
Understanding Fire Fighting

in

New Product Development

Nelson P. Repenning

Department of Operations Management/System Dynamics Group
Sloan School of Management

Massachusetts Institute of Technology
E53-339, 30 Wadsworth St.
Cambridge, MA USA 02142

Phone 617-258-6889; Fax: 617-258-7579; E-Mail: <nelson@mit.edu>

March 2001

Forthcoming in

Journal of Product Innovation Management

 Work reported here was supported by the MIT Center for Innovation in Product
Development under NSF Cooperative Agreement Number EEC-9529140, the Harley-
Davidson Motor Company and the Ford Motor Company. Extremely valuable
comments have been provided by Laura Black, Andrew Jones, John Sterman, Scott
Rockart, Rogelio Oliva, Steven Eppinger, Steve Graves, John Hauser, Rebecca
Henderson, two anonymous referees and the editor. Thanks also to seminar
participants at MIT, Wharton, Harvard, Stanford, and INFORMS Seattle. Minsoo Cho
developed the web site that accompanies this article. Special thanks to Don Kieffer of
Harley-Davidson for providing the catalyst for this study.

Complete documentation of the model as well as more information on the research program
that generated this article can be found at <http://web.mit.edu/nelsonr/www/>.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381559?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Biographical Sketch

Nelson P. Repenning is an assistant professor at the MIT Sloan School of Management. His work
focuses on understanding the factors that contribute to the successful implementation, execution,
and design of business processes. Current research interests include organizational change,
process improvement in new product development, and the creation of cross-disciplinary
management theory. His work draws on a number of modeling methods including simulation,
non-linear dynamics, and game and contract theory. He is currently working with MIT’s Center
for Innovation in Product Development. Address: E53-339, 30 Wadsworth Street, Cambridge
MA 02142, <nelson@mit.edu>, < http://web.mit.edu/nelsonr/www >.

3

Understanding Fire Fighting
in New Product Development

Abstract

Despite documented benefits, the processes described in the new product development literature

often prove difficult to follow in practice. A principal source of such difficulties is the

phenomenon of fire fighting–the unplanned allocation of resources to fix problems discovered late

in a product's development cycle. While it has been widely criticized, fire fighting is a common

occurrence in many product development organizations. To understand both its existence and

persistence, in this article I develop a formal model of fire fighting in a multi-project development

environment. The major contributions of this analysis are to suggest that: (1) fire fighting can be a

self-reinforcing phenomenon; and (2) multi-project development systems are far more susceptible

to this dynamic than is currently appreciated. These insights suggest that many of the current

methods for aggregate resource and product portfolio planning, while necessary, are not sufficient

to prevent fire fighting and the consequent low performance.

4

Introduction

The design of effective product development processes has received considerable attention from

scholars and practitioners [9,37,38,39]. Unfortunately, however, practice does not necessarily

follow theory. Many organizations experience considerable difficulty in following the

development processes prescribed in the literature, and mounting evidence suggests that in many

organizations the desired development process and the sequence of tasks actually used to create

products are two very different things. For example, Griffin [16] reports that, despite widespread

acceptance in the literature, almost 40% of firms surveyed still use no formalized development

process. Smaller sample studies also report similar results. O'Connor [24] studies the efforts of

six organizations in depth and finds that no organization in his sample was able to gain the full

benefit of a new development process, even after, in some cases, three years of continuous effort.

Similarly, Repenning and Sterman [28], Oliva, Rockart, and Sterman [25], Jones and Repenning

[18], and Krahmer and Oliva [21], all document cases in which, despite general agreement

concerning their benefits, organizations struggled to follow the development processes prescribed

in the literature. One engineer in a study by Repenning and Sterman [28] aptly summarized the

dilemma facing many organizations when, in describing his experience with a newly instituted

development process, he said, “The [new process] is a good one. Some day I’d like to work on a

project that actually uses it.”

Unfortunately, while the academic literature has made numerous contributions to understanding

how product development should work, less attention has been paid to the question of why

organizations so often fail to execute their development processes as desired. Similarly, while

there are numerous frameworks to assist managers in designing new development processes, the

prescriptive literature also offers relatively little in terms of tactics and strategies to insure that

engineers actually follow that process when developing new products [24 is a notable exception].

The history of management contains numerous examples of innovations like Total Quality

Management that, despite documented benefits, failed to significantly influence practice in the

5

majority of organizations that tried to implement them (see [13] for a discussion of TQM and [20]

for an overview). To avoid a similar fate, the considerable advances in process design must be

complemented with an improved understanding of the factors that contribute to effective process

execution in New Product Development.

In this article, I study one of the most common and well-documented impediments to successful

process execution in new product development, the phenomenon of fire fighting. The metaphor of

fighting fires is widely used in the management literature, typically referring to the allocation of

scarce resources to solve unanticipated problems or "fires." In the product development context,

fire fighting describes the unplanned allocation of engineers and other resources to fix problems

discovered late in a product's development cycle. Fire fighting imposes numerous costs on the

project that requires it: Introduction dates are often slipped, reducing the chance of market success;

engineers and managers sometimes work extraordinary hours, leading to fatigue, burnout,

turnover, and increasing the chance of further errors; and additional people are often added to the

project, thus requiring additional expense. Despite these costs, however, it is not surprising that

fire fighting occasionally occurs; developing new products is a fundamentally uncertain task, often

involving numerous unproven technologies and processes.

There is, however, a growing sense that, in many organizations, fire fighting is more than an

infrequently occurring phenomenon confined to individual projects. Detailed field studies of

various product development organizations suggest that fire fighting, rather than being isolated to

specific projects, often becomes the de facto process for developing new products. For example,

one manager in a study by Repenning [29] described the state of affairs in his organization by

saying:

...if you look at our resource allocation on traditional projects, we always start late and
don’t put people on the projects soon enough...then we load as many people on as it
takes...the resource allocation peaks when we launch the project.

6

Similarly, in an ethnographic study of a copier manufacturer, Perlow [26] identifies fire fighting or

"crisis management" as both a steady state phenomenon and a principle source of low productivity.

The existence of fire fighting as a steady state rather than a temporary phenomenon limits the ability

of organizations to properly execute their NPD processes in a number of ways. Most importantly,

while studies of successful projects almost universally confirm the value of investing in the early

phases of the development process [10,11,17], organizations engaged in fire fighting find it

extremely difficult to make such commitments, thus making it impossible to follow the

development processes described in the literature. As one manager in the Jones and Repenning

[18] study said:

…the completion date [the date at which the project is ready to launch] is getting later and
later each year. We are starving the ensuing model years to make the one we are on. We
never have time to do a model year right, so we have lots of rework and so on.

Similarly, organizations that dedicate large portions of their available development resources to

fixing unanticipated problems also find it difficult to successfully implement NPD tools and

processes. As one engineer in Repenning's [29] study of a failed process change effort said:

To be perfectly honest, I really don’t think [the new process] changed the way engineers
did their jobs. In many ways we worked around the system. Good, bad, or indifferent
that’s what happened. We had a due date and we did whatever it took to hit it.

That fire fighting constitutes a serious impediment to performance in many product development

environments is not a new insight. It has been vilified in venues ranging from scholarly studies

[26] to practitioner-oriented publications [30] and self-help books [12]. Such widespread

consensus on its evils, however, makes its ubiquity all the more puzzling: Everybody agrees that

fire fighting is detrimental to performance, yet, paradoxically, it persists.

To study the causes and consequences of fire fighting, in this article I propose and study a dynamic

model of a multi-project development environment. By capturing the dynamics of resource

allocation among competing projects in different phases of the development process, the model

7

yields a number of insights into the existence and persistence of fire fighting. Most importantly, it

suggests that fire fighting can be a self-reinforcing phenomenon; once it starts in one project, it is

likely to spread to others, permanently degrading the capability of the development system. The

analysis also suggests that, due to a combination of structural and psychological factors, multi-

stage, multi-project NPD processes are far more susceptible to this phenomenon than is currently

appreciated.

