
1

Collaborative Engine for Distributed Mechanical Design

Qianfu Ni and Wen Feng Lu

 Abstract Effective collaboration is
essential for engineers at geographically
dispersed locations to accomplish good design
with less iteration. Over the last several
years, more and more efforts have been put
into such research as many industries have
distributed their product development to
locations with knowledge force. This paper
presents a collaborative engine to facilitate
collaborations among distributed mechanical
designs. Using component-based software
technology, collaboration functionality is
developed into a set of groupware that makes
the collaborative engine applicable to develop
new collaborative applications or integrate
legacy applications into collaborative
environments. An XML-based information
representation is developed to streamline the
information transmission within the
distributed environment. A case study is
carried out to show how this engine facilitates
designers to collaboratively create a 3D solid
model of a same part in real time.

Keywords collaboration, distributed design,
collaborative engine

INTRODUCTION

 As global market is becoming more and more
competitive and customer requirements are more
and more specific, production in many industries
is changing from make-to-store to make-to-
market and further to make-to-order. Products
may need to be designed and produced
specifically based on customer requirements. In
order to survive in such competitive market with
high quality products, enterprises need to
provide channels for customers to be involved,
especially in the early stage of product
development. It is often stated that roughly 70
percent of the total life cycle cost of a system is
determined during conceptual phase of the
product development process. Very few

Qianfu Ni is with Manufacturing Information Technology Division, Gintic
Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075

Wen Feng Lu is with the Innovation in Manufacturing Systems and Technology
(IMST), Singapore-MIT Alliance (SMA), N2-B2c-15, Nanyang Technological
University, Nanyang Avenue, Singapore 639798, email: wflu@gintic.gov.sg

traditional CAD tools are available to support the
early stages of design [1]. On the other hand,
Finger and Dixon also stated that an important
area that has received little attention to date is the
creation of design environments that integrate
available tools into a consistent system to
support the designer [2, 3].

 Designing is a process of converting
information that characterizes the needs and
requirements for a product into knowledge about
a product [4]. Designers often complain that they
spend a lot of time searching for information and
knowledge, but could not get the desired
information and knowledge. It is claimed that
about 70% of time during the design stage are
spent on searching for information [5]. Design
process has been considered by many
investigators as a decision-making process,
which is very information intensive. To make
decision in design, lots of information needs to
be analyzed, such as customer requirements,
market trends, existing products data, materials,
manufacturing capabilities, assembly, and social
culture [6]. Hence, the design process often
involves all kinds of experts with different
intentions, backgrounds and circumstances who
usually are geographically dispersed at different
locations. In such scenario, communication
among team members is very critical to ensure
that the design can be carried out successfully
and effectively. In this respect, collaborative
design is recognized as an effective solution for
distributed design. It allows geographically
dispersed designers with different expertise to be
involved in design at the same time with
remarkably short communication time. It also
facilitates designers to cooperatively make
decisions with consistent information, and
maximizes information sharing. Design is known
to involve lots of iterations and corrective work.
Many design flaws are often discovered in
manufacturing stage, and some may even be
found after the products are delivered to
customers. The corrective redesign effort is
usually extremely expensive. The collaborative
design enables different expertise besides
designer, such as manufacturing engineers,
customers and suppliers, to be involved in the
design process. This provides a means to enable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

design flaws and shortcomings to be identified in
the early stage. As a result, the number of design
iterations can be minimized, and the rework
efforts could be reduced.

 There are two approaches to realize the
collaborative design. One is to develop new
computer-added software with support to the
collaborative design. The solution based on this
approach can provide powerful capabilities to
fully support the collaborative design, but it will
be very costly. This kind of software is not
available in the market yet, but some software
companies, such as PTC and Unigraphics, which
are vendors of Solid Modeling and Product Data
Management (PDM) software, already
demonstrated some prototypes of such systems.
Another approach is to develop collaboration
functions based on the existing software.
Comparing to the former, this approach requires
less effort and time to realize.

 Many researchers have been working on
collaboration enabling technologies or
infrastructure. Uwe Jasnoch et al proposed a
Virtual Prototyping environment in which each
participant can focus on his/her own area of
work [7]. They put more focus on product model
based on STEP and concurrent information
access. Gun-Dong F. Pahng et al presented a
WEB-based collaborative design model, which
focuses on decision support based on problem
decomposition [4]. Hardwick et al developed an
information infrastructure architecture that
enhances collaboration between design and
manufacture firms [8].

