View metadata, citation and similar papers at core.ac.uk

=
brought to you by .{ CORE
provided by DSpace@MIT

A System Architecture-based Model for Planning Iterative

Development Processes:
General Model Formulation and Analysis of Special Cases

Jay Jootar, Steven D. Eppinger

Abstract — The development process for complex
system is typically iterative in nature. Among the
critical decisions in managing such process involves
deciding how to partition the system development
into iterations. This paper proposes a mathematical
model that captures the dynamics of such iterative
process. The analysis of two special cases of the model
provides an insight into how such decision should be
made.

Keywords — product development, iterative process,
risk management, decomposition

|. INTRODUCTION

An important characteristic of the development process
for complex systems is the iterative nature of the
activities (Whitney 1990). This is primarily the result of
complex, often times cyclical, relationships of elements
of the system. In these circumstances, sometimes there
remains significant uncertainty even after the early
system design phase. Interim validation and verification
are necessary to test the assumptions of the system as we
build it, and hence the iterative nature of the
development process.

This paper seeks to capture the dynamics of iterative
development processes in a formal model. In particular,
we present a mathematical model that describes the way
the process execution affects the process performance.
Although many such models exist in the literature (Ha &
Porteus 1995, Smith & Eppinger 1997a, Smith &
Eppinger 1997b, Krishnan et al. 1997, Loch & Terwiesch
1998), the model proposed in this paper extends prior
models by including architectural dependencies in the
system and yet is tractable enough that insightful
analysis can be undertaken.

The paper begins by describing the general model of
system and iterative development. Due to space
limitation, the analysis of two simple, yet illustrative,
special cases of the model are provided in the next
section. The emphasis of the analysis is on demonstrating
the fundamental trade-off of the model and how model
parameters affect the resulting execution plan. The paper

ends with the summary of the results and future research
directions.

Il. MODEL FORMULATION

A. General Description

We model a critical stage in the development process
when architectural activities have been conducted to the
extent that the system is decomposed into modules, with
a mapping of functions to these modules and yet there
remains uncertainty in some aspects of the system that
has to be dealt with by building certain parts of the
system. This calls for an iterative mode of development
in which knowledge is gained from building parts of the
system and is then used to reduce uncertainty in the
system development.

Risk-mitigation
Design Work Rework
Next

_ [:;:;:;Z:| | —|->iteramion

Fig. 1. Iterative Process

The nature of the process requires a partitioning of the
development of the system modules into iterations. In
successive iterations, we grow the system by developing
more and more modules, while making necessary
changes along the way as we learn more about the
system. In the nominal work phase, we first develop the
modules allocated to that iteration and integrate these
modules with the rest of the system that has been
developed so far. Then we test the resulting system
against its intended functions during the risk-mitigation
phase. The information revealed in this phase might
necessitate rework of these modules in the rework phase
before we proceed to the next iteration. The total amount
of work depends on how we partition the modules into
iterations, which is the decision resulting from the model
and the major topic of the next sections.

https://core.ac.uk/display/4381676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B. System Partitioning

More formally, a system consists of M modules,
numbered from 1 to M. The set of modules is called Q.

Denote the partitioning by (Sl, s2,.,8’) where S
represents the set of modules allocated to iteration j.

Define §j = Usi as the set of modules developed up to
i=1
iteration j.

Define a function as a set of modules. Each function
corresponds to the functional requirement that we test
during the risk-mitigation phase. Assume there are N
functions, with F, C Q, as the set of modules for
function n. Given a set of modules we can find the
corresponding set of functions whose constituent

modules belong to that set. Define the mapping as
3€)-fiF cs}

The set of modules in successive iterations corresponds
to the set of functions in successive iterations in the

following manner.
¥ -36)36)

The variables of concern in each iteration include (1)
risk-mitigation work, which is assumed to be a fixed
constant, denoted L, for each iteration and (2) rework
which depends primarily on the partitioning of modules
as described in the following section.

C. Rework

Rework depends on the partitioning of modules in two
major ways. First, rework in an iteration, say j, is defined
only for modules that have been developed up to
iteration j, i.e. modules that belong to §j. In other words,

we only need to do rework on modules that have already
been worked on. Second, the amount of rework of such
modules depends in a non-trivial manner to how we
allocate modules to iterations described as follows.

In a decomposition of a complex system, we also have to
define interfaces that link the modules together to
become a system. These interfaces represent the
assumptions from the point of view of developing a
certain module. They are the constraints that are given
for the problem to be solved. When we deal with a
complex system these interfaces are uncertain and

subject to change. They are the driver of rework in the
development. In this model, we define an interface as a
design assumption subject to change.

