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Abstract— We propose a new method, based on semidef-
inite optimization, to find tight upper bounds on the ex-
pected project completion time and expected project tardi-
ness in a stochastic project scheduling environment, when
only limited information in the form of first and second
(joint) moments of the durations of individual activities in
the project is available. Our computational experiments
suggest that the bounds provided by the new method are
stronger and often significant compared to the bounds found
by alternative methods.
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I. Introduction

A project is a set of activities that has to be completed
given certain precedence relationships. We represent such
a project with an acyclic directed network, in which an
arc represents an activity, and a node represents the com-
pletion of all activities leading to this node. We denote
the total number of arcs in the network by n and the to-
tal number of nodes by m. Node 1 represents the start of
the project and node m represents the completion of the
project.

For each activity (arc) i, let xi be a random variable
representing its duration, and let x = [x1, x2, . . . , xn]′. The
minimum duration of the activities is assumed to be known
and is represented by the vector a = [a1, a2, . . . , an]′.
Clearly, a ≥ 0.

Let P be the set of paths in the network from node 1
to node m. For each path p let Bp be the set of activities
along path p.

The project completion time is determined by the length
of the longest path in the network from node 1 to node m.

R(x) = max
p∈P

∑

i∈Bp

xi.

A simple lower bound on the project completion time is
thus

R(a) = max
p∈P

∑

i∈Bp

ai.

Let T be a specified due date for the project. Project
tardiness is defined as

G(T ) = (R(x) − T )+ = max(0, R(x) − T ).

Clearly, if T = 0, G(0) reduces to the completion time
of the project. If the durations of activities are determin-
istic, then G(T ) can be exactly computed using network
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flow methods [9]. If the duration of activities are restricted
to two possible values and are independent, Hagstrom [10]
has shown that the computation of expected completion
time is #P -complete. The complexity status for general
expected completion time is still open. However she has
shown that the expected completion time cannot be com-
puted in time polynomial in the number of values that the
individual activity durations take unless P = NP . This
suggests that in general it is difficult to compute the exact
expected project tardiness hence motivating the interest in
computing bounds on it.

Levy and Wiest ([16], page 169) argue that activity du-
rations are often dependent, since different activities share
the same limited resources. In practice, the information re-
garding the duration of the various activities is limited to
knowing their expected values, and possibly their variances
and covariances. Our objective in this paper is to obtain
tight upper bounds on E[(R(x)−T )+], when we only have
limited information in the form of first and second (joint)
moments of the durations of the various activities.

Robillard and Trahan [21] study the expected completion
time E[R(x)] assuming that the durations of different ac-
tivities are independent random variables. Assuming inde-
pendence, but only limited moment information, Devroye
[7] computes upper bounds on E[R(x)].

Computing lower bounds for tardiness is easier than com-
puting upper bounds as we can use Jensen’s inequality on
the convex tardiness measure. This is generally observed
to be reasonably accurate and tight (see Birge and Dula
[4]). Computing tight upper bounds is much more challeng-
ing. One commonly used upper bound is the Edmundson-
Madansky upper bound [18]. This bound uses the first mo-
ments to explicitly characterize the worst-case probability
distribution. Birge and Maddox [5], building upon ideas
from Mejilson and Nadas [19], develop upper bound on the
expected tardiness problem when only partial information
is available.

When limited moment information on the duration of
various activities is available, Anklesaria [1], Sculli [22] and
Mohring [17] use the central limit theorem to approximate
the distribution of the tardiness. Under this method, the
completion times from the various paths in the network
obey a multivariate normal distribution from the central
limit theorem. Then, the distribution of project tardiness
can be computed by calculating the maximum of corre-
lated normal distributions, a generally nontrivial calcula-
tion. This approach, does not provide bounds but only ap-
proximate answers. When various activities are correlated,



one should impose certain assumptions on the distribution
of x for the central limit theorem to apply. Finally, even
if the central limit theorem can be applied, it will not be
a good approximation for smaller networks, often encoun-
tered in practice. In contrast, we provide formal upper
bounds that are distribution free.

As the method of Birge and Maddox [5] does provide
formal upper bounds, although it does not cover correlated
durations of activities effectively, we briefly outline it. As-
sume that we know the marginal distribution functions of
the duration xi, i.e., Fi(x) = P (xi ≤ x). Let Θ be the
family of joint distributions compatible with the marginal
distributions Fi(x), i = 1, . . . , n. Mejilson and Nadas [19]
address the problem of evaluating

sup
θ∈Θ(F1,...,Fn)

Eθ[R(x) − T ]+. (1)

Mejilson and Nadas [19] reformulate the problem as fol-
lows. For each path p ∈ P and vector z ∈ <n we have

∑

i∈Bp

xi − T =
∑

i∈Bp

zi − T +
∑

i∈Bp

[xi − zi].

Replacing
∑

i∈Bp
zi − T by [maxp∈P

∑

i∈Bp
zi − T ]+ and

∑

i∈Bp
[xi − zi] by

∑n

i=1[xi − zi]
+ we obtain the following

inequality

∑

i∈Bp

xi − T ≤



max
p∈P

∑

i∈Bp

zi − T





+

+
n
∑

i=1

[xi − zi]
+.

