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Abstract—The proper orthogonal decomposition (POD) has that is required; however, for control design it is imperative
been widely used in fluid dynamic applications for extracting that the flow model have a low number of states. The POD
dominant flow features. The “gappy” POD is an extension to this provides not only a way to obtain accurate low-order models

method that allows the consideration of incomplete data sets. In . . . -
this paper, the gappy POD is extended to handle unsteady flow for control design, but also a systematic means to identify

reconstruction problems, such as those encountered when limited the most dominant flow structures. One approach for flow
flow measurement data is available. In addition, a systematic controller design, demonstrated to yield effective results, is

approach for effective sensor placement is formulated within to control the dominant POD modes [9], [11].
the gappy framework. Two applications are considered. The 14 achieve active flow control in practice, the issue of flow

first aims to reconstruct the unsteady flow field using a small . .
number of surface pressure measurements for a subsonic airfoil sensing must also be addressed. Using a POD-based control

undergoing plunging motion. The second considers estimation of approach, a strategy is required to accurately estimate the
POD modal content of a cylinder wake flow for active control POD modal content in real time from a limited number of

purposes. In both cases, using the dominant POD basis vectorssensor measurements. In addition, the question of where to
%”udn oflitsm?eul dn;(r:rcl:zferugfﬂzsvnfgéoﬂsgt?&l:sti’o;h?es?l?l?spy approach is pagt place the sensors in order to achieve this estimation must
4 ' be addressed. In [11], flow control of a cylinder wake was
considered. Two sets of POD basis vectors were derived using
collections of flow snapshots, obtained from a CFD simulation
The proper orthogonal decomposition (POD), also known a$ the problem and from particle image velocimetry (PIV)
Karhunen Lé&ve expansion and principle components analysigieasurements of an experimental setup. In each case, a linear
has been widely used for a broad range of applicationsochastic estimator (LSE) was used to provide a mapping
including derivation of reduced-order dynamical models [1from the velocity data (computational or experimental) to
image processing [2] and pattern recognition [3]. The POile POD modal content. The sensor locations were chosen
method computes a set of basis vectors that capture the deieording to a heuristic procedure that placed them at spatial
inant structures of the system. For example, for fluid dynamigaxima and minima of each POD mode.
applications, the dominant POD basis vectors correspond tcHere, an alternate approach is proposed for estimating the
the most energetic flow modes in the system. modal coefficients, based on the gappy POD method. This
Sirovich introduced the method of snapshots [4] as a wayethod was developed by Everson and Sirovich [12], and
to efficiently determine the POD modes for large problemi& a modification of the basic POD method that handles
such as those encountered in computational fluid dynanizomplete or “gappy” data sets. Given a set of POD modes,
(CFD) applications. A set of instantaneous flow solutions, @n incomplete data vector can be reconstructed by solving a
“snapshots” is obtained from a simulation of the CFD methodmall linear system. Moreover, if the snapshots themselves
These snapshots are then used to compute the POD basisdamaged or incomplete, an iterative method can be used
vectors, which yield a representation of the data that is optintal derive the POD basis. This method has been successfully
in the sense that, for any given basis size, the two-norm apbplied for reconstruction of images, such as human faces,
the error between the original and reconstructed snapshot$ragn partial data in [12]. In [13], the gappy POD was applied
minimized. Reduced-order dynamic models can be derived fay reconstruction of airfoil pressure fields from limited surface
projecting the CFD model onto the reduced space spannednbyasurements. In that work, it was shown that the entire
the POD modes [5], [6], [1] pressure field for subsonic and transonic inviscid flows could
The concept of using active control to enhance the stabilibe reconstructed using just a handful of POD modes and a
properties of an unsteady flow has been addressed for sevenaall number of surface measurements.
applications, for example in [7], [8], [9], [10]. In order to In this paper, the gappy POD method will first be de-
derive control models that will be effective, it is vital that thescribed and extended to handle unsteady flow reconstruction
relevant unsteady flow dynamics are captured accurately.pfoblems. A quantitative metric for placing sensors will then
high-fidelity CFD code can offer the degree of flow resolutiobe developed using the gappy formulation. Results will then

