of vowel landmarks,

an output alue of +0.1 is just as good as a value of +0.9 (assuming the decision threshold

is at zero).

Error rate (insertions + deletions) would seem to be a better choice of error function than

sum-of-squares. for this task. One problem with error rate is that it is not differentiable with

respect to the connection weights. (As the connection weights are varied, individual target

landmarks in the test change between detected" and "not detected."'' causing discontinuities

in the error rate, which is therefore not differentiable.) The back propagation algorithm

requires the error function to be differentiable with respect to the connection weights, and

so back propagation cannot be used to guide the optimization of the network.

Fortunately there is an alternative. Numerical differentiation can be used to guide the

optimization of the network. This is a straightforward technique in which each weight is

perturbed slightly in turn, and the resulting changes in the error function are combined to

provide a gradient to guide optimization. The most straightforward way to optimize the

network is to take a small step in the direction of the gradient and repeat the process (a

method we will refer to as gradient descent).

Numerical differentiation (in particular, gradient descent) is generally eschewed in favor of

back propagation because it is more computationally burdensome (O(n2) rather than O(n),

where n is the number of connection weights). Computational load is not a concern in this
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case because the network is so small (eleven connections, versus the thousands that are

usually seen in speech recognition tasks).

If circumstances dictate, it is reasonable to begin optimization using back propagation and

sum-of-squares to get close to the desired optimum, and then finish the job using numerical

differentiation and error rate to find the best value.

Nonlinear optimization and choice of error function

There is another problem with error rate as an optimizable error function. Almost all

nonlinear optimization techniques assume a. function which is smooth on a fine scale, in order

to find the appropriate gradient for descent. Error rate is not smooth on a fine scale (a.s

observed above. small discontinuities in the error rate occur as individual target landmarks

change state with changes in the detection parameters).

It is the author's experience that the Error rate function tends to appear smooth on a large

scale, with the discontinuities limited to a. small "fuzz" of variation on a. small scale. In this

case, gradient descent (or similar nonlinear algorithms) may be expected to converge to the

general neighborhood of the optimum, but not to converge on the precise location of the

optimal point.

In this case, we can use simulated annealing to avoid convergence on a false optimum. This

procedure adds a small amount of jitter at intervals to the gradient descent, in order to

avoid convergence to a local extremum. Since it is also likely that gradient descent will

not completely converge, due to fine scale irregularities, the procedure may be finished by a

manual a.djustment for best performance.

149

__ _ - _ _ 
I ~~~ _II_ I ~~~~~~~~C··_ _ --·-- ·IIII_-~~~~~~~~~~~~~--~~ _�_ll�l-·^�-�-L-------II^·II_�-I--YUIIY·



4.5.2 Implementation and validation

The task was to integrate the MLP into the VLD. In order to do this, a simplified MLP

algorithm wa.s coded in C (since the full functionality of the NICO toolkit [85] was not

necessary). To validate the code, the weights that resulted from the training on the Core

Training set (as shown in Figure 4-3) were installed in this network, and this network was

run on the Landmark data (as shown in Table 4.4). This network's outputs matched the

NICO network's outputs to within the limits of numerical representation, indicating that the

implementation is valid.

The VLD's hard limits were kept in place, so that the MLP only processes segments which

pass the hard limits (the limits were kept at their -very lenient values. just as in section 4.4.2).

Therefore. the M\ILP operates on the same information as in section 4.4.2, so that the weights

from that experiment can be transferred to this implementation directl>. These weights

(which were trained using back propagation to minimize sum-of-squares error) are not the

ideal weights for the final application (which seeks to minimize error rate), but it was hoped

that these weights would serve as a starting point reasonably close to optimal.

4.5.3 Training algorithm

The weights of the MLP were trained using simple gradient descent on the error rate measure.

Considering the starting set of weights as a point in N-dimensional space (here N=11), a

fixed increment was used to examine nearby points (plus and minus in every dimension, for

a total of 2N points). The error function was Token Error Rate (TER), as described in

section 4.3. The point with the best error rate was chosen as the new center point, and the

process was repeated.
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When the best error rate was found to be at the center point, the increment was reduced

by half, and the procedure continued. In the first few rounds of training, it was found that

once the increment was lower than about 0.005, the center point was always found to be

best (apparently, this number corresponds to the smallest feature size of irregularities in the

error fuction). Therefore, the procedure was terminated when the increment was reduced to

below 1.0e-3 and the resulting center point was kept as the final point.

Annealing was done by adding a random value to each weight. The random numbers were

generated bv the Perl rand() function (seeded with time of day), and scaled to the range

[+R, -R] where R was a fixed value.

4.5.4 TYaining results

The weight set generated in section 4.4.2 was used as the first point. The starting increment

and the annealing range were both set to 0.1 for this experiment. After training, the resulting

point was annealed and retrained eight times. Results are shown in Table 4.5.

Since each point is a vector of N dimensions (here N= 1), comparisons between the points are

difficult to represent spatially. Table 4.5 shows the Token Error Rate (TER) for each point,

as defined in section 4.3, and the distances between points in N-space. It is evident that the

original weights (which were trained to minimize sum-of-squares error) do not minimize the

error rate, as all the training runs result in substantially lower error rates than the original

(by about a factor of three).

The distances between early points and later points increase, in almost all cases, with each

annealing run. We can interpret this as the descent of a rather bumpy valley in the error

function, where each training run converges on a local minimum, and the annealing serves
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Point TER Distances

(%) Orig T1 Al A2 A3 A4 A5 A6 A7

Original 36.1

Train 1 12.8 1.54

Anneal 1 12.6 1.60 0.186
Anneal 2 12.5 1.76 0.501 0.329
Anneal 3 12.6 1.75 0.618 0.473 0.220

Anneal 4 12.7 1.86 0.709 0.557 0.286 0.209

Anneal 5 12.1 1.92 0.945 0.831 0.616 0.463 0.409

Anneal 6 12.2 2.03 1.00 0.906 0.704 0.572 0.505 0.233

Anneal 7 11.9 2.00 1.10 1.00 0.814 0.698 0.601 0.437 0.422

Anneal 8 12.0 2.07 1.19 1.09 0.912 0.811 0.698 0.557 0.504 0.167

Table 4.5: Training results for the VLD using MLP for decisions. for the first eight annealing
runs. Token Error Rate (TER) is as defined in section 4.3. Distances are Euclidean distances
in coordinate space.

to push the point out of the local minimum so it can continue down the valley. Although

there are many loca.l minima., the performance does not vary strongly between them, i. e.

the valley bottom is fairly flat, and therefore rather insensitive to tho exact choice of weight

values.

