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Abstract—In this paper, the numerical
simulation for nano-indentation is
performed to measure time-dependent
behavior of polymeric films. The
possibility to extract the relaxed shear
modulus of the polymer is evaluated
using a rigid ball indenter. The
viscoelastic behavior of the polymer
was represented by the standard model.
The effects of Poisson’s ratio are also
discussed.

1. Introduction

Thin polymer films have been widely
used in electronic industries. Thermo-
mechanical properties and residual
stresses generated in polymeric films
on silicon substrates are of special
interests in microelectronic packaging.
During the curing and post-curing
processes, polymer films form three-
dimensional crosslinkings and shrinks,
which results in developing a large
amount of stresses in silicon substrates
and polymeric films. In addition, the
adhesion strength of polymer films to
substrates is crucial to their successful
performance.
Nano-indentation is now widely used
to measure the mechanical properties,
such as modulus, hardness and
adhesion, with the emphasis on thin
films due to its nanometer
displacement resolution. The most
extensively used method to extract
Young’s modulus and Poisson’s ratio
by nano-indentation is proposed by W.
C. Oliver and G. M. Pharr [1], in
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is used to calculate the equivalent
Young’s modulus. The materials
response is assumed to be elastoplastic
during loading and fully elastic in
unloading [1].
Although its success in extracting
mechanical properties for metal and
ceramic thin films, challenges have
been encountered when trying to use
Oliver and Pharr’s method to
extrapolate useful information from
nanoindentation data on polymers due
to the time dependent nature of the
polymer samples [2]. In most cases,
the elastic modulus calculated from
various polymers based upon
nanoindentation data are elevated 20 –
30% relative to the values obtained
with more standard tests. This larger E
is believed to be due to tip-sample
adhesion, that effectively increases the
contact area of the tip during
indentation, and creep which increases
the slope of unloading curve. The rate
sensitive nature of polymers also
causes ‘nose phenomenon’ in
indentation [3]. Many efforts have
been done to eliminate creep effect to
get more accurate Young’s modulus
[4]-[9]. However, it seems that the
time dependent nature of Young’s
modulus is neglected and the polymers
response is assumed to be elastoplastic.
To extract time dependent properties of
polymers by nano-indentation is a
tackle task. Some researchers used
standard solid model to represent the
viscoelastic properties, and obtained
the coefficients before the differential
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indentation creep test [10-13].  This
demonstrates that, nano-indentation is
a potential technique to measure the
viscoelastic properties of polymeric
thin films.

2. Basic Theory

In practice, sharp indentation tests are
frequently used to extract the Young’s
modulus and hardness from the
unloading curve of an indentation
experiments. Owing to the large
rotations induced by the sharp
indenter, a large strain formulation of
the problem is warranted.
For ball indentation, however,
axisymmetry prevails and linear
kinematics is sufficient at moderate
indentations. For classical elasto-
plastic materials, the well-known
experimental findings by Tabor have
been given a solid theoretical
background by Hill et al. [14] and
Biwa and Storakers [15]. When time
dependence is modeled by linear visco-
elasticity, pertinent to many polymers
at small strains, the theoretic frame of
ball indentation is already known.
Perhaps the first ones to presents a
solution to the problem of ball
indentation of incompressible linear
viscoelastic materials were Lee and
Radok [17]. Their approach was to
tentatively replace the materials
constants in the classical elastic
solution with the corresponding
differential operators in the
viscoelastic constitutive equation.
Hunter extended the solution to linear
viscoelastic materials when Poisson’s
ratio is constant [18]. A more general
solution to the problem was presented
by Graham [19].
The mechanical behavior of the
materials of interest is assumed to be
isotropic and linearly viscoelastic.
Using ordinary notation the stress-
strain relation can then be formulated
in relaxation form as
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It has been tacitly assumed above that
σij=εij=0 for t<0.
Furthermore, within linear kinematics
the relation between strains and
displacements is
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while quasi-static equilibrium with
body forces absent becomes
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It is assumed that a perfectly spherical
and rigid ball is pressed onto a
viscoelastic half-space under
axisymmetric conditions. If the ball
diameter D is sufficiently larger than
the contact radius a, the displacement
boundary condition is
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It is also assumed that no friction
between ball and half-space, the
boundary condition within the contact
area are
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The general solution is
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where K*dP stands for the function
defined by the Riemann-Stieltjes
integral, and
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If the viscoelastic material of the half
space has similar behavior in shear and
dilatation then, the Poisson’s ratio is



constant. K is given through the
equation
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Because the history effect of
viscoelastic materials, the analysis of
the usual indentation loading and
unloading cycle is difficult. It is
suitable to use indentation creep test, in
which the force is applied in a time as
short as possible and is held for a
period time, at same time the depth is
recorded.
In an indentation creep test, the force
can be represented by
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where h(t) is Heaviside unit step
function. Under the condition of
constant Poisson’s ratio, equation (7)
becomes
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Therefore from indentation creep tests,
shear modulus of the material of half-
space can be extract if its Poisson’s
ratio is known.
In general, Poisson’s ratio is changing
with time. However, at reasonable
experiment time, the amplitude of
Poisson’s ratio’s changes is small. In
this study, it assumed that it is
constant, and the shear modulus can be
estimated through equation (12).

