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Abstract— We introduce a new method for computing a
posteriori bounds on engineering outputs from finite ele-
ment discretizations of the incompressible Stokes equations.
The method results from recasting the output problem as
a minimization statement without resorting to an error for-
mulation. The minimization statement engenders a duality
relationship which we solve approximately by Lagrangian re-
laxation. We demonstrate the method for a stabilized equal-
order approximation of Stokes flow, a problem to which pre-
vious output bounding methods do not apply. The concep-
tual framework for the method is quite general and shows
promise for application to stabilized nonlinear problems,
such as Burger’s equation and the incompressible Navier-
Stokes equations, as well as potential for compressible flow
problems.
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I. Introduction

APRIOR error estimates inform us of the asymptotic
rates of convergence, but cannot answer the ever

present engineering question, “can I trust the current ap-
proximation?” Such questions often revolve around con-
cerns of mesh fidelity and feature resolution – issues of
numerical uncertainty which erode confidence in the sim-
ulation. As confidence erodes, so does the utility of the
simulation in the engineering design process: either the
simulation is not trusted, or it is more costly than nec-
essary. We propose an implicit a posteriori method for
computing rigorous constant-free upper and lower bounds
for outputs from finite element discretizations of incom-
pressible fluid flows. The error bounds have the potential
to significantly reduce numerical uncertainty by providing
confirmation of accuracy as well as allowing for the effective
trade-off between accuracy and computational cost.

Error estimates, even a posteriori error estimates, are
not new to finite element approximations (see [1] for a re-
view). Work on explicit methods was begun by Babuska
and Rheinboldt in the late 1970’s. In the late 1980’s
Zienkiewicz and Zhu proposed a recovery based method
which has experienced some popularity due to its simplic-
ity. These methods have been difficult to extend to more
complex problems and fail to provide confirmation of accu-
racy as they contain undetermined constants or lack rigor
in their construction (for example, assuming a smoother
solution to be a better solution). Such limitations rel-
egate the error estimator to merely serving as an oracle
for balancing error contributions (of unknown magnitude)
in mesh adaptivity, and undermine their effectiveness as
methods for confirmation and building adaptive meshes
with guaranteed error tolerances.

II. Framework

We begin with a brief and abstract overview of the un-
derlying structure of our new output bounding framework,
which differs from our previous general frameworks[2] in
working with the complete solution, instead of the solu-
tion error, and in maintaining the Lagrangian formula-
tion throughout[3], where previously we had resorted to an
algebraic formulation. Consider the following continuous
variational-weak problem

find u ∈ U : A(v, u) = `(v), ∀v ∈ V, (1)

for U an essential condition satisfying subset of the ap-
propriate Hilbert space, usually H1(Ω), with an associated
homogeneous space V . For our conceptual overview, we
assume that A(v, u) is linear in v ∈ V , the test slot, and
nonlinear in u ∈ U , the solution slot.

Furthermore, we assume that we can define an energy
like quantity, E(w) for w ∈ U , by choosing some w0 ∈ U so
that w − w0 ∈ V and defining

E(w) ≡ A(w − w0, w)− `(w − w0).

Actually, we have more freedom to exercise in our choice for
E (and work on nonlinear problems suggests that we may
need to exercise such freedom), but an essential property
of this energy form is that E(u) = 0.

We are not interested directly in u, but in outputs of
engineering interest such as mass flow rate or drag, which
are functionals of u. We represent the output abstractly as
s(u).

We begin constructing the method by recasting the
above problem as a minimization statement. Actually, we
recast the problem as a pair of seemingly meaningless min-
imization statements

∓s(u) = inf κE(w)∓ s(w)
s.t. A(v, w) = `(v), ∀v ∈ V,

w ∈ U,

for an arbitrary nonnegative scalar κ, which we can later
use to minimize the resulting finite element bound gap,
if desired. The feasible set of this minimization consists
trivially of a single function u, the assumed to be unique
solution of Equation (1), for which the objective function
obtains the value of ∓s(u).