I. INTRODUCTION
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be presented for two test cases. The first considers the tweetor g. Assuming that the vectog represents a solution
dimensional, linearized Euler equations to analyze a subsonibose behavior can be characterized with the existing snapshot
airfoil operating in unsteady plunging motion. The seconskt, the intermediate repaired vecfpcan be represented in
example considers a Navier-Stokes simulation of flow abouterms ofp POD basis functions as follows:
circular cylinder at low Reynolds number. Finally, conclusions
are drawn and directions for future work are discussed. - L ;

gy b

i=1

(4)

[l. PROPERORTHOGONAL DECOMPOSITION

A. Standard POD basis To compute the POD coefficients, the error,E, between the
Before describing the gappy POD procedure, the standandginal and repaired vectors must be minimized. The error is

approach to computing POD basis vectors via the method défined as

shapshots is first reviewed [4]. Consider the collectiomof

flow snapshots{U*} " |, whereU* is a vector containing

the flow solution at a time,. The correlation matrixR is

. . . u
formed by computing the inner product between every pair gfements iy are compared. The coefficieritsthat minimize

E=|g-3ll: (®)

ing the gappy norm so that only the original existing data

snapshots 1 4 the errorE can be found by differentiating (5) with respect
Ry = - (Ut, Uy, (1) to each of theb; in turn. This leads to the linear system of
equations

where (U?,U*) denotes the inner product betwe&l and

U*. The eigenvalues\; and eigenvectorg)’ of R are then Mb=f (6)
computed. The!” POD basis vectorp/, is given by a linear
combination of snapshots where
m My = (9,07 @)
® =3 U, @
i=1 and
wheret) denotes the'” element of thej*” eigenvector. The fi=(9,9"), (8)

magnitude of thej'" eigenvalue,);, describes the relative ) ) _ ] )
importance of thej’* POD basis vector. This importance is>0lving equation (6) forb and using (4), the intermediate

commonly quantified by defining the relative energy conterféPaired vectog can be obtained. Finally, the complejes
E;, for each basis vectqr as reconstructed by replacing the missing elementg iy the

corresponding repaired elementsgini.e. g; = g; if n; = 0.
E; = 72‘73 (3) While not discussed here, we also note that if the original
2z Ai snapshot ensemble has incomplete data, the POD basis vec-
where the term “energy” refers to a measure in the two-noriters can be computed using an iterative gappy approach, as

described in [12].
B. Gappy POD

The gappy POD procedure uses a POD basis to reconstrtlct
missing, or “gappy” data. This procedure was developed In
[12] and can be described as follows. The first step is to definelt is relatively straightforward to extend the gappy POD
a mask vector, which describes for a particular flow vectaigorithm for consideration of unsteady flows. Assume we
where data is available and where data is missing. For the flpave a sequence @ sensor measurement{SQi}?_l, where
solution U*, the corresponding mask vectof is defined as g' corresponds to a gappy flow solution at titfe At each
follows: timestep, one can solve the gappy problem given by equation
(6) to determine the corresponding POD basis vector modal
content. The matriX/ depends only on the POD basis vectors
and the mask vector. For a given sensor configuration, the
whereU* denotes thé'” element of the vectoi’*. Pointwise Mask vector is fixed and/ is thus not a function of time.
muItipIicZation is defined agn®,U*). = nkUF. Then the Its inverse can therefore be precomputed to yield an efficient
gappy inner product is defined Qﬁ,;)n = ((n,u), (n,v)), implementation. The time-dependent gappy problem can be
and the induced norm is|¢||,.)% = (v, v)n. stated as

Let {®"}"  be the standard POD basis for the snapshot set Mb' = fi 9)
{U*}."_,, where all snapshots are completely known. 4.6&
another solution vector that has some elements missing, withereb® contains the POD modal coefficients at titie The
corresponding mask vectar. Assume that there is a need tamatrix M and vectorf are defined as before in (7) and (8),
reconstruct the full or “repaired” vector from the incompletexcept nowg, and thereforef, varies with time.

