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Abstract 
Truely optimal solutions to system design can only be 
obtained if the entire system is considered. In this 
research we consider design of commercial aircraft, but 
we expand the system to include a family of  planes. A 
multidisciplinary design optimization framework is 
developed in which multiple aircraft, each with different 
missions, can be optimized simultaneously. Results are 
presented for a two-member family whose individual 
missions differ significantly. We show that both 
missions can be satisfied with common designs, and that 
by optimizing both planes simultaneously rather than 
following the traditional baseline plus derivative 
approach, the common solution is vastly improved. The 
new framework is also used to gain insight to the effect 
of design variable scaling on the optimization 
algorithm. 

Introduction 
In today’s competitive environment, the aerospace 
industry is faced with the challenge of designing aircraft 
not only with superior performance, but also at a lower 
cost. Multidisciplinary design optimization (MDO) is a 
tool that has been used successfully throughout the 
design process to enable improvements in aircraft 
performance. By simultaneously considering the effects 
of aerodynamics, structures, propulsion, flight 
mechanics and dynamics, and the complicated 
interaction between them, substantially improved 
performance can be achieved. 
Studies show that the aircraft industry has evolved to a 
“dominant design”, and that factors such as cost are 
becoming increasingly important [1]. In the “Better, 
Faster, Cheaper” era, the aerospace industry is 
searching for ways to lower costs without compromising 
aircraft performance. 
One way to reduce costs is to conceive of a family of 
aircraft who share common characteristics, such as 
planform and systems, but who each satisfy a different 
mission requirement. Traditionally this has been 
achieved through the use of derivatives. A baseline 
aircraft is designed and subsequently modified to 
produce a number of derivatives to satisfy different 
missions (e.g. longer range, carry more payload). By 
taking advantage of commonality with the existing base 
model, it is possible to achieve the new mission at a far 
lower cost than would be incurred if a completely new 

plane were designed. Often, the modifications can be 
substantial, resulting in an almost entirely new plane. 
For example, the Boeing 737 Next Generation has a 
completely new wing. 
Here, the concept of commonality is taken a step 
further. We consider not just commonality between 
derivative aircraft whose missions are similar, but 
between two planes whose missions differ significantly. 
For example, if one could design a small capacity and a 
large capacity aircraft with common characteristics (for 
example a common wing), substantial savings could be 
realized in both recurring cost (manufacturing) and non-
recurring cost (design effort and tooling cost). The 
savings from commonality come at a price: the weight 
of these common planes will be higher than if each were 
optimized separately for its own mission. The question 
then, is whether it is possible to design a family of 
common planes that satisfies all missions but whose 
cost saving outweighs the weight penalty. An example 
of this exists in practice: the Airbus A330 and A340 
planes share common wings. 
Fujita et al. [2] discuss the simultaneous optimization of 
a family of products, however they assume that a 
baseline has been designed, and then consider the 
design of derivatives from this baseline. The mission of 
these derivatives is fairly close to the original: in the 
example they present, the only change to the derivative 
mission is to extend the range. In all cases, the 
derivative carries the same payload and retains the 
original fuselage. 
In this research, a common family is designed from a 
more fundamental approach. Optimization of a system 
which encompasses multiple aircraft is performed. As 
an example, we consider the Blended-Wing-Body 
(BWB), a revolutionary concept for transport that 
integrates wing, fuselage, engines, and tail to achieve a 

 
Figure 1: Blended-Wing-Body. 
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substantial improvement in performance over a 
conventional transport (Figure 1 and References [3,4]). 
Here, the specifics of the MDO approach are described 
and the simultaneous optimization and commonality 
framework are outlined. An example is presented in 
which a family of two BWB aircraft are designed. One 
plane will be large and long-range (475 passengers, 
8550 nm), while the second will be smaller and long-
range (272 passengers, 8550 nm). Finally, we present 
some conclusions and directions of ongoing and future 
work. 