The amount of rework of a particular module in a given
iteration depends on interfaces that actually change in
that iteration. For simplicity, we assume that it is the sum
of rework resulting from change in each interface. Define
interface change for each iteration as a zero-one random
variable. Assume there are Q interfaces for the system in
question.

~. Q ~.
Rn!]=2qu'lqJ
q=

We call dnq the impact parameter of the module. Note
that I, is fully described by P/ = Pr(l‘qj =1)

Next, we need to define how interface change happens.
First, we need to observe that interfaces have a strong
relationship with the functions of the system. Since they
specify how the modules work together, they have a
direct effect on some functions of the system. Due to the
complexity of the system, this is not known in advance,
we know whether a particular assumption, or interface,
works or does not work only when we test the system
against its functional requirements.

From this observation, the probability of change of a
particular interface in an iteration depend on the
functions corresponding to that iteration. For simplicity,
we assume that the probability pqi is the sum of

probability parameters pq, of all functions in iteration j.

qu = 2 pqn

ey’

D. Work-minimization Model

In this paper, we focus our attention on the optimization
of the total expected work, which include the risk-
mitigation work and rework. The dynamic programming
formulation of a work-minimization model can be
described as follows

meSUS

_ minL E[Sd, 7.6 s)+wus

=mi;g-|_+ D Qqu-Pq(SA,S)-W(SAUS%
: Q

=min|L+ A

meESUS g=:
1 ,+W SUS
eS| s £ nes(s'z)gzé) ¢ i

Given W(Q)=0, Find W(2)

wE) miArgiL+ EE[ﬁm}rw(sAus%

I11. MODEL ANALYSIS

The purpose of this section is to develop the
understanding of the basic trade-offs in the model to the
reader. We will focus our attention on two special cases
of the model which are relatively easy to understand yet
illustrative of such trade-offs.

A. Modular System with Uniform Impact

The system to be considered in this section has the
following properties

1. There is one interface subject to change.

2. The mapping between function and module is
one-to-one, i.e. a module corresponds to a
function.

3. AIll the modules have the same impact
parameter, denoted d.

We assume that the module and function has been
indexed in such a way that module m belongs to function
m for m=1, ..., M. In this model, the parameter of interest
therefore includes L, d, py, ..., pm. From this, we can
rewrite the defining equation for the dynamic
programming formulation as follows.

w6)= min L+(ESEUS)@S pm)+W(SAUS1

scse

Note that subscript q is omitted because there is only one
interface subject to change. For a given partitioning,
define the following quantities which correspond to each
iteration.

(1) pi- E P, the probability that rework will be

mes!
needed in iteration j.

(2) D/ = Ed - ‘Sj‘-d the incremental amount of
S]
potential rework added from modules in iteration j.

The total amount of potential rework is the sum of the
product of these quantities from iteration 1 to iteration j.
The total work can also be expressed as

Zupi-(ZD‘)

The first issue we will explore is that of the structure of
optimal policy. The following theorem shows the
structure of the optimal solution when viewed from the
perspective of probability parameters.

Theorem 1: In the optimal policy for an additive
probability function, let P,.., Pa.y be the minimum

and maximum probability parameters, respectively,
among those of functions allocated to iteration j. Then,

p N > j+l
min max

Proof: Proof by contradiction. First assume that
pr{]in < pr:];i in an optimal solution. Then, we swap the

two modules corresponding to these two probability
parameters. Subtract the new objective from the original

one to obtain (pi+1 - pj,)Dj , a positive number,
max min
contradicting the hypothesis that the original partitioning

is optimal. Hence, pr{ﬂn = r#’;)l(in an optimal solution.

From this theorem, we can reduce the complexity of the
problem substantially by first sorting the modules from
the highest probability to the lowest probability, then
determining the splitting point that gives the minimum
total work. The problem can be reformulated for the pre-
sorted modules as follows.

W ()= min

L+(m—nﬁ)~d~(-i pi)+W(m)

i=m+1

This problem in turn could be translated into a shortest-
path problem for a network defined by nodes that
correspond to each module/function arranged in
sequence and arcs that correspond to the amount of work
resulting from allocating the module between the nodes
in a particular iteration.

In addition, this theorem also suggests the way the
partitioning should be done to minimize the amount of

work. From this theorem, the best partitioning is
obtained by taking care of the modules/functions with
high probability parameters first. This corresponds to the
rule of thumb in system engineering that we should take
care of the tough issues, the issues that are most likely to
cause changes, first.