To develop these insights along with their implications for both future practice and research, the

rest of the article is organized as follows. The next section contains a brief overview of the model

and a detailed justification of its core assumptions. The following section contains the analysis. I

then take up the question of why fire fighting is so persistent and conclude with implications for

future research and practice.

The Model
Overview

Figure 1 shows the basic structure of the model (an equation by equation description is provided in

appendix A). The simulated organization introduces one new product to the market each model

year, and two model years are required to develop a product. A new project is introduced into the

system at the product introduction date, so at any moment in time two projects are under

development. Since the hallmark of fire fighting is the unplanned allocation of resources to fix

problems in the later phases of the development cycle, I decompose the development process into

two phases. While most authors suggest development processes that contain four or five stages

[e.g. 9,37,38], in the interest of simplicity, I assume there are only two, the concept development

phase and the product design and testing phase. I divide the process at this juncture because, as

many authors point out, the concept development and product design phases involve fundamentally

different activities: concept development work is not focused on the design of the actual product,

but, instead, on making the subsequent design work more productive.

8

Insert Figure 1 about here

Within each phase there is a set of tasks to be completed. The set D of design tasks represents

those activities required to physically create the product. The set C of concept development tasks

represents those activities that, by reducing the probability of introducing a defect, make

subsequent design work more effective. Only one type of resource, engineering hours, is needed

to accomplish both types of tasks. It is important to note that this structure does not require that

each phase last exactly one year, only that each phase be no longer than one year. In fact, in the

base run of the simulation, activity only begins with three months remaining in the concept

development phase, roughly corresponding to estimates of the balance between up and

downstream work in current NPD practice [15].

Figure 2 shows a more detailed view of the model in the form of a stock and flow diagram. In

such diagrams stocks (or levels) are denoted by rectangles and represent accumulations of "stuff"

(designs, parts, defects, etc.). Flows are shown by arrows with "valve" symbols and represent

action or activity within a system. Solid arrows depict how other variables in the system influence

the flows. For example, the upper half of the figure shows the assumed stock and flow structure

of the concept development phase. At the outset of each model year, a new set of tasks is

introduced into the concept development phase. Initially, these tasks reside in the stock of Concept

Development Tasks Remaining. As resources are dedicated to concept development, the stock of

tasks remaining is drained by the flow of Concept Development Task Completion. When those

tasks are completed, they accumulate in the stock of Concept Development Tasks Completed.

Figure 2 about here

The design and testing phase has a slightly more complicated structure. Once a project reaches the

design and testing phase, there is a PD probability that each task is done incorrectly and thus

9

requires rework and additional resources. So, at the outset of the model year, all design tasks

reside in the stock of Design Tasks Remaining. As resources are applied to design work, the tasks

are executed and then accumulate in the stock of Design Tasks Awaiting Testing. Tasks are then

tested. If they pass, they flow to the stock of Design Tasks Completed. If they fail, they

accumulate in the stock of Design Tasks Awaiting Rework. For simplicity, testing, rather than

being a separate phase, is assumed to take place concurrently with design. In the model, testing is

represented as an uncapacitated delay, meaning it takes time, but consumes no resources.

Additional analysis, not reported here, demonstrates that adding a resource constraint on testing,

while considerably complicating the analysis, only strengthens the conclusions outlined below [see

3]. When resources are applied to rework, tasks leave the rework stock and flow back into the

stock of Design Tasks Awaiting Testing.

The solid black arrows at the right of the diagram represent the connection between the concept

development and design phases. The central assumption of the model is that the probability of

introducing an error in the design phase is a function of how many tasks were completed when that

project was in its concept development phase. Thus, given the assumed timing, the probability of

finding an error in the design phase in this model year is a function of the number of concept

development tasks completed in the previous model year. As the diagram highlights, this structure

introduces a critical time delay in the development system. The execution of concept development

work does nothing to improve the quality of the product currently in the design phase. Instead, the

impact of additional effort dedicated to concept development this year only manifests in the

subsequent model year, when the product in question reaches the design and testing phase. The

equation used to capture this dependence is as follows:

PD(s)=P + P (1-f(s-1)) (1)

In this equation, the variable s indexes the model year and the variable PD(s) represents the

probability of making an error in a design task in model year s. P represents the portion of the

10

defect fraction that cannot be eliminated by doing concept development work. P is the portion of

the defect fraction that can be eliminated by doing up front work and f(s-1) is the fraction of

concept development work completed in model year s-1. The equation indicates that the

probability of introducing an error in model year s is a function of the amount of concept

development work completed in the previous year, s-1.

Figure 3 adds to the previous diagram by showing the feedback structure determining the allocation

of resources between the two phases. As the figure highlights, the system contains three important

feedback loops. The first two, B1 and B2, are negative or balancing loops controlling the rates of

design task and design rework completion. In both cases, as the stock of outstanding work

increases, more resources are allocated to increase the respective completion rates, thus reducing

the stock of outstanding work. These loops regulate the level of remaining work by adjusting the

allocation of resources.

The third is a positive or reinforcing feedback loop (labeled with an R). If the resources required

for design work decrease, then more concept development tasks are completed, and the completion

fraction rises. In the next model year, fewer tasks are done incorrectly, and the resource

requirement in the design phase decreases further. Here, the loop works as a virtuous cycle. In

contrast, however, if the resource requirement in the design phase increases, then fewer resources

are dedicated to concept development work, thereby reducing the task completion rate and,

ultimately, the completion fraction. If the completion fraction declines, in the next model year the

defect rate grows, more rework is generated, more resources are required for downstream work,

and even fewer concept development tasks are completed. When operating in this direction, the

loop manifests as a vicious cycle of declining attention to the upstream portions of the development

cycle and increasing error rates in downstream work.

11

Central Assumptions

Three core assumptions are thus embodied in the model's structure. First, executing additional

concept development tasks is assumed to improve the effectiveness of downstream work.

Formally, this is captured in equation (1), in which an increase in f(s-1) reduces the defect fraction

PD(s). The feature of new product development that I am trying to capture is the existence of

activities in the early phases of a project which, when resources are scarce, can be skipped, but

whose primary effect is to increase the effectiveness of downstream tasks. An example of such a

task is the documentation of customer requirements. Additional effort dedicated to understanding

customer needs often pays substantial benefit when a product reaches the detailed design phase,

improving the chance that initial design efforts will be well received by the market. Such up-front

tasks are, however, often skipped [10]. A weak or non-existent understanding of what the

customer actually wants greatly increases the chance that early designs are not well received, thus

generating additional rework. The validity of this assumption is supported by both the prescriptive

writings of those who suggest concept development as an important first step in a product

development process [9, 38] and by extensive empirical study [5,11,17].

The second key assumption is that, when resources are scarce, priority is given to the project in the

design and testing phase. This allocation rule represents an incentive scheme that was described by

one project manager (in the Repenning and Sterman [28] study) as “Around here the only thing

they shoot you for is missing product launch, everything else is negotiable.” There are at least

three reasons why organizations, sometimes despite their members' best intentions, might use such

a policy. First, there is the firm’s reputation and continued viability. Doing a concept development

task, which prevents rework in future projects, does nothing to fix the problems in the project

currently in the design phase, which may compromise the safety of its users and/or irreparably

damage the company’s reputation. Second, in organizations focused on short-term profit and cash

flow, projects nearing completion represent a more immediate return on investment. Even in cases

where it might be in the organization's best interest to abandon a project, the well-known and

amply documented sunk cost fallacy [2,31,32] suggests that managers will continue investing in

12

projects well beyond the point of economic return. Third, even absent reputation and financial

constraints, managers may still be biased towards design tasks due to more basic features of

human cognition such as ambiguity aversion [14] and biases towards salient information [27,28].

