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Electromagnetic Scattering  
by Open-Ended Cavities: An Analysis  

Using Precorrected-FFT Approach 
 

             Xiaochun Nie and Le-Wei Li 
 

    Abstract--In this paper, the precorrected-FFT method is 
used to solve the electromagnetic scattering from two-
dimensional cavities of arbitrary shape. The integral 
equation is discretized by the method of moments and the 
resultant matrix equation is solved iteratively by the 
generalized conjugate residual method. Instead of directly 
computing the matrix-vector multiplication, which requires 

2N  operations, this approach reduces the computation 
complexity to ( )NNO log  as well as avoids the storage of 
large matrices. At the same time, a technique known as the 
complexifying k  is applied to accelerate the convergence of 
the iterative method in solving this resonance problem. 
Some examples are considered and excellent agreements of 
radar cross sections between these computed using the 
present method and those from the direct solution are 
observed, demonstrating the feasibility and efficiency of the 
present method. 1 
 
    Indexs--precorrected-FFT method, method-of-moments, 
electrical-field integral equation, electromagnetic scattering, 
cavity  
 

I. INTRODUCTION 
   The analysis of electromagnetic scattering by 
open cavities has been extensively investigated 
because of its importance in radar cross section 
(RCS) problems. Different approaches have been 
used, depending on the frequency and the 
geometry of problems. Among these methods, 
model analysis is only applicable when the 
geometry permits analytical expressions of the 
modes to be obtained [1]. Some high frequency 
techniques, such as shooting and bouncing rays 
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approach (SBR), generalized ray expansion 
(GRE), and Iterative Physical Optical (IPO) 
Approach, can be used to model the scattering 
properties of electrically large cavities of 
arbitrary shape. However they have been shown 
to work only for cavities with very simple 
terminations [2-4]. Low frequency or fullwave 
numerical techniques such as the method of 
moments (MoM), the finite element method and 
the finite-difference time-domain method can 
accurately model the complex terminations as 
well as other parts of cavities. Unfortunately, the 
computation costs and memory requirement 
restrict the capability of these methods. In recent 
years, hybrid methods that combine high and low 
frequency methods are proposed to overcome the 
shortcomings of either method [5]. As an 
alternative of the prospective hybrid method, an 
approach combining the precorrected-FFT 
method in conjunction with the traditional MoM 
is developed in this paper.  This approach can 
reduce the memory requirement and computation 
complexity significantly and enable large-scale 
problems to be solved using a small computer. 
   The precorrected-FFT method was originally 
proposed by Philips and White [6,7] to solve 
electrostatic integral equation associated with 
capacitance extraction problems. The key idea of 
the algorithm is to represent the long-range part 
of the field by current distributions lying on a 
uniform grid. This grid representation allows the 
Fast Fourier Transform (FFT) to be used to 
efficiently perform field computations. In this 
paper, we make appropriate modifications and 
extend the precorrected-FFT method to analyze 
electromagnetic scattering by two-dimensional 
cavities of arbitrary shape. The integral equation 
is first discretized to form a matrix equation by 
the method of moments (MoM), and then the 
resultant matrix equation is solved by the 
generalized conjugate residual method (GCR). 
The precorrected-FFT technique is introduced to 
avoid the filling of the moment matrix and 
accelerate the matrix-vector multiplication in the 
iteration procedure. It can be demonstrated that 
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the computation complexity is thus reduced to 
)log( NNO  and memory requirement to, )(NO  

respectively. For some wavenumber k  of an 
incident wave, the integral equation of EM 
scattering problems can be extremely ill 
conditioned. In this paper, the complexifying k -
technique is used to solve the resonance problem. 
This technique reduces the condition number of 
the matrix dramatically, accelerating the 
convergence of the iteration process. Numerical 
results will be presented to validate the 
algorithm that we developed. 
 