Since it appears that the valley bottom was not reached in the eight annealing runs of

Table 4.5, the series was continued, starting with the last point in Table 4.5. The starting

increment and the annealing range were both kept at 0.1 for this experiment. The current

point was annealed and retrained a total of sixty-four times. The current point's distance

from the original starting point (for all sixty-four runs) in Figure 4-5.

It appears from this plot that the training algorithm takes between 20 and 30 runs to converge

on a.n optimal region, and stays in that region thereafter, but with enough variation that

this seems to be a fairly stable optimum. After the first few runs, the error rate stays right

around 12 percent Token Error Rate (TER), plus or minus a tenth or two.

The ten points with the best TER performance in Figure 4-5 were selected, and their inter-
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Figure 4-5: MLP Training - Distance from Starting Point
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Point TER Distances
(%) A B C D E F G H I

A 11.839
B 11.865 0.196
C 11.865 0.178 0.345
D 11.87S 0.334 0.346 0.428
E 11.878 0.388 0.371 0.453 0.468
F 11.S78 0.494 0.594 0.412 0.561 0.679
G 11.905 0.480 0.532 0.491 0.387 0.532 0.375
H 11.905 0.416 0.524 0.363 0.475 0.590 O.188 0.283
I 11.905 1.17S 1.286 1.084 1.262 1.374 0.932 1.151 0.961
J 11.918 1.240 1.329 1.181 1.220 1.419 0.934 1.0OS 0.975 0.493

Table 4.6: Training results for the
with best TER performance, out of

VLD using MLP for
64 training runs.

decisions, showing the ten points

point distances are shown in Table 4.6. Although the top three are fairly close to each other,

there are examples of points with good performance that are fairly distant from each other

(up to 10 or 15 times the iteration distance of 0.1). This supports the visualization of the

error function as a. broad valley, with a flat or very shallow bottom, but with manv small

bumps and hollows in it. A broad optimum for the error function is desireable because it

means that. the performance of the VLD will not be critically dependent on the exact values

chosen for the parameters.

To examine the robustness of performance against small changes in pa.rameter value, the

point with the best TER performance (labeled A in Table 4.6) was used as a starting point.

Eight new points were generated, each by annealing from A (with a smaller interval of 0.08)

and retraining (with an initial step interval of 0.08). The performance of these points, and

their distances from each other, are shown in Table 4.7.

All of the points yield performance fairly close to the base point, with some points being a

bit higher and some a bit lower, and the points vary in distance from each other. indicating

a "valley" with a fairly flat bottom, which is a good indication of stability and insensitivity
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Point TER Distances
(%) Base B C D E F G H I

1 11.839 0.000
2 11.984 0.195 0.195
3 11.852 0.150 0.150 0.327
4 11.826 0.240 0.240 0.320 0.288
5 11.866 0.205 0.205 0.258 0.275 0.208
6 11.747 0.090 0.090 0.243 0.139 0.219 0.213
7 12.037 0.124 0.124 0.256 0.195 0.302 0.308 0.156
8 11.800 0.199 0.199 0.335 0.246 0.262 0.222 0.227 0.234
9 11.800 0.104 0.104 0.244 0.182 0.198 0.235 0.117 0.141 0.204

Table 4.7: Training results for the VLD using MhLP
annealing runs based on point A from Table 4.6.

for decisions, showing the results of nine

to the exact values of the MLP weights.

Therefore. point number 6 from Table 4.7 was chosen as the final result. The network values

of the resulting MLP are shown in Figure 4-6. Comparing these values to Figure 4-3, we

see that most of the weights have changed somewhat, but not drastically. The only large

changes are from Level to the lower hidden unit (-1.37 to -2.63) and the output bias (O.S7

to -0.35).

4.6 Error characterization

With the final version of the VLD in hand, we wish to examine its performance in detail,

with special attention to the circumstances in which it makes errors. The RVLM method

for computing error rate (as described in section 4.2.2) is useful for training but does not

provide much detailed information about the circumstances which lead to errors. As we will

discuss in section 5.1.2, characterization of the phenomena which lead to VLD errors will be

a vital part of subsequent processing using the Vowel landmarks.
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Figure 4-6: MLP network weights, final version. These weights result from training using
gradient descent on an error rate criterion. See the text for interpretation of the values.
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Train Test
Count I Percent Count I Percent

Files 619 373
Vowels 8104 4709
Detections 6159 76.0 3556 75.5
Deletions 1945 24.0 1153 24.5
Insertions 1101 13.6 651 13.S
Error Rate 3046 37.6 1804 38.3

Table 4.8: Test results for the final VLD using canonical error categories. Percentages are
relative to vowel count. Error rate is insertions plus deletions.

4.6.1 Canonical error categories

Statistics were gathered for the three main results of the VLD - Detection. Deletion and

Insertion. With no additional qualifications, and a strictly literal interpretation of the TIMIT

labels, this is the simplest measure of performance, but also the least accurate reflection of

lwhat we want the V\LD to do.

The V'LD. using the MLP with the network values chosen in section 4.5.4. was tested on the

Core Training and Core Test sets (as described in section 4.2.3). The results a.re shown in

'Table 4.8. Results are very similar for the training and test sets, which indicates that the

training set is large enough to capture essentially all the variation in the database.

The error rate (around 3S%) is not impressive. Compare these values to the results shown

in table 4.2, with error rates around 14%, or to the training results shown in table 4.7, with

error rates below 12%. The difference is the previous results were generated using the RVLMI

method described in section 4.2.2. The main insight to be gained is that strict interpretation

of the TIMIT labels is not a particularly accurate measure of the desired behavior of the

V\LD.
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4.6.2 Modified error categories

To provide more insight into the VLD's behavior, the three main categories were divided

into subcategories. The Insertion category was separated into insertions in consonants,

semivowels, and vowels.

Deletions were separated into simple deletions and deletions in vowel-vowel context (V\V),

which were defined as a deleted vowel adjacent to a different, detected vowel. This latter

condition corresponds to the optional Landmark capability of RVLM\ls which were used in

training (see section 4.2.2).

Modification: Skewed detection

A special condition, called a. skewed detection, was defined as a deleted vowel adjacent to

a owel landmark inserted in a semivowel (that is, the semivowel with inserted landmark

abuts the vowel with no landmark). Under this condition. the landlnark is considered to

be reasonably placed, while the boundary between vowel and semivowel is considered to be

arbitrary and not reliable. Such boundaries were set b the TIIT transcribers without

regard to acoustic evidence, see section 1.3.2.

