provided by DSpace@MIT

Planning Design Iterations

Darian W. Unger, Steven D. Eppinger

Abstract — Companies developing new products
have a wide variety of product development (PD)
processes from which to choose. Each process
offers a different method of iteration to manage
risk. Companies must therefore consider the
nature and level of risks they face in order to
determine the most appropriate iteration and PD
process.

This paper identifies principles of risk and
iteration inherent in product development and
then explains how several different PD processes
manage risk through iteration. It explains current
research on PD decision criteria and concludes by
proposing a framework to help companies better
select PD processes.

Keywords — Product development, iteration, risk
reduction

. INTRODUCTION

Successful product development (PD) is critical to
industrial performance. The speed and quality of PD
can provide critical competitive advantages to firms,
but the development costs must also be contained.
The pressure to improve product development is
evident in the words of the Vice President of R&D of
Grace Performance Chemicals (W.R. Grace & Co.):

Today, more than ever, the only way for
any...industrial organization to stay competitive is to
be more creative, more innovative and faster than the
competition. We need to continuously introduce better
and less expensive products and technologies.*

Customers, competitors, and regulations can all drive
companies to develop new products. Despite the
prevalence and importance of PD, this area of
technology management leaves considerable room
for improvement. Companies can choose from a
variety of existing PD processes, but each of those
processes manages risk by iteration differently, so
choosing the best one can be difficult. Problems can
occur if the selected process poorly suits the
company. Companies could improve their PD with
better criteria for selecting PD processes.

Il. PRINCIPLES OF RISK AND ITERATION

Although PD processes differ across firms, a

common problem is that development involves risks.

A successful PD process should be able to manage or

mitigate the following four major types of risk:

Technical — uncertainty regarding whether a new
product is technologically feasible and
will perform as expected.

Schedule — uncertainty regarding whether a new
product can be developed in the time
allowed.

Budget — uncertainty regarding whether a new
product can be developed with the
financial resources available.

Market — uncertainty regarding whether a new
product accurately addresses changing
customer needs and product positioning
with respect to dynamic competition.

These four major risks are neither comprehensive nor
entirely independent. Many other factors — such as
quality assurance — may also present uncertainty, but
they may be subsumed by the larger risks detailed
above. Quality risk, for example, may sometimes be
a subset of technical risk. The risks also affect each
other: technical uncertainty may give rise to a lag in
schedule. Also, market uncertainty may lead to the
need to build additional prototypes, thus increasing
the budget. It is therefore impossible to completely
separate the types of risks faced in PD, although the
categorizations are useful in planning.

Given these uncertainties, iteration is inevitable and
must be managed effectively. Here, iteration is
defined broadly to include almost any kind of work
that involves correction, feedback or
interdependencies. An example of interdependent
design tasks can be seen in Fig. 1

A

B ——

Fig. 1. An interdependent design task configuration

https://core.ac.uk/display/4381671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The two tasks in Figure 1 are interdependent because
each requires information about the other. Many
design processes have hundreds or thousands of such
cyclically dependent tasks. These feedback cycles, or
iterations, have been successfully modeled by the
design structure matrix, a system analysis and project
management tool useful in mapping iterations, as
shown in previous work by Eppinger.?

Interdependent tasks that require feedback are
complex and introduce the potential of burdensome
and expensive rework if poorly managed. However,
iteration is not synonymous with rework. Instead,
well-managed design iteration can prevent rework
and therefore reduce technical, schedule and budget
risk. Other types of iteration, such as presenting a
customer with a prototype to gage consumer
demands, can also alleviate market risk. Effective
iteration can prevent waste and overcome the
uncertainties inherent in interdependent tasks.

How can iteration prevent rework when it involves
doing something over again? The answer lies in the
type of work that is done in each iteration. lteration
is more than merely trial, error and rework of
previous wasted effort. Effective iteration provides
feedback with each round, thus increasing the
likelihood of success in the next round. An analogy
can be seen in the simple “higher/lower” child’s
game that involves guessing a number from 1 to 100.
The guesser states a number and then learns if the
correct answer is higher or lower. The guesser
proceeds to iterate logically, narrowing down the
choices and margin of error until finally the correct
answer is reached. The first few iterations narrow
down the most, while later iterations pinpoint the
final solution. Although early guesses are frequently
wrong, they are not wastes of effort if they are chosen
strategically.

