Reactive Schedule Repair of Job Shops

Amritpal Singh Raheja and Velusamy Subramaniam

Abstract— Disruptions to job shop schedules
are tedious and difficult to incorporate after
the schedule has been generated and
implemented on the shop floor. In order to
deal with such disruptions, a real time
reactive scheduling strategy is essential.
Reactive scheduling is the process of repairing
the predictive schedule during online
execution for internal disruptions (e.g.
machine breakdowns) and external deviations
(e.g. prepone or postpone of orders). Existing
approaches for schedule repair in real time
mainly utilize heuristics such as Right Shift
Rescheduling (RSR), and Affected Operation
Rescheduling (AOR). In the present form,
both these approaches are only used for
handling machine breakdowns in the shop
floor, but are inept in accommodating new
and unexpected job orders. These approaches
also neglect specific issues related to urgent
jobs, for instance multiple job routings during
the repair of the schedule. In this paper the
existing heuristics (RSR and AOR) have been
modified to include urgent jobs. Also a
modified AOR approach (mMAOR) is proposed
that considers urgent jobs with multiple job
routings. An extensive simulation study has
been conducted on a job shop simulation
testbed for the efficiency and stability of the
repaired schedule using the mMAOR and RSR
heuristics. The efficiency of the repaired
schedule is a measure of the percentage
change in the makespan after incorporating
repairs whereas the stability of the schedule is
a function of starting time deviations that
indicate the degree by which it deviates from
the original schedule. The results of the
experiments indicate significant benefits of
the modified AOR algorithm over the existing
RSR schedule repair heuristic.

Keywords— Schedule Repair Heuristics and
Job Shop Schedule.

A.S. Raheja is a research student at the Department of
Mechanical Engineering, National University of Singapore.
E-mail: engp1059@nus.edu.sg

V. Subramaniam is an Asst. Professor at the Department of
Mechanical Engineering, National University of Singapore.
He is also a Fellow with the Singapore-MIT Alliance. E-
mail: mpesubra@nus.edu.sg.

I. INTRODUCTION

Reactive Scheduling is a process of revising a
given schedule in real time due to the occurrence
of unexpected events during the execution of the
schedule. The predominant scheduling activity in
practice is that of reactive scheduling, which can
be broadly defined as the continuous adaptation
and improvement of pre-computed predictive
schedules [1]. Reactive scheduling can be
construed as similar to offline scheduling, albeit
conducted “online” in which the previously
accepted schedule, which has now been flawed
due to an unexpected event, is repaired by
techniques that can be essentially similar to those
used to iteratively improve a predictive schedule.

When a schedule goes bad due to small
disruptions, an intuitive approach would be to
resolve the problem from scratch, i.e., rerun the
predictive schedule and generate a new
optimized schedule. This approach is not
encouraged in the industry as the new schedule
can differ considerably from the old one and this
is not desirable since many other decisions like
assignment of personnel, delivery of raw
material and the subsequent processing of the
jobs in other facilities may be severely disrupted.
This phenomenon is commonly referred to as
Shop floor nervousness [2]. If the disruptions are
large and frequent there is no option but to
totally reschedule the system. In case of minor
disruptions on the shop floor a better approach
would be to adapt the old schedule to the new
situation. This is possible using a specialized
repair mechanism in an iterative mode as
illustrated in Figure 1.

Minor disruptions of the order of 8% of the
makespan have been used to test repair
algorithms [3]. Thus a significant portion of
disruptions occurring on the shop floor can be
handled using the repair techniques without
triggering “Total Rescheduling”. Schedule
repair approaches that have been reported in
literature do not consider all types of disruptions
that occur as current research has concentrated
on machine breakdowns and accommodating
unexpected jobs. Other factors, such as multiple
job routings have also not been addressed.

Offline mode Online mode

Predictive Schedule mmmml- @ N Rescheduling

Rescheduling

Predictive Schedule immmmlp> @ -— Schedule Recovery
1
1
I l
1
1
1
1
1
1
1
1

Revised Schedule

Schedule Repair

Fig. 1. Rescheduling vs. Schedule Repair

In the next section, the common schedule
repair approaches reported in literature are
presented. In Section 3, a new schedule repair
heuristic based on AOR is described in detail.
Subsequently, an extensive experimentation is
reported and the paper concludes with a detailed
discussion of the results.

Il. LITERATURE SURVEY

The common reactive repair approaches are
summarized in Table 1 and are discussed in this
section.

Heuristic based approaches [3,4] largely
consist of explicit algorithms for schedule repair
and optimization. One of the common heuristics
reported in the literature is the Right - Shift
Rescheduling (RSR) [3,4]. This heuristic
involves the global shifting of the job operations
and expanding the schedule towards the right on
the time axis in order to accommodate the
disruptions. Another heuristic that is considered
effective is the Affected Operation Rescheduling
(AOR) [3], in which only the job operations that
are affected by the disruption are rescheduled.
The basic concept of AOR is to accommodate
any disruption by pushing the starting times of
job operations forward by the minimum amount
possible so as to keep the technological
constraints satisfied and to preserve the initial
sequence of the operations on each machine.

Multi Agents in a Distributed Artificial
Intelligence (DAI) environment has been widely
reported in the literature [5-7]. In DAI based
approaches, reactive schedule recovery is
achieved using multi-agents. It allows the
independent agents to coordinate their

knowledge and solve sub problems while
working toward a common goal. In this approach
intelligent agents possess the knowledge
pertaining to the schedule repair.

Fuzzy logic has also been reported in the
literature for reactive schedule repair [8-9]. The
fuzzy processing times are substituted for the
crisp processing times used by a heuristic based
scheduler. This approach has an advantage of a
complete scan of the schedule for constraint
violations every time a new event is integrated,
and the schedule is optimized globally during the
repair. Case based reasoning, [2, 10] has been
used for reactive scheduling and the goal is to
find a case that best suits the disrupted schedule.
The case database is created by domain experts
and is capable of specifying the correct reaction
to schedule disruptions. The concept of
Constraint based scheduling has been reported in
the literature [11,12] for schedule repair of a
prototype scheduling system (CABINS). The
incremental accumulation and reuse of past
experiences is achieved through case based
reasoning, while constraint based scheduling has
been used for the propagation and resolution of
the effect of repair.

Acrtificial Intelligence techniques such as
Neural Networks [13,14] and Genetic
Algorithms [15] have also been used in schedule
recovery and repair. The training of neural
networks is usually performed in a single pass,
and Genetic Algorithms mimic the natural
selection process of genes to perform schedule
repair. Crossover and mutation operators are
used to generate successive population of better
schedules [15] to accommaodate the deviations in
the original schedule. Genetic Algorithms are
efficient and produce nearly optimum schedules
but require high computational effort.

I1l. THE MODIFIED AOR HEURISTIC

In this paper, the authors have proposed a
new schedule repair heuristic based on AOR.
This new heuristic is referred to as the Modified
Affected Operation Rescheduling or mAOR. The
basic principle behind the concept of AOR is to
accommodate a minor disruption on a particular
machine in the initial schedule by pushing the
start times of some job operations forward
(delaying them) by the minimum amount
required to: (1) keep the technological constraint
satisfied and (2) preserve the initial sequence of
operations on each machine. This guarantees that
the robustness of the initial schedule is preserved