A skewed detection is considered to be a reasonable detection result; however, it is not just a.

subcategory of detection. Neither the consonant insertion nor the vowel deletion are counted

as errors in scoring. (If this is not done, each skewed detection would correspond to not one

but two errors. The resulting "double counting" of errors is liable to have a major impact

on error statistics.)
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Train Test
Count Percent Count Percent

Files 619 373
Vowels 8104 4709

Detect, simple 6159 76.0 3556 75.5
Detect, skew 626 7.72 359 7.62
Delete, simple 900 11.1 560 11.9
Delete, VV 419 5.17 234 4.97
Insert, vowel 78 0.96 55 1.17
Insert, semivowel 30 0.37 17 0.36
Insert, consonant 367 4.53 220 4.67
Error Rate 1375 17.0 852 18.1

Table 4.9: Test results for the final VLD using modified error categories. Percentages are
relative to vowel count. Error rate is all insertions plus simple deletions.

Results

The VLD, using the MILP with the network values chosen in section 4.5.4. was tested on the

Core Training and Core Test sets (as described in section 4.2.3). The results are shown in

Table 4.9. This is essentially a more detailed breakdown of the errors in Table 4.8.

The most significant observation is the fairly large number of skewed detections (7.7%).

Because each skewed detection corresponds to two errors in Table 4.S, this accounts for 15%

of the error rate. Deletions in VV sequences (about 5%) are less frequent but still make a

difference. Together, these two modifications reduce the error rate to less than half the value

from Table 4.8.

Essentially all the remaining insertions are in consonants (almost none in vowels or semivow-

els). The insertions in consonants deserve further investigation. Also, simple deletions consti-

tute the single largest contribution to total error rate, and these deserve further investigation.

MIanual examination of some examples seems to indicate an unexpected and rather surprising
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phenomenon - skewed detections can happen when vowels adjoin obstruent consonants (as

well as sonorants). Just as with semivowels, the boundary between consonant and vowel

may be placed in a rather arbitrary way which does not properly represent the acoustic

information. Usually, the vowel in question is destressed or reduced, and the consonant in

question is a voiced fricative, glottal stop, or /h/.

An important example is the word "the" which appears frequently in the corpus. It is

generally transcribed /dh ax/ with the boundary placed more or less in the middle of the

corresponding sound. Just as with semivowels, a slight misalignment of the boundary causes

two errors: deletion of the vowel and insertion in the adjoining consonant.

It is still the case that the error rates shown in table 4.9 (17% to 18%) are greater than in

table 4.2 (around 14%), or in table 4.7 (around 12%), which were generated using the RVLMI

technique described in section 4.2.2. It is apparent that some cases which count as errors in

table 4.9 do not count as errors when using RVLMs for scoring. This swill be explored in the

next section.

Characteristics of detections

Table 4.10 shows the vowel detection statistics by category, using the same vowel categories as

in table 3.1 (but not using RVLMs). Diphthongs and lax vowels are the most often detected,

while tense vowels are not detected as often. This may result from the phonotactics of tense

v owels, which can appear in vowel-vowel contexts, while lax vowels cannot.' (\Vowels which

are deleted in vowel-vowel contexts are not counted among the detected vowels in Table 4.10,

even though they are not included in the error rate either.) Schwa.s and syllabic sonorants are

the least often detected, which is not surprising since they are generally reduced in amplitude

1Except for lax vowels preceded by schwas, as in "they are interested."
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Train Test
total vowels percent detected total vowels I percent detected

Total ] 8104 83.7 I 4709 83.1
schwa 2527 70.7 1483 68.9
sonorant 317 68.1 150 70.7
lax 2170 93.5 1220 93.7
tense 2628 87.6 1531 S7.0
diphthong 462 97.6 325 96.0

Table 4.10:
table 3.1.

Category statistics of detected vowels, using the same vowel categories as in

Train Test
Count Percent Count Percent

Total 475 292

stop 195 41.1 127 43.5
fricative 119 25.1 64 21.9
affricate 8 1.68 5 1.71
nasal 23 4.84 10 3.42
semivowel 42 8.84 25 8.56
vowel 73 15.4 50 17.1
other 15 3.16 11 3.77

Table 4.11: Mlanner characteristics of segments Kwith LI insertions.

and duration.

Characteristics of LM insertions

Table 4.11 shows the manner characteristics of segments with landmark insertions. Most are

stops (about 42%) and fricatives (about 23%), although it is worth remembering that there

are very few landmark insertions overall, as seen in Table 4.9.

Since a large proportion of landmark insertions occur in stops (at least, in regions which the

TITMIT labeling denote as stops), wve wish to examine the stops in more detail. Table 4.12
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Train Test
Count Percent Count Percent

ITotal 195 127
b 3 1.54 5 | 3.94
d 21 10.8 10 7.S7
dx 4 2.05 0 0
g 2 1.03 2 1.57
gcl 1 0.513 0 0
k 52 26.7 28 22.0
p 10 5.13 17 13.4
q 49 25.1 17 13.4
t 53 27.2 48 37.8

Table 4.12: Statistics of stops with LM insertions. The percentages are relative to the total
number of LM insertions in stops.

shows the breakdown of landmark insertions in stops by label. Insertions are most frequent

in segments labeled k; t, and glottal. The voiceless stops may well generate a burst of energy

close to the F1 range (especially in a rounded context) which is more energetic than its

surroundings. WVe observe that /p/ does not cause such frequent insertions, however. \Ve

may expect that a. rounded context does not affect labial stops in the same way, since the

source for burst and fricative energy is at the lips and not as strongly affected by rounding.

Voiceless stops may cause more insertions than voiced stops because the burst is more isolated

from surrounding regions of high energy at low frequencies, which makes it look more vowel-

like to the VLD. The glottal stops, however, seem less likely to behave in this way, and are

more likely to have labels that are placed inappropriately, leading to skewed detections, as

described above (section 4.6.2).

Likewise, Table 4.13 shows the breakdown of landmark insertions in fricatives by label.

Insertions are most frequent in segments labeled /dh/ and /s/. The voiced non-strident

appears frequently in function words such as "the" which are prone to have the labels placed

inappropriately, leading to skewed detections, as described above (section 4.6.2). The /s/

is frequently very loud, and may cause significant energy close to the F1 range (especially
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Train Test
Count Percent Count Percent

[Total 119 11 64
dh 52 43.7 24 37.5
f 3 2.52 1 1.56
s 38 31.9 26 40.6
sh 6 5.04 2 3.13
th 8 6.72 1 1.56
v 5 4.20 5 7.81
z 7 5.88 5 7.81

Table 4.13: Statistics of fricatives with LM insertions. The percentages are relative to the
total number of LM insertions in fricatives.