The iterations in this simple example are analogous
to well-managed iterations in product development,
although PD processes are more complex. There are
many types of iterations in product development.
They vary in scope, number, level of planning, and
type of uncertainty that they are trying to address.

The scope of iteration can be a telling component of a
company’s PD process. Narrow iteration is intra-
phase, exemplified by several rounds of
interdependent detailed design tasks. Comprehensive
iteration is cross-phase, exemplified by processes that
do not just cycle around a specific part, but rather
over a range of process stages from concept to
prototyping. Both types of iteration are demonstrated

in Figure 2. There is a continuum between these two
types of iteration, and processes vary in their iteration
scope.

Product planning

Y
(/ X Concept design
Y I
o System-level
(V[design
VAV,

Y
Ko Detailed design
LI
VAV, ¢
X System testing
LI
\VAV
Narrow, 4 Comprehensive,
Intra- Product release Inter-phase
phase

Fig. 2. The two ends of the PD iteration spectrum

The number of iterations also varies by process.
Companies manage the iterations in their PD
processes by deciding how many cycles to perform
before product release. The number of cycles may be
preplanned, may be subject to time and budget
constraints, or may be dependent on customer
satisfaction and quality assurance. In cases of
product or process failure, the number of iterations
may expand unpredictably.

Finally, companies differ in their iterations because
of the different risks that they face. lterating over
different parts of the PD process can have a wide
range of effects. For example, building several
prototypes may mitigate technical risk by
determining if the product performs to the level of
quality promised by design. It may also address risk
by providing information on whether the product will
satisfy customer needs. However, the iteration may
not contribute significantly to mitigating schedule
risk because if the prototype is built late in the
process. In contrast, an early cross-phase iteration to
determine if a potential architecture is reasonable
may help managers estimate schedules accurately but
will not necessarily mitigate market risk.

The four types of risk are threats to successful PD, so
most PD processes attempt to mitigate risk by
iterating. As the next section demonstrates, the kinds
of iteration used varies by process.

I1l. TYPES OF PROCESSES TO MANAGE
RISK BY ITERATION

Just as reasons and risks for product development
differ, so do PD processes themselves. Companies
choose from a variety of processes and methods to
iterate through development to mitigate risk and
manage PD effectively. This section describes some
of the iterative PD process choices. These processes
all iterate in some way, but differ widely in their type
of iteration and the types of risk they address.

A. The waterfall/stage-gate process

The most widely-used type of product development
process, and the basis for comparison in this research,
is the traditional stage-gate, or waterfall, process
shown in Figure 3.

Phase gates

Product planning

Usual direction
of flow

Inter-phase
iterations

System testing
A
Product release

©~>
22

iterations

Fig. 3. The traditional stage-gate, or waterfall,
product development process”

This ideal waterfall process proceeds in discrete
stages, or phases, from product planning to product
release. The interceding phases include concept
design and specification analysis, system-level
design, detailed design, and testing or prototyping. At
the end of each phase is a stage gate, which consists
of a phase review that evaluates whether the action of
the previous phase was successfully completed. If
the project is reviewed positively, work proceeds to
the next phase. If not, then work continues or iterates
within that phase until it can successfully pass the
hurdle.

The reverse arrows, or inter-phase iterations, in
Figure 3 indicate that it is possible to reverse course
and make changes in earlier phases, but this is
generally difficult in a waterfall process. The
purpose of the phase gates is to confirm that a phase
is complete; going back to revisit a supposedly
completed phase defeats that purpose, is usually not
part of the original plan, and may result in substantial
rework. These major, and generally unexpected,
feedback loops are accepted if necessary, but are
difficult and generally confined to successive stages
to minimize the expensive rework involved in
feedback across many stages.