As an example, we have generated an example with 100
modules/functions where L = 1, d = 1. The probability
parameters of the functions are generated randomly so
that the sum is unity. As explained above, modules are
first sorted from highest probability parameters to the
lowest probability parameters. Then, we use the shortest-
path algorithm to find the best policy. The following
chart displays the optimal solution in terms of iteration
guantities.

i Rework
02l Probability

0.15] < Y

/ N
\x
/ et N
.
o1) ol Impact o
/ AN
/
/
/
0.05¢ 1
0 \2 g L L L
! Itetation ° 6 7

Fig. 2. Iteration Parameters in Optimal Solution

0.02
0018 o Probability/Impact
0016/

*e;\

0.0141

0.0121 j@\\

0.01t \&

0.008| \

0.006]- \\G\

0.004| S

AN

0.002} N

% 2 s 5 6 7
Iteration

Fig. 3. Iteration Ratio in Optimal Solution

As can be observed from the chart, there is a clear trend
of the iteration probability and the iteration impact. In
the optimal policy, iteration probability has a downward

trend, whereas iteration impact has an upward trend. In
addition, the ratio of iteration probability to iteration
impact seems to be decreasing. The following theorems
provide the proof for these trends.

) . A P j P j+l
Theorem 2: In the optimal partitioning, = -

D! D"

Proof: Use the swapping argument. First, assume that in
an optimal policy, P//D’ < P)*/D!". Next, swap the
modules in these two iterations. Subtract the objective of
the resulting partitioning to that of the original one to
obtain P*'-D! -P!-D!* a positive quantity. This
contradicts our assumption that the original partitioning
is optimal. Therefore, in an optimal solution,
PI/D! = PI*/ D",

Theorem 3: In the optimal policy, the following
conditions are true.

(1) D'-D"<d
(Pl -Ptz_ple

Proof: (1) We first prove that in an optimal
partitioning, dm/pmz(d+Dj+l)Pj for any

meS? . This can be proved by contradiction. First,
assume that the opposite of the above condition is
true in an optimal partitioning. Then, we consider
the difference in objective between the supposedly
optimal partitioning and the one in which m is
moved from iteration j to iteration j+1, which, due
to the opposite conditioned, is positive, thus
contradicting the optimality assumption. Therefore,
the condition has to be true for an optimal
partitioning. Then,
DI/P’ <[d/p]l,. <@+D™)P. The first
inequality is due to the fact that the iteration impact
and iteration probability are simply the sum of the
individual parameters of all modules/functions in
the iteration. The second inequality comes from the
condition we just proved. Hence, we obtain the
result D' =D/ <d. (2) The second condition
can be proved in the same fashion. We first prove
that P’ + pm)D“l = p,/d, for any mes'™
using a similar line of argument. Then,
e+ pmax)DJ+1 =[p/d]5 =P"/D'™ Hence,
the property P/ - PJ* = —pJ*. .

These theorems show the characteristics of the optimal
policy of this type of system. We found that in general,
not only do we tackle modules with highest probability
parameters first, but we also group them in such a way

that the iteration probability is not increasing by more
than the probability parameter and that the iteration
impact is not decreasing by more than the impact
parameter. This means that, in general, the partitioning
results in more of the uncertainty (in terms of iteration
probability) handled in the early iterations and results in
more of the impact handled in later iterations when the
remaining uncertainty is low (after we handle most of
that in the early iterations)

B. Nested System

The next system we consider is that of a nested
functional mapping, which has the following properties.

1. There is only one interface subject to change.

2. The set of functions represent an increasing set
of modules, i.e. the module set of a function is a
subset of the module set of another function.
Represent this function as 1, 2, ..., M, as an
increasing set of
function.F, CF ., =F, U{m +l}

In this case, functions build upon each other. Compared
to the previous case when each function is independent
of the others. In this case, a particular function relies on
modules of other functions. The first issue, again, is the
structure of the optimal policy. The functional mapping
seems to suggest that we should build the internal
functions and grow the system in the way dictated by the
functional mapping. Theorem 4 proves this result in a
rigorous manner.

Theorem 4: In the optimal partitioning of modules,
meS! = {,2,..,m}C S’

Proof: Use contradiction. In an optimal
partitioning, suppose meSi. Let my <m be the
module with the smallest index which is absent
from Si. Then, we have
i‘s(éj)’\{mo,m0+1,...,m}=® due to the nested

structure of the functional mapping. Assume that
all modules have non-zero impact parameters, we
can improve the objective by moving all modules
whose index falls anywhere from m0+1 to m to
iteration j+1.

Such movement does not change the iteration
probability of any iteration before j+1 because such
probability can only be the sum of probability
parameters of functions whose index is less than
mO. This is due to our assumption that m0 is not in

S’ and to the nested structure of the functional

mapping. Next, the movement reduces the iteration
impact for those iterations to which the modules
that are moved belong. On the other hand, the
movement does not change anything from iteration
j*+1 onward. This therefore results in a decrease of
the objective, contradicting the optimality
assumption. Hence, we obtain the above result.

