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Abstract-A hybrid FEM/FDM algorithm for particle
migration of quasi-steady flow in concentrated suspension
materials is proposed in this study. This hybrid FEM/FDM
algorithm in which the planar variables, such as pressure
field, are described in terms of finite element method, and
gapwise variables of temperature, density concentration and
time derivatives are expressed by finite difference method.
The particle concentration inhomogeneities can be predicted,
which is ignored by the existing injection molding simulation
packages. Simulation results indicated that powder
concentration variation could be significant in practical
processing in PIM.

1. INTRODUCTION

   Powder injection molding (PIM) is an important net-shape
manufacturing process. It can produce complex shaped, high
performance and low cost metallic or ceramic components, with
relatively greater design flexibility than conventional powder
metallurgy and viable for all shapes that can be formed by
injection molding techniques.
  Numerical analysis of injection molding filling process of
conventional thermoplastic is relatively successful [1- 2]. Some
researchers [3- 4] applied the same numerical simulation
techniques developed for thermoplastic for the analysis of the
PIM filling process with no consideration of the peculiarity of the
PIM manufacturing processes, in particular particle migration,
which has an effect on the mold-filling behavior. Iwai et al [5],
using an alternative approach namely granular mechanics method,
predict the motion of individual particles during mold-filling. The
kinematical change of powder density is taken into consideration
with an explicit evaluation of particle-binder interaction and
powder characteristics, such as particle size and distribution.
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However, such an approach limits the number of particles that
can be considered before the computational effort becomes
excessive. Thus, its potential for simulating industrial process is
limited.
  Various investigators had proposed shear-induced particle
migration theory to explain a number of flow phenomena for
concentrated suspensions including particle accumulation and a
blunted velocity profile in simple flow systems. Leighton and
Acrivos [6-7] suggested phenomenological models for particle
migration in inhomogeneous shear flow. Using Stokesian
Dynamics, Nott and Brady [8] have recently carried out dynamic
simulations of pressure-driven flow for a suspension in a two-
dimensional channel with respect to a monolayer of identical
spherical non-Brownian particles. Their simulations confirmed
the Leighton and Acrivos shear induced migration theory.
Philipes et al [9] adapted the scaling arguments of Leighton &
Acrivos, together with an empirical relationship between the
suspension viscosity and particle concentration, to predict
particle migration for inhomogeneous shear flows. As reported
by Karnis et al [10], the velocity profile of a flowing suspension
in a circular channel was  blunt, compared to the typical
parabolic profile. Averbakh et al [11] and Koh et al [12]
described an experimental method  of measuring velocities in
slow viscous flows of highly concentrated suspensions with
Laser Doppler Anemometry technique. Their measurements
confirmed that velocity profiles in a concentrated suspension
were blunt due to the migration of particles from high shear area
to low shear area and it was different from those for a
Newtonian fluid. However, these phenomenon have never been
considered by the PIM community.
  In this investigation, a new numerical approach which has the
potential of general applicability, but targeting the simulation of
practical powder injection molding process, is proposed. The
present analytical and numerical development can provide an
insight into the mold filling process so as to predict the
concentration distribution of the powder, a major characteristic
of powder injection molding. The proposed model is based on
the generalized Hele-Shaw flow model[13] for thin cavities,
coupled with a diffusion model which describes the interaction
between powder and binder. The rheological behavior of the
feedstock was evaluated using a Krieger model [14] to account
for the viscosity dependency on shear rate and powder
concentration. The simulated results indicated that powder
concentration variation could be significant and most of the key
parameters for filling process would change due to a change in
powder concentration distribution.
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2. MATHEMATICAL MODEL

a) Governing equations

  The Hele-Shaw type flow model provides a reasonably accurate
description of polymer flow in thin cavities. For our preliminary
investigation of PIM for thin cavity, we adopt a similar approach.
Thus, the resultant sets of conservative equation can be written as:
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where the continuity equation is expressed in terms of gapwise
averaged velocity components u and v , with u and v the