Our goal being to relax the minimization in a man-
ner which allows us to compute inexpensive bounds on s,
we form the Lagrangian of the above trivial minimization
problem for (w, φ) ∈ U × V

L±(w, φ) ≡ κE(w)∓ s(w) + `(φ)−A(φ,w). (2)
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The dual function of this Lagrangian can be solved by in-
spection

L∗,±(w) ≡ sup
φ∈V
L±(w, φ) =

{
∓s(u) if w = u,

+∞ otherwise,
(3)

from which it is clear that

∓s = inf
w∈U

sup
φ∈V
L±(w, φ) (4)

For an arbitrary candidate Lagrange multiplier ψ∗ ∈ V ,
it is always true that L±(w,ψ∗) ≤ supφ∈V L±(w, φ) for
w ∈ U , so that with (4) we have the lower bound

s− = inf
w∈U
L−(w,ψ∗) ≤ inf

w∈U
sup
φ∈V
L−(w, φ) = s. (5)

Similarly, we also have an upper bound

s+ = − inf
w∈U
L+(w,ψ∗) ≥ − inf

w∈U
sup
φ∈V
L+(w, φ) = s. (6)

The basic strategy for constructing output bounding
methods will be to compute approximations of the dual
variables, usually solved for on a coarse “working” mesh,
which are then used as data in solving the minimizations
of (5) and (6).

Our new framework requires the solution of nonlinear
bounding subproblems, a departure from previous efforts
based on Taylor expansions of any nonlinearities (either in
the governing equations or output).

In the face of indefinite terms in the Lagrangian relax-
ation, we rely on the the energy form E(w) to ensure the
existence and finiteness of the above minimizations, a prop-
erty which is at least partially obtained by the very nature
of stabilization schemes.

III. Problem Statement

The solution to the Stokes flow equations consists of a
velocity vector field, u ∈ U , and a scalar pressure field,
p ∈ Q. We will work with the “skew-symmetric” form of
the Stokes equations, which can be written as a “Stokes
tableau”

find u∈ U : a(v, u)− d(v, p) = `(v), ∀v∈ V,
p∈ Q: d(u, q) = 0, ∀q∈ Q,

where, for the symmetric strain tensor

εij(w) =
1
2

(
∂wi
∂xj

+
∂wj
∂xi

)
we have the following definitions

a(v, w) = ν

∫
Ω

ε(v) : ε(w) dΩ, `(v) = `f (v) + `N (v),

`f (v) =
∫

Ω

v · f dΩ, `N (v) =
∫

ΓN

v · tds.

d(q, w) =
∫

Ω

q(divw) dΩ,

for the set of essential condition satisfying functions

U =
{
v ∈

(
H1(Ω)

)d ∣∣∣ u|ΓD = uD

}
,

and the spaces

V =
{
v ∈

(
H1(Ω)

)d ∣∣∣ v|ΓD = 0
}

Q = L2(Ω),

in d spatial dimensions. For all-Dirichlet problems (for
which ΓD = Γ), we substitute the pressure space Q =
L2(Ω)\R.

A. Stabilized Finite Element Formulation

Traditionally, the Stokes equations are approximated
with stable mixed finite element formulations, but more re-
cently, stabilized methods have evolved to solve them with
equal-order finite element interpolations. In this section,
we will consider the first-order Algebraic Subgrid Scale
(ASGS) stabilization [4], written for the Stokes equations
on a given triangulation Th(Ω) as

find uh ∈ Uh : ãh(v, uh)− d(v, ph) = `(v), ∀v ∈ Vh,
ph ∈ Qh: d(uh, q) + Θh(q, ph) = ˜̀

h(q), ∀qh∈ Qh,

where

ãh(v, w) = a(v, w) + τ2

∫
Ω′

∂vi
∂xi

∂wj
∂xj

dΩ,

for, τ2 = c2ν, and

Θh(q, r) = τ1

∫
Ω′

∂q

∂xk

∂p

∂xk
dΩ, ˜̀

h(q) = τ1

∫
Ω′

∂q

∂xk
fk dΩ,

for τ1 =
h2

c1ν
.