The third assumption, that products are introduced and launched at fixed intervals, is made for

computational and expository convenience. In many industries, this assumption closely mirrors

actual practice. US auto manufacturers typically introduce new vehicles on an annual cycle, as do

manufacturers of recreational products such as motorcycles and snowmobiles. Further, even in

industries where the launch date can, in principle, be moved, competitive pressures often dictate a

fixed introduction date. For example, firms that manufacture semi-conductors often face fixed

market windows dictated by the introduction of the next generation of a consumer product (e.g.

cell phones, personal computers, etc.). In these cases, the costs of late delivery are so high

(ceding essentially all market share to competitors) that as a practical matter, firms must deliver to a

specific launch date. The value of this assumption is that it allows me to analyze the performance

of the system via one output variable, the quality of the finished product.

Analysis

Base Case

To highlight the dynamics of the assumed system, I begin with the model's base case. The base

case represents the behavior that the system produces without the introduction of shocks or other

interventions. The chosen parameters are shown in Table 1. Figures 4 and 5 show the behavior of

selected variables.i

Table 1 about here

In the early portion of the model year all development resources are dedicated to the design phase

and the stock of design tasks remaining declines rapidly (Figure 4b). As design tasks are

completed, the stock of rework begins to grow (Figure 4b), and resources are shifted towards

completing rework. Multiple iterations through the rework cycle reduce the fraction of defective

tasks in the downstream product (Figure 5a). As the stock of outstanding rework declines,

13

resources are moved to the project in the concept development phase (Figure 5b), and,

consequently, the stock of concept development tasks begins to decline (Figure 4a). As the end of

the model year approaches, some rework remains uncompleted so resources are shifted back

towards design work (Figure 5b).

Figures 4a and 4b about here

Figures 5a and 5b about here

In the base case the simulated organization completes the vast majority of its planned concept

development work and only engages in a modest amount of fire fighting (as shown by the

increased allocation of resources to the design phase at the end of the model year).

Response to Shocks

Given this desirable mode of operation, the question naturally arises, what might cause the system

to descend into fire fighting? Two simulation experiments provide an instructive entry into this

question. In the simulations shown below, in model year one, the number of tasks required per

project is increased by 20 percent and 25 percent respectively and then, in subsequent model years,

returned to the base level. Such a transient increase might arise, for example, from an attempt at a

particularly ambitious or complex product.

insert Figure 6 a and b about here

In both cases, the fraction of concept development tasks completed falls following the increased

workload (Figure 6a). With less attention dedicated to concept development, projects experience

more problems in the design phase and the quality of the final product begins to suffer (Figure 6b).

In the case of the 20% increase, once the workload is returned to normal in the subsequent model

14

year, the concept development completion fraction begins to rise and the quality of the finished

project also improves. Here, while the shock creates some fire fighting, it does not spread, and the

system eventually recovers to its initial performance level and execution mode.

The larger shock, however, produces a different outcome. In the model years following the

increase (in which the workload is returned to normal), the system does not recover. Instead, the

completion fraction continues to fall and the defect rate continues to rise. Following the shock, the

system, rather than returning to its initial execution pattern, settles into a new mode in which little

concept development work is done and the performance is substantially degraded. In this case, the

increased workload traps the system in a low performance regime.

The Source of Persistent Fire Fighting

Although the system is relatively simple, its non-linear structure makes it difficult to analyze using

the traditional tools of linear systems analysis. So, to understand why the system produces such

divergent behavior, I use a two-step strategy to analyze the model. The first step builds on the fact

that, while within any given model year the system’s dynamics can be complicated due to its higher

order structure, only one variable, f(s), carries over between model years (this dependence is

captured in (1)). Thus, by making suitable approximations to the within-year dynamics, the model

can be reduced to a one-dimensional map in f(s). Some straightforward analysis of this equation

then yields a number of insights into the dynamics of multi-project development systems. In the

second step, extensive simulation runs of the full model (most of which, in the interest of space,

are not presented here) are used to confirm the validity of the approximations.

The details of simplifying the model are discussed in appendix B. The critical steps are to eliminate

the delay in testing by assuming all defects are discovered immediately and to make corresponding

changes in the desired completion rates. The resulting equation is:

15

f (s) = Min 1,
1

C
⋅ Max Κ ⋅Τ −

D

1− P + P ⋅ 1− f (s −1)()() ,0


















 (2)

This equation captures the dynamics of process execution in a multi-project development system by

relating the fraction of concept development tasks completed in a given model year (represented by

f(s)) to the amount of work in the system (represented by C and D), the annual capacity to do that

work (K•T), and how the process was executed in the previous model year (represented by f(s-1)).

Viewing this equation in graphical form, as a phase plot, provides a useful perspective on the

structural causes of fire fighting (see figure 7).

Insert figure 7 here

To read the phase plot, start at any point on the horizontal axis, read up to the solid black line and

then over to the vertical axis. So, for example, suppose that, in a given model year, the

organization manages to accomplish about 60 percent of its planned concept development work,

what happens next year? Reading up and over suggests that, if it accomplishes 60 percent of the

up-front work this year, the dynamics of the system are such that about 70 percent of the up-front

work will get done next year. Determining what happens in a subsequent model year requires

simply returning to the horizontal axis and repeating; accomplishing 70 percent this year leads to

almost 95 percent being accomplished in the year that follows. Continuing this mode of analysis

shows that, if the system starts at any point to the right of the solid black circle in the center of the

diagram, over time the concept development completion fraction will continue to increase until it

reaches 100%. Here, the positive loop (R) works as a virtuous cycle: Each year a little more up

front work is done, decreasing errors and, thereby, reducing the need for resources in the

downstream phase. With a fewer resources required in the design phase, even more effort can be

dedicated to concept development work. As this cycle continues, the system converges to the point

where, each year, the organization accomplishes all its desired up-front work and thus is able to

deliver consistently high-quality products.

16

In contrast, however, consider another example. Imagine this time that the organization starts to

the left of the solid black dot and accomplishes only 40 percent of its planned concept development

activities. Now, reading up and over, shows that instead of completing more early phase work in

the next year, the organization completes less—in this case only about 25 percent. In subsequent

years, the completion fraction declines further, creating a vicious cycle of declining attention to up-

front activities and increasing error rates in design work. In this case, the system converges to a

mode in which concept development work is ignored in favor of fixing problems in the

downstream project.

The phase plot thus reveals two important features of the system. First, note from the discussion

above that anytime the plot crosses the forty-five degree line (meaning that f(s)=f(s-1)) the

execution mode in question will repeat itself. Formally, at these points the system is said to be in

equilibrium. Practically, equilibria represent the possible "steady states" in the system, the

execution modes that, once reached, are self-sustaining. As the plot highlights, this system has

three equilibria (highlighted by the solid black circles), two at the corners and one in the center of

the diagram.

Second, also note that the equilibria do not have identical characteristics. The equilibria at the two

corners are stable, meaning that small excursions will be counteracted. If, for example, the system

starts in the desired execution mode (f(s)=1) and is slightly perturbed, perhaps pushing the

completion fraction down to 60%, then, as the example above highlights, over time the system will

return to the point from which it started, mainly f(s)=1. Similarly, if the system starts at f(s)=0

and receives an external shock, perhaps moving it to a completion fraction of 40%, then it will also

eventually return to its starting point. The arrows on the plot line highlight the "direction" or

trajectory of the system in disequilibrium situations. In contrast to those at the corners, the

equilibrium at the center of the diagram is unstable (the arrows head "away" from it), meaning

small excursions are not counteracted. Instead, once the system leaves this equilibrium, it does not

17

return and instead heads toward one of the two corners. Given its instability, it is unlikely that the

system will ever settle at the interior equilibrium. Despite this, however, it plays a critical role in

determining the dynamics of this system and is central to understanding the source of persistent fire

fighting in NPD.