Stage gates and the difficulties of the reversal process
lead to fixed outcomes at the end of each stage.
Iterations occur within each stage, but are not
planned across phases because cross-phase action
would defeat the purpose of phase-gates, which exist
to close one chapter of development and open the
next. The resulting narrowness of iteration has both
advantages and disadvantages.

The advantages of waterfall processes include the
structure they impose on development by reaching
sharp definitions early in product development.
Narrow iterations and phase gates lead traditional
waterfall processes to freeze specifications early.
Firm specifications help design teams by giving them
clear goals towards which to work. The stable
product definition also helps to avoid errors because
midstream corrections are infrequent. Furthermore,
the inherent clarity of the process allows early
forecasting and minimal planning overhead.

The waterfall process performs well in cases when
the product cycles have stable product definitions and
when the product uses well understood technologies
(as in the case of upgrades or maintenance
improvements to existing products.) In these cases,
the waterfall process helps to find errors in the early,
low-cost stages of a project. The waterfall process
also works well for projects that are dominated by
quality requirements rather than cost or schedule
requirements. In these cases, where quality and
error-avoidance are high priorities, the most attractive
path is a direct one with early specifications and no
subsequent, mistake-inducing changes.

Narrow iterations and phase gates also have the
disadvantage of inflexibility. Because they do not
cross phase boundaries, narrow iterations cannot
incorporate feedback from later process steps. This
leads to problems in trying to fully specify
requirements in the beginning of a project, especially
in a dynamic market. Poor or misleading

specifications can lead to great difficulty later.
Failure may result if early specs and assumptions are
proven wrong by subsequent market research,
detailed design, or prototyping. The waterfall
process does not handle these midstream changes
well and can be ill-suited for projects in which
requirements are poorly understood in the beginning.

Waterfall processes are also sometimes poor matches
for companies when speed and time-to-market are
more important than added functionality or total
quality. Its documentation can be burdensome. In
addition, traditional waterfall processes have
difficulty incorporating cross-phase processes that
don’t fit neatly into individual process stages. The
waterfall process also has difficulty handling parallel
tasks within stages. As a result the length of each
stage may be associated with the slowest discipline
within that stage, thus lengthening the development
process.

The waterfall process has strengths as well as
disadvantages. It is clear and solid, but may lack
broad feedback and flexibility.

B. Modified waterfalls

The “classic” waterfall is one of several different
waterfall processes. Some of its problems can be
mitigated by slightly changing the process. This
section examines two such modifications.

One of the problems with the classic waterfall is that
progress can be retarded by one step of many within
any given phase. For example, although there are
many small steps in individual design, one
component of the detailed design might take
significantly longer than the others. Rather than
letting this become a rate-determining step and thus
delaying the entire process, the process can be
improved as shown in Figure 4.

Fig. 4. The waterfall-with-subprojects product
development process

Figure 4 shows a waterfall with subprojects. If an a
system can be decomposed into logical and quasi-
separable components, then it may make sense to do
some of the work in parallel and let each subproject
proceed at its own pace. This way, resources are not
wasted forcing the each subproject to finish at
simultaneously when some may be completed earlier.

Another modification can be seen in Figure 5, which
demonstrates the “overlap” waterfall process where
phases intersect prior to the passage of stage gates.
One of the problems with the classic waterfall
process is the silo or “throw it over the wall”
mentality associated with hard divisions between
phases. The lack of continuity can lead to some
difficulty if different personnel are involved in each
step, which remains a problem in some companies.
The lack of continuity and can also be problematic if
an unforeseen difficulty becomes manifest one stage
too late, forcing a potentially unfortunate or

expensive reversal of course.

Hidden “phase gate”
/

Product planning

Product planning

Concept design

Concept design

System-level design

Detailed Design

System testing

Product release

Product

planning <—’
Concept
design

Detailed
/ design A
System-level Detailed

design

design A"
Subsystem’
testing

Detailed
design B
Detailed

Detailed
design C

design B
testing
design C
System
testing Jg———————F testing

Fig. 5. The overlapping waterfall product
development process

The process in Figure 5 can help overcome some of
these problems. By allowing stages to overlap, some
knowledge — and perhaps feedback — from the next
stage can allow for more effective work. Other
benefits can include improved teamwork and a more
project- (rather than function-) oriented environment.