velocity components in the x  and y directions respectively. b  is

the half thickness,η  the shear viscosity and P   the cavity

pressure. In the energy equation, ρ is the feedstock effective

density, vC  the effective specific heat, and K  the effective

thermal conductivity. When the no slip boundary condition is
employed at the wall, the following pressure equation derived
from the momentum and continuity equations can be obtained:
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which S is the flow conductance.
  When a suspension (powder/binder mixture) is subjected to
inhomogeneous shear flow in the cavity, shear-induced diffusion
of particles takes place. Following the diffusive flux model of
Phillips et al [9], the implementation of the diffusion equation can
be written as[15]:
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whereφ  is particle concentration by volume, a is the

characteristic particle radius, γ&  is the local shear rate, cK  and

ηK  are the empirically determined diffusion coefficients.

b) Boundary conditions

  The pressure equation (4) is a differential equation of elliptic
type and thus requires the boundary conditions to be specified
along all boundaries. At the moving front, it is assumed that the
pressure is constant. For the sake of simplicity, this constant is
set to zero:

front
P =0.          (7)

At the gate, the flow rate is usually specified as a function of
time. This condition can be stated as:
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where n is the outward normal to the boundary and  Q is flow

rate across the entire gap.  On the cavity wall, it is required that
the normal component of the velocity vanish as:

0=∂∂ nP           (9)

Since the conduction in the x and y directions is neglected in

the energy equation, only the temperature on the walls of the
mold has to be given:

wwall
TT =         (10)

At the gate the temperature is assumed to be uniform and equal
to the melt temperature. At the flow front, the fountain flow
carried the material from the core and deposits it on the cavity
wall. A scheme has been developed [16] to account for the effect
of the fountain flow on the temperature field. In our
investigation, the temperature at the flow front is taken as the
temperature in the core of the cavity.
    Diffusive-flux equation (6) also must be supplemented with
appropriate boundary conditions at the wall, which is subjected
to the usual no slip condition, 0=u , and no particle flux
expressed as:
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where n is the outward normal unit vector. The particle
concentration φ  is assumed to be uniform initially at the

entrance or the gate and expressed as:



  0φφ = , for bzb ≤≤− .         (12)

c) Material models

  The viscosity of the bulk material is taken to be a function of the
neat binder viscosity and the volume fraction of the powder. We
have adopted the Krieger rheological model [14].
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where bη  is the viscosity of binder. m  is material constant. φ

and cφ  are the powder concentration and the critical powder

loading respectively. This rheological model describes the effect
of the volume fraction of the powder on the flow behaviour of
powder/binder mixture.  The viscosity relationship for the binder
is approximated using the following power law viscosity model:
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where n  , 0m and aT are material constants. As the powder

distribution φ is calculated, the feedstock effective density ρ and

specific heat vC  can be determined respectively using the linear

rule of mixture as follows:
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where 1ρ  and 2ρ are density of the binder system and powder

particle respectively. 1vC  and 2vC  are the specific heat of the

binder system and powder particle respectively.
To estimate the effective thermal conductivity K , Jeffrey’s
equation is adopted, which should give a better approximation
than the linear rule of mixture. Jeffrey’s equation can be
represented as[17]:
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where 
mf KK=λ  and )2()1( +−= λλζ , K ,

fK  and

mK are the thermal conductivity of feedstock, particles and

binder matrix respectively. φ is the particle volume fraction.  