Formally, the unstable equilibrium represents the boundary between two basins of attraction. If

the system starts at any point below the unstable equilibrium, the positive loop works in a vicious

direction and moves the system towards f(s)=0; if the system starts from any point above the

unstable equilibrium, the positive loop works in a virtuous direction and moves the system towards

f(s)=1. This boundary, or tipping point, plays a critical role in determining the system's behavior

because it is the point at which the positive loop (R) changes direction. If the system starts in the

desirable execution mode and then is perturbed, if the shock is large enough to push the system

over the tipping point, it does not return to its initial equilibrium and desired execution mode.

Instead, the system follows a new downward trajectory and eventually becomes trapped in the fire

fighting equilibrium.

The role of the tipping point in determining the system's dynamics is highlighted by the simulation

experiments shown above (see figure 6). The twenty-percent increase in workload is insufficient

to push the system over the tipping point, so the initial shock is counteracted and the system

returns to its starting point. In contrast, however, the twenty-five percent increase is sufficient to

push the system over the boundary, reversing the direction of the positive loop, and causing the

system to descend into a vicious cycle of fire fighting. And, as the experiment highlights, once the

system reaches the lower equilibrium, absent an additional intervention, it never recovers.

In fact, the difference between recovery and permanent fire fighting is even smaller than these

experiments suggest. Figure 8 shows the results of a more comprehensive set of simulations in

which the model has been run for a large number of shock sizes.

figure 8 about here

18

As the figure highlights, up to a shock of approximately 20%, the system recovers to its initial

performance level. Beyond that, however, the system rapidly descends into fire fighting. For

these cases, the fire created by the increased workload rapidly spreads to subsequent products,

permanently reducing the performance of the development system.

This characterization of the system's structure–two stable equilibria separated by a tipping

point–yields at least two insights into the existence and persistence of fire fighting in multi-project

NPD system. First, the existence of a stable equilibrium at f(s)=0 suggests that fire fighting can be

a steady-state phenomenon. Practically, this means that a fire fighting execution mode

characterized by little attention to the early phases of the development cycle and a consequent focus

on rework can become the de facto development process. Indeed, as the analysis highlights,

inadequate attention to the early portions of the development process creates a self-reinforcing cycle

that traps the system in a permanent state of unbalanced and undesirable resource allocation.

Second, the existence of a tipping point suggests that even when the system starts in the desirable

execution mode, there is no guarantee that it will persist. Shocks to the system such as overly

ambitious projects, additional projects, or the discovery of major errors can push the system over

the tipping point into a downward spiral of fire fighting and undesirable process execution.

Importantly, these shocks do not have to be longstanding changes. While a number of scholars

have highlighted the non-linear costs associated with permanently overloading a development

system [1,37], this analysis suggests that development systems are even more fragile. A

temporary shock, if it is large enough to push the system over the tipping point, can cause a

permanent decline in performance.

19

When is a Development System Prone to Fire Fighting?

The model thus provides one explanation for the existence and persistence of fire fighting: multi-

project development environments can have tipping points, which once crossed, cause fire fighting

to become a self-reinforcing, self-sustaining phenomenon. Assessing the relevance of this

characterization to actual practice requires, however, understanding the conditions required for its

existence. Thus, before considering the model's implications, it is useful to establish the

conditions under which its core results are likely to occur. Some additional analysis of the reduced

form model answers this question and provides additional insight into the dynamics of process

execution.

Consider first the conditions required for the existence of the stable equilibria. At the upper

equilibrium f(s)=f(s-1)=1 in every model year, so, substituting f(s-1)=1 into equation (2) indicates

that for f(s)=1 to be an equilibrium, the second term inside the minimum function of (2) must be

greater than or equal to 1. Thus, the existence of an equilibrium in which the process is executed

as designed requires:

Κ ⋅Τ ≥ C + D (1− P) (3)

This relation has an intuitive interpretation. The term on the left-hand side, K•T, represents the

annual capacity to do development work. The term on the right-hand side represents the number of

tasks required to develop a defect-free product when executing the process as desired. To see this,

recall that executing the process as desired requires that all concept development tasks be completed

(thus, the C term) and that, as a consequence, the defect rate is at its minimum, P . Also note that

every time a design task, whether it is new work or rework, is executed, there is a P probability

that it is done incorrectly. If the organization continues doing design tasks and correcting defects

until none remain, the total number of tasks required to produce a defect free product

asymptotically approaches D/(1-P). Equation (3) indicates that for the system to have the potential

to operate in the desired mode (meaning f (s)=1), annual capacity, K•T, must be greater than or

20

equal to that number of tasks. Thus, (3) suggests that operating the process as designed requires

enough resources to complete all of the activities that the given process requires.

Similarly, consider the conditions required for the "maximum fire fighting" mode, f(s)=0, to be an

equilibrium. Substituting f(s-1)=0 into (2) shows that the existence of this equilibrium requires

that the first term inside the maximum function is less than or equal to zero. So, for the maximum

fire fighting mode to persist the following must hold:

Κ ⋅Τ ≤ D 1− P + P()() (4)

This equation has an interpretation similar to the previous one. The left-hand side again represents

annual capacity. The right-hand side represents the number of tasks required to develop a defect-

free product when no work is done in the concept development phase and, as a consequence, the

defect rate is at its maximum. Thus, this relation suggests that, for the fire-fighting mode to

persist, capacity must be insufficient when operating in that mode.

Taken together, these two conditions lead to four distinct parameter combinations (both are

satisfied, both are not, (3) is satisfied while (4) is not, and (4) is satisfied while (3) is not). The

phase maps that result from these four combinations, which are shown in figure 9, fully

characterize the dynamics of the reduced system.

insert figure 9 about here

Consider first the phase plot in the upper left quadrant (figure 9). In this case neither of the two

conditions are satisfied. Capacity is adequate when fire fighting but inadequate when executing the

process as desired. Under these conditions, the system has a unique, stable equilibrium; when

shocked it will constantly return to its starting point. Formally, under these conditions the positive

feedback loop shown in Figure 3 does not dominate the system's behavior. Intuitively, this means

21

that, under these conditions, fire fighting is not a self-reinforcing phenomenon. It may be

experienced on individual projects for various reasons, but it will not spread. Additional insight

into the conditions required for this case can be gained by combining equations (3) and (4) to yield

the following inequality:

D 1− P + P()() ≤ C + D 1− P()

As the relation shows, for this case to hold, the total number of tasks needed to develop a defect-

free product when all the concept development tasks are completed must be greater than the total

number of tasks needed to develop a defect-free product when concept development activities are

ignored. Thus, this case only holds when concept development tasks require more resources to

complete than they save via the reduced defect fraction. Given the substantial empirical support for

the value of the early phases of the development cycle [10,11], this is the least interesting of the

four cases.

The second case is shown in the upper right quadrant. Here (3) is satisfied and (4) is not,

implying that resources are sufficient regardless of the execution mode. Under these conditions,

the system has a unique equilibrium at f(s)=1. In this situation, the positive loop (R) dominates the

behavior of the system, but always works as a virtuous cycle, constantly driving the system

towards the desired execution mode. In contrast to qualitative discussions [26,30,37], this case

suggests that, even if the up-front tools are "worth it", fire fighting is not necessarily a self-

reinforcing phenomenon. If resources are sufficient, regardless of the state of the development

process, then any departure from the desired execution mode will be offset by a reinforcing cycle

of decreasing error rates in the design phase and sustained investment in concept development

activities. While this appears to be a highly desirable situation, note that it requires that total

capacity, • , be greater than the workload regardless of whether or not concept development

tasks are completed. This leads to a somewhat ironic result; insuring that the desirable operating

mode prevails requires a level of resources that completely negates the efficiency gains that the

desirable operating mode provides.