A problem with both of the modified waterfalls is
that they both lead to parallel work. As noted above
in Figure 1, parallel work may be fine if there are no
interdependencies. However, if there are unforeseen
interdependencies a company with too many tasks in
parallel risks technical failures (if the

interdependencies are never resolved) or inefficiency
(if the interdependencies lead to endless cycles of
unplanned, cross-phase iterations). In addition, some
milestones may be more ambiguous and more
difficult to track.’

C. The spiral process

The spiral PD process differs from waterfalls by
emphasizing comprehensive iteration. Its proponents
assert that the process reduced burdensome and
expensive rework in software, and thus lowered
development time and cost.® The process does
appear to have advantages that are demonstrated both
theoretically in literature and empirically from
interviews. It does, at least at times, lead to
successful product development, where success is
defined as the development of a competitive product
on schedule and within budget.

The spiral process demonstrated theoretically in
Figure 6 is a relatively recent product development
process that has been adopted by many in the
software industry. Unlike the waterfall process, it
includes a series of planned iterations that span
several phases of development. Despite its circular
form, it has five regular steps:
1) Determine objectives, alternatives, and
constraints
2) Identify and resolve risks
3) Evaluate alternatives
4) Develop the deliverables for that iteration,
and verify that they are correct
5) Plan the next iteration (if there is one.)

The radial dimension in Figure 6 represents the
remaining costs to be incurred in accomplishing the
steps, while the angular dimension represents the
progress made completing each cycle of the spiral.
As a project spirals inwards, each loop brings it
closer to completion, while each movement towards
the center reflects additional cost.

Develop
iteration Evalugte
deliverable: alternatives

Plan next

. . Determine
iteration

objectives &
constraints

Fig. 6. An adaptation of the spiral product
development process — Spiraling towards a
completed product

The spiral process is a risk-managing process that
allows managers to evaluate risk early in the project
when costs are still relatively low. “Risk” in this
context entails all four major risks described earlier,
including poorly understood requirements and
architecture, performance problems, market changes,
and potential problems in developing specific
technologies. All these uncertainties entail risks that
can threaten a project, but the spiral process helps to
screen them early, before major costs are incurred.
Using the spiral process can be desirable in rapid
product development because as costs increase later
in the project, the risks decrease.’

The initial emphasis on risk analysis is important to
the flexibility of the process; in some cases of
minimal uncertainty and no iterations, it may collapse
to become a waterfall process and have only one
radial spiral. In other cases, significant risks can be
evaluated early and the development process can be
amended (or ended) in successive spirals to better
suit the company.

By going through many stages with the full
expectation of returning to them later, the spiral
process allows a brief glimpse into the future which
is not allowed by the slower waterfall process. This
glimpse yields information that can be incorporated
in early concepts, requirement specs, and
architectures, thus reducing risk. The risk reduction
comes at the cost of more flexible product
specifications, but this flexibility can be
advantageous in dynamic environments. In this way,
the spiral process overcomes difficulties presented by
unclear initial product requirements, a challenge
which is poorly handled by the classic waterfall
process.

The spiral process has several disadvantages. First, it
is more sophisticated and complex than other
processes, and thus requires more management
attention. Managers must define verifiable
milestones to determine whether the project is ready
for the next round or spiral; this shadows the phase
gates that this process purports to avoid. Second, the
lack of rigid specifications can potentially lead to
delays in manufacturing long lead-time items. Third,
the spiral process may appear to be overkill for
simple projects since it could fold into a simpler
waterfall process. Finally, the author of the spiral

process himself acknowledges difficulties in the first
spiral step of determining objectives, alternatives,
and constraints. Later scholarly work extends the
spiral process by suggesting a split of this first step
into several others.? In addition to these technical
disadvantages, there may well be additional barriers
to the adoption of the spiral process, including
corporate momentum and potential difficulty in
switching processes gradually.