We have introduced the usual linear Lagrange finite ele-
ment discretizations

Uh = {u ∈ U | u|Th ∈ P1(Th), ∀Th ∈ Th
}
,

Vh = {v ∈ V | v|Th ∈ P1(Th), ∀Th ∈ Th
}

Qh = {q ∈ Q | q|Th ∈ P1(Th), ∀Th ∈ Th
}
.

B. Force Output Reformulation

The output of particular interest for fluid problems is the
force output. We consider the force acting on a portion of
the boundary, ΓF , which we reformulate from the obvious
boundary integral for the boundary force exerted by the
stress tensor field σij = νεij(u) − pδij engendered by the
solution pair (u, p):

Fk =
∫

ΓF

σkjnj dΓ,

which, for any χi|ΓF = δik,

=
∫

ΓF

χiσijnj dΓ,



and by the divergence theorem is equivalent to

= −
∫

Ω

Dj (χiσij) dΩ.

This simplifies to

= −
∫

Ω

(Djχi)σij + χi(Djσij) dΩ,

= `(χ)− a(χ, u) + d(p, χ).

We then write the force output associated with a particular
χ as

sχ(u, p) = `(χ)− a(χ, u) + d(p, χ).

The purpose of the reformulation is to obtain a bounded
functional, a property of our output functional required
to maintain optimal theoretical and computed convergence
rates.

IV. Bounds Formulation

We will now develop the details of a force output bound-
ing algorithm for the ASGS stabilized linear finite-element
discretization of incompressible Stokes flow. The method
shares several features of earlier methods, such as [5], but
results from a new conceptual framework and applies to
stabilized equal-order interpolations.

A. Elemental Decomposition

A practical bounds algorithm must decompose the sub-
problems into local subproblems in order to be less expen-
sive than computing the fine mesh solution which we are
trying to avoid. We partition the domain with a coarse tri-
angulation, TH , on which we define the elementally broken
analogue of a Hilbert space Y as

Ŷ =
∏

TH∈TH

Y (TH).

We define a continuity bilinear form b : Ŷ × BY on the
edges of TH such that

Y =
{
v̂ ∈ Ŷ (Ω) | b(v̂, β) = 0, ∀β ∈ BY

}
,

where B spans the traces of v̂ ∈ Ŷ (Ω) on the edges of the
coarse triangulation TH . For our purposes, the space Y is
either the velocity space V or the pressure space Q and
the bilinear form b(v, β) is understood to be overloaded
for the appropriate space, a specialization which can be
committed without ambiguity. The continuity multipliers
act as equilibrating fluxes across elementally decomposed
edge boundaries, in the spirit of which, are referred to as
hybrid fluxes.

B. Minimization Statement and Lagrangian

We recast the stabilized Stokes problem as a minimiza-
tion statement posed on the fine “truth” mesh Th(Ω),

a proper refinement of a prototype coarse working mesh
TH(Ω), with continuity across coarse mesh edges enforced
through continuity constraints (hybrid fluxes)

inf κ{ãh(ŵ±h − w0, ŵ
±
h ) + d(w0, r̂

±
h ) +

Θh(r̂±h , r̂
±
h )− `(ŵ±h − w0)− ˜̀

h(r̂±h )}
∓ {`(χ)− a(χ, ŵ±h ) + d(χ, r̂±h )}

s.t. ãh(v, ŵ±h )− d(v, r̂±h ) = `(v), ∀v ∈ Vh,
d(ŵ±h , q) + Θh(q, r̂±h ) = ˜̀

h(q), ∀q ∈ Qh,
b(ŵ±h , β

u) = 0, ∀βu ∈ BVh ,

b(r̂±h , β
p) = 0, ∀βp ∈ BQh ,
ŵ±h ∈ V̂h,
r̂±h ∈ Q̂h,

for which the optimal objective function is our output of
interest (modulo a sign), ∓sχ(uh, ph), obtained at the sin-
gleton solution pair (uh, ph).