22

In contrast, when (4) is satisfied and (3) is not, implying that resource are insufficient regardless of

the execution mode, the system again has one equilibrium, but it is located at f(s)=0 (see the lower

left quadrant in figure 9). Here the positive loop works only as a vicious cycle. Importantly, in

this case external shocks are not necessary to ignite the fire-fighting dynamic. Instead, due to the

lack of resources, the system is in a constant downward spiral of declining attention to upfront

activities and increasing rework in the design phase.

This case both confirms and extends the existing intuition concerning the role of resources.

Numerous scholars have argued that overloading a development process degrades its performance.

For example, Wheelwright and Clark [37] suggest that overloading a development process creates

a system that is susceptible to undesirable self-reinforcing dynamics because, they write, “…if any

one project runs into unexpected trouble, there is no slack available, and it will be necessary to take

resources from other projects. This causes subsequent trouble on other projects and the effects

cascade.” While this is true in the fourth case, case number three suggests that if resources are

sufficiently scarce, then undesirable self-reinforcing dynamics will occur. Here the system has

only one possible trajectory: a downward spiral of increasing error rates in downstream work and

decreasing investment in upstream activities.

Finally, as shown in the lower right quadrant, in order for the system to have the structure

discussed above– two stable equilibria separated by a tipping point– resources must be sufficient

when executing the processes as desired, but insufficient when fire fighting. Combining this

analysis with previous empirical studies suggests that the first two cases are unlikely to occur,

since up front activities are typically "worth it" [10,11] and development systems rarely have

substantial excess resources [37]. In contrast, the dynamics highlighted in cases three and four,

which occur whenever resources are, to varying degrees, scarce, capture important features of

actual development practice.

23

Beyond establishing the conditions under which each case will arise, this analysis also highlights

an additional and important feature of the system: the location of the tipping point, when it exists,

is determined by resource utilization. As resource utilization increases, the tipping point moves up

the forty-five degree line and approaches the upper equilibrium at f(s)=1. When equation (3) is

satisfied with equality, the tipping point and the upper equilibrium converge. If it is increased any

further (so (3) is no longer satisfied), both the upper equilibrium and the tipping point disappear

and case three obtains. Similarly, as resource utilization falls, the tipping point moves down the

forty-five degree line until it reaches the lower equilibrium (at this point equation (4) is satisfied

with equality). If the workload is further reduced, both the tipping point and the lower equilibrium

disappear and only the upper equilibrium remains. The distance between the tipping point and the

upper equilibrium is, thus, a function of the balance between work and resources, implying that

there is an important trade-off between steady state performance and the ability to absorb

unplanned increases in workload. As resources utilization is increased, progressively smaller

shocks are necessary to push the system over the tipping point and into a vicious cycle of fire

fighting.

Summary

The results of this analysis can be summarized in two insights. First, multi-project development

systems can have multiple equilibria, implying that identical processes can produce dramatically

different results depending on the mode of process execution. Further, these equilibria are stable,

implying that incremental interventions are unlikely to improve performance. Thus, it is quite

possible for NPD systems to get permanently "stuck" in the fire fighting execution mode. Second,

the susceptibility of a system to fire fighting is determined by resource utilization. If resources are

totally adequate regardless of the execution mode, then fire fighting is always a self-correcting

phenomenon. If resources are totally inadequate, then fire fighting is always a self-reinforcing

phenomenon. In the intermediate cases, the size of the shock required to push the system in to the

24

self-reinforcing regime is a function of the balance between resources and work: as utilization

increases, progressively smaller shocks are required to push the system over the tipping point.

Why Does the Phenomenon Persist?
The behavior studied in this article is created by the interaction between the physical structure of the

product development process and the decision rules used by participants within that process. At

the outset the decision rules were justified by empirical observations and well-documented decision

making biases. Each of these justifications is, however, essentially static. Thus, while it might be

the case that managers would initially allocate resources in such a fashion, wouldn't they

eventually learn to overcome these dynamics? In other words, why is fire fighting so persistent?

The answer rests on two more basic questions: does the structure of this system support rapid and

accurate learning, and, once caught in such a downward spiral, to what do managers attribute the

cause of low performance?

To answer to the first question, consider the outcome feedback a manager receives from the

decision to allocate additional resources to a project experiencing problems late in its development

cycle. As the model shows, in a world of scarcity, this decision has two consequences. First,

additional resources lead to improvements in the project to which they are allocated. This outcome

and the decision that led to it are contiguous in both time and space and the impact is relatively easy

to characterize. Second, the decision to allocate resources to a downstream project, if it initiates the

fire-fighting dynamic, degrades the performance of the product development system. In contrast to

the improved performance of the downstream project, this outcome occurs with a significant delay,

the decision and the outcome are not closely linked in space, and the characterization of its impact

is very ambiguous. Further, the product development system is less salient, less tangible, and

more ephemeral than the products it produces. Thus, managers making resource allocation

decisions in multi-project development systems are faced with a "better-before-worse" trade-off in

which the positive, but transient, consequence of the decision happens quickly and is easy to

25

assess, while the negative, but permanent, consequence occurs only with a delay and is difficult to

characterize.

In such situations, the literature on human decision making has reached a clear conclusion: people

do not learn to manage such systems well [34]. In experiments ranging from managing a

simulated production and distribution system [35] to fighting a simulated forest fire [4] to

managing a simulated fishery [23], subjects have repeatedly been shown to grossly overweight the

short run positive benefits of their decisions while ignoring the long run, negative consequences.

Participants in such experiments produce wildly oscillating production rates and inventory levels,

they allow the fire fighting headquarters to burn down, and they kill the fishery through over-

fishing. Applying these results to the product development context suggests both that managers

will be biased towards downstream projects and that they will not learn to overcome the

undesirable dynamics that such a bias creates.

The problem is, however, worse than the experimental results might suggest. Once caught in a

downward spiral, managers must make some attribution of cause. The psychology literature also

contains ample evidence suggesting that managers are more likely to attribute the cause of low

performance to the attitudes and dispositions of people working within the process rather than to

the structure of the process itself (an example of the widely documented Fundamental Attribution

Error, see [27]). Thus, as performance begins to decline due to the downward spiral of fire

fighting, managers are not only unlikely to learn to manage the system better, they are also likely to

blame participants in the process. To make matters even worse, the system provides little evidence

to discredit this hypothesis. Once fire fighting starts, system performance continues to decline

even if the workload returns to its initial level. Further, managers will observe engineers spending

a decreasing fraction of their time on up-front activities like concept development, providing

powerful evidence confirming the managers’ mistaken belief that engineers are to blame for the

declining performance.

26

Finally, having blamed the cause of low performance on those who work within the process, what

actions do managers then take? Two are likely. First, managers may be tempted to increase their

control over the process via additional surveillance, more detailed reporting requirements, and

increasingly bureaucratic procedures. Second, managers may increase the demands on the

development process in the hope of forcing the staff to be more efficient. The insidious feature of

these actions is that each amounts to increasing resource utilization and makes the system more

prone to the downward spiral. Thus, if managers incorrectly attribute the cause of low

performance, the actions they take both confirm their faulty attribution and make the situation

worse rather than better. The end result of this dynamic is a management team that becomes

increasingly frustrated with an engineering staff that they perceive as lazy, undisciplined, and

unwilling to follow a pre-specified development process, and an engineering staff that becomes

increasingly frustrated with managers that they feel do not understand the realities of the system

and, consequently, set unachievable objectives.

Implications for Research and Practice

The most important result of this study for researchers is, then, to suggest that managing multi-

project NPD systems effectively does not come naturally. The dynamics of multi-project systems

coupled with basic features of human psychology make fire fighting a likely occurrence in many

NPD environments. For scholars, this suggests that developing new decision support

technologies that help managers fully account for both the benefits and costs of their actions

represents a significant opportunity to influence and improve practice. NPD systems are prone to

fire fighting in large measure because the benefits of focusing on downstream projects are realized

long before the costs. Research in other domains suggests that decision support systems and

"management flight simulators", which compress time through the use of simulation, can improve

decision making in such dynamically complex environments (see [22] for an overview and [6] for

an extended example).