Gappy POD for unsteady flows

0 if UF is missing
L if U is known
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[1l. SENSOR PLACEMENT PROBLEM mask vector, evaluatd/, and choose the point that

We consider the problem of placiny sensors in a flow. __ Minimizesx(M). - .
The sensor locations should be chosen so that the requir@@ Repeat step (i) for all remaining sensor locations.
flow information can be obtained. In particular, in the activdlote that this approach does not yield an optimal solution, but
flow control framework, we are concerned with using sens6@n be implemented efficiently.
data to determine the POD modal content of the flow. IV. RESULTS

This problem can be cast in the gappy framework. We Results will be presented for two cases: unsteady plungin
assume that POD basis vectors have been computed, which ar P ) Y plunging

representative of the flows under consideration. A particular erP%On of a subsonic airfoil and low Reynolds number flow

of sensor measurements then corresponds to a gappy solutier a circular cylinder. Both the sensor placement algorithm

0 . )
vector: the solution is known at the sensor locations aﬁé‘g the time-dependent gappy reconstruction of POD modal

. . .. “content will be considered.
unknown for other parts of the flow, i.e; = 1 if location j
is a sensor. Using the gappy POD procedure outlined aboye, Subsonic airfoil plunging motion

the modal contentp), for POD modek at timestepi, can  The first case considered is a NACA 0012 airfoil operating
be determined by solving equation (9). If desired, the fulh ynsteady plunging motion about a steady-state condition
flowfield can then be constructed using (4). In [13], it Wag 4t has a freestream Mach number of 0.755 and an angle of
shown that this approach worked well for reconstructing steadyack ofo°. The CED method is described in [14], and uses a
flow pressure fields when considering a number of sensgfie-yolume formulation on an unstructured grid to solve the
distributed evenly around the surface of an airfoil. two-dimensional linearized Euler equations. The CFD mesh
Within the gappy framework, we now consider the problefseq has 3482 grid points, which corresponds to 13,928 flow
of where best to place the sensors, i.e. givérsensors and perturbation unknowns. POD basis vectors were calculated

l possible locations, how does .o.ne select the Iocgtions tkﬂgﬁng a frequency domain method of snapshots approach [15],
will enable the POD modal coefficients to be determined m t4]. The reduced frequency,, is defined as

accurately? Consider equations (6), (7) and (8). If all data we
are available, i.en; = 1 for all j, then M is the identity ke = T (11)

matrix, and the modal coefficients can be calculated exactl . L . .
gberew is the frequency of the airfoil plunging motion,is

Consider removing available data, and computing the ga o - )
g puting gep e airfoil chord, andJ is the freestream velocity. In order to

inner products between basis vectors to form the entriéd of .
In general, the POD basis vectors are no longer orthogor(fglmpme the POD basis vectors, flow snapshots were evaluated

when inner products are considered in the gappy sense, 3}@1 evenly spaced reduced frequencies betweer_1 zero and one.

M therefore becomes fully populated. As this orthogonali%/ ) Qap:layﬂsensor_ pg?cgrr;]enﬁhe full IIDOD basis vectors

is lost, so is the ability to exactly identify the modal conten ontain a Ow variables, NOWEver, only pressureé measure-

The sensor locations, and correspondingly the non-zero entfiagnts on the airfoil surface were considered as possible sensor
f%ations. For the grid used, there were 115 possible sensor

in the mask vector, should therefore be chosen to prese . The first four POD basi % of
orthogonality between the POD basis vectors, when calcula ations. he Irst four asis vectors captiied’ o
& energy in the snapshot ensemble, thus4 modes were

using the gappy inner product. One should also ensure that dered when f ating th bl ™ q
diagonal entries ol are not too small (this would corresponoconSI ered when formulating the gappy problem. The greedy

to choosing sensor locations where a POD basis vector Vaﬂ]gonthm was used to determine the sensor locations while

is close to zero). Mathematically, one way to achieve theg&temptmg to minimize the condmgn number of t&hg 4 M

goals is to minimize the condition number f. The sensor matrix. The resulting sensor locations are shown in Figure 1

location problem is therefore stated as: ' for N =5, 10 and 20. In the figure, the dots correspond to a
' possible sensor location (this is a CFD grid point on the airfoil

min k(M) surface), while the crosses correspond to the chosen sensor
st n; €{0,1}, j=1,2,..1 locations. The condition number of the gappy mgtM( is
; 70.96, 12.60, and9.82 for N = 5,10 and 20, respectively.