Multidisciplinary Design Optimization Framework 
As described in [5] and [6], WingMOD is an MDO 
code that optimizes aircraft wings and horizontal tails 
subject to a wide array of practical constraints. 
WingMOD was initially applied to the design of a 
composite wing for a stretched MD-90 [7] and then 
went through considerable modification for application 
to the BWB [8,9]. The BWB planform is modeled as a 
series of spanwise elements as shown in Figure 2. 
Optimization services for WingMOD are provided by 
the Genie framework [8]. 
WingMOD uses intermediate fidelity analyses to 
quickly analyze an aircraft in over twenty design 
conditions that are needed to address issues from 
performance, aerodynamics, loads, weights, balance, 
stability and control. The low computational cost of the 
intermediate fidelity analyses allows the examination of 
all these issues in an optimization with over a hundred 
design variables while achieving reasonable 
computation time. 
The basic WingMOD method models an aircraft wing 
and tail with a simple vortex-lattice code and 
monocoque beam analysis, coupled to give static 
aeroelastic loads. The model is trimmed at several flight 
conditions to obtain load and induced drag data. Profile 
and compressibility drag are evaluated at stations across 
the span of the wing with empirical relations using the 
lift coefficients obtained from the vortex lattice code. 
Structural weight is calculated from the maximum 
elastic loads encountered through a range of flight 
conditions, including maneuver, vertical gust, and 
lateral gust. The structure is sized based on bending 
strength and buckling stability considerations. 
Maximum lift is evaluated using a critical section 
method that declares the wing to be at its maximum 
useable lift when any section reaches its maximum lift 
coefficient, which is calculated from empirical data. 
Balance is evaluated by distributing weight over the 
planform as described in [10]. 
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Figure 2: WingMOD BWB Model. 

The optimization algorithm used is sequential quadratic 
programming (SQP). The nonlinear problem can be 
stated as 
minimize )(xF   

subject to       mixci ,,2,1,0)( K=≥  (1) 

where the vector x contains the n design variables, F(x) 
is the objective function and ci are the m constraint 
functions. The Hessian matrix of F(x) contains the 
second order variations of the objective function with 
respect to each design variable, and is given by the 
n x n matrix G(x): 
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The SQP algorithm uses a sequence of line searches to 
determine the optimum solution to the nonlinear 
problem (1). The design space is modeled as a quadratic 
objective with linear constraints, using finite difference 
gradient calculations. An approximate Hessian matrix is 
constructed from information gathered over the 
sequence of iterations using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) update [11]. A quadratic 
programming problem is solved in the approximate 
design space to determine an estimated best direction 
for improvement. A line search is then executed in the 
actual design space which seeks improvement in the 
solution. 

Convergence of the algorithm is critically dependent, 
amongst other things, on the conditioning of the Hessian 
matrix. In [11] an approximate estimate is derived for 
the accuracy of the solution. Given the computed 
optimal solution x and the actual optimum *x , the 
error in the computed solution is given approximately 
by 
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where εA is the absolute precision and p is any 
perturbation vector of unit length. Equation (3) shows 
that if G(x*) is ill-conditioned, then the error in the 
computed solution can be very large along certain 
directions. As stated in [11], since the objective 
function will vary much more rapidly in some directions 
than in others, an ill-conditioned Hessian is a form of 
bad scaling. This scaling problem may also have an 
adverse effect on the optimization algorithm itself, since 
the objective may vary extremely slowly along 
directions associated with a small eigenvalue. In this 
case, changes in the objective that are significant may 
be lost, and the algorithm will have trouble converging 
to the exact solution. 
The ill-conditioning of the Hessian matrix can be 
quantified by its condition number given by 

 1
)(
)()(

min

max ≥=
G
GG

λ
λκ , (4) 

where λmax(G) and λmin(G) are respectively the 
maximum and minimum eigenvalues of G. (Note that 
because G is a symmetric matrix its eigenvalues and 
singular values are the same.) A matrix is said to be 
well-conditioned if its condition number is small (~1), 
and ill-conditioned if κ is large. 
We can therefore ensure that (1) is a well-scaled 
problem by choosing a linear transformation of the 
design variables that minimizes the condition number of 
the Hessian matrix at the solution. In practice this is 
done a posteriori: once the algorithm has converged to 
the calculated optimum, the Hessian matrix is inspected. 
Experience has shown that the approach can be 
simplified: by considering only the diagonal elements of 

)(xG  and scaling each of these to be O(1), the 
problem becomes sufficiently well scaled. 

Simultaneous Optimization with Commonality 
The MDO framework described in the previous section 
was altered to allow the simultaneous optimization of 
multiple planes with varying levels of commonality. 
Constraints arising from each of the disciplines were 
generated for each plane in the family. Commonality 
between family members was defined by breaking each 
plane into components. There were four main structural 
components: centerbody, inner wing, outer wing and 
winglet as shown in Figure 3. Each of these components 
can be specified to be either common or uncommon 
between family members. If just a particular component 
is allowed to vary, then the interface with a neighboring 

common component is kept common. An example 
might be allowing the centerbody to vary between 
family members, but keeping a common wing. In this 
case, the interface between the centerbody and the wing 
will be kept common. 

centerbody 

inner wing 

outer wing

winglet 
 

Figure 3: Modular structural breakdown of BWB. 