27

Creating "fire-resistant" NPD systems requires the development of more dynamic methods of

resource planning. To be effective, such systems must be capable of accurately assessing both the

current state of the development process and, given that state, estimating future resource

requirements. This suggestion echoes Cooper's [8] evaluation of Third Generation development

processes. He writes, "Developing an information system to forecast resources committed to

known projects is no easy task, but it is essential: only in this way are decision makers able to

visualize what resources will be available to "new" projects, and what the impact of approving

more projects will be on current and future resource availabilities." Cooper [8] also suggests that,

currently, even best practice falls far short of this goal. Existing methods for portfolio

management and making go/kill decisions often fail to accurately account for the total number of

projects in progress and their associated resource requirements [7]. Only by allowing managers to

"visualize" the state of their development processes, and then rapidly simulate the outcomes of

various interventions, will the natural tendency towards fire fighting be offset. Thus, an important

next step for NPD researchers is to develop more detailed, accurate models of resource

consumption and allocation in multi-project development environments that might eventually

provide the basis for the system that Cooper envisions.

For practitioners, this study suggests that, absent such a resource planning system, there are a

number of intermediate steps to help minimize fire fighting and improve performance. First, as

numerous authors have highlighted, there is no substitute for good aggregate resource planning.

Managers who persistently overload their development systems are virtually guaranteed to

experience persistent fire fighting. Also note that, while the existing literature suggests that

overloading causes performance to decline due to the costs associated with switching between and

spreading resources over multiple projects [37], this analysis suggests an additional cost of

overloading: it changes the mode of process execution. Importantly, this implies that there is not a

proportional trade-off between the quantity of projects produced and the long run capability of the

development system. When doing resource planning, there is often a strong temptation to do "just

28

one more" project, figuring that an extra product this year will cost at most the loss of one product

in the next model year. But such a strategy is premised on a faulty assumption. The relationship

between the number of projects and overall system performance is highly non-linear. Increasing

resource utilization increases efficiency until the system reaches its tipping point. Once over that

point, however, capability rapidly declines due to changes in the mode of process execution.

Adding an extra product in this model year (if the workload increase pushes the system over the

tipping point) reduces the number of products released for many years to come.

Second, when doing resource planning, it is critical to assess resource requirements given the

current mode of process execution, not that which would be required were the process operating as

desired. Case studies suggest that all too often, senior managers have far too rosy a view of the

development processes they oversee, frequently grossly overestimating their capabilities [28].

Unfortunately, assuming the process is operating in the high-performance mode, when it is in fact

not, leads to the persistent under allocation of resources, thereby trapping the system in the fire-

fighting mode.

Third, high quality aggregate resource planning, while necessary, is not sufficient to prevent fire

fighting. At the outset of a given project, the organization may develop a plan that well matches

resources to the known requirements. Projects, however, often require more resources than

anticipated due to changes in scope or other problems. Such contingencies constitute transient

increases in resource requirements capable of pushing the system over the tipping point and into

the downward spiral of fire fighting. Practically, this means that absent the ability to perfectly

forecast resource requirements, slack development resources provide a valuable buffer against fire

fighting. By increasing the distance between the upper equilibrium and the tipping point, slack

resources create a more robust, fire resistant development system. As the discussion above

highlights, due to a variety of psychological and social factors the temptation to fully utilize

29

development resources can be quite strong, but doing so creates a very fragile development

system.

Fourth, the existence of a tipping point implies that the cost of allowing troubled projects to enter

down stream phases of the development process are often far greater than managers perceive.

When an important project reaches an early phase gate with incomplete specifications, it is often

tempting to let it pass in the belief that the team will "catch up" in the next phase. But, such

decisions are usually made without an estimate of the true costs. Problems discovered late in the

development cycle impose both the "direct" costs of additional resources and the "indirect" costs

associated with pushing the development system into the fire-fighting mode. While the de facto

decision heuristic often appears to be "when in doubt, let a project proceed", performance would

often improve if the opposite rule were used, "when in doubt, do not let a project continue."

Fifth, the analysis strongly suggests that managers should not use resource scarcity as a change

strategy. For example, a failure mode observed in a large scale product development improvement

effort studied in [29] was the allocation of resources under the assumption that the development

process was being properly executed and operating at full capability. This rule was not

inadvertent, but an explicit part of the implementation strategy under the rationale that, if the

resources were removed, to get their work done participants would have no choice but to follow

the new, more efficient process. The flaw in this logic is that there were already projects in

progress executed in the fire fighting execution mode, thus requiring more downstream resources

than the new process dictated. The ensuing scarcity perpetuated the downward spiral and caused

the failure of the initiative.

Finally, managers also should realize that managing such systems well doesn't come naturally.

The potential downfall of any policy directed at eliminating fire fighting is that, to be effective, it

must be followed. The ultimate source of fire fighting is the faulty mental models of those who set

30

resource levels and allocate those resources among competing projects. A manager who does not

understand the dynamics discussed above and attributes the cause of low system performance to

those working in the process is likely to find her organization trapped in the fire-fighting mode.

Thus, above all, preventing fire fighting requires the discipline to resist the natural tendency to

focus on specific projects and instead target interventions at maintaining the integrity of the

development process. Only by focusing explicitly on the health and performance of its NPD

system will an organization overcome the fire fighting dynamics discussed here.

31

References

1. Adler, P.S., Mandelbaum A., Nguyen, V. and Schwerer, E. From product to process
management: an empirically-based framework for analyzing product development time.
Management Science 41(3): 458-484 (1995).

2. Arkes, H. R., and Blumer, C. The psychology of sunk cost. Organizational Behavior and
Human Decision Processes 35: 124-40 (1985).

3. Black, L. and Repenning, N. Why Fire Fighting is Never Enough: Preserving High-quality
Product Development. System Dynamics Review 17(1): (2001).

4. Brehmer, B. Dynamic Decision Making: Human Control of Complex Systems. Acta
Psychologica 81: 211-241 (1992).

5. Burchill, G. and Fine, C. Time Versus Market Orientation in Product Concept Development:
Empirically-Based Theory Generation. Management Science 43(4): 465-478 (1997).

6. Carroll, J., Sterman, J. and Markus, A. Playing the Maintenance Game: How Mental Models
Drive Organization Decisions. In: Debating Rationality: Nonrational Elements of
Organizational Decision Making, R. Stern and J. Halpern (eds.). Ithaca, NY: ILR Press 1997.
pp. 92-121.

7. Cooper, R. G., Edgett, S. and Kleinschmidt, E.J. New Product Portfolio Management:
Practices and Performance. Journal of Product Innovation Management 16: 333-351 (1999).

8. Cooper, R.G. Perspective: Third-Generation New Product Processes. Journal of Product
Innovation Management 11:3-14 (1994).

9. Cooper, R.G. Winning at New Products. Reading, MA: Addison Wesley. 1993.

10.Cooper, R.G. and Kleinschmidt, E.J. New Products: What separates winners from losers.
Journal of Product Innovation Management 4(3): 169-184 (1987).

11.Cooper, R.G. and Kleinschmidt, E.J. An Investigation into the New Product Process: Steps,
Deficiencies and Impact. Journal of Product Innovation Management 3: 71-85 (1986).

12.Covey, S. The Seven Habits of Highly Effective People. New York: Simon and Schuster.
1989.

13.Easton, G. and Jarrell, S. The Effects of Total Quality Management on Corporate
Performance: An Empirical Investigation. Journal of Business 71(2): 253-307 (1998).