 In face to face collaboration, designers have a
variety of ways to communicate with each other.
Besides speaking to each other, eyes contact,
face expression, and gesture could support
effective communication. Although it is difficult
to provide such comprehensive mechanism for
communication in a collaborative environment
for solid modeling, it is possible to develop some
fundamental supporting functions, such as event
triggering, notification messaging, and task
management, to enhance close interaction
between collaborative users. This paper
develops a collaborative engine with such an
environment in mind that collaborative users are
aware of each other so that they feel that they are
working collaboratively. In order for the
collaborative engine to be easily utilized to
develop new applications or integrate legacy
application into a collaborative environment,

collaboration related functions are abstracted and
modeled into a set of groupware based on
component software technology. An information
representation is also developed using Extensible
Markup Language (XML) to streamline the
information transmission through the engine.
This collaborative engine is employed in a case
study to develop a collaborative working
environment in which designers are able to
collaboratively work on mechanical design in
real time.

ISSUES IN NETWORK-BASED
COLLABORATION

 Traditionally, communication within design
teams can happen in many different ways, such
as paper-based documents, face to face meeting,
telephone conference, fax, and email. Such
communications between designers in different
locations could be time consuming. Designers
today have to work independently as well as
collaboratively. Each designer has his/her own
role so that he/she can only access limited
information and will only be notified with
related events and activities. In a network-based
collaboration, collaboration processes could
become more complicated. Different designers
could be involved in the same task or
interdependent tasks. It is important for
network-based collaboration to build a clear
boundary between different designers to ensure
that designer could work independently or
cooperatively when necessary. It is equally
critical for the network-based collaboration to
provide capabilities to streamline design
activities, control information access, and
manage events and messages within the
environment.

 In order to assist users to share information and
to work in a collaborative way, the collaborative
engine is modeled based on the following
requirements.

1. Enable real-time communications;
2. Support multiple users working on a same task

at the same time;
3 . Maintain independence of individual user

within the working environment;
4 . Provide an effective and secure information

sharing;
5 . Provide a means to organize meetings and

discussions;
6 . Facilitate development of collaboration-

supported applications and integration of

legacy applications into a collaborative
environment

XML-BASED INFORMATION
REPRESENTATION

 At present, most of distributed computing
systems are constructed based on heterogeneous
platforms. For a distributed system that supports
a heterogeneous platform, it is essential that
information transferred within the system should
be acceptable to each platform. Apparently,
object-based information transmission
mechanism can not function because objects are
language and platform dependent. Hence, it is
necessary to design a commonly acceptable
information transmission approach for the
collaborative engine. For the engine, a metadata-
based approach is adopted here to streamline the
information transmission. The term “metadata”
is widely used, but no apparent formal definition
is formed within the research community. ISO
description 11179 defines metadata as the
information or documentation, which makes data
sets understandable and sharable for users [9]. In
this paper, we simply define it as a set of terms
that are used to describe data to enable the data
to be commonly understood within an
organization or a system.

 XML is a technology most suitable for
definition of metadata currently. XML is one of
the most significant developments of the
computer industry since the World Wide Web
and Java moved to their present positions of
importance [9]. XML was originally developed
for integration of legacy systems based on
different platforms. XML-based matedata is
developed to transmit information within the
collaborative environment.

 Information is transmitted using objects if the
platforms are the same. This is the most efficient
way, as it does not need any transformation. As
shown in Figure 1, information will be
transmitted using object from module 1 to
module 2 directly within client 1. If information
needs to be transmitted to a different platform, it
is first transformed into an XML document
before being transferred to the collaboration
engine. The engine can do some processing if
necessary. After that, the information is
broadcasted to related clients on different
platforms.

Fig. 1 Information transmission model

 XML-based information to be transferred to
other platforms contains three sections: header,
command and entity. Header section provides
overall description of the information contained
in the entity section. Command section includes
information indicating which actions are
performed to the entity. Entity section contains
the actual information to be transferred. XML
uses tags, which can have attributes to precisely
describe the tags, to serve as metadata in XML
Documents. According to roles of sections, XML
tags are categorized into three classes: general
tag, command tag and entity tag. Tables 1, 2 and
3 show part of the tags defined. Tag Packet is the
outer most tag, which wraps other tags. Tag
Packet has an attribute named type, which
indicates the type of information packet, such as
action, notification, or message. For entity
section, many tags needed to describe different
entities which should be developed based on
specific applications.