II. PROBLEM FORMULATION 
  Consider an zE -polarized plane wave incident 
on a two-dimensional conducting cavity in free 
space, as shown in Fig. 1.  According to the 
equivalent theorem, the external scattered field 
from the open-ended cavity can be regarded as 
the radiation of the equivalent electric and 
magnetic currents on the aperture of the cavity, 
which can be obtained by the induced current on 
the inner surface of the cavity. The induced 
current satisfies the following integral equation 

( ) ( ) ( )ρ−=ρ′ρ′−ρ′ωµ ∫ inc
zC z EJdi 00 gl , C∈ρ (1) 

where ( )ρ′zJ  denotes the z-directional induced 

current, ( )ρinc
zE  is the z-component of incident 

field on C ,  and ( )ρ′−ρ0g  represents the two-

dimensional scalar Green’s function in free space. 
The integral equation in (1) can be discretized by 
the method of moments to yield 
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( )jinc
zj Ef ρ= ,  ( )izi Jx ρ=        (4) 

with ijji ρ−ρ=ρ , 163805.04/ =γ e , ( )2
0H  

being the zeroth-order Hankel function of the 
second kind, and k  as the wave number in free 
space. 
   For a solution of the system the generalized 
conjugate residual (GCR) method [8] is used, 
which relies on an efficient evaluation of the 
matrix-vector products associated with Eqn. (2). 
The computational complexity in executing the 

matrix-vector products is )( 2NO  and storage 
requirements are of the same order, where N  
denotes the number of unknowns. For a more 
efficient implementation of the method, it is 
therefore crucial to reduce the complexity of the 
matrix-vector product. We propose to accomplish 
this by using the precorrected–FFT algorithm, 
which eliminates the requirement of filling the 
moment method matrix and produces an 
approximation to the matrix-vector product in the 
order of NN log  operations. 

 
3. THE PRECORRECTED-FFT ALGORITHM 
To implement the precorrected–FFT algorithm, 
we enclose the entire object in a quadrangle after 
it has been discretized into segments. The 
quadrangle is then subdivided into a lk ×  array 
of small squares, each containing only a few 
segments. We refer to these small squares as 
cells. Fig. 1 shows a discretized arbitrary cavity, 
with the associated space subdivided into a 33×  
array of cells. Based on the fact that fields at 
evaluation points distant from a cell can be 
accurately computed by representing the given 
cell’s current distribution using a small number 
of weighted point currents, the matrix–vector 
product can be approximated in four steps: (1) to 
project the segment currents onto a uniform grid 
of point currents, (2) to compute the fields at the 
grid points due to grid currents using the FFT, (3) 
to interpolate the grid fields onto the segments, 
and (4) directly compute nearby interactions. This 
process is summarized in Fig. 2. Note that the 
number of grid points is required to be a factor of 
two in order to perform the FFT.  

 

 

  

Figure 1 The superimposed grid currents with 
3=p  
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Figure 2 Four steps of the precorrected-FFT 
algorithm with 2=p  

3.1 Projecting segment currents onto a uniform 
grid of point currents 
Firstly, we describe the construction of the grid 
projection operator W . Assume that a pp×  
array of grid currents is used to represent the 
current in a cell and cN  test points are selected 

on the surface of a circle of radius cr  whose 

center is coincident with the center of the given 
cell k . We then enforce electric field due to the 

total 2p  grid currents to match that due to the 
cell’s actual current distributions at the test 
points and thus yield 

( ) ( )kk qtgt JPJP =ˆ                    (5) 

where ( ) )(knRk ∈J  and ( ) 2ˆ pRk ∈J  are the 
vectors of segment currents and grid currents, 
respectively. ( )kn  denotes the number of 

segments in cell k . 
2pNgt cR ×∈P  represents a 

mapping between grid currents and test point 
fields, given by 

( )( )j
t
i

gt kH ρ−ρωµ= ˆ
4

2
0

0P               (6) 