We form the Lagrangians L±h : Ûh × Q̂h × Vh × Qh ×
BVh ×B

Q
h

L±h (û±h , p̂
±
h ;ψ±, π±, γu,±, γp,±) =

κ{ãh(û±h − w0, û
±
h ) + d(w0, p̂

±
h )

+ Θh(p̂±h , p̂
±
h )− `(û±h − w0)− ˜̀

h(p̂±h )}
∓ {`(χ)− a(χ, û±h ) + d(χ, p̂±h )}
+ `(ψ±)− ãh(ψ±, û±h ) + d(ψ±, p̂±h )

+ ˜̀
h(π±)− d(û±h , π

±)−Θh(π±, p̂±h )

− b(û±h , γ
u,±)− b(p̂±h , γ

p,±),

whose velocity gradient condition is

κ{ãh(v̂, û±h ) + ãh(û±h − w0, v̂)− `(v̂)} ±
a(χ, v̂)− ãh(ψ±, v̂)− d(v̂, π±)− b(v̂, γu,±) = 0,

∀v̂ ∈ V̂h, (7)

and pressure gradient condition is

κ{2Θh(q̂, p̂±h ) + d(w0, q̂)− ˜̀
h(q̂)} ∓ d(χ, q̂)

+ d(ψ±, q̂)−Θh(π±, q̂)− b(q̂, γp,±) = 0,

∀q̂ ∈ Q̂h. (8)

Now that we have established the gradient (stationarity)
conditions of our Lagrangian reformulation of the original
Stoke’s flow problem, we can relax the Lagrangian by con-
structing candidate (but sub-optimal) dual variables psi±,
π±, γu,±, and γp,±.

C. Coarse Mesh Adjoint

Our candidate dual multipliers will be approximations
computed from the gradient conditions on a coarse work-
ing mesh TH– the prototype mesh of which Th is a proper
refinement.



Utilizing the definitions ψ±H = ±ψH + κ(uH − w0) and
π±H = ±πH + κpH , we can write the coarse mesh adjoint
equation from (7) and (8), substituting û±H = uH , as

find (ψH , πH) ∈ VH ×QH :

ãH(ψH , v) + d(v, πH) = a(χ, v),
−d(ψH , q) + ΘH(q, πH) =−d(χ, q),

∀(v, q) ∈ VH ×QH , (9)

where we have evoked primal feasibility on the coarse mesh.

D. Coarse Mesh Hybrid Fluxes

In addition to the adjoint (which is the Lagrange mul-
tiplier for the equilibrium constraint), we must produce a
candidate Lagrange multiplier for the continuity constraint
(hybrid fluxes), which we again compute from the coarse
mesh instantiation of the gradient conditions with data
û±H = uH and ψ = ψ±H .

By choosing γu,±H = −κγuH ±γ
ψ
H and γp,±H = −κγpH ±γπH ,

the equilibration problem can be decomposed into two κ
independent problems

find (γuH , γ
p
H) ∈ BVH ×B

Q
H :

b(v̂, γuH) = `(v̂)− ãH(v̂, uH) + d(v̂, pH),

b(q̂, γpH) = ˜̀
H(q̂)− d(uH , q̂)−ΘH(q̂, pH),

∀(v̂, Y ) ∈ V̂H × Q̂H , (10)

and

find (γψH , γ
π
H) ∈ BVH ×B

Q
H :

b(v̂, γψH) = a(χ, v̂)− ãH(ψH , v̂)− d(v̂, πH),
b(q̂, γπH) = −d(χ, q̂) + d(ψH , q̂)−ΘH(q̂, πH),

∀(v̂, q̂) ∈ V̂H × Q̂H , (11)

which we can solve efficiently with the Ladevèze method[6].