TABLE 1 GENERAL TAGS
No Tag Name Remark
1 Packet B e g i n n i n g t a g o f

information to be transferred
2 Header Beginning tag of header

section
3 Command Beginning tag of command

section
4 Entity Beginning tag of entity

section
5 Sender User who sends the

information
6 ID A unique identification of a

piece of information
7 Team A unique identification of

team from which the
information is sent out

8 Time Time when the information
is sent out

9 Synchronal Whether the information is
transferred in the synchronal
way

1, 2: Function modules
3: information object
4: XML translator

Client 1

2 1
3

Engine
Preprocess4

Client
2

 2 1
3

 4

TABLE 2 ACTION TAGS
No. Tag Name Remark
1 Add Action “add” takes place to

the entity
2 Modify Action “modify” takes place

to the entity
3 Delete Action “delete” takes place

to the entity
4 Save Action “save” takes place to

the entity
5 Open Action “open” takes place to

the entity
6 SaveAs Action “save as” takes place

to the entity
7 View Action “view” takes place to

the entity
8 CheckIn Action “check-in” takes

place to the entity
9 CheckOut Action “check-out” takes

place to the entity

TABLE 3 ENTITY TAGS
No. Tag Name Remark
1 Feature A design feature
2 File A file
3 Document A document

Fig. 2 Collaborative Engine works as a bridge

FRAMEWORK OF COLLABORATIVE
ENGINE

 The collaboration functionality is extracted and
developed into a collaboration engine that acts as
a bridge between application clients and a server,
as shown in Figure 2. A set of remote interfaces,
which can be used to invoke functions provided
by the engine, is exported for application clients
to communicate with the collaborative engine
and be integrated into a collaborative
environment. In an distributed application, an
application server and clients can communicate
with each other through these interfaces.

 In a network-based environment, collaboration
between two designers in geographically
dispersed locations may not function well. This
is certainly a barrier to information capture and
communication. The collaborative engine
presented here tries to provide an environment,
which pushes more relevant information to users
as well as enables users to have a feeling that
other users are “around” in the environment in
the environment. In the engine, connection
functions are provided for users to enter or exit
the environment. An event triggering
mechanism is established to push information to
related users and notify users what’s happening
in the environment. It also assists the users to
filter events that they want to publish or
subscribe. Task management gives the users a
sense of what’s going on in the environment,
where they are and how they link to others. The
users can talk to each others through messages,
remind others, make an appointment by sending
notification, or organize discussions among a
group of people.

 Using component-based technology, the
collaborative engine is modeled as a set of
groupware based on multi-tier architecture that
makes the engine easy to be implemented and
used. As shown in Figure 3, each factor and
service is designed as a stand-alone component
that can communicate with other components.
Interfaces are defined and served as the protocols
of communication among the components. The
interface tier exports functions of the
collaborative engine for application development
and integration. The application tier provides
functions, exported by the interface tier, to
enable and manage collaboration. The service
tier provides functions to support the application
tier. The database tier maintains the data needed
for managing collaboration.

4.1 Application tier

 Application tier tries to provide all kinds of
functions to construct and manage an
environment that enables users to be aware of
others and the environment. In this tier, each
factor provides functions to support
collaboration for certain aspect. A user is
connected to the collaborative engine through
connection factor. Then he/she might be
involved in a task using task factor. When he/she
does something, real-time factor can notify other
clients in an on-line manner. The environment

Application
server

Application
client 1

Collaborative Engine

… Application
client N

also notifies him/her when something happen in
the environment.

4.1.1 Connection Management

 In a collaborative environment, it is very
important to manage on-line users. Access
control, team session, task session and event
management depend largely on on-line user
management.

 The environment management and activity
tracking also need support from on-line user
management. The connection factor provides log
on or log out methods for clients to connect or
disconnect from the collaborative engine. When
a user logs on the server, he/she will be
transformed to an on-line user. At the same time,
a user session is constructed and attached to the
user session. In fact, most user-related functions
work based on user sessions rather than users
information itself because a user can log onto the
server using different roles at the same time.