A key distinguishing feature of the spiral process is
the planned, large-scale nature of iterations. Risks
are assessed in each iteration, allowing managers to
plan an effective approach for the next iteration.
Unlike expected small iterations which occur within
individual stages of waterfall processes, and unlike
large but unplanned and unwanted feedback loops
which can occur in less successful waterfall
processes, iterations in the spiral process are planned
and span at least three stages of the development
process. Despite this distinction, critics may consider
it similar to a waterfall process if the milestones and
deliverables between each spiral round act merely as
old-fashioned phase gates.

D. Evolutionary prototyping and delivery

The evolutionary prototyping PD process differs
from the waterfall and spiral processes by
concentrating on the visible prototypes of a product.
As with the other processes, iteration is
acknowledged to occur, but the iterations focus on
prototyping and refining prototypes until release.
Figure 7 demonstrates the process.

Refine

prototype
Design and acclémtla:ble
implement P Complete
Initial initial and release

concept prototype prototype

Fig. 7. The evolutionary prototyping product
development process

The evolutionary prototyping process can handle
changing requirements between prototype builds, and
is therefore useful when the application area is poorly
understood and initial specs are unclear.
Unfortunately, the process does not have a clearly
defined end; prototype iterations must continue until
an acceptable outcome is reached. Because it is not

possible to know how long each project will be and
because building an unspecified number of
prototypes can be expensive, the schedule and budget
risk can be high.

Evolutionary delivery, as pictured in Figure 8, is
similar to evolutionary prototyping, but has added
emphasis on the core design.

Concept

Requirements

analysis

Architectural
and core
system design \

Develop ————p Delivera

/’ aversion \ final version

Incorporate
customer
feedback

\ Elicit /
customer

feedback

Deliver the
version

Fig. 8. The evolutionary delivery product
development process’

This method also includes a series of iterations in the
latter half of the process, but does not mix design and
prototyping as thoroughly. The process attempts to
be flexible by including customer feedback in the
iterative loop. However, if a company is prone to
accommodate most customer requests or changes, it
may as well use evolutionary prototyping.
Evolutionary delivery merely structures the
beginning of the process more formally so that core
detailed design is more insulated from prototyping
and changes due to late customer suggestions.

E. Design to schedule/budget

The final PD process demonstrated here involves yet
another type of iteration. A design-to-schedule or
design-to-budget process can begin as a waterfall, but
then intentionally switches to cross-phase iterations
during the second half of the process. This is
demonstrated in Figure 9.

Concept 4_’
_. Requirements
analysis

R—

High Priority: Detailed design, test

Medium High Priority: Detailed design, test

Medium Priority: Detailed design, test > Release

Run out of time or budget here 7

Medium Low Priority: Detailed design, test

Low Priority: Detailed design, test

Fig. 9. Design to schedule or budget

In this case, the later steps of detailed design and
testing are merged so that developers can more easily
iterate between the two. In this way, the design-to
method does away with the rigidity of waterfall-style
gates between phases and adds flexibility. The
difficulty encountered, however, is that disposing of
phase gates can lead to wider, less controlled
iterations. To compensate for this, iterations are
limited by quality, schedule, and budget
considerations.

The iteration limitations begin when quality and
functionality concerns are prioritized. Once tasks are
organized by importance, product iterations — where
each new, would-be release is an improvement over
an earlier prototype — may occur until a budget or
schedule limit is reached. If daily or periodic builds
have been practiced, the product can be released
whenever that limit is reached. The external limit
provides the discipline foregone in the merging of
process phases.

By having strict budget and schedule limits, those
risks are minimized because their favorable outcomes
are virtually assured. In this process, the risk left
unchecked is technical. Functions and tasks may be
misprioritized or the budget/time deadline may occur
while some high priority items still require improved
design and testing. The results can be a low quality
product or, in the case of a platform with plug-ins, a
product without all the features expected.

As demonstrated in all of the examples above, PD
processes vary widely and call for different types of
iterations as they attempt to manage risk. The
iterations range from narrow to comprehensive and
sometime focus on mitigating one of the four major
types of risk. These variations create an array of
product development processes that companies can
choose to follow. The following section describes
research that may help companies make these
selections more effectively.