From theorem 4, the defining equation for the dynamic
programming formulation can be expressed as

W (h)= rrp>ir[ﬂl[L+(2di)~(iilpi)+W(rﬁ+m)

This, similar to the previous case, can be transformed
into a network and a shortest-path algorithm can be used
to solve the problem.

Similar to the previous case, the sequence of the modules
is determined by the problem parameter and the
remaining question is how to split them into iterations.
Whereas the probability parameters determine the
sequence in the modular case, the functional mapping
determines the sequence in this nested structure.
Probability parameters and impact parameters play no
role in determining the sequence in this case.

In a sense, these two cases are similar in that the guiding
principle is to partition the modules so that we take most
uncertainty out of the design process as soon as possible.
The specifics are different due to the structure of the
problem. In the previous case, functions are independent
in a sense that they don’t share modules. In this case,
probability parameters determine in which iteration a
particular module will reside.

On the other hand, in the nested case, the partitioning of
the modules needs to take into account the functional
mapping. In particular, the nested structure dictates that
the lower level-function, i.e. the functions whose
modules are the constituent modules of other functions
needs to be taken care of before other higher-level
functions.

Because the sequence is dictated solely by the functional
mapping, the characteristics of the optimal policy for the
nested structure might be different from that of the
modular structure, whose characteristics derive from the
fact that modules/functions are ordered so that
probability parameters are in descending order. To
illustrate this, we have generated an example such that
the probability parameters of function in the sequence
are in ascending order. We clearly see that the trend is
the reverse of the previous case.

031

Impact
i Rework
&
021
o
* e -
7 — Probability
. .
]
0.1fp o |

0.05F

I I I I I I I I I
1 15 2 25 3 35 4 4.5 5 55 6

Iteration

Fig. 4. Iteration Parameters in Optimal Solution

0.02

0.018
o
0.016 Probability/Impact
0.014| e
0.012| //
e
0.01} -
0.008]- /xf/
/
0006l
/
0.004|”
0.002 | | | | | | | | |
1 1.5 2 25 3 3.5 4 4.5 5 55 6
Iteration

Fig. 5. Iteration Ratio in Optimal Solution

This is the case when the module sequence is solely
dictated by the functional mapping. In these
circumstances, the iteration quantities do not behave in
the same fashion as the previous case. The example
generated above has the reverse trend, i.e. iteration
probability is lower in the earlier iteration, iteration
impact is higher in the earlier iteration, and iteration
probability/impact ratio is increasing.

IV. CONCLUSIONS

In this paper, we have formulated the model of an
iterative process, which is modeled as a process in which
a system is built in an incremental manner. The model
describes how various types of additional work (risk-

mitigation work and rework) depend on the way the
system is partitioned into iterations.

We analyzed two special cases of a model that seeks to
minimize the total amount of work. We have found that
the guiding principle is to partition the system in such a
way that we tackle as early as possible the most
uncertainty with the least amount of impact.

In the first special case, this results in a policy in which
we sequence the modules/functions by their probability
parameters. In the second case, this results in a policy in
which we sequence the functions from low-level to high-
level. These two cases illustrate the effects of functional
mapping, probability parameters, and impact parameters
in determining the optimal partitioning of
modules/functions to minimize the amount of work to be
undertaken.

Future research should explore the joint effects of the
above model parameters. We are working on a general
case of the model and to explore how various parameters
jointly determine the optimal policy.

REFERENCES

[1] Ha, A. Y., E. L. Porteus, “Optimal Timing of
Reviews in Concurrent Design for
Manufacturability,” Management Science, 41, 9
(1995), 1431-1447.

[2] Krishnan, V., S. D. Eppinger, D. E. Whitney, “A
Model-Based Framework to Overlap Product
Development Activities,” Management Science, 43,
4 (1997), 437-451.

[3] Loch, C. H., C. Terwiesch, “Communication and
Uncertainty in Concurrent Engineering,”
Management Science, 44, 8 (1998), 1032-1048.

[4] Smith, R. P., S. D. Eppinger, “ldentifying
Controlling Features of Engineering Design
Iteration,” Management Science, 43, 3 (1997a), 276-
293.

[5] Smith, R. P., S. D. Eppinger, “A Predictive Model of
Sequential Iteration in Engineering Design,”
Management Science, 43, 8 (1997b), 1104-1120.

[6] Unger, D., “Planning Design lIterations”, SMA
Paper, January 2002.

[71 Whitney, D. E., “Des igning the Design Process”,
Research in Engineering Design (1990)