an - N (10) It can bg seen from the ﬂgur(_a.that as the number of sensor

= locations is increased, the positions show some clustering in

particularly sensitive regions of the flow, such as near the

wherer (M) is the condition number of/. airfoil leading edge. In the three cases considered, it can
A solution to this combinatorial optimization problem maye seen that the algorithm chooses to place the sensors in

be obtained using a greedy algorithm as follows. particular regions of the airfoil surface. The choice of these

(i) Consider placing the first sensor: loop over all possiblegions can be understood by plotting the spatial variation
placement points, evaluafd for each point, and chooseof the POD basis vectors. Figure 2 shows the values of the
the point that minimizes:(M). first four basis vectors along the airfoil surface. The basis

(i) With the first sensor location set, loop over all possibleectors are symmetric with respect to the airfoil top and
remaining placement points. For each point, update thettom surfaces. The figure shows increasing spatial frequency
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Fig. 1. Resultant positions for sensors using= 4 basis vectors. Dots Fig. 2. POD basis vector values along the airfoil surface. Note that the
represent available CFD mesh surface points, crosses represent the chesetors are symmetric with respect to top and bottom surfaces and that spatial
sensor locations. From top: 5 sensors, 10 sensor, 20 sensors. frequency increases with increasing mode number.

of subsequent POD vectors, which is commonly observed inAt each timestep in the simulation, the actual POD modal
flow applications. content was computed and compared to that predicted using
By comparing Figures 1 and 2, it can be seen that tiige gappy reconstruction from just the sensor data. The results
locations of the sensors are chosen in regions that correspémdthe first four POD modes are shown in Figure 3 for
roughly to local optima of the POD basis vector variation. Thi%f = 10. The solid lines show the exact modal amplitude
observation corresponds well to the heuristic sensor placemeaiile the symbols are the results calculated using data from
procedure suggested in [11]. In that work, sensors wellge ten sensors. It can be seen that a very good match is
placed at local spatial optima for each mode. The locatioostained for all four modes. The corresponding errors between
determined by the gappy methodology proposed here do me¢ actual and predicted values are plotted in Figure 4. For
correspond exactly to optima because the POD basis vectdrs first two modes, the error can be seen to be very small
are not pure harmonics, and the optimization criteria is basgdmagnitude relative to the actual values shown in Figure 3.
on maintaining orthogonality between modes. For exampleor modes three and four, the error is larger; however, the
it can be seen in Figure 2 that = —0.25 is close to a prediction is still very good.
maxima for modes one, two and four. Data at this location
may not provide a strong differentiation between the thrdd Cylinder wake flow
modes, therefore the algorithm chooses not to place a sensorhe second example analyzes the problem described in [11]
there. It can also be seen that the algorithm chooses to pla¢€low prediction in a cylinder wake at a Reynolds number of
a number of sensors at the airfoil leading edge, which is1®0. CFD simulation data from that study was used to form an
region where the POD basis vectors vary rapidly. ensemble of snapshots. This data was obtained using a direct
2) Gappy flow reconstructionThe question of interest is numerical simulation of the Navier Stokes equations on an
how well, with the selected sensor configuration, the modahstructured grid with the COBALT solver. The cylinder has
content of the time-dependent flow solution can be predictegh incoming flow Mach number of 0.1. The Strouhal number
For the NACA 0012 airfoil, an unsteady simulation was ruef the wake shedding was computed to be 0.163 [11].
that used a forcing input that varied temporally as a GaussiarFrom these snapshots, POD basis vectors were calculated
pulse, i.e. the plunging input, is given by for the vorticity flow component. The relative energy content,
h(t) = fo—alt—to)? (12) defined .by '(3), F:orresponding to the first twelve POD basis
vectors is given in Table I. It can be seen that the modes occur
where b is the amplitude of the pulse, determines the roughly in pairs (due to the periodic nature of the shedding)
time at which the peak input occurs, and the parameterand that twelve modes are required to capture 99.9% of the
determines the sharpness of the pulse and, therefore, the rdlaye vorticity energy.
of frequencies excited in the system. The case considered uset) Gappy sensor placementThe sensor placement al-
h =1, ty = 40, anda = 0.01. This value ofa yields an gorithm described earlier was applied to this problem. As
input whose significant frequency content lies within the POBiscussed in [11], it is desirable to place the sensors in
shapshot sample range. location that experiences relatively large modal amplitudes.
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Mode number; | E; (%) 23:1 E; (%)
1 46.17 46.17
2 37.81 83.99
3 5.47 89.46
4 4.94 94.40
5 2.31 96.71
6 2.26 98.97
7 .35 99.31
8 .34 99.65
9 .10 99.75
10 .10 99.85
11 .03 99.88
12 .03 99.91