IV. RESEARCH AND METHODOLOGY

Current research focuses on improving PD process
selection by examining the differences between
processes and the differences between companies
developing new products. This research stems from

curiosity about an interesting phenomenon:
companies vary widely in their PD processes but
some processes are used more widely in certain
industries. Also, there is no methodical guide for
companies to follow in selecting the PD processes
that best suit them. Given the importance of PD to
companies, improvement should be possible.

This research attempts to examine several key PD
questions, including
1) How do different PD processes address
iteration and risk? What factors set PD
processes apart?
2) s there a relationship between process,
iteration, risk, and company or product?
3) Can a series of criteria be developed by
which companies can better select their PD
processes?

The previous section addressed the first question; this
paper proposes that there are a variety of different PD
processes, each of which iterates differently as part of
risk management. Thus, variations of iteration are
key distinguishing features, including the number,
scope, and level of planning of iterations.

Case study research addresses the remaining two
questions. This empirical study is currently
demonstrating the range of PD processes used by a
variety of companies — each with different products,
different organizational structures, and facing
different risks. The case studies include software
companies such as Integrated Development
Enterprise (IDE) and Aviation Technology Systems
(ATS) as well as manufacturing companies such as
Ford Motor Co. and Pratt & Whitney (P&W). Case
studies also include “mixed” companies whose
product include both software and manufactured
components, such as Xerox and ITT Industries.
Ongoing research with these companies examines
their PD procedures and surveys their PD mangers
and employees to gage their development efforts.
Figure 10 demonstrates how these companies span a
range of processes and iteration types.

[R N . Bk mherveas
sl o s =

Fig. 10. Companies use different processes to span a
range of iteration types and risk mitigation.

Although still in progress, the empirical research
already suggests several key findings. First, one size
does not fit all; companies with different products,
organizations, iteration preferences and risk profiles
cannot all use the same PD process with the same
degree of effectiveness. Some processes will suit
companies better than others, suggesting that there is
a relationship between process and company or
product.

Second, selecting the best PD process can be difficult
for managers. Although a relationship between
process and company exists, the tenets of that relation
are still unclear. Managers are not quite haphazard in
choosing PD processes, but they may select processes
suboptimally because there are few guides that
suggest which processes would best fit their own
companies. Given the wide range of PD processes
available, it is unfortunate yet understandable that
there are some mismatches between companies and
processes.

Third, it may be possible to help managers improve
their difficult PD process selection by clarifying the
relationships between processes and companies.
Understanding the relationship requires an
understanding of its links. The two most important
links are method of iteration and risk profile, which
help categorize PD processes and companies so that
they can be matched more effectively. Process
iterations may include varying numbers of planned
and unplanned iterations, which can also vary in
scope from narrow to comprehensive. Company
risks to be addressed by these processes can include
technical, market, schedule and budget risk.
Together, iteration and risk can be key indictors in
companies’ attempts to improve PD.

The case studies also suggest several subsidiary
criteria that may help companies better select their
PD processes. Iteration for the management of risk
remains instrumental in matching processes with
companies, but five other criteria can further refine
the alignment. The first is the type of product or
process decomposition possible. Decomposition can
help determine what companies can iterate across, as
can be seen in Figure 11. If decomposition type
limits the ability of a company to iterate in certain
ways as part of PD, then decomposition can be used
as a selection criterion in choosing a PD process.
Related work by Jootar suggests how partitioning can
make substantial differences in how much work is
necessary in successful PD.?

B
Parallel [l e —

Sequential
Fig. 11. A parallel decomposition may
not allow for iteration.

The second additional criterion is the level of
interactivity of changes. Some product changes are
highly interactive because they affect other
components, while others are relatively independent
because they are add-on or plug-in features that
require no changes to other parts.

The third criterion is the platform nature of the
product being developed. Whether a product is a
new generation of a platform or merely an
improvement on an older version may have profound
impacts on the speed and type of PD iterations
performed, and therefore on PD process selected.