E. Fine Mesh Elemental Subproblems

The subproblems corresponding to the minimization
of (5) and (6) result from the substitution of ψ±H = ±ψH +
κ(uH − w0), π±H = ±πH + κpH , γu,±H = −κγuH ± γ

ψ
H and

γp,±H = −κγpH ± γπH into the stationarity conditions:

find (û±h , p̂
±
h ) ∈ Ûh × Q̂h :

2κãh(v̂, û±h ) = κ{`(v̂) + ãh(uH , v̂)
+ d(v̂, pH)− b(v̂, γuH)}

∓ {a(χ, v̂)− ãh(ψH , v̂)

− d(v̂, πH)− b(v̂, γψH)},
2κΘh(q̂, p̂±h ) = κ{˜̀h(q̂)− d(uH , q̂)

+ Θh(pH , q̂)− b(q̂, γpH)}
∓ {−d(χ, q̂) + d(ψH , q̂)
−Θh(πH , q̂)− b(q̂, γπH)},

∀(v̂, q̂) ∈ V̂h × Q̂h. (12)

We can solve these problems as two κ independent prob-
lems if we choose û±h = ẑuh ∓ 1

κ ẑ
ψ
h and p̂±h = ẑph ∓

1
κ ẑ

π
h to

obtain

find (ẑuh , ẑ
p
h) ∈ Ûh × Q̂h :

2ãh(v̂, ẑuh) = `(v̂) + ãh(uH , v̂)
+ d(v̂, pH)− b(v̂, γuH),

2Θh(q̂, ẑph) = ˜̀
h(q̂)− d(uH , q̂)
+ Θh(pH , q̂)− b(q̂, γpH),

∀(v̂, q̂) ∈ V̂h × Q̂h. (13)

and

find (ẑψh , ẑ
π
h ) ∈ V̂h × Q̂h :

2ãh(v̂, ẑψh ) = a(χ, v̂)− ãh(ψH , v̂)

− d(v̂, πH)− b(v̂, γψH),

2Θh(q̂, ẑπh ) = −d(χ, q̂) + d(ψH , q̂)
−Θh(πH , q̂)− b(q̂, γπH),

∀(v̂, q̂) ∈ V̂h × Q̂h. (14)

F. Bounds Expression

The linearity of the Stokes equations allows the La-
grangian to be greatly simplified by substituting the gra-
dient conditions into the Lagrangian to obtain

L±h (û±h , p̂
±
h ;ψ±H , π

±
H , γ

u,±
H , γp,±H ) =

κ{`(uH) + ˜̀
h(pH)− ãh(û±h , û

±
h )−Θh(p̂±h , p̂

±
h )}

∓ {`(χ)− `(ψH)− ˜̀
h(πH)}.

Substituting û±h = ẑuh ∓ 1
κ ẑ

ψ
h and p̂±h = ẑph ∓

1
κ ẑ

π
h

L±h (·) = κ{`(uH) + ˜̀
h(pH)− ãh(ẑuh , ẑ

u
h)−Θh(ẑph, ẑ

p
h)}

− 1
κ{ãh(ẑψh , ẑ

ψ
h )−Θh(ẑπh , ẑ

π
h )}

∓ {`(χ)− `(ψH)− ˜̀
h(πH)

+ 2ãh(ẑψh , ẑ
u
h) + 2Θh(ẑπh , ẑ

p
h)}.

Defining the bound average as s̄±h = 1
2{s

+
h + s−h }

s̄±h = `(χ)− `(ψH)− ˜̀
h(πH) + 2ãh(ẑψh , ẑ

u
h) + 2Θh(ẑπh , ẑ

p
h).

The bound gap is defined as ∆s±h = 1
2{s

+
h − s

−
h }

∆s±h = κ{ãh(ẑuh , ẑ
u
h) + Θh(ẑph, ẑ

p
h)− `(uH)− ˜̀

h(pH)}

− 1
κ{ãh(ẑψh , ẑ

ψ
h )−Θh(ẑπh , ẑ

π
h )}.

The bound gap can be minimized over κ

∆s±h = 2
√
PD

P = ãh(ẑuh , ẑ
u
h) + Θh(ẑph, ẑ

p
h)− `(uH)− ˜̀

h(pH)

D = ãh(ẑψh , ẑ
ψ
h )−Θh(ẑπh , ẑ

π
h ).

Figure 1 summarizes the complete procedure.