4.1.2 Event Management

 The collaboration environment should not make
user operations complicated. Users in the
collaborative environment should work as if they
worked independently. Users also can join or
exit the collaborative environment easily. Event
delegation technology, which enables flexible
integration, is adopted to facilitate
communication among users so that
independence of individual users can be
maintained. Event management functions are
separated into two components: event factor and
event service. The event factor provides
functions for users to define the events he/she
would like to publish, and the events he would
like to receive. Event service is responsible for
broadcasting events to relevant users.

4.1.3 Real-time Factor

 The real-time factor can accept a request to
broadcast real-time events to relevant users. The
event can be broadcasted synchronously o r
asynchronously depending on the value of the
attribute “synchronal” (Table 1). If a targeted
user is not on-line, the real-time event can be
transformed to a message or task, which can be

Team
Session

Session Service

User
Session

Session
Manager

Object Service

Object Container

Object
Creator

Object
pool

Interface to Server

Real-time
Factor

Discussion
Factor

Task
Factor

Message
Factor

Connection
Factor

Event
Factor

Event Off-line
User

Task

Event Queue

Event
Sender

Event filter

Event Service

On-line
User

Task
Session

Unified Data Access

Service
tier

Database
tier

Application
tier

Interface
tier

 Fig. 3 Collaboration architecture

persisted in a database. This user will be able to
see the event immediately when he/she logs onto
the system later. If an application attempts to
realize real-time collaborative tasking, each
client should refer to the interface exported from
this factor. When something happens in an
individual client, the real-time factor will notify
others with necessary information.

4.1.4 Task Management

 The task factor’s responsibility is to manage
task-related businesses, such as creation of new
tasks, distribution of tasks or cancellation of
tasks. It also provide some functions to monitor
tasks, for example, what tasks are planned in the
system, what tasks are ongoing, or what tasks
on-line users are performing.

4.1.5 Discussion Management

 The discussion factor simulates a meeting room
in the real world. It is armed with functions to
open a meeting room, close the door of a
meeting room, or to dispose a meeting room. It
also manages the owner of each meeting room
and his rights indicating who can join in the
meeting. The message factor is a simple
facilitator that helps users send messages to the
environment. Users can use it to call for a
meeting, to make an appointment, and to issue a
notice.

4.2 Service tier

 Service tier organizes common functions into
three services to support the application tier.
Session service is built to maintain a boundary
between users, teams and tasks. It provides an
independent working space with awareness of
other users. Event service can accept requests
from application tier or session service to
broadcast events within the environment. Object
service provides object management functions
for the whole engine.

4.2.1 Event Service

 The event service maintains an event queue. All
events to be issued will be put into the queue
before they are sent out. The event service
checks the value of the attribute “synchronal”,
then uses a corresponding way to broadcast the
events. Before sending an event, the event
service also filters events according to the user
subscription. An event will only reach a user

who subscribes to it. If a user who does not
subscribe to an event is targeted, a message will
be sent to him/her, and the message is also
persisted in a database for possible checking in
future. If a targeted user is not on-line, a message
or a task will be generated and persisted for
him/her.

4.2.2 Session Service

 Session is a very important concept to a
collaborative environment. Session service
cooperatively works with the event factor to
build a boundary between teams, tasks and users.
When a user logs onto the engine, a user session
will be created to uniquely identify the user.
While the user is involved in a task, the task
factor will notify the session service. The session
service will create a task session and associate
the user session with the task session. The
session service also activates all teams related to
this task and creates sessions for the teams. Any
activity that happens to the task session will be
visible to all on-line users who belong to the
teams related to the task. A task or message will
be created for corresponding off-line users.

4.2.3 Object Service

 Object service provides generic functions to
manage objects for the engine. The object
container has capabilities to manage objects via
the object pool. When a service tries to retrieve
an object, the object container will first look for
the object in the object pool. If the object is
found, it directly returns the object to the service.
Otherwise, the object container will activate the
database access component to retrieve the
relevant data from the database, request the
object creator to construct the object using the
data, and then return the object to the service. At
the same time, it also puts the object into the
object pool for later use. This mechanism will
maximize information sharing. Another
advantage is that the object model will be
unified.