Since the right hand side of the inequality above is nonneg-
ative and independent of the path p we have



max
p∈P

∑

i∈Bp

xi − T





+

≤



max
p∈P

∑

i∈Bp

zi − T





+

+
n
∑

i=1

[xi−zi]
+.

Taking expectations and the infimum over z ∈ <n we
obtain

E[R(x) − T ]+ ≤ inf
z∈<n

(

[R(z) − T ]+ +

n
∑

i=1

E[xi − zi]
+

)

.

Furthermore, Mejilson and Nadas [19] construct a joint
probability distribution θ in Θ(F1, . . . , Fn) such that the
previous upper bound is tight.

Thus, an upper bound on Problem (1) can be found by

sup
θ∈Θ(F1,...,Fn)

inf
z∈<n

(

[R(z) − T ]+ +

n
∑

i=1

E[xi − zi]
+

)

≤

inf
z∈<n

(

[R(z) − T ]+ +

n
∑

i=1

EFi
[xi − zi]

+

)

,

where the order of the sup and the inf are exchanged and it
is realized that the problem inside the sup simplifies. The
above problem is a nonlinear optimization problem that

Birge and Maddox [5] solve using a successive lineariza-
tion procedure. While in principle the previous method
could be generalized to accommodate correlations among
different durations, Birge and Maddox ([5], page 849) state:
“Finding efficient solutions for the problem with limited

correlation information is an area for future research”.
In this paper, building upon the work of Bertsimas and

Popescu [2] and [3] we propose a different method based
on semidefinite optimization to find tight upper bounds in
Problem (1), when the first two moments of the durations
of various activities, and the correlations are given. We
develop our method in the section II and present compu-
tational results in Section III. We discuss extensions and
future research in in Section IV.

II. A semidefinite formulation

Suppose that we are given µi = E[xi] and σij = E[xixj ].
Note that µi and σii represent the first and second moments
of the duration of activity i. Problem (1), when only µi and
σij and the lower bounds a are given, becomes

max E[R(x) − T ]+

s.t. E[xi] = µi 1 ≤ i ≤ n

E[xixj ] = σij 1 ≤ i ≤ j ≤ n

x ≤ a.

To simplify the notation, we let M =
(

n+1
2

)

+ n and we
define appropriate matrices Ai vectors bi and scalars qi

such that the previous problem becomes

max E[R(x) − T ]+

s.t. E[x′Aix + bi
′x] = qi 1 ≤ i ≤ M

x ≥ a.

Simple variable transformation obtained by substituting
x = w + a yields

max E[R(w + a) − T ]+

s.t. 1 ≤ i ≤ M

E[w′Aiw + w′(2Aia + bi) + a′Aia + a′bi] = qi

w ≥ 0.

Following the approach in Bertsimas and Popescu [2],
[3] we introduce a dual variable y0 that corresponds to the
probability mass constraint and a dual variable yi associ-
ated with each equality constraint and consider the dual
problem:

min y0 +

M
∑

i=1

yiqi

s.t. y0 +

M
∑

i=1

yi(w
′Aiw + w′(2Aia + bi) + a′Aia + a′bi)

≥ (R(w + a) − T )+ ∀ w ≥ 0. (2)

Haneveld [11] proves that for upper semicontinuous func-
tions (R(·)− T )+ with absolute value bounded by an inte-
grable separable function, strong duality holds. Since the



tardiness function is an upper semicontinuous function, the
optimal objective values of both the primal and the dual
formulations are equal. Hence, the objective function value
of Problem (2) is indeed max E[G(T )].

Let path p be defined by the vector ep where ei
p = 1 if

activity i is on path p, and 0, otherwise. Let e0 be a zero
vector in <n. We also define dp = −T, ∀ p ∈ P and d0 = 0.
With these definitions the computation of the upper bound
on the expected tardiness can we can be rewritten as:

min y0 +

M
∑

i=1

yiqi

s.t. y0 +

M
∑

i=1

yi(w
′Aiw + w′(2Aia + bi) + a′Aia + a′bi)

≥ ep
′(w + a) + dp ∀w ∈ <n

+, p ∈ P ∪ {0}. (3)

We define

L1(y) =

M
∑

i=1

yiAi,

L2p(y) =

(

M
∑

i=1

yi(2Aia + bi) − ep

)

/2,

L3p(y) = y0 +

M
∑

i=1

yi(a
′Aia + a′bi) − ep

′a − dp.

Here L1 is a symmetric matrix, and is independent of
p, while L2p ∈ <n and L3p ∈ < depend on p. With these
definitions max E[G(T )] is equal to:

min y0 +

M
∑

i=1

yiqi

s.t. ∀w ∈ <n
+, ∀p ∈ P ∪ {0}

(

w

1

)′(

L1(y) L2p(y)
L2p(y)′ L3p(y)

)(

w

1

)

≥ 0. (4)

This implies that the matrix in (4) belongs in the cone
of co-positive matrices C+

n+1 = {A| y′Ay ≥ 0, ∀ y ∈ <n
+}.