1. Coarse Solution

find uH ∈ VH : ãH(uH , vH)− d(vH , pH) = `(vH), ∀vH∈ VH ,
pH ∈ QH : d(uH , qH) + ΘH(qH , pH) = ˜̀

H(qH), ∀qH∈ QH ,

2. Coarse Adjoint

find ψH ∈ VH : ãH(ψH , vH) + d(vH , πH) = a(χ, vH), ∀vH∈ VH ,
πH ∈ QH : −d(ψ, qH) + ΘH(qH , πH) =−d(χ, qH), ∀qH∈ QH ,

3. Equilibration

find γuH ∈ BVH : b(v̂H , γuH) = `(v̂H)− ãH(v̂H , uH) + d(v̂H , pH), ∀v̂H∈ V̂H ,
γpH ∈ B

Q
H : b(q̂H , γ

p
H) = ˜̀

H(q̂H)− d(uH , q̂H)−ΘH(q̂H , pH), ∀q̂H∈ Q̂H ,

and

find γψH ∈ BVH : b(v̂H , γ
ψ
H) = a(χ, v̂H)− ãH(ψH , v̂H) + d(v̂H , πH), ∀v̂H∈ V̂H ,

γπH ∈ B
Q
H : b(q̂H , γπH) =−d(χ, q̂H) + d(ψH , q̂H)−ΘH(ψH , q̂H), ∀q̂H∈ Q̂H ,

4. Subproblems

find ẑuh ∈ Ûh : 2ãh(v̂, ẑuh) = `(v̂) + ãh(uH , v̂) + d(v̂, pH)− b(v̂, γuH), ∀v̂∈ V̂h,
ẑph ∈ Q̂h: 2Θh(q̂, ẑph) = ˜̀

h(q̂)− d(uH , q̂) + Θh(pH , q̂)− b(q̂, γpH), ∀q̂∈ Q̂h.

and

find ẑψh ∈ V̂h : 2ãh(v̂, ẑψh ) = a(χ, v̂)− ãh(ψH , v̂)− d(v̂, πH)− b(v̂, γψH), ∀v̂∈ V̂h,
ẑπh ∈ Q̂h: 2Θh(q̂, ẑπh ) =−d(χ, q̂) + d(ψH , q̂)−Θh(πH , q̂)− b(q̂, γπH), ∀q̂∈ Q̂h.

5. Bounds

s±h = s̄±h ±∆s±h ,

s̄±h = `(χ)− `(ψH)− ˜̀
h(πH) + 2ãh(ẑψh , ẑ

u
h) + 2Θh(ẑπh , ẑ

p
h),

∆s±h = 2
{[
ãh(ẑuh , ẑ

u
h) + Θh(ẑph, ẑ

p
h)− `(uH)− ˜̀

h(pH)
][
ãh(ẑψh , ẑ

ψ
h )−Θh(ẑπh , ẑ

π
h )
]} 1

2
.

Fig. 1. Summary of Bounds Procedure For Force Ouputs

V. Numerical Example

As a demonstration of the effectiveness of this proce-
dure, we present numerical results for two outputs from
a single example problem. The example is the symmet-
ric flow through a channel containing a square obstruction.
Figure 2 details the geometry and boundary conditions as
well as shows the coarsest mesh, containing 88 elements.
The two outputs considered are the drag on the obstruc-
tion, detailed above, and the mass flow rate through the
channel, defined as

smfr(u) =
∫

Ω

u dΩ.

VI. Conclusions

We have demonstrated the application of a new finite el-
ement output bound framework for a previously unsolved
problem, namely a stabilized equal-order finite element

discretization of the incompressible Stokes flow equations.
The method relies on the existence of an appropriate en-
ergy form to ensure the well-posedness of the bounding
subproblems, a requirement which is at least partially ob-
tained through the very nature of stabilization schemes.
We are currently exploring the applicability of the method
to the nonlinear Burger’s equation, with the real target
being the incompressible Navier-Stokes equations.
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Fig. 3. The mass flow rate output error (�) and bound gap (4) convergence for the example of symmetric flow through a channel containing
a square obstruction.
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Fig. 4. The drag output error (�) and bound gap (4) convergence for the example of symmetric flow through a channel containing a square
obstruction.