3. NUMERICAL IMPLEMENTATION

a) The pressure equation

  Galerkin’s method can be applied to the pressure equation,
equation (4) as a finite element formulation, which can be
described as follows:
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with the weighting function iW being zero where pressure

boundary condition is imposed. Integration by parts and
applying the divergence theorem, one obtains
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where xn and yn  are the components of outward unit normal

vector on the boundary. Since iW is zero where pressure

condition is imposed,
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Along the cavity wall boundary due to the impermeable
condition, the first integral term vanish in equation (19).
Therefore, equation (19) can now be rewritten as
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which is a weak form statement of equation (4) incorporating
boundary conditions. With the finite element discretization of
the domain π , Equation (21) can be rewritten as a summation
over the elements as follows:
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Approximate pressure P over each element can be interpolated

by shape functions iN and nodal pressure ip ( 3,2,1=i ):

332211 pNpNpNP ++=         (23)

Introducing equation (23) into equation (22) and letting

ii NW =  gives
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Equation (24) can be restated in the form of a global matrix
equation:

  }{}]{[ CPK =       (26)

where [ K ] is the stiffness matrix for the system, {P }denotes

the vector of unknown pressures and {C }denotes the forcing
vector depending on the given flow rate and the pressure
boundary conditions. Equation (26) is a nonlinear system of
equations for pressure field and thus requires an iteration
procedure to obtain a convergent numerical solution. Estimates of

),( yxP can be obtained by solving equation (26) with an initial

value of S . Subsequently,  S , which is function of the viscosity

η , is  updated using equation (5). A new [ K ] is then obtained.

A more accurate ),( yxP can be estimated by solving equation

(26) again. This iteration procedure is repeated under a converged
solution is obtained.

b) The energy equation

  The energy equation (3) is discretized using finite difference
method. The time derivative of temperature is  approximated by
the backward difference scheme:
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and the z-derivative by the central difference scheme:
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The viscous dissipation term and the convection term are
evaluated using the solution from the previous time step. This
method allows the calculation of the temperature as a function of
time and thickness position from node to node.

c) The diffusive-flux equation

  The equation (6) can be written in the following conservative
finite difference form:
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The diffusive-flux equation (6) is solved by an implicit
conservative finite difference scheme in the gapwise direction
with particle concentration evaluated at the node of each
element. The convection particle flux and shear-induced particle
flux are evaluated using the particle concentration from the
previous time step, while a backward difference method is used
for transient and particle concentration gradient flux terms. This
results in a symmetric tri-diagonal matrix which can be solved
using Gauss-Seidel method after solving the particle
concentration at the wall from equation (11).

4. NUMERICAL RESULTS AND DISCUSSION

The rheological data of binder system employed for the

numerical examples are  nsPam ⋅×= −4
0 10824.2 ,

KTa 2138=  and 99.0=n . The density of iron powder and

binder are 3
1 /87.7 cmg=ρ and 3

2 /91.0 cmg=ρ
respectively. The specific heat capacity of iron powder and

b i n d e r  a r e  KkgJCv ⋅= /3.3281  a n d

KkgJCv ⋅= /27902  respectively. The thermal conductivity

of iron powder and binder are KmWK f ⋅= /8.75  and

KmWKm ⋅= /024.0  respectively. Employing the Krieger

model of suspension, we assume that 82.1=m .

a. A box cavity

  A box cavity has been chosen to demonstrate the effects of
powder density distribution on flow and heat transfer during the
mold filling stage. The dimensions of the box are 30cm by 10cm
by 20cm with a thickness of 0.2cm. The finite element mesh is
shown in Figure 1 (766 elements, 444 nodes). Node G



Figure 1 Mesh of the box cavity.

the gate location. The molten feedstock temperature is 240 Co ,

filling time is 5s. The mold temperature is 80 Co .