Since making parts common is a discrete decision, the 
effect of varying levels of commonality is assessed via 
trade studies rather than being determined through the 
optimizer. In the problem setup, parts can be made 
common by either enforcing explicit constraints on their 
dimensions or linking the dimensions so they always 
have the same value. The ability to link variables was 
added to the Genie framework that supports 
WingMOD. When a chord at a spanwise location on 
Plane 1 is linked to the corresponding chord on Plane 2, 
Genie causes changes on either chord to be immediately 
reflected on the other. The optimizer then views each 
set of linked variables as a single quantity. This 
approach is more efficient than having a design variable 
for each chord and an explicit commonality constraint 
to force the variables to be equal: it eliminates a design 
variable and constraint for each linked variable thus 
reducing the overall size of the combined optimization 
problem. 
Fujita et al. [2] state that when the difference between 
product characteristics is large, two independent 
products must be designed, since “commonalization of 
parts cannot meet with performance requirement, even 
though it is effective for cutting cost”. They do not 
attempt to quantify a “large difference”, although the 
examples they discuss (stretching a baseline design to 
extend range/payload) suggest that the missions of each 
family member are only incrementally different. Using 
the methodology developed here, a solution can be 
determined that does satisfy all performance 
requirements, even when the product characteristics are 
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significantly diverse. Subsequently, a cost analysis can 
be applied to determine whether such a design is a 
viable option. 
One approach to designing a common family might be 
to first optimize one family member and then force 
subsequent family members to share appropriate 
common features with the established planform. For 
example, in designing a small and a large plane with 
common planforms, one could first optimize the large 
plane, and then construct a smaller plane from the 
resulting planform. There are two problems with this 
approach. First, as pointed out in [2], there is no 
guarantee that the solution obtained from the first 
optimization will satisfy all constraints on other family 
members. In the two-plane example, it is likely, 
although not certain, that the planform arising from 
optimizing a large plane will satisfy all requirements on 
the smaller plane. This may not be the case if we were 
to add a third family member. The second issue is that 
this sequential approach results in a sub-optimal family. 
For example, by trading some optimality on the larger 
plane, significant improvement could be obtained in the 
smaller plane, resulting in an overall “better” family 
solution. This raises the issue of what the objective 
should be in the family optimization: should we try to 
minimize the combined weight of the family, or should 
the objective be more heavily biased towards a certain 
family member? The results presented in the following 
section will demonstrate that simultaneous optimization 
overcomes the limitations of sequential optimization of 
a family. A discussion of the choice of appropriate 
objectives will also follow. 

Results and Discussion 
Results will be presented for design of a two-member 
BWB family. The two planes satisfy the following 
mission requirements: 
Plane 1: 8550 nm range, 475 passengers 
Plane 2: 8550 nm range, 272 passengers 
These two planes represent what might be the smallest 
and largest aircraft of a family with more members, i.e. 
this would be the greatest mission difference of interest. 

Example 1: Simultaneous Point Optimization of Two 
Planes 
In order to investigate the new multiple-aircraft 
optimization framework, a test problem was set up. The 
two planes were designed simultaneously, but with no 
commonality constraints. Obviously, the solution to this 
problem could be obtained by optimizing each plane 
separately. Since the actual solution of the problem can 
be determined using the conventional approach, 
valuable insight to the new framework can be gained.  
This example highlights the importance of design 
variable scaling discussed in Section 2. Initially the 
simultaneous design problem was set up by simply 
concatenating the constraints for each plane, and 
attempting to minimize the sum of the take-off weights. 
Each problem was also optimized individually to 
determine the minimum-weight solution for each plane. 
In each individual case, the optimizer converged 
without difficulty.  Despite identical systems being used 
in the simultaneous setting with no coupling between 
them, the optimizer could not converge to the correct 
optimal solution. The minimum-weight solution was 
obtained for Plane 1 (the larger plane), however the 
solution for Plane 2 was significantly sub-optimal when 
the algorithm claimed to have converged. Inspection of 
the Hessian matrix at this solution showed that 
geometric variables associated to Plane 2 were badly 
scaled. The diagonal entries of the Hessian for these 
variables were O(10-2) and O(10-3). 
The troublesome variables were rescaled, and the 
simultaneous optimization was performed again. Now 
the optimizer had no trouble converging to a solution 
that agreed with the individually obtained optimal 
designs. The calculated weights for the final 100 
iterations are plotted in Figure 4. Shown are the 
calculated take-off weights for each plane, normalized 
by the known point-optimum solution. The results are 
very similar for Plane 1 in both the scaled and unscaled 
cases. In the unscaled case, the solution has converged 
to a sub-optimum level for Plane 2.  
This result suggests that in the simultaneous framework, 
the optimization algorithm is much more sensitive to 
poor scaling. This can be explained mathematically by 
comparing the Hessian matrices of the individual and 
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Figure 4: Objective history for optimization 
algorithm. Shown are the calculated weights for 