CASE STUDY: COLLABORATIVE
MECHANICAL DESIGN

5.1 Scenario

 A prototype of this collaborative engine has
been developed for 3D mechanical design. A
scenario is shown in Figure 4 to illustrate how
the collaboration engine is used for collaborative

mechanical design. A customer is connected to
designers and the manufacturer. If the customer
requests some changes to Part A, Designer A can
work on Part A together with the customer while
Designer B works on a related part (Part B)
which will be assemblied together with part A.
All discussion messages between Designer A
and the customer can be “seen” by Designer B,
who is working on the change to Part B due to a
change of Part A. Designer B will be notified
with any changes to the structure of Part A and
he can modify Part B to meet the new
requirements. Although Designer B can not
modify Part A directly, he/she can give
suggestions by sending messages to Designer A
if some conflicts are found between Part A and
Part B. All activities performed by Designer B
are also visible to Designer A and the customer.
At the same time, all design activities of Part A
and Part B are visible to the manufacturing
engineer. He/she can evaluate the
manufacturability of Part A and Part B and give
comments immediately after design changes to
Part A or Part B. Obviously, these tasks are done
collaboratively in a real-time manner. Such
collaboration will effectively resolve engineering
problems and reduce design errors, conflicts and
design iteration.

Fig. 4 Collaboration scenario

 Based on the engine, a collaborative design
environment for mechanical design is developed
to accomplish the objective of the above
scenario. The prototyping system is developed
based on Unigraphics, a commercial solid
modeling software by Unigraphics. . Component
Object Model (COM)/Distributed COM
(DCOM) technology was been adopted to

realize the concept of distributed computing.
COM/DCOM is a native function of Windows
NT platform and no third party distributed
computing services are needed [10]. Figure 5
shows the framework of the collaborative solid
modeling environment for mechanical design.
Event handler can be triggered by user actions to
send events to Unigraphics and collaborative
engine via local event service. For example, if
client 1 creates a new feature, event handler in
client 1 will send an event to Unigraphics with
an event object. Unigraphics creates the feature
and updates the model. At the same time, the
local event service also sends an event to the
collaborative engine. The collaborative engine
will further broadcast the event to application
server and client 2. The local event service in
client 2 will delegate the event to its local
Unigraphics. The design server developed based
on Unigraphics can automatically replicate the
action performed by client 1 based on the
information transferred in with this event so that
client 2 can see the changes immediately.

5.2 Features Covered

 Table 4 shows the features supported by the
developed environment. Correspondingly, the
XML tags are also worked out to describe the
features. Some of XML tags are shown in Table
5. Based on feature description tags, a complete
information packet is shown in Figure 6.

5.3 Graphic User Interfaces

Figure 7 shows the graphics user interface for
collaborative modeling. On this screen, users can
create, modify or delete a feature. Other clients
can be aware of these actions can be aware of the
actions in real time. On the screen shown in
Figure 8, users can log into or off the
collaborative engine, and subscribe to events that
he/she is interested.

TABLE 4 FEATURES COVERED
No. Feature Name
1 Cylinder
2 Cone
3 Cylindrical hole
4 Conic hole
5 Thread hole
6 Counterbore hole
7 Countersunk hole
8 Counterbore thread hole
9 Countersunk thread hole

Designer A

Part A
Part B

Customer

Designer B

Manufacturer

Part A

Part B

TABLE 5 FEATURES COVERED
No. Tag Name Remark
1 FeatureID Unique feature ID
2 FeatureName Name of the feature
3 FeatureType Type of the feature
4 Length Length value
5 Width Width value
6 Height Height value
7 Depth Depth value
8 Diameter Diameter value
9 Radius Radius value
10 Roughness Roughness value
11 SideRoughness Roughness value of side

surface
12 BottomRoughness Roughness value of

bottom surface
13 Accuracy Accuracy of feature

Fig. 7 Screen for modeling

Fig. 8 Screen for remote connection

CONCLUSIONS

 In this paper, through collaboration scenario
and requirements analysis, a collaborative engine
has been developed. Meanwhile, An XML-based
information transmission approach is also
presented. The collaborative engine can facilitate
the development of new collaborative

<Packet type=”Action”>
<Header>

<Sender>Chris</Sender>
<ID>776600100132634424252563</ID>
<Team>134124124234151234523453</Team>
<Time>10:10:05<Time>
<Date>19-09-2001<Date>
<Synchronal>true</Synchronal>

</Header>
<Command name=”Add”>
<Entity>

<Feature>
<FeatureType>Hole</FeatureType>
<FeatureName>Hole 1</FeatureName>
<FeatureID>H00013<FeatureID>
<Diameter>24</Diameter>
<Height>60</Height>
<SideRoughness>3.2<SideRoughness>