The relative positions of the grid currents and the 
test points can be constructed to be identical for 

each cell, therefore gtP  is the same for each cell 

and needs to be computed only once. mNqt cR ×∈P  
identifies a mapping between segment currents 
and test point fields. m  stands for the number of 
segments in the cell. Since the collocation 
equation (5) is linear in the segment and grid 
current distributions, the contribution of the j th 

segment in the cell k  to ( )kĴ  can be represented 

by a column matrix ( )jk,W , 

 ( ) [ ] jqtgtjk ,, pPW +=               (7) 

where jqt ,P  denotes the j th column of qtP  and 

[ ]+gtP  denotes the generalized inverse of gtP . 
Since the matrix size is small and the same for 
each cell, the relative computational cost of 

computing [ ]+gtP  is insignificant.  For any 

segment current j  in cell k , this projection 

generates a subset of grid currents ( )kĴ . The 

total ( )kĴ  can be obtained by summing up all the 

contributions of the currents in cell k .  
 

3.2 Computing grid fields due to grid currents 
using the FFT 
Once the current has been projected to a grid, the 
electric field at the grid points due to the grid 
currents can be computed by a two-dimensional 
convolution 

 ( ) ( )jiJjjiihJHjiE
ji

′′′−′−== ∑
′′

,ˆ),(ˆ,ˆ
,

  (8) 

where i , j  and  i′ , j′  specify the grid points and 

( )jjiih ′−′− ,  is the mapping between grid 

currents and grid fields. ( )0,0h  can be arbitrarily 
defined, usually set to zero. The convolution in 
Eqn. (8) can be rapidly computed by using the 
Fast Fourier Transform (FFT) [10], i.e., 

 ( )JHFE ~~ˆ 1 ⋅= −                       (9) 

where 1−F  denotes the inverse FFT while H~  and 

J~  are the FFT of ( )jih ,  and ( )jiJ ,
)

 

respectively.  Note that H~  needs to be computed 
only once.   
 
3.3 Interpolating grid fields onto segments 
The interpolating process is essentially the same 
as the projecting process. It has been proved that 
the projection and interpolation operators have 
comparable accuracies [6].  
 

Assume that ( )[ ]TjkV ,  denotes an operator that 
interpolates fields at grid points onto segment 
coordinates. Thus, projection, followed by 
convolution and interpolation, gives the grid-
current approximation GE  to the electric field 

that can be represented as 

HWJVE T
G = .                  (10) 
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3.4 Computing near-zone interactions directly 
Since the error due to the grid-current 
approximation is inversely proportional to the 
interaction distance [6,7], the interactions 
between nearby segments have been poorly 
approximated in the projection or interpolation 
process. In order to get correct results, it is 
necessary to compute the near-zone interactions 
more accurately and remove the inaccurate 
contribution due to the grid-currents from Eqn. 
(10) as well. This process is referred to as 
“precorrection”. 
   Define a “precorrected” direct interaction 
operator as follows: 

( ) ( ) ( ) ( ) ( )lWlkHkVlkPlkP T ,,,~ −=        (11) 

The exact field )(kE  for each cell k  can be 

obtained by 

l
kNl

G JlkPkEkE ∑
∈

+=
)(

).(~)()(            (12) 

where )(kEG  is the grid-approximation to )(kE , 

including the inaccurate near zone portions. 
)(kN  denotes the indices of the set of cells which 

are “close to” cell k . The second term in (12) 
represents the near-zone interactions that can be 
computed directly. Because for each k , )(kN  is 

a small set, each matrix ( )lkP ,~
 is also small. 

   Combining the above steps leads to the 
precorrected-FFT algorithm. The effort of this 
algorithm is so made as to replace the dense 
matrix-vector product PJ  with the sparse 

operation JHWVP T ]~[ + . The cost of the P-FFT 
consists three components. The cost of the direct 

interactions is )()( 2 NOklNO c = , the cost of grid 

projection and interpolation is )()( 2 NOnpO = , 
and the cost of the FFT is 

)log()log( 22 NNOklpklpO = . So the total 

cost of the algorithm is )log( NNO . 