Train Test
Count Percent Count Percent

Total || 1319 794 
schwa 741 56.2 461 -58.1
sonorant 101 7.66 44 5.54
lax 140 10.6 77 9.70
tense 326 24.7 199 25.1
diphthong 11 0.834 13 1.64

Table 4.14: VoNwel categories of deletion errors. using the same vowel categories as in table 3.1.

in a rounded context). This would make the /s/ appear ,vowel-like to the VLD if its low

frequency energy is stronger than its surroundings (as it swould if the surrounding segments

were stops. as in "sixty" or the rounded context "looks to").

Characteristics of vowel deletions

Table 4.14 shows the statistics of deleted vowels by vowel categories, using the same vowel

categories as in table 3.1. Iost are schwas (about 57o), and some tense (about 25%).

If subglottal pressure drops significantly at the beginning and end of the utterance, it is
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reasonable to suppose that there might be more vowel deletions at the beginnings and ends

of utterances than there are in the middle of the utterance. To test this hypothesis, the

percentage of vowel deletions was computed as a function of the vowel's position in the

utterance. Histograms of percent deletions, counting from the beginning and from the end

of the sentence, are shown in Figure 4-7. However, neither histogram appears to show a

higher percentage of deletions at the utterance boundaries than elsewhere in the utterance.

4.6.3 Additional modification: Skewed detections in consonants

As mentioned in section 4.6.2., it appears that skewed detections can happen when vowels

adjoin obstruent consonants (as well as semivowels). From manual inspection of some exam-

ples. it appears that the vowel in question is usually destressed or reduced, and the consonant

in question is usually a. voiced stop, voiced fricative. glottal stop, or /1/, and both of the

labeled segments in question are quite short (which may make their endpoints more difficult

to place accurately).

A new error category wra.s added for skewed detections in consonants other than semivow-

els. (The category of skewed detections in semivowels was left unchanged.) The statistical

measurement of Table 4.9 was repeated using this new category.

The VLD, using the MLP with the network values chosen in section 4.5.4, was tested on the

Core Training and Core Test sets (as described in section 4.2.3). The results are shown in

Table 4.15.

The addition of skewed detections in consonants brings the count of insertions in consonants

down from 367 to 158 (train) or from 220 to 93 (test), eliminating more than half the

insertions in consonants. This is a substantial change, which indicates that many (if not
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Percent vowel deletions as a function of sentence position (from beginning9)
Percent deletions
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Figure 4-7: Histograms of percent vowel deletions as a function of sentence position. The
horizontal axis is the vowel count, counting from the beginning of the sentence(upper) and
from the end of the sentence (lower).
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Train Test
Count Percent Count Percent

Files 619 373
Vowels S104 4709

Detect, simple 6159 76.0 3556 75.5
Detect, skew in semivowel 626 7.72 359 7.62
Detect, skew in consonant 209 2.58 127 2.70
Delete, simple 692 S.54 434 9.22
Delete, VV 418 5.16 233 4.95
Insert, vowel 78 0.96 55 1.17
Insert, semivowel 30 0.37 17 0.36
Insert, consonant 158 1.95 93 1.97
Error Rate 958 11.8 599 12.7

Table 4.15: Test results for the final VLD using modified error categories, including skewed
detection in consonants. Percentages are relative to owel count. Error rate is all insertions
plus simple deletions.

most) of the insertions in consonants were due to poorly placed labels in the transcription.

The addition of skewed detections in consonants brings the count of (simple) vowel deletions

down from 900 to 692 (train) or from 560 to 434 (test). This change is not as substantial as

for insertions, since there are many more deletions than insertions in general.

By comparison, vowels which are detected when adjacent to other vowels are 558 or 6.88%

(train), 333 or 7.07% (test), which is not very many more than the counts of vowels deleted

when adjacent to other vowels (418 train, 233 test). This means that not very many pairs of

abutting vowels have both vowels detected. Those that do constitute 140 or 1.72% (train),

100 or 2.12% (test), which is only about one eighth of all VV sequences.

The error rates in table 4.15 (around 12%) are about the same as the result of the MLP

training using RVLAMs, shown in table 4.7. This indicates that the skewed detections in

consonants were causing the disparity between the error rates shown in table 4.9 and error

rates based on RVLMI scoring. VWe now have some confidence that the categories in table 4.15
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Train Test
Count Percent Count Percent

Total 209 127

stop 112 53.6 69 54.3
fricative 71 34.0 43 33.9
affricate 4 1.91 4 3.15
nasal 17 8.13 9 7.09
semivowel 3 1.44 1 0.787
vowel 0 0 0 0
other 2 0.957 1 0.787

Table 4.16: Manner characteristics of LMs for skewed detections in consonants.

Train Test
Count IPercent unt Percent

Total 11 2091 11 127 
schwa 173 82.8 113 S89.0
sonorant 3 1.44 2 1.57
lax 10 4.78 5 3.94
tense 19 9.09 _ 7 5.51
diphthong 4 1.91 0 0

Table 4.17: owel categories of vowels which show
the same vowel categories as in table 3.1.

skewed detections in consonants. using

encompass all the phenomena which are subsumed in the RVLM scoring technique, and show

their relative frequencies.

Table 4.16 shows the manner characteristics of consonants which cause skewed detections.

Almost all are stops and fricatives. Table 4.17 shows the categories of vowels which cause

skewed detections. Almost all are schwas. Both of these results confirm the impressions

resulting from manual inspection in section 4.6.2.

Of the all the skewed detections in consonants, almost all are "backward" skews, where the

consonant precedes the vowel (199 out of 209 train, 115 out of 127 test).
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Figure 4-8: Scatter plot of skewed detections in consonants, plotting the time between the
landmark and the segment boundary against the duration of the consonant segment. Most of
the segments are fairly short, and most of the landmarks are close to the segment boundary.

For most skewed detections in consonants, we expect the landmark to be fairly close to the

boundary between the consonant and the vowel (because the skewing results from inaccurate

placement of the boundary during labeling). Figure 4-8 shows a scatter plot of skewed

detections in consonants, plotting the time between the landmark and the segment boundary

against the duration of the consonant segment. Most of the skewed detections in consonants

occur in rather short segments, and most of the landmarks are quite close to the segment

boundary, even for long segments.

168

.__ I �_



4.6.4 Conclusions

The primary conclusion of section 4.6 is that scoring with the RVLM technique (section 4.2.2)

is quite different from scoring with more conventional measures (as in table 4.8). The

differences are due to skewed detections, which are really artifacts of the segmental labeling

of the TIMIT database, and deletions of vowels in vowel-vowel sequences.

Strict, conventional scoring yields error rates about 38%. Deletions in vowel-vowel sequences

account for about 5%, skewed detections in semivowels account for about 15%, and skewed

detections in consonants account for about 4% or so (see table 4.15). When these phenomena

are taken into account, the resulting error rate is just a bit below 12%, matching the error

rate measured with RVLMs.