each plane over the last 100 iterations, normalized 
by the appropriate point-optimum solution. 
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combined systems. If the Hessian of the system for 
Plane 1 alone is G1 and for Plane 2 is G2, then the 
Hessian of the simultaneous system is given by 

 







=

2

1

0
0

G
G

G  (5) 

since there is no coupling between the planes. The 
condition numbers of the single-plane Hessians are 

 ( ) 1
min

1
max

1 λ
λκ =G  , ( ) 2

min

2
max

2 λ
λκ =G  (6) 

and for the combined system: 

 ( ) ( )
( )2

min
1
min

2
max

1
max

,min
,max
λλ
λλκ =G . (7) 

From equation (7) we can see that in the best case the 
condition number of the combined system will be equal 
to the worst of )( 1Gκ  or )( 2Gκ , and could in fact 
exceed both.  
One can gain an understanding of how poor scaling 
might affect the convergence of the optimization 
algorithm by considering a simple geometric 
representation of the problem. Consider a system with 
two design variables. In the SQP algorithm, at each step 
the design space is modeled as a quadratic objective 
with linear constraints. If we were to plot the objective 
versus each of the design variables, we would obtain a 
paraboloid as shown in Figure 5. If the design variables 
are perfectly scaled so that the Hessian matrix has a 
condition number of unity, then the cross-sectional 
slices of the paraboloid are circles. If one (or both) of 
the variables is badly scaled, then the cross sections of 
the paraboloid are elliptical. In fact, the relative lengths 
of the major and minor axes of the ellipse are described 
by the minimum and maximum eigenvalues of the 
Hessian matrix.  
Figure 6 demonstrates how the algorithm might be 
adversely affected by poor scaling. In both diagrams, 
the optimum is located at the origin. In the well-scaled 
case (a), the objective contours are circles and the line 
search moves the solution in the correct direction. Now 
consider the case in Figure 6(b) where variable x1 is 
well scaled, but x2 is badly scaled. The line search will 
choose a direction that captures the correct behavior for 
x1, but very little improvement in x2. If the scaling 
problem is bad enough, the optimizer will converge to a 
sub-optimal solution represented by the star in Figure 
6(b) where the remaining improvement in x2 cannot be 
achieved. Figure 6(b) describes the BWB example very 
closely. One could consider x1 as representing all design 

variables for Plane 1 and x2 as representing all those for 
Plane 2. Because x2 was poorly scaled, the optimizer 
achieved the true minimum-weight solution for Plane 1, 
but converged to a sub-optimal solution for Plane 2.  

Example 2: Optimizing a Two-Plane Common 
Family 
We now present results for the two-plane family with 
commonality. The planes are constrained to have 
completely common wings (inner wing, outer wing and 
winglet in Figure 3), but different centerbodies. The 
interface between the inner wing and the centerbody is 
also common. The results will be used to assess the 
value of the new, simultaneous design approach. 
The two-plane family was first designed using a 
conventional, sequential technique. The larger plane 
was optimized for minimum take-off weight as if it were 
a point design. The smaller plane was then optimized to 
achieve its minimum take-off weight, but constrained to 
have an identical wing to its pre-determined larger 
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Figure 5 : Quadratic approximation to the design 

space. 
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mate. This resulted in what we refer to as the sequential 
family design. The new optimization framework was 
used to design the two planes simultaneously by 
minimizing the sum of the take-off weights, resulting in 
the simultaneous family design. Table 1 summarizes the 
results for the simultaneous optimization. The total 
take-off weight for the simultaneous family is 3395 lb 
less than that of the sequential family. This weight 
reduction is achieved by a small increase in the weight 
of Plane 1, which allows a significant decrease in the 
weight of Plane 2, resulting in an overall better solution. 

Table 1: Optimization results for simultaneous 
family design. Changes are relative to the sequential 

design solution. 