The fourth criterion is specification rigidity. If
specifications are required to be firm by company
policy, customer requirements, or government
regulations, iteration may be narrowed in scope.
These effects on iteration again may affect process
choice.

Finally, the fifth additional criterion is lead time.
Iterations may be reduced in scope or number if, for
example, prototypes take a long time to manufacture.
Alternatively, if ramp-up production does not require
the creation of new tooling or long-lead-time items,
new or different iterations offer the possibility of
improving PD, thus affecting PD process choice.

The ongoing research demonstrates that PD processes
use different forms of iterations to address different
types of risk. Not all PD processes are suitable for
every company, so iteration and risk are two major
criteria that companies can choose suitable PD
processes. In addition to these two major criteria,
type of decomposition, interactivity of changes,
platform nature of the product, specification rigidity,
and lead time are also important measures that can

help companies improve their PD process selection.
These criteria for matching companies and PD
processes are demonstrated in Figure 12.

PD Process choices

Type of
decompgsition

Independence of

Iteration type Lead time
changes

requirements
and

Risks addressed

Stability of
specification Platform nature

of product

\Major criteria

Fig. 12. Decision criteria linking companies and
suitable PD processes.

Other criteria z

Companies

Figure 12 is the first proposed map to help managers
select specific PD processes that suit their companies.
It traces major and minor criteria to corresponding
product development processes. Furthermore, the
axes in the spider graph of “other criteria” define the
axes so that greater quantities of each lend
themselves to processes with narrower iteration of the
kind seen in strict waterfall processes, while closing
in on the origin suggests comprehensive iteration of
the type seen in spiral processes.

Although rudimentary, the map and criteria in Figure
12 can be a useful tool in helping companies select
PD processes that are appropriate to their own
circumstances. Future research is necessary to refine
this map of decision criteria, weigh the differing
criteria appropriately, and find boundaries and
quantifications along the spider graph so that
companies’ best options can be clearly marked.

V. CONCLUSIONS

Companies can improve their product development if
they have better methods for selecting their PD

processes. A large array of PD processes manage
development risk by iterating, but differ from each
other in the number and scope of their iterations, as
well as in the types of risk they mitigate.

Current case study research demonstrates that PD
processes differ tremendously between companies
and that companies could benefit from better PD
process selection. Furthermore, risk and iteration
methods are important criteria for matching
companies with PD processes that suit them and their
products. Additional criteria, including the type of
decomposition, interactivity of changes, platform
nature of the product, specification rigidity, and lead
time are also important measures that can help
companies improve their PD process selection.

The proposed map of these PD decision criteria can
help align companies with advantageous product
development processes

ACKNOWLEDGEMENTS

The authors would like to acknowledge the help and
suggestions of Daniel Whitney, Chris Magee,
Maurice Holmes, and Jay Jootar.

REFERENCES

M Felek Jachimowicz, et. al., “Industrial-academic
Partnerships in Research,” Chemical Innovation,
Sept. 2000, pp. 17-20.

2 Steven D. Eppinger, “Innovation at the Speed of
Information,” Harvard Business Review, Jan. 2001,
Vol. 79, No. 1, pp. 149-158.

&1 Adapted from: Steve McConnell, Rapid
Development: Taming Wild Software Schedules,
Microsoft Press, Ch. 7: Lifecycle Planning, pp. 136-
137.

™ preston G. Smith and Donald G. Reinertsen,
“Shortening the Product Development Cycle,”
Research-Technology Management, May-June, 1992,
pp. 44-49

B Op. Cit. McConnell, pp. 144-145.

1 Barry M. Boehm, “A Spiral Model of Software
Development and Enhancement,” IEEE Computer,
1988, pp. 61-72

1 Op. Cit. Boehm, p. 64.

8 Barry Boehm and Prasanta Bose, “A
Collaborative Spiral Software Process Model Based
on Theory W,” IEEE, 1994.

1 Op. Cit. McConnell, pp. 147-151.

(19 Jay Jootar, “A System Architecture-based Model
for Planning Iterative Development Processes” SMA
Paper, Center for Innovation in Product
Development, January 2002.