14.Einhorn, H. J. and Hogarth, R.M. Ambiguity and uncertainty in probabilistic inference.
Psychological Review 92: 433-461 (1985).

15.Griffin, A. Product Development Cycle-Time for Business-to-Business Products. Working
Paper: (2000).

16.Griffin, A. PDMA Research on New Product Development Practices: Updating Trends and
Benchmarking Best Practices. Journal of Product Innovation Management 14: 429-458 (1997).

17.Gupta, A. and Wilemon, D. Accelerating the Development of Technology-Based Products,
California Management Review: 24-44 (Winter 1990).

32

18.Jones, A.P. and Repenning, N. P. Sustaining Process Improvement at Harley-Davidson. Case
Study available from second author, MIT Sloan School of Management, Cambridge, MA
02142 (1997).

19.Kahneman, D., Slovic, P., and Tversky, A. Judgment under uncertainty: Heuristics and
biases. Cambridge: Cambridge Univ. Press 1982.

20.Klein, K. and Sorra, J. The Challenge of Innovation Implementation. Academy of
Management Review 21(4): 1055-1080 (1996).

21.Krahmer, E. and Oliva, R. A Dynamic Theory of Sustaining Process Improvement Teams in
Product Development. In: Advances in Interdisciplinary Studies of Teams , Beyerlein, M. and
D. Johnson (eds), Greenwhich, CT: JAI Press 1996.

22.Morecroft, J. and Sterman, J. (eds). Modeling for Learning Organizations. Portland, OR:
Productivity Press 1994.

23.Moxnes, E. Misperceptions of Bioeconomics. Management Science 44(9):1234-1248 (1999).

24.O'Connor, P. From Experience: Implementing a Stage-Gate Process: A Multi-Company
Perspective. Journal of Product Innovation Management 11: 183-200 (1994).

25.Oliva, R., Rockart, S., and Sterman, J. Managing multiple improvement efforts: Lessons
from a semiconductor manufacturing site. In: Advances in the Management of Organizational
Quality . Fedor, D. and S. Ghosh (eds.). Greenwich, CT: JAI Press 1998. Pp. 1-55.

26.Perlow, L. The Time Famine. Administrative Science Quarterly 44: 57-81 1999.

27.Plous, S. The Psychology of Judgment and Decision Making, New York, McGraw-Hill
(1993).

28.Repenning, N. P., and Sterman, J.D. Getting quality the old-fashioned way: Self-confirming
attributions in the dynamics of process improvement. In: Improving Research in Total Quality
Management . R. Scott & R. Cole (eds). Newbury Park, CA: Sage 2000. Pp. 201-235.

29.Repenning, N. P. Reducing Cycle Time at Ford Electronics Part II: Improving Product
Development. Case Study Available from the Author (1996).

30.Senge, P. The Fifth Discipline: The Art and Practice of the Learning Organizations. Doubleday:
New York, NY. 1990.

31.Staw, B. M. Knee-deep in the big muddy: A study of escalating commitment to a chosen
course of action. Organizational Behavior and Human Performance 16(1): 27-44 (1976).

32.Staw, B. M. The escalation of commitment to a course of action. Academy of Management
Review 6: 577-587 (1981).

33.Sterman, J.D. Business Dynamics. Chicago, IL: Irwin-McGraw Hill. 2000.

34.Sterman, J.D. Learning in and about complex systems, System Dynamics Review 10(3):291-
332 (1994).

35.Sterman, J. D. Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic
Decision Making Experiment. Management Science 35(3): 321-339 (1989).

36.Wheelwright, S. and Clark, K. Revolutionizing Product Development: Quantum Leaps in
Speed Efficiency and Quality. The Free Press: New York, NY 1992.

33

37.Wheelwright, S. and Clark, K. Leading Product Development. The Free Press: New York,
NY 1995.

38.Ulrich, K. and Eppinger, S. Product Design and Development. McGraw-Hill Inc.: New
York, NY 1995.

39.Zangwill, W. Lightning Strategies for Innovation: how the world’s best create new projects,
Lexington Books: New York, NY1993.

34

Appendix A
This appendix provides a more detailed description of the model's structure. The model year

transitions are discrete and indexed by s. Within a given model year the model is formulated in

continuous time indexed by t. Each model year is T time units in length. A product launched at the

end of year s is composed of two sets of tasks, C, the concept development tasks, and D, the

design tasks.

At any time t in model year s, the system is characterized by seven states (see figure 2). Within the

concept development phase tasks have either been completed and reside in the stock Concept

Development Tasks Remaining, Cr(t), or remain to be completed and reside in the stock of Concept

Development Tasks Completed, Cc(t). In the design phase, tasks can either be in the stock of

Design Tasks Remaining, Dr(t), the stock of Tasks Awaiting Testing, V(t), the stock of Tasks

Awaiting Rework, R(t), or have been completed and successfully passed testing, thus residing in

the stock of Design Tasks Completed, Dc(t). The final state, f(s), represents the fraction of concept

development tasks completed in model year s. At the model year transition, all states are reset to

their initial values except for f(s). Thus, Cr(0)=C, Dr(0)=D, and Cc(0), V(0), and Dc(0) all equal

zero.

Given these states, resources are allocated in the following order: first priority is given to design

tasks that have yet to be completed; second priority is given to design tasks that have been

completed but are found to be defective; and any remaining resources are allocated to concept

development work.

The rate at which design tasks are completed, d(t), is determined by the minimum of development

capacity, , and the desired design task completion rate, d*(t).

d(t)= Min(, d*(t)) (A1)

35

Tasks completed accumulate in the stock of tasks awaiting testing, V(t). Testing is represented by

an exponential delay so the stock of tasks awaiting testing drains at a rate of V(t)/ v, where v

represents the average time to complete a test. Tasks either pass the test, in which case they

accumulate in the stock of tasks completed, Dc(t), or fail and flow to the stock of tasks awaiting

rework, R(t). The fraction of tasks that fail in model year s is PD(s).

The stock of outstanding rework, R(t), is drained by the rework completion rate, r(t). The rate of

rework completion is equal to the minimum of available capacity to do rework, K-d(t), and the

desired rework completion rate, r*(t):

r(t)=Min(-d(t),r*(t)) (A2)

The rate of concept development task completion, c(t), is equal to the minimum of the desired

concept development task completion rate, c*(t), and the remaining development capacity, K-d(t)-

r(t). Thus:

c(t)=Min(K-d(t)-r(t),c*(t)) (A3)

Concept development tasks are assumed to be done correctly.

The desired completion rates, d*(t), r*(t), and c*(t) are each computed in a similar fashion. In

anticipation of future rework, engineers are assumed to try to complete each of these tasks as

quickly as possible, so:

d*=Dr/ c (A4)

r*=Rr/ c (A5)

c*=Cr/ c (A6)

The parameter c represents the average time required to complete a task.

The only dependence between model years is captured in PD(s), the probability of doing a design

task incorrectly. PD(s), is a function of f(s-1), the fraction of the concept development tasks

completed when the product was in its concept development phase:

36

PD(s)=P +P (1-f(s-1)) (A7)

P represents the portion of the defect fraction that cannot be eliminated by doing concept

development work, while P represents the portion of the defect fraction that can. The term f(s-1)

is the fraction of the total number of concept development tasks completed in the previous model

year:

f (s) =
C c(T)

C
(A8)

The measure of system performance used in this study is s , the quality of the product at its

introduction date measured as the fraction of its constituent tasks that are defective.