4.7 Examples from the TIMIT database

This section presents examples of utterances from the TIMIT database with landmarks

generated by the VLD. The Vowel landmarks are labeled with the hybrid confidence score

described in section 5.2.3. It is clear that most of the Vowel landmark decisions are made

by the hard limits, as indicated by the unity confidence score values.

The first example demonstrates phenomena in vowel-semivowel clusters, and appears in

figure 4-9. From top to bottom, the panes show the waveform, wide-band spectrogram,

low frequency energy track, TIMIT labeling (both aligned phones and words), and Vowel

landmarks.

There are instances of skewed detections at 0.64 s ("you") and at 1.04 s ("we"). In each case,
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the landmark occurs in the semivowel preceding the vowel. There is also a more unusual

instance of skewing at 1.28 s and 1.42 s (the first two vowels in "were away"). Here both

landmarks appear in the segment labeled /er/. The first is right next to the boundary of the

preceding /w/ and the second is right next to the boundary of the following /ax/. Under

the current scoring scheme, this is counted as a vowel insertion followed by a VV deletion.

Despite the effort to account for labeling artifacts, this example shows a case where at least

one error (the insertion) occurs as a result of arbitrarily placed labels, even though the VLD

is not doing anything obviously wrong.

The second example demonstrates phenomena in vowel-vowel clusters, and appears in fig-

ures 4-10 and 4-11. From top to bottom, the panes show the waveform, wide-band spectro-

gram, low frequency energy track, TIMIT labeling (both aligned phones and words), and

Vowel landmarks.

There are instances of VV deletions at 0.60 s (the second vowel in "triumph-") and at 2.65

s (the first vowel in "heroism"). In each ase the deleted vowel appears as a shoulder on the

adjacent vowel. There is a more complicated example at 1.40 s, where the final vowel in

"warrior" has deleted vowels on both sides. As the labeled sequence is /iy er ih/, vowels

in these circumstances are not always labeled as reduced. The procedure which detects VV

deletions allows both of these vowels to be labeled as VV deletions.

In contrast, correct detection of two vowels in sequence occurs at 2.30 s ("naive") and correct

detection of an epenthetic insertion of a vowel occurs at 3.00 s (final nasal in "heroism"). It

is also worth noting that vowels separated by obstruent consonants are detected correctly,

even when the vowels are very short, as in the three short vowels in a row around 1.80 s

("exhibited").
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Figure 4-9: TIMIIT Vowel-semivowel example. The sentence is SX9 "Where were you while
we were away" uttered by male talker PCSO. Skewed detections occur at 0.64 s ("you") and
at 1.04 s ("we"), and two-sided skewing occurs at 1.28 s and 1.42 s (first two vowels in "were
away' ).
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Figure 4-10: TIMIT Vowel-vowel example (page 1). The sentence is SX172 "The triumphant
warrior exhibited naive heroism" uttered by female talker EARO. VV deletions occur at 0.60
s (the second vowel in "triumph-") and 1.40 s (the second vowel in "warrior" and the first
vowel of "exhibited"'), each appears as a shoulder on the adjacent vowel.
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Figure 4-11: TIMIT Vowel-vowel example (page 2). The sentence is SX172 "The triumphant
warrior exhibited naive heroism" uttered by female talker EARO. Correct detection of two
vowels in sequence occurs at 2.30 s ("naive") and epenthetic insertion of a vowel occurs at
3.00 s (final nasal in "heroism").
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4.8 Conclusions

As seen in Table 4.15, the final version of the VLD yields a fairly good error rate (11.8%

train, 12.7% test). Of these errors, most were deletions (8.54% train, 9.22% test) and few

were insertions (3.28% train, 3.50% test). We recall from the experiments in Chapter 3

(Table 3.5) that 94.2% of all vowels in the TIMIT database show a proper peak in F1

amplitude, which implies that a VLD using peak picking on F1 amplitude cannot do better

than 5.8% deletions. The VLD presented here comes reasonably close to this ideal.

In addition to the VLD itself, two other innovations have been presented in this chapter.

The method for scoring the VLD by using reference Vowel landmarks (section 4.2.2) and the

use of a neural network to combine knowledge-based acoustic measurements (section 4.5)

are novel inventions, to the best of this author's knowledge. This author believes that these

innovations are valuable. both for this thesis ant, for further work on the LAFF project.
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Chapter 5

Implications and Future Work

5.1 Enhancements to Vowel Landmark detection

This thesis presents an algorithm which achieves good detection performance while main-

taining fairly simple processing. However, it does not exhaust the possibilities for how to go

about detecting Vowel landmarks.

5.1.1 Further improvements for VLD

There are more features that could be included in a Vowel Landmark detector. A measure

of glottal excitation or voicing is one example, and a measure of the presence of formant

structure (such as Hermes' spectral "peakiness" measure [37]) is another. Most such measures

would be more complicated than the low frequency energy implemented in this thesis, and

it is uncertain how much performance they would add.
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Severa.l researchers ([88], [41], [93]) have used absence of high frequency energy as a cue for

syllabic nuclei (apparently to help distinguish them from frication). However, given the low

frequency energy measure used in the present algorithm, it is doubtful that fricative regions

present much of a problem.

There are other structures and algorithms that could be used for making the detection de-

cision. There are potential gains to be realized here. For example, the convex hull recursion

cannot detect a vowel which does not generate a pealk in low frequency energy. Such vowels

may happen fairly often in vowel-vowel sequences, where one vowel appears as a. "shoulder"

on another. The study of section 3.5.2 showed that about 6% of vowels do not show an

amplitude peak around Fl. Other techniques, such as dynamic neural networks or Hidden

MIarkov Modeling, could be applied to this problem. Such techniques would be substan-

tiall-y more complicated than the convex hull recursion. lhowever, and the potential gain in

performance is rather small.

In sum. further work on the \LD itself would probably involve a. large increase in conmplexity,.

and could only provide a. small increase in performance.

5.1.2 Error characterization

Characterization of the errors made by the VLD will be very important for future work on a

LAFF prototype system (which will be discussed more below, in section 5.4). The statistical

study performed in section 4.6 is a good start in providing this kind of information, but there

are more questions to be answered.

For example, the lexical access module of a LAFF system w ill need to know how often vowels

are deleted in function words as opposed to content words, how errors depend on prosodic
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context, and so on. In general, we will want to provide as much information as possible

about what kind of vowels are most likely to be deleted, and what kind of phenomena are

most likely to cause insertion errors. This information will be used in lexical access (see

section 5.3.2 below).