3. Results of FEM Simulation

Because the stress and strain fields
under the indentation tip are
complicated, finite element method is a
very useful tool to study indentation
problem. In this study, ABAQUS 5.8 is
employed. The mesh used in all the
simulations is depicted in Fig 1. In
view that no Saint-Venant principle is
available for the contact problem, the
outer boundaries were taken at least
about 50 times the maximum contact
length away from the indented area.
The indentation creep is achieved by
moving the rigid ball to a prescribed

depth, then adding the equivalent force
and maintain it, at the same time lift
the boundary restriction for the rigid
ball. And no friction between the rigid
ball and the surface of the samples.
1. Simulation results of indentation on
standard solid
The material analyzed was assumed to
have the standard solid behavior. The
radius of the rigid ball is taken as 2
µm. The instantaneous value of
Young’s modulus is 3 GPa.  The
Poisson’s ratio is 0.3 and keeps
constant. The retardation time τ is
assumed to be 2 s. The relaxed shear
modulus can be represented by Prony’s
expression:
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where ag  is assumed to be 0.4.

Fig. 1, Mesh used in simulation

The bulk modulus has the same time
expression as equation (13).
In the simulation, the creep time is
taken as 30 seconds.
Fig. 2 illustrates the creep depth, it
increases very fast within 2 seconds,
then the increasing becomes slow, and
the curve becomes flat at about 15
seconds. The total depth increasing is
over 40%.
Fig. 3 shows the strain field at the
moment of just loading the force and
the moment of 30 seconds of force
holding. It can be seen that, the strain
is nearly 10 percent just under the tip,
therefore careful attention should be
paid when the indentation method is



used to extract the linear viscoelastic
properties.
Fig. 4 shows the shear modulus
obtained from equation (12), together
with the theoretic shear modulus. It can
be seen that the difference between the
inputted relaxed shear modulus and the
shear modulus calculated is less than
10 percent. Thus, it would be safe to
extract the shear modulus using
equation (12) at a certain range.
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Fig. 2, The creep depth

2. Effects of Poisson’s ratio on the
creep depth
The changing of Poisson’s ratio makes
inden ta t ion  p rob lems  more
complicated to handle with. The results
of two situations are presented in Fig.
5. One situation is Poisson’s ratio is
constant with the value of 0.3, the
other is the results of bulk modulus is
constant with the initial Poisson’s ratio
value of 0.3.

(a)



(b)
Fig. 3, Strain field. (a) just after force is loaded; (b) after 30 s of force holding
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Fig. 4, Relaxed shear Modulus

0 5 10 15 20 25 30
0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

Poisson's ratio is not constant,
but the bulk modulus is constant

Poisson's ratio is constant

N
or

m
al

iz
ed

 c
re

ep
 d

ep
th

Creep time (sec)

Fig. 5. The difference between the normalized
creep depths of constant Poisson’s ratio and
the constant bulk modulus
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Fig. 6. The normalized creep depth for different initial Poisson’s ratio. Solid line for constant
Poisson’s ratio, dash line for constant bulk modulus. The retardation time is 4 seconds.



_the initial Poisson’s ratio is 0.2
the initial Poisson’s ratio is 0.3
the initial Poisson’s ratio is 0.4

From Fig. 5, it can be seen that, within
the retardation time, the creep depths
are nearly the same. After the
retardation time, the difference
increases with time and becomes
constant at 10 seconds. The maximum
difference is less than 10 percent.
Fig. 6 illustrates the differences
between the normalized depths for
various Poisson’s ratios.  As shown in
Fig. 6, the maximum difference for the
same initial Poisson’s ratio is about 10
percent. The differences decrease with
increasing the initial value of Poisson’s
ratio. By considering the error of nano-
indentation is 10 percent, it could be
reasonable to use equation (12) to
estimate the relaxed shear modulus.

3. The effect of retardation time
The results of normalized depth for
retardation of 2 seconds and 4 seconds
with the constant Poisson’s value of
0.3 are illustrated in Fig. 7. It shows
that, when the retardation time is
small, the depth increases faster.
However, when time reaches 30
seconds, the normalized depth is nearly
the same since the infinite shear
moduli are identical for the two
situations. We might estimate the
instantaneous and infinite modulus
through the depth reached just after the
loading of the force and the depth at
the time when the depth curve is flat.
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Fig. 7. The effect of retardation time. The
Poisson’s ratios for the two curves are all 0.3.

4. Conclusion
Rigid ball indentation creep test can be
used to measure or estimate the relaxed
shear modulus as an alternative to
traditional testing method, when the
indentation depth is shallow.
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