TABLE |

PERCENTAGE ENERGY AND CUMULATIVE ENERGY CONTENT FOR
VORTICITY PODMODES FOR CYLINDER FLOW

placement points, evaluafd for each point, and choose
ge the point that maximizes the summation of diagonal
tude minus off-diagonal entries af/.

(i) With the first sensor location set, loop over all possible
remaining placement points. For each point, update the
mask vector, evaluatd/, and choose the point that
minimizesk(M).

(i) Repeat step (ii) for all remaining sensor locations.

2) Gappy flow reconstructionin [11], the time histories

of the POD modal content were estimated using a linear
combination of sensor signals. The coefficients of the linear
combination were determined using a least squares fit to
the known POD modal amplitudes of the original snapshot
simulation. The sensing locations were determined using a
heuristic criterion of placing sensors in areas of high modal
activity, thus using a total of twelve sensors to estimate the
first four POD modes: two sensors each for modes one and
two, and four sensors each for modes three and four.

The modified gappy sensor placement algorithm described
above was implemented for this problem and then the gappy
reconstruction approach was used to determine the time-
dependent POD modal content. The first case considered was
with p = 4 POD modes an&v = 12 sensors. Figure 5 shows

input usingN' = 10 sensors. Plotted is predicted minus actual amplitude f%?"e actual and predicted POD modal coefficients using the

the first four modes.

gappy approach. While the overall trends are captured, it can
been seen that there is some error in the prediction, particularly
in the peak areas. The RMS error of the prediction for jtte

The optimization formulation based only on minimizing thenode is defined as
condition number of\/ was found to yield reasonable results; —3
however a much better solution could be obtained by mod- S (b; — b;)

1=

ifying the approach as follows. The first sensor was placed ej = (13)

by considering the sum of the diagonal elementdbfninus
the sum of the off-diagonal elements df. The first sensor

location was chosen so as to maximize this quantity, y'eld'r\‘@nere b

a larger emphasis on amplitude size. Subsequent sensors
then placed according to the condition number minimizati
described previously. The modified algorithm is therefore
follows.

s (5)

31 and E; are respectively the estimated and actual
Wotricient for POD modej at timestepi, m = 70 is the

Humber of timesteps considered, and the error is normalized

%?/ the RMS value of the actual modal coefficient. The RMS
errors for reconstruction of the first four modes are given in

(i) Consider placing the first sensor: loop over all possiblEable II. The table also shows that the condition humber of



modal amplitude

modal amplitude

N P e1 es e3 e4 K(M)
12 (greedy) 4 11.84% | 23.48% | 32.72% | 12.69% 1.82
12 (modal max/min)| 4 6.12% 5.74% 8.03% 9.32% 1.65
12 (modal max/min)| LSE 2.1% 0.6% 7.1% 2.9% -
12 (modal max/min)| 12 3.63% | 1.98% | 48.56% | 7.76% | 1.64x10%*
20 (greedy) 12 | 1.75% | 1.46% | 5.94% | 5.23% 46.42