5.1.3 Adaptability to other databases

As mentioned in section 1.4.2, one design goal for the VLD is ability to accept speech with a

variety of characteristics such as talking rate, gender and dialect of talker, and talking style.

The VLD should be insensitive to such variation or adapt to the variation as necessary. The

TIMIT database encompasses a variety of talkers of American English, but there are other

databases that may be used for further exploration.

The LAFF database [10] is a database under levelopment at the Speech Communication

Group. It is a database of read sentences recorded in quiet, by four talkers (tvwo male, two

female) with aligned landmark transcriptions.

The Switchboard database [2S] is a database of spontaneous speech (two sided telephone

conversations) of male and female talkers, from all areas of the United States. The database

as published includes orthographic transcriptions and time aligned word transcriptions. The

Speech Communications Group has some time aligned phonetic transcriptions for a portion

of the Switchboard database, which were generated by Greenberg et al. [34].

Spontaneous speech in particular would be worthwhile to explore, as it is liable to manifest

more production variability (see section 1.3.1) than the read speech of the TIMIT database.

Epenthesis, elision, and coalescence are all liable to be more evident in spontaneous speech,

particularly across word boundaries. Spontaneous speech is also subject to errors such as
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partial words, hesitations and pauses, and filler sounds such as "um" which tend not to occur

in read speech.

5.1.4 Vowel classification schemes

Presumably, in a LAFF system, Vowel landmark detection will be followed by processing to

characterize the vowel quality, or the features of the vowel (primarily the features high, low,

back, tense/lax, and round). The task of vowel classification has been studied by a number

of researchers, and a variety of schemes have been tried. In general, formant frequencies are

the primary acoustic cues to vowel class, whether chosen at a. single instant or via a weighted

average across the vowel duration [18]. Classification algorithms include analysis by synthesis

[S]. spectral similarity (as in the IK nearest neighbors experiment of section 3.7.2), and so

on. It mayr also be necessary to know a.t least some features of the surrounding consonants

or other contextual information.

Characterizing vowel-vowel and vowel-sonorant sequences is liable to be more difficult. As

we have seen in section 4.2.2 only one V-owel landmark is likely to appear in such regions. A

scheme must be devised to allow for the possibility of more than one lexical vowel per Vowel

landmark (for vowel-vowel sequences) or for concentration of vowel information in a. different

place from the Vowel landmark (for vowel-sonorant sequences). Perhaps such a scheme will

postulate new Vowel landmarks (attempting to undo deletion errors) or remove existing ones

(attempting to undo insertion errors).

Presumably, each landmark output by the VLD will serve as a starting point for vowel place

or quality analysis, which will extract features such a.s high, low, back, tense, and so on.

\-owel quality is notoriously difficult to measure. It may be that the vowel quality analysis

Nwill work best if the vowel landmark is near the center of the vowel (where center"' may
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mean either its midpoint in duration, or its point of maximum opening). At this time, it

does not appear that we can guarantee that vowel landmarks wvill be placed close to the

vowel center. If the landmark location is important, we may want to investigate a procedure

for "fine tuning" the location of the Nvowel landmark in time for this purpose. However, the

experiment of section 3.7 indicates that location is not critical, so it may be that no fine

tuning will be necessary.

5.2 Confidence scores

As discussed in section 1.3.4, the generation of confidence scores is important for the proper

functioning of subsequent stages of processing, when the LAFF system is assembled. There

are two parts to the implementation of confidence scores. First. we wish to generate a.

confidence score value which agrees with intuitive judgements. Second. we Iwish to validate

that the confidence score carries meaningful information, or at least to dlemonstrate that

higher scores are associated with higher probabilities of correctness.

5.2.1 Generation of confidence scores

Ideally? the VLD would generate a value suitable for use as a confidence score as part of

its normal operation. Unfortunately, the implementation described in Chapter 4 does not

generate a suitable value. The MILP output is used to make the decision to terminate the

convex hull recursion. As such, it represents a, judgement of the interpeak dip, not the peak

itself (see figure 4-1 and the accompanying discussion for more details). Therefore its va.lues

do not always reflect intuitive judgements of the robustness of the peak.
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In addition, the TMLP output is not the only value which can terminate the convex hull

recursion. As described in section 4.5.2, there are hard limits on the values of the acoustic

measurements (peak-to-dip ratio, duration, and level) which operate separately from the

MLP. Landmark decisions made by the MLP can easily be given a confidence score which is

the output value of the MLP. But how the landmark decisions made by hard limits should

be scored, in order to combine them with the "soft limited" MLP decisions, is not entirely

clear.

There are several possibilities for other ways to compute a confidence score. A separate

MLP could be added to the VLD, and trained to combine the various attributes of the peak

(absolute level, peak-to-dip difference. and dip-to-dip duration) into a single confidence score.

Other possibilities involve modifications to the convex hull algorithm. Simply inverting the

low frequency energy track and running the same convex hull algorithm would result in

decision values for peaks instead of dips. There may be alternative techniques which would

avoid the use of hard limits, or entirely different algorithms for peak picking, such as the

constrained techniques of Hermes [37] or Pfitzinger et al. [69].

In any case, the confidence score should take values between 0.0 and 1.0. and should be

interpretable as the probability that the landmark represents an actual underlying owel.

5.2.2 Validation of confidence scores

Intuitive judgement is not enough to validate a. confidence score. It ought to be carry

objective information about the likelihood of the landmark's correctness, interpretable in

probabilistic terms. One method for validation is presented by Chun [13, p. 31], in which

a histogram of detections by confidence score is computed (which Chun calls the histogram

of probability estimates). This is really two histograms superimposed, one for "Correct"
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decisions, and another for "All" decisions. "Correct" decisions include detections (which

contribute to the bin at their confidence score) and insertions (which contribute to the bin

at 1.0 - confidence score). "All" decisions include all landmarks, at both their confidence

score bin, and 1.0 - confidence score bin.

The ratio of "Correct" decisions to "All" decisions is called by Chun the probability estimate

ratio, and is likewise plotted as a function of confidence score. Ideally, this histogram should

show a straight line rising from 0 to 1, for a perfect estimator. Deviations from a straight

line are acceptable, if the line is monotonically increasing, because the shape can be adjusted

by a warping function.

One problem is that confidence scores are only available for \owel landmarks as they appear

in the VLD's output, which means that we can compare detections to insertion errors, but

not deletion errors. Recall from section 4.6 that most of the errors made b the V LD are

deletion errors. and insertion errors are relativelv few. Therefore. there will not be very much

data on which to base the measurements.