Total 
MTOW 

MTOW 
Plane 1 

MTOW 
Plane 2 

-3395 lb +573 lb -3968 lb 
 
Further interrogation of the solutions shows how the 
optimizer has made trade-offs to achieve this weight 
reduction. The wing area (and hence structural weight) 
of Plane 1 has been slightly reduced at the expense of 
aerodynamic efficiency. A decrease in structural weight 
of 0.45% is traded for a reduction in average cruise lift 
to drag ratio of 0.35%. Although this means that the 
take-off weight for Plane 1 is slightly greater than the 
point-optimum solution, the reduced wing area has very 
positive benefits for Plane 2. In the sequential design, 
the constrained wing area for Plane 2 is significantly 
larger than is actually required. Reduction of the area 
lowers the structural weight without compromising 
aerodynamic efficiency, which means that a further cut 
in weight is achieved via a lowered fuel requirement. 

Figure 7 depicts the two different planforms for Plane 2. 
The comparison shows how the diminished wing area 
has been achieved: reduced chords and slightly 
increased sweep. 

Choice of Objective  
When designing more than one plane, the objective 
should be chosen by careful consideration of the 
problem at hand. As mentioned previously, 
commonality between family members results in a 
trade-off between increased operating cost (weight) and 
reduced acquisition cost (manufacturing/development). 
Ultimately, we plan to incorporate a cost model to the 
MDO framework and to optimize the family by 
maximizing profit rather than by minimizing weight. 
Development of a suitable cost modeling framework is 
underway. In this expanded framework, the appropriate 
objective will be clear: maximize the overall profit 
associated to the family. In the current model where we 
consider take-off weight, it is necessary to choose an 
appropriate objective that includes a weighted 
contribution from each family member. For a family 
with Nf  members, the objective takes the form 

 min







∑

=

fN

i
iiWs

1

 (8) 

where 0<si<1 is a weighting factor for the ith plane and 
Wi is its take-off weight. In many cases, simply 
minimizing the sum of the family take-off weights will 
be a suitable approach (si=1/Nf, i =1...Nf). If other 
factors are taken into consideration, such as relative 
market demands or competing aircraft, then an 
objective should be chosen which favors the most 
critical family members. 
Investigation into the effect of objective choice was 
performed for the two-plane common-wing family. 
Three optimizations were carried out with varying 
weighting factors, si, on the take-off weights of each 
plane. The results are summarized in Table 2. 

Table 2: Optimization results for different 
objectives. Changes are relative to the sequential 

design solution. 

s1 s2 
MTOW 
Plane 1 

MTOW 
Plane 2 

Total 
MTOW 

0.5 0.5 +584 lb -1545 lb -961 lb 
0.1 0.9 +1800 lb -2282 lb -482 lb 
0.9 0.1 +298 lb -405 lb -107 lb 

 
While the first optimization provides the lowest total 
take-off weight, the weight of the smaller plane can be 
further reduced by biasing the objective function in its 

  

 
Figure 7: Planforms for Plane 2: wings common 
with Plane 1, centerbody optimized. Sequential 
(black line) and simultaneous (grey shade) designs. 
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favor. Again, a reduction of the aerodynamic efficiency 
of the large plane is traded for reduced wing area. With 
a large weighting placed on Plane 1, the simultaneous 
design begins to approach its point-optimal solution. 
Within the simultaneous optimization framework, the 
objective choice can be used to rigorously balance the 
compromise between family members. It would be 
extremely difficult to identify these trade-offs when 
working with a sequential design method. 

Conclusions 

Simultaneous optimization of multiple aircraft offers 
considerable benefit to the design process. By designing 
family members with common characteristics, 
substantial savings can be realized in manufacturing and 
development costs. The simultaneous optimization 
methodology presented here not only ensures that a 
common design can be found which satisfies all 
constraints on each family member, but also determines 
the best overall family solution by applying appropriate 
trade-offs between aircraft. The results presented 
demonstrate that a common solution can be found even 
when mission requirements differ significantly between 
family members. Substantial weight savings can be 
achieved by designing family members simultaneously 
and allowing the optimizer to make apt trade-offs. 

The next stage in this work is to develop a cost model 
that can capture the benefits of commonality. 
Preliminary cost analysis indicates that the weight 
penalties incurred by the common design are more than 
offset by savings in manufacturing and development 
cost. A detailed cost modeling framework is currently 
under development, which will allow the benefits of 
common design to be assessed more accurately.  
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