3.5 Complexifying k -technique 
   At some certain values of the wavenumber, the 
integral equation of scattering problems can be 
extremely ill conditioned, leading the condition 
number of the discretized matrix to be very large 
and the iterative technique to fail to converge. 
This problem occurred frequently in resonance 
problems. A combined field integral equation 
(CFIE) method has been presented to overcome 
resonance problem. CFIE cannot be used for an 
open conductor, but for a closed one only. The 
electric field integral equation (EFIF) is 
frequently used to solve electromagnetic 

scattering from a conductive cavity. However, it 
needs very high iteration number to converge. In 
this paper, the complexifying k -technique [10] is 
used in EFIE to accelerate the convergence of the 
iteration in resonance problems. In this 
technique, a small imaginary part of the 
wavenumber k  was introduced, and extrapolated 
back to the real axis. Two-point linear 
extrapolation or parabolic extrapolation is used to 
attain the results corresponding to the 
wavenumber with a zero imaginary part.  
     This method reduces the condition number of 
the matrix, and needs considerably fewer 
iteration than the general case( no complexifying 
k ). 
     

III. NUMERICAL RESULTS  
   In this section several examples are considered 
to verify correctness and efficiency of the 
algorithm. Fig. 3 shows a 3-D offset bend cavity. 
The RCS in the principal plane of the 3-D cavity 
can be obtained from that of the corresponding 2-
D model that extends infinitely in the z-direction 
[5]. The problem domain is divided into an array 
of 63127×  cells for 3=p  and an array of 

126254×  cells for 2=p . The grid spacing is 

about λ12.0  in both cases. The backscattering 
patterns obtained at 10 GHz from the Gaussian 
elimination method and the precorrected-FFT 
method with 2=p  and 3=p , respectively. The 

RCSs are plotted in Fig. 4. It is observed that all 
the three sets of results agree very well near the 
normal incidence. But the results for 2=p  
deviate somewhat from the other two sets of 
results near the graze incidence. In order to get 
more accurate results, we therefore select 3=p  
in the following examples. 
 

 
Figure 3 Geometry of a 3D offset bend cavity (a) 

Side view (b) Cross-sectional view 
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Figure 4 Comparison of backscattering RCSs of a 
3D offset bend cavity obtained from the 
precorrected-FFT method and the Gauss 
elimination method 

   Fig. 5 shows a tapered cavity model given in [1]. 
The backscattering RCSs obtained from the direct 
solution and by the precorrected-FFT method 
with different grid constructions are compared in 
Fig. 6. It can be seen that the results from P-FFT 
method for 64256×  grids (with a grid spacing of 
about λ124.0 ) agree very well with the direct 
solutions. But when using 32128×  grids (with a 
grid spacing of about λ248.0 ), the dispersions 
are unacceptable. More numerical examples 
demonstrate that a grid spacing of λ15.0  and a 
near-zone radius of λ5.0  are sufficient to 
maintain a good accuracy desired. 
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Figure 5 Geometry of a 3D tapered cavity (a) Side 

view (b) Top view 
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Figure 6 Backscattering RCSs of the tapered 

cavity 
 

A long 3D bend cavity shown in Fig. 7 is also 
calculated for comparison between the present 
method and the standard GCR method. A good 
agreement is also observed. To accelerate the 
convergence, we use the current solution from the 
previous angle with phase correction as the initial 
guess for the next angle. In these examples, the 
cavity is discretized into about 1200 segments 
and the problem domain is divided into an array 
of 9696×  grids. So the number of the grid 
currents is about seven times that of the 
segments, but the precorrected-FFT algorithm 
performs the matrix-vector multiplication 3 to 4 
times faster than the direct computation. In 
terms of memory requirement, the present 
method only consumes about %8  that of the 
direct iterative method.  
     To prove that complexifying k -technique can reduce 
the number of iterations, the bistatic RCS of the long 
bend cavity for incident wave at o0 is calculated by use 
of the present method and PFFT with real k . In this 
example, two-point extrapolation ( 1.00 ikk += , 