5.2.3 Example: Hybrid confidence score

As an initial investigation into the issues around confidence scoring, a hybrid score was

created. using the MILP output for landmarks generated by MILP decisions, and the fixed

value 1.0 for landmarks generated by hard limits. The ILP output value was scaled slightly

to extend the data to cover the entire range from 0.0 to 1.0, and the few alues which were

slightly negative were clamped to zero.

For this hybrid confidence score, a histogram of probability estimates (landmark counts by

confidence score) was computed. For these data, the hard-limit point a.t 1.0 constitutes over
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half the entire data set (41207 out of 69044 detected landmarks, or 59.7%, and 45765 out of

76806 total landmarks, or 59.6%). It was evident that the hybrid confidence score did not

generate an even distribution of values. This may result from the inadequacies of the MLP

output as a confidence score, as described in the previous section.

A histogram of probability estimate ratio by confidence score was also computed. It did

not show a monotonically increasing line at all points. Several definite deviations from

monotonicity were apparent. The main insight to be gained from this exercise is that the

hybrid confidence score is not a satisfactory estimator. One or more of the schemes described

in section 5.2.1 mav be used to derive a. better confidence score.

5.3 System integration issues

The V\owel Landmark Detector presented in this thesis was developed in isolation. To be

useful in a LAFF system, it must work well with subsequent stages of processing.

5.3.1 Optimization criteria

The Vowel Landmark Detector presented in this thesis was optimized for the goal of minimum

error rate (where error rate is defined as in section 4.2.2). The appropriateness of this goal

will depend on how the VLD is used in a LAFF system. As described in section 1.4.3, the

goal of maximum confidence in Vowel landmarks may be achieved by treating insertion errors

as more costly than deletion errors, while the goal of maximum information output may be

achieved by treating deletion errors as more costly than insertion errors.
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One advantage of the decision algorithm chosen for the final version of the VLD (section 4.5)

is that the output is a single scalar value. Training the MLP to minimize error rate was

done with an implicit threshold of zero (positive values indicate a Vowel landmark, negative

values indicate no landmark). This threshold can be changed to adjust the error bias (a

higher value will produce fewer insertion errors and more deletions, while a lower value will

produce more insertions and fewer deletions) and the adjustment does not require retraining

the MLP weights.

Although the final threshold value is easily adjustable, we do not know what value to choose

in order to achieve a desired bias, or a desired probability of a given type of error. In

other words. we have a control, but we do not have a scale for it. Calibration of control

parameters will make the \VLD more usable in practical situations, and should be addressed.

Calibration of output values has been discussed in section 5.2, and will be discussed further

in section 5.4.3.

5.3.2 Lexical contact and error recovery

In Section 5.1.2 we discussed error prediction: characterizing which vowels are likely to be

missed, and which phenomena are likely to generate false alarms. In order to use the Vowel

landmarks to make contact with the lexicon, we need a procedure to recover from errors

made by the VLD.

Some error recovery can be done by combining the VoNwel landmarks with Consonant land-

marks (which are generated by a separate process that does not use or look for Vowel

landmarks, as in Liu [54]) and perhaps with Glide landmarks.2 WNIhen the different classes

1 This may depend on the characteristics of error recovery in later stages of processing. For example, it
may be more important to detect full vowels, or prominent vowels.

2 Sun's method for finding Glide landmarks [861 depends on having the Vowel and Consonant landmarks
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of landmarks are combined, they may be parsed into a. basic syllable structure, using phono-

tactic constraints, durations, and other acoustic measurements to confirm landmarks that

make sense and reject landmarks that do not. Syllable parsing from phonetic symbols has

been studied before [42] (and implemented in [26]), but syllable parsing from landmarks is

liable to raise different issues and problems. It may also be desirable to extract independent

measurements from the acoustics to assist this process, such as estimates of sonorant and

continua-nt features, as does Bitar [6].

In order to match items in the lexicon (which are strings of phonemes), the system must

postulate segments from the landmarks. This process will be assisted by the syllable struc-

ture described above, but is almost certain to produce errors (substitutions. insertions, and

deletions) if the landmark stream includes errors. The postulated segments should receive

confidence scores, based on some combination of the landmark confidence scores and the

feature confidence scores.

The lexical matching process itself has not received much attention to date (some aspects

have been explored by Zhang [92]). A simple left-to-right matching technique seems the

most straightforward. but it maNy not be sufficient in the event of errors. Left-to-right match-

ing will need to allow for errors, perhaps by using a multipath state network to represent

segments, including transitions that skip states (deletions) and including extra. states (inser-

tions). similar to the networks generated by DeMlori [16]. Other strategies such as matching

the high-confidence segments to stressed syllables first, which may be regarded as "islands

of reliability" may be used, but this stage of processing will require substantial study.

Presumably, the result of the lexical matching process will be a group of words that are

candidates to match the acoustic evidence, similar to the "cohort" of Marslen-Wilson [57].

Additional acoustic evidence will be sought to confirm or discard members of the cohort. The

available, and it is uncertain how much independent information his Glide landmarks carry.
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search for additional acoustic evidence may include a search for additional Vowel landmarks.

Such a search may be done by simply lowering the threshold of the output decision (at least

in specified regions of the speech signal), or perhaps more complex changes will be required.

In contrast to the first pass described above (postulate segments from landmarks, and match

segments to the lexicon), this second pass will involve synthesizing landmarks from candidate

words in the cohort, and matching these landmarks to the acoustically derived information.

Synthesized landmarks may include a value for how likely they are to be deleted, or to lack

a corresponding acoustic event, as discussed in section 1.2.1, in which case the second pass

can use this information during the matching procedure. This dual-mode matching is one

of the hallmarks of the LAFF paradigm, and should be a. crucial part of achieving good

performance.

5.4 System design issues

There are more general issues that must be addressed in order to design and build a proto-

type LAFF system. Speech recognition algorithms require a. strict, probabilistic formulation

in order to use statistical and stochastic tools. The structures and rules of linguistic rep-

resentation, however, do not generally include probabilistic information or allowance for

conditions of uncertaintyv. Bridging this gap is one of the central problems of designing a

LAFF prototype.
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5.4.1 Acoustic cues and Information content

Each estimate of a Distinctive Feature (DF) will require measurement of some number of

acoustic cues. The measurements of the acoustic cues must then be combined in some way

to produce an estimate of the DF. In general, the combination of acoustic cues may not

be straightforward. It may require nonlinear transformation, or there may be dependencies

among cues (importance of one cue dependent on the value of another), or there may be

trading relations between cues.

We will want a technique which is general and flexible enough to deal with complicated

combinations. A Multi-Laver Perceptron (LP) such as in section 4.5 has proven to be a.

useful tool in this situation, and will probably be useful for DF estimation as well.

Tradeoffs between acoustic cues

Additional problems arise when a. single acoustic cue contributes to more than one DF.