(s) =
R(T) + PD(s) ⋅V(T)

D

37

Appendix B
To reduce the full dynamic system to a first order map, begin with the equation for f(s), and

substitute in the definition for Cc(T): This yields:

f (s) =
Min(K − d(t) − r(t),c *(t)()dt

0

T

∫
C

Reducing the model to a one-dimensional map requires two additional assumptions. First, some

form must be specified for c* and d*, the desired completion rates. A mathematically convenient

and plausible approach is to assume that these are calculated by allocating the remaining work

stocks, Cr and Dr, evenly across the time remaining in the model year. Thus:

c*=Cr/(T-t)

d*=Dr/(T-t)

Second, for simplicity, the rework and testing delays are eliminated. This can be accomplished by

making the behavioral assumption that participants in the process know the defect rate, PD(s), with

certainty, and plan their work accordingly. Specifically the total work that will need to be

accomplished on the current project over of the model year t is D/(1-PD(s)), and the desired

completion rate, absent a capacity constraint would be constant throughout the model year:

d* =
D

1− PD(s)
⋅
1

T

Substituting into the equation for f(s) yields:

f (s) =
1

C




 ⋅ MIN

C

T
, Max Κ −

D

1 − PD (s)
⋅
1

T
,0





























 dt

0

T

∫
With this work allocation rule, each of the three elements is constant throughout the model year

and, thus, the integration can be conducted separately and the expressions can be evaluated

afterwards. Integrating the three separate elements of the Max and Min functions yields:

f (s) =
1

C




 ⋅ MIN C, Max Κ ⋅Τ −

D

1− PD (s)
,0





















Finally, substituting the definition for PD(s) again yields the following map for the fraction of

concept development work completed each model year, f(s):

f (s) = Min 1,
1

C
⋅ Max Κ ⋅Τ −

D

1− P + P ⋅ 1− f (s −1)()() ,0




















38

Product n+1

Product n+2

Product n
Concept Development Product Design and Testing

Model Year s Model Year s+1 Model Year s+2 Model Year s+3

Concept Development

Concept Development

Product Design and Testing

Product Design and Testing

launch date for product n launch date for product n+1launch date for product n-1

start date for product n+1 start date for product n+2 start date for product n+3

Figure 1: Overview of Development Process. The variable s indexes model years and the
variable n indexes products. As the figure highlights, developing a product requires two years
and, at any point in time, two development projects are in progress; one in the concept
development phase and one in the design and testing phase.

39

Concept Dvlpmnt
Task

Completion Rate

Design Task
Completion Rate

Design Tasks
Passing Testing

Design Tasks
Failing Testing

Design
Tasks

Reworked

Fraction of Design
Tasks Failing Testing

+

+

-

Design Tasks
Remaining

 Design Tasks
Completed

 Design Tasks
Awaiting
Rework

 Design Tasks
Awaiting
Testing

DELAY

Concept Development Phase

Product Design
and Testing
Phase

Concept Dvlpmnt
Tasks

Remaining

Concept Dvlpmnt
Tasks

Completed

Concept Dvlpmnt Tasks
Completed in Previous

Model Year

Resources to
Concept Development Work

Resources
to Rework

+

Resources
to

Design
Work

+

+

Figure 2: Model Structure. Variables surrounded by rectangles represent stocks or system states.
Variables attached to valve symbols represent the activities that move tasks from one state to another. Solid arrows
represent the information inputs that are used to determine resource allocation and indicate causal relationships.
Signs (‘+’ or ‘-’) at arrow heads indicate the polarity of relationships: a ‘+’ denotes that an increase in the
independent variable causes the dependent variable to increase, ceteris paribus (and a decrease causes a decrease); a ‘-’
denotes that an increase in the independent variable causes the dependent variable to decrease, ceteris paribus (and a
decrease causes a increase). See [33].

40

R

Concept Dvlpmnt
Task

Completion Rate

Design Task
Completion Rate

Design Tasks
Passing Testing

Design Tasks
Failing Testing

Design
Tasks

Reworked

Fraction of Design
Tasks Failing Testing

+

+

-

Design Tasks
Remaining

 Design Tasks
Completed

 Design Tasks
Awaiting
Rework

 Design Tasks
Awaiting
Testing

DELAY

Concept Dvlpmnt
Tasks

Remaining

Concept Dvlpmnt
Tasks

Completed

Concept Dvlpmnt Tasks
Completed in Previous

Model Year

Resources to
Concept Development Work

Resources
to Rework

+

B2

Resources
toDesign

Work

+

+

-

B1

+

-

+

Figure 3: Model Structure with Feedback Processes. The loop identifier, R, indicates a
positive (self-reinforcing) feedback. The loop identifiers, B1 and B2, indicate negative (balancing) feedback loops.

41

0

5 0

1 0 0

1 5 0

2 0 0

0 1 2 3 4

Concept Development
 Tasks Remaining

T
as

ks

Model Year

0

5 0 0

1 0 0 0

1 5 0 0

0 1 2 3 4

Design Tasks Remaining

T
as

ks

Model Year

New Work

Rework

 a b

Figure 4: Selected Variables from the Base Case

42

0

0 . 5

1

0 1 2 3 4

Fraction of Completed
Design Tasks that are Defective

%
 D

ef
ec

ti
ve

Model Year

0 . 5

0 .75

1

0 1 2 3 4

Fraction of Resources
to Design Tasks

%

o
f

T
o

ta
l

R
es

o
u

rc
es

Model Year

a b

Figure 5: Selected Variables from the Base Case

43

0

0 . 5

0 2 4 6 8 1 0

% of Concept Development
Work Completed

%
 C

o
m

p
le

te
d

Model Year

Base Case

20% increase

25% increase

1 . 0

0

0 .25

0 2 4 6 8 1 0

Quality of Finished Design

%
 D

ef
ec

ti
ve

Model Year

Base Case

20% increase

25% increase

. 5

a b

Figure 6: Response of System to Temporary Increases in Workload

44

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

f(
s

)

f(s-1)
Figure 7: Phase Plot for Simplified System. Solid circles denote equilibria, execution
modes that repeat themselves. Arrows on the plot show the "direction" or trajectory of system in
disequilibrium situations. Dashed lines indicate how to read the plot: if the organization
accomplishes 60% of its planned concept development work this year, then, as the figure indicates,
given the dynamics of the system, it will accomplish approximately 70% next year. Similarly,
accomplishing 40% of the planned concept development work this year implies that only about
25% will be accomplished next year.

45

0

0 .10

0 .20

0 .30

0
5

1 0
1 5

0

0 . 1 2 5

0 .25

0 . 3 7 5

0 .5

Shock Size
(as fraction of base

workload)

Model Year

Figure 8. Response of Full System to Temporary Increases in Workload.

46

When Operating in the Desired Execution Mode…

Capacity is Inadequate

Κ ⋅Τ ≤ C +
D

1 − P

Capacity is Adequate

Κ ⋅Τ ≥ C +
D

1 − P

Capacity is
Adequate

Κ ⋅Τ≥
D

1 − P + P()
0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

f(
s
)

f(s-1)
Case #1

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

f(
s
)

f(s-1)
Case #2

en
erating
he Fire
hting

ecution
de…

Capacity is
Inadequate

Κ ⋅Τ≤ D

1 − P + P() 0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

f(
s
)

f(s-1)
Case #3

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

f(
s
)

f(s-1)
Case #4

Figure 9: Possible Phase Plots for Simplified System

47

Tables

Parameter Definition Value

C Number of Concept
Development Tasks

180 tasks per year

D Number of Design
Tasks

1500 tasks per
year

P + P Probability of
Introducing an Error
when Ignoring
Concept Development

.75

P Probability of
Introducing a Defect
When Doing Concept
Development

.1875

K Development Capacity 300 tasks per
month

T Length of the Model
Year

12 months

Table 1: Base Case Parameters

48

ii The model is simulated using the Euler integration method and runs in months with a time step of .25. In each case, it is run for one hundred
and eighty months to eliminate transients. The model is written using the VENSIM software produced by Ventanna Systems Inc. A run-only
version of the model can be downloaded from <http://web.mit.edu/nelsonr/www/>. Complete documentation is also available at this site.