2.00 ikk += ) is used. It is observed that PFFT with 

real k  needs 170 iteration for relative residual error 
4100.1 − , but PFFT with the complexifying k -

technique only needs 46 and 36  iterations for 
1.00 ik +  and 2.00 ik + , respectively.  
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Figure 7 Geometry of a 3D long bend cavity 

endplate (a) Side view (b) Cross-sectional view 
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Figure 8 Backscattering RCSs of the 3D long 

bend cavity 
 
Fig. 9 shows the geometry of a waveguide cavity 
with a semicircle hub or a flat endplate at the 
termination. The RCSs plotted in Fig. 10 clearly 
indicate that the termination geometry has 
significant effects on the RCS level of the cavity 
near normal incidence. So in order to get accurate 
results, the termination should be discretized in a 
finer manner compared to that of the front 
section of the cavity. In this example, the cavity 
with a flat endplate at the termination is 
discretized into 1100 segments and the cavity 
with a semicircle hub into 1600 segments. The 
problem domain is divided into an array of 

48192×  grids for both cases. In the direct 
solution, each of iterations for the latter cavity 
costs about twice of the time for the former one. 
But in the present method, the computational 
time consumed for each of iterations for the latter 
cavity increases no more than %5  in contrast to 
the former cavity. The memory requirements of 
the P-FFT keep about the same for the two cases 
because the grid numbers are the same. On the 
other hand, the memory requirements of the 

direct iterative method increase significantly 

because they are in order of 2N . In other words, 
the advantage of the present method is more 
pronounced when the cavities have complex 
interior structures or terminations.  
   The last example considered here is an S-
shaped engine inlet, as shown in Fig. 11. The 
numbers of grid currents and segments are 
assumed to be 128128×  and 2400 , respectively. 
Different from the above examples, this example 
has two open ends and the scattered field is 
radiated on both apertures. It can be seen from 
Fig. 12 that the backscattering RCS is about 

dB  10  lower when the incident angles are larger  

(b)
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Figure 9 Geometry of a waveguide with semicircle 

hub or a flat endplate (a) Side view (b) Cross-
sectional view 
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Figure 10 Backscattering RCSs of the waveguide 

with different terminations 
 
than zero. This is because more energy is 
transformed through the inlet and radiated from 
the lower end of the inlet, which generates a 
weaker field in the back direction. Again, a good 
agreement between the P-FFT solution and direct 
iterative solution is observed.  It is also found 
that at incident angles of up to 100 degrees, the 
P-FFT method costs only about 1/2 time that of 
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the Gauss elimination and 1/4 that of the direct 
iterative solution. The memory requirement of 
the P-FFT method is about %8.7  those of other 
two methods. So in terms of a memory-speed 
product, the precorrected-FFT algorithm is still 
far more superior to the Gauss elimination 
procedure and the direct iterative method even 
for monostatic RCS computations involving many 
incident angles. In the convergence check of all 
the above examples, relative errors are chosen to 

be within 310− .  
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Figure 11 Geometry of a S-shaped inlet 
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Figure 12 Backscattering of the S-shaped inlet 

CONCLUSIONS 
In this paper, the precorrected-FFT algorithm 
that used to be utilized in the solution to 
electrostatic integral equations is successfully 
extended to analyze electromagnetic scattering 
from two-dimensional conductive open-ended 
cavities. Several examples are specifically 
considered, namely, a 3-D offset bend cavity, a 
tapered cavity, a 3-D long bend cavity, a 
waveguide cavity with different terminations, 
and a S-shaped inlet. Numerical results of radar 

cross sections of these objects are obtained using 
both the direct iterative method and the 
precorrected-FFT approach. Good agreements of 
RCSs between the two methods are demonstrated 
for all the objects. However, the precorrected-FFT 
method reduces the memory requirements and 

computational complexity from ( )2NO  for direct 

computation to ( )NO  and ( )NNO log , 
respectively, where N  denotes the number of the 
grids. This significantly improves the capability 
of the conventional method of moments for 
analyzing electrically large objects. 
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