For example, voice onset time (VOT) is a cue for Voicing in stop consonants, but is also

related to Place in stop consonants. 3 If Voicing and Place are estimated independently,

information will be lost. (For example, a VOT which is long because the stop is Voiceless

may be misinterpreted as an indicator of velar Place, if the Place estimator is unaware of

the Voiceless status.)

This problem can be solved by estimating Voicing and Place together, in one module. How-

ever, if there are many acoustic cues which contribute to more than one DF, then many

modules would have to be combined, and the resulting system would not embody the or-

3 Strictly speaking, it is the length of the frication burst that is a cue for Place in stops.
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thogonality which makes distinctive features such a powerful concept in linguistics. If Voicing

and Place are estimated sequentially (first one, and then the other), the second estimate will

have the knowledge of the results of the first estimate, but the first estimate will have to be

made "blind" which is what we want to avoid.

There are probably several different ways to deal with this problem. One possibility is to

make an a priori assumption about the state of one DF in order to estimate another, and

then combine the results of all possible assumptions. For example, the Place detector could

output two results, one assuming a Voiced environment, and the other assuming a Voiceless

environment. Independently, the Voicing detector could output one result for each presumed

value of Place. Then a combination procedure would be used, which compares the output

values of the two detectors and produces a final value for each DF. This procedure would

probable need to use confidence estimates a.s well as DF values (see section 5.4.3 below for

discussion of confidence estimates).

5.4.2 Representation of Distinctive Features

In general, lexical DFs are binary (which actually means they can take three values, +, -,

and unspecified), although some are unitary (taking only two values, + and unspecified).

Acoustic measurements, however, can take on a range of values, depending both on the

presence or absence of acoustic information and what that information indicates about the

value of the underlying feature. A LAFF system will require some method of represention

of DFs that corresponds to lexical values, while maintaining as much information about the

acoustic evidence as possible. (As discussed in section 1.3.4, maintaining information and

avoiding "hard" decisions is essential to avoiding cascade failure.)

This section proposes that DFs derived from acoustic measurements should result in two
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numbers: the Value (floating point between -1.0 and +1.0) which indicates what the acoustic

information says about the underlying DF, and the Confidence (floating point between 0.0

and 1.0) which indicates the reliability of the acoustic information. These numbers will

usually be given as an ordered pair (Value, Confidence).

A scheme for translation between these two representations is shown graphically in figure 5-

1. The acoustic Value is plotted on the vertical axis, and the acoustic Confidence is plotted

on the horizontal axis.

Translation of DFs from lexical representation to acoustic derivation is straightforward. A

lexical + becomes an acoustic (+1.0. 1.0). and a lexical - becomes an acoustic (-1.0. 1.0) as

indicated by the small circles.

Translation of DFs from acoustic derivation to lexical representation is a bit less clear. This

document proposes that the acoustic space be divided into three regions (indicated b the

dashed lines) so that acoustic values in the "+" region are translated to lexical +: acoustic

values in the "-" region are translated to lexical - and the remainder a.re translated to lexical

"unspecified.'

The exact shape of the region boundaries is not certain. Perhaps an exponential curve would

be reasonable, with a decay coefficient to be determined.

5.4.3 Calibration of Feature Values

For the scheme in section 5.4.2 to be useful, the Value and Confidence scales need to be

calibrated somehow, so that the outputs of different modules can be compared to each other.

The shape of the region boundaries in figure 5-1 will probably depend on this calibration.
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Figure 5-1: Translation scheme for Distinctive Features, showing how continuous values
(derived from acoustics) relate to discrete values (represented in the lexicon). The acoustic
Value is plotted on the vertical axis, and the acoustic Confidence is plotted on the horizontal
axis.
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It is uncertain what kind of calibration scheme would work best. A probabilistic interpre-

tation seems appropriate, in which the output value reflects the statistical likelihood of the

measurement being correct on a labeled database of speech. Validation of landmark confi-

dence scores has already been explored somewhat in section 5.2. However, a strict definition

of meaning of the confidence score and the details of a procedure to derive it are uncertain,

and deserve further study.

5.4.4 Landmark and Feature Hierarchy

In the author's understanding of the current LAFF scheme [80], acoustically derived DFs

are attached to Landmarks. A Landmark does not have a Value (as in section 5.4.2) but

it should have a. Confidence score. The DFs attached to a Landmark will have their own

Confidence scores. whose computation wvill reflect the confidence of the Landmark. Probably

the DF Confidence should be understood to be predicated on the Landmark Confidence -

that is. the DF Confidence should represent the probability that the Value is correct, given

that the Landmark is correct. Then, the total confidence in the DF is the product of the

Landmark Confidence and the DF Confidence.

Likewise. if the DFs are organized in a feature hierarchy [43]. and if there are DFs at

intermediate levels of the hierarchy, the Confidence scores of child DFs maiy be predicated

on the Confidence scores of their parent DFs (as well as the Confidence of the Landmark). In

particular, most articulator bound DFs (e. g. distributed, anterior, lateral) will be predicated

on the confidence of the Place feature which specifies their articulator (tongue blade).
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5.4.5 Lexical Matching and Phonetic Rules

For lexical matching, the rules of DF transformation will also need to be phrased in prob-

abilistic terms. For example, we know that a vowel which follows a. coronal consonant will

tend to be fronted. iWe will need to have quantitative data. on how fronted it will appear,

and how much variation can be expected, and how this transformation depends on other

environment variables such as stress, prosody, rate of speech, and so on.

The lexical matching procedure itself ha.s not received much attention. For the first "bottom-

up. pass, segments may be hypothesized from the Landmarks, and matched to the segments

of the lexicon. Based on this partial information, additional Landmarks and DFs may be

hypothesized fiom lexical items, and a. second "top-down" pass may be performed, looking

for evidence of the hypothesized Landmarks and DFs. In either case. there need to be

mechanisms in place to deal with landmark errors, both insertions and deletion . as described

in section .5.3.2. The details of this process are not clear. and deserve further study.

Top-down rules could be generated to predict landmark errors from context. For instance, a

vowel (especially a diphthong) followed by a liquid may generate an extra vowel landmark,

a.s in 'fire" or "feel,"' unstressed vowels may be deleted, and so forth. a.s described in sec-

tion 1.3.1. There may also be substitution errors, where glide landmarks correspond to vowel

segments and vice versa.

Bottom-up error correction depends primarily on confidence scores. as described in sec-

tion 1.4.2. By maintaining confidence scores, perhaps with lowered thresholds, more in-

formation is passed from the VLD to following stages of processing. The system can post

process the landmark stream with phonotactic rules, which will help identify errors and

correct them.
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