Hence max E[G(T )] is equal to:

min y0 +

M
∑

i=1

yiqi

s.t.

(

L1(y) L2p(y)
L2p(y)′ L3p(y)

)

∈ C+
n+1 ∀p ∈ P ∪ {0}. (5)

Determining if a given matrix is co-positive is co−NP -
complete (see Kabadi and Murty [13]) . Thus, an exact
tractable description of the co-positive cone is not known,
and most probably impossible unless P = co − NP . For
this reason, we find sufficient conditions for co-positivity. A
simple such condition is as follows. If A = B+C, such that
the matrix B is positive semidefinite, denoted by B � 0,
and the matrix C has non-negative entries, denoted by
C ≥ 0, then clearly the matrix A is co-positive. Thus, the

following semidefinite optimization problem gives an upper
bound on the expected tardiness G(T ).

min y0 +
M
∑

i=1

yiqi

s.t. Np ≥ 0 ∀p ∈ P ∪ {0}

Np = Np
′ ∀p ∈ P ∪ {0} (6)

(

L1(y) L2p(y)
L2p(y)′ L3p(y)

)

� Np ∀p ∈ P ∪ {0}.

Note that the total number of semidefinite constraints is
equal to the total number of paths in the network plus
one, |P | + 1.

III. Computational Results

In this section, we compare the bounds provided by the
semidefinite model (6) and by the method in Birge and
Maddox [5] on two small examples in [5]. The semidefinite
problem (6) is solved using the software Sedumi developed
by Sturm [23].

A. Example 1

Figure 1. The project network in Example 1.

The project above consists of 10 activities that need to be
completed and consists of 3 paths. The given first and sec-
ond moments with the lower bound on the arc durations
is provided in Table I. The upper bounds for five different

TABLE I

Activity duration data for Example 1

Activity i ai E[xi] E[xi]
2

1 1 1 1
2 2 3 9.333
3 1 2 4.333
4 2 2.5 6.333
5 3 5 26.333
6 3 4 16.333
7 1 3 10.333
8 4 4.5 20.333
9 1 1.5 2.333
10 4 5 25.333

due dates were computed for the network above and com-
pared with the results reported in Birge and Maddox [5].
The results obtained are displayed in Table II.



TABLE II

Upper bounds on project tardiness for Example 1.

Due Date T 0 15 18.33 21.67 25

BM [5] 20.35 5.35 2.98 1.27 0.73
SDP 20.23 5.30 2.67 0.95 0.48

B. Example 2

Figure 2. The project network in Example 2.

This project is a smaller project as compared to Example 1
with 5 activities. The given data for this project has been
provided in the Table III. We evaluate the project tardiness

TABLE III

Activity duration data for Example 2

Activity i ai E[xi] E[xi]
2

1 0 1 1.666
2 0 1 1.666
3 0 1 1.666
4 0 1 1.666
5 0 1 1.666

for four deadline date values in Table IV.

TABLE IV

Upper bounds on project tardiness for Example 2.

Due Date T 0 2 4 6

BM [5] 5 2.27 1.16 0.73
SDP 4.16 2.25 1.01 0.55

As evident from Table II and IV the bound provided
by solving Problem (6), always outperforms the bound ob-
tained by Birge and Maddox [5]. Thus, even for prob-
lems with known first and second moments only, we obtain
stronger upper bounds on project tardiness as compared
to the technique described in Section II. This makes the
technique promising as it is capable of incorporating cross
moment information as well.

IV. Extensions and future research

The approach outlined in the paper can be used to handle
several extensions:

(a) If higher moment information is available, then anal-
ogously to Eq.3) the dual problem can be written as a
multivariate polynomial P (w), whose coefficients are
linear functions of the dual variables y is nonnegative
for all w ∈ <n

+. A sufficient, but not necessary, con-
dition that a multivariate polynomial is nonnegative
is that can be expressed as a sum of squares of poly-
nomials. This leads to a semidefinite formulation, see
Parillo [20]. Hence we can find the worst-case bounds
on project tardiness if higher moment information is
known.

(b) If we want to penalize the delay of a project after its
deadline date more severely, then we could choose a
piecewise quadratic function as the tardiness instead
of a piecewise linear function. Such definitions of
project tardiness can be incorporated in the proposed
approach and can be handled efficiently.

(c) Finding an upper bound on the variance of the
project completion time or on the probability of a
project being overdue, namely P (R(x) > T ), is also
possible under our approach.

The principle limitation of the current technique is that
the number of semidefinite constraints it generates is pro-
portional to the number of paths. This path dependent
formulation may be too huge for large networks. Though
the state of art semidefinite programming software is rel-
atively advanced we need techniques to effectively handle
this path dependency in the formulation. One such idea
may be to evaluate heuristics to determine paths that are
most likely of becoming the critical path. This could be
then used to reduce the number of semidefinite constraints
[1], [22]. Another promising technique could be one that
uses cutting plane techniques to solve the semidefinite pro-
gram with huge number of semidefinite constraints effec-
tively [14]. It is necessary to evaluate and develop these
techniques and then test them effectively on large projects
with large number of paths.
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