  To investigate the effects of  powder density on the filling stage,
powder concentration distribution and effective viscosity were
assumed to be uniform at the gate. Non-isothermal simulations
with the assumption of with and without particle migration were
carried out. Without particle migration, uniform particle density
distribution would always be predicted, which is not realistic.
With particle migration, a final inhomogenous green part would
be predicted.

b) Effect of the mesh size

  In order to evaluate the sensitivity of the results with mesh size,
three mesh sizes have been tested: (i)  346 elements , (ii) 766
elements as shown in Figure 3 and (iii) 940 elements.
Computational time about 101s, 212s, and 253s on a PC586
Pentinum III(RAM 284Mb) for cases (i), (ii) and (iii)
respectively.
  The evolution of pressure versus filling time at the gate has been
plotted for the three cases in Figure 2. The pressure at the gate
was slightly higher for the coarse mesh cases (i) but there was
little difference between cases (ii) and (iii). Thus, for all
subsequent calculation, a mesh size of 766 elements was
employed.
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Figure 2 Gate pressure evolution for three mesh sizes

c.  Effect of diffusion constant cK  and ηK

  There are no experimental data on the diffusion coefficients for

iron powder mixtures. Thus, the diffusion constants cK and ηK
were chosen respectively to be 0.and 0., 0.43 and 0.65,  0.55 and
0.65 in order to observe the effect of the diffusion constant on
particle migration. In addition, mono-size iron powder particles
of 50 mµ  in radius were assumed for each simulation. As

expected, from shear-induced diffusion model, equation (11),
powder migrated toward these low shear regions from high shear
regions resulting in powder accumulation as shown in Figure

3(a). For 66.0=ηKKc  ( cK =0.43 and ηK =0.65) and initial

concentration %45=φ , the maximum bulk powder

concentration is approximately  46.5%. The minimum bulk
powder concentration is  approximately  43.5%.     Figure 3(b)

Node 151

46.5

43.5

43.1

Figure 3(a) Predicted bulk powder concentration(%)
distribution with 

ηKKc
=0.66 and %45=φ

Figure 3(b) Predicted bulk powder concentration(%)
distribution with 

ηKKc
=0.90 and %45=φ

46.5

G

Node 3

Node 56

Node 151



shows the through thickness average (bulk) distribution powder

concentration of the part with 90.0=ηKKc  ( cK =0.55

and ηK  =0.65) at the  end  of filling   with   the  same  initial

concentration  as in Figure 3(a). The maximum bulk powder
concentration is approximately 47.8%. The minimum as   in bulk
powder concentration is approximately 43.1%. As expected, with

larger ηKKc , there was greater particle density variation.

d. Through thickness powder concentration and velocity
distribution

  To further illustrate the effect of particle migration on velocity
profiles and particle  density  distribution,  the
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initial concentration  was chosen  to  be =φ .%,0  25%, 35% or

45%.  Figure 4 shows powder concentration profiles at node 151
for different initial concentrations. It is evident that powder
concentration at the midplane increased considerably with a
corresponding significant decrease in powder concentration near
the wall. This was caused by the relatively high shear rate near
the wall and negligible shear rate at the midplane of the part. As
the resulting effective viscosity along the thickness direction was
highly non-uniform, it increased considerably at the stagnation
area such as the corner (node 56 and node 3 in Figure1). This
would result in high powder concentration as illustrated in Figure
3a) and 3b).
The changes in the through thickness direction for concentration
and effective viscosity were further reflected in the velocity
profiles as shown in Figure 5.
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The migration of particles to the midplane  resulted in an
increase in effective viscosity. This in turns blunted the velocity
profiles at the midplane. This prediction is in agreement with
the computational results of Brady [8] who employed Stokesian
Dynamics method for viscous flows of concentrated suspensions
exhibiting shear-induced particles migration.

5. CONCLUSIONS

  In this investigation, a numerical model based on a FEM/FDM
hybrid method has been developed to simulate the powder
injection molding process with particle migration.  Powder
distribution can be predicted through  the introduction of
diffusion equation at the nodal control volume level. The model
can predict the variation of powder density distribution which is
ignored by the existing simulation packages. Particle migration
reduced the pressure required  for the process as viscous
dissipation of energy was reduced. Preliminary simulation
indicated that powder concentration variation could be
significant. Non-isothermal analysis indicated that most of the
key parameters for filling process would change due to a change
in powder concentration distribution. These numerical results
elucidated the importance of particle migration for non-
isothermal flow.
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