</Feature>
<Entity>

</Packet>

Fig. 6 Representation of a packet

Fig. 5 Framework of collaborative design environment

Collaborative
Engine

Client 1

Unigraphics

Design server

service
connector

Local event service
(COM based Windows

NT service)

Service
connector

DCOM
connector

Event
handler

Application
Server

Client 2

Unigraphics

Design server

service
connector

Local event service
(COM based Windows

NT service)

Service
connector

DCOM
connector

Event
handler

applications and integration of legacy
applications into a collaborative environment.
Through managing user sessions, task sessions
and team sessions, the collaborative engine
maintains an independent as well as
collaborative working space within the
collaborative environment for users and teams.
The collaborative engine provides some generic
functions related to collaboration, such as
managing real-time tasking, broadcasting events,
managing sessions, and maintaining discussions.
A prototype engine has been developed using
COM/DCOM technology. The prototype of a 3D
solid modeling environment for mechanical
design has been developed. It shows that the
collaborative engine can facilitate real-time
tasking through providing a collaborative
environment that has capabilities to manage
events, activities, tasks and meetings.

REFERENCES

D. A. Dierolf and K. J. Richter, “Computer-
Aided Group Problem Solving for Unified Life
Cycle Engineering (ULCE)”, IDA Paper P-2149,
1989
S. Finger and J. R. Dixon, “A Review of
Research in Mechanical Engineering Design.
Part 1: Descriptive, Prescriptive, and Computer-
Based Models of Design Processes”, Research in
Engineering Design, No. 1, 1989, 51-67
S. Finger and J. R. Dixon, “A Review of
Research in Mechanical Engineering Desing.
Part 2: Representations, Analysis, and Design for
the Life Cycle”, Research in Engineering
Design, No. 1, 1989, 121-137 Gun-dong F.
Pahng et al, “WEB-based Collaborative Design
Modelling and Decision Support”, ASME
Design Engineering Technical Conferences,
1998, Atlanta, Georgia
Bert Bras, Farrokh Mistree et al, Designing
Design Processes in Decision-based Concurrent
Engineering, SAE Transactions, Journal of
Material & Manufacturing, 1991, vol. 100, 451-
458
Lu, S. C. Y. Cai et al, “A Methodology for
Collaborative Design Process and Conflict
Analysis”, CRP Annals, 2000

Uwe Jasnoch, Satish K. Asok, Stenfan Hass, “A
Collaborative Environment Based on Distributed
Object-Oriented Databases”, 1995 IEEE, 1995,
1080-1383
M. Hardwick and D. Spooner, “An Information
infrastructure for a Virtual Manfacturing
Enterprise”, Proceedings of Concurrent
Engineering: A Global Perspective, McLean,
VA, 417-429, 1995
Clive Finkestein et al, Building Corporate
Portals with XML, The McGraw-Hill
Companies, Inc., 2000
Guy Eddon et al, Inside Distributed COM,
Microsoft Press, 1998
Frank E. Redmond III, DCOM Microsoft
Distributed Component Object Model, IDG
Books Worldwide, Inc.
C. Gilman et al, Integration of Design and
Manufacturing in a Virtual Enterprise Using
Enterprise rules, Intelligent agents, STEP, and
workflow, Architectures, Networks, and
Intelligent Systems for Manufacturing
Integration, 1997, 160-171
M. Gruninger et al, The Logic of Enterprise
Modelling, Modelling and Methodologies for
Enterprise Integration
N. Senin., N. Borland, and D. R. Wallace,
“Modeling and Evaluation of Product Design
Problems in a Distributed Environment”, CD-
ROM Proceedings of ASME DETC,
Sacramento, CA, 1997
David A. Koonce, “Information Model Level
Integration for CIM Systems: A Unified
Database Approach to Concurrent Engineering”,
http://www.ent.ohiou.edu/~dkoonce/papers/cie.h
tml
M. Billinghurst, “Spatial Conferencing using a
Wearable Computer”, CSCW 98, Seattle,
WA98195, 1998
P. D. Stotts and R. Furuta, “Browsing Parallel
Process Networks”, Journal of Parallel and
Distributed Computing, No. 1, 1990, 224-235
L. F. Bic, M. Fukuda, and M. B. Dillencourt,
“Distributed Computing Using Autonomous
Objects”, IEEE Computer, No. 8, 1995, 55-61