TABLE I
RMS ERRORS OF GAPPY RECONSTRUCTION FOR VARIOUS SENSOR CONFIGURATIONS AND NUMBERS OF MODESE LSE DATA IS TAKEN FROM [11].
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Fig. 5. Actual (lines) and estimated (points) POD modal coefficients usirkig. 6. Actual (lines) and estimated (points) POD modal coefficients using
twelve sensors and four POD modes. twelve sensors and twelve POD modes.

the matrix M in this case was 1.82. the sensor signals, then the reconstruction will be inaccurate.
The sensor configuration suggested by Cohen et al. [1A$ Table | shows, the first four modes capture ofilly4%
was also considered, obtained by selecting sensing locationsfathe flow energy. In order to more accurately represent the
spatial minima and maxima of the POD modes. The resultifigw, the number of POD modes considered was increased to
RMS errors from the gappy reconstruction are given in Tabje= 12. Using the twelve sensors located at modal optima,
II. It can be seen that this configuration resulted in an improvéige reconstructed modal coefficients were calculated and are
condition number of 1.65, demonstrating the inability of thehown in Figure 6. As can be seen from the figure, and from
greedy algorithm to find the true optimum. Since the cylindéhe corresponding RMS errors in Table Il, the reconstructions
flow case exhibits strong periodicity, the POD modes resemlite modes 1,2 and 4 are now excellent; however, the estimated
Fourier modes, and the heuristic approach is expected to yisd$ponse for mode 3 shows significant oscillations and a large
accurate results. The RMS errors for this case are also given@gonstruction error. This error is most likely due to poor
Table Il and can be seen to be much lower than for the previausmerical conditioning of the system, which has a condition
configuration. This result suggests that the condition numbasmber of 16,400.
criterion is appropriate for sensor location choice, but that aln order to reduce the condition number of the system and
better optimization algorithm is required. For comparison, thbus reduce the reconstruction error, more sensors must be
RMS errors using the least squares approach with this senadded. The greedy algorithm was used to pla¢e= 20
configuration are also given in Table Il. sensors while attempting to minimize the condition number of
There are two possible sources of error for the resukisgappy matrix wittp = 12 POD modes, yielding an improved
presented in Figure 5. First, there may be insufficient sensandition number of 46.42. The modal amplitudes are plotted
to accurately reconstruct the modal information using gappy Figure 7 and, along with the RMS errors in Table II, show
POD. Secondly, an insufficient number of POD modes may excellent prediction.
be used in the reconstruction. Recall that the gappy procedur&) Discussion and Comparison of Approachdss can be
chooses the coefficients so as to minimize the gappy noseen in Table Il, the RMS errors for the gappy estimation of
between the available and the reconstructed data. If the tiee first four modes obtained witN = 20 sensors ang = 12
glected higher POD modes have significant contribution taodes are of similar magnitude to those obtained using a least
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V. CONCLUSIONS

The gappy POD methodology provides a natural framework
to directly estimate POD modal content from limited flow
measurements and has been shown to work effectively for two
examples. With limited sensor measurements, modal content
for the dominant POD modes can be estimated accurately for
an unsteady flow, provided a sufficient number of modes are
used to resolve the flow. When used in conjunction with a
heuristic approach of placing sensors at POD spatial optima,
the gappy reconstruction yields excellent results. Alternatively,
the sensor placement problem can be formulated mathemat-
ically in the gappy framework using a condition number
criterion. While the resulting optimization problem cannot
be solved exactly, an approximate solution method leads to
results that support the intuitive approach of placing sensors
at modal optima. The more formal approach extends to cases
where the heuristic criterion might be difficult to apply. Further

Fig. 7. Actual (lines) and estimated (points) POD modal coefficients usingvestigation into an improved optimization solution method

twenty sensors and twelve POD modes.

squares approach witN = 12. In the latter method, the RMS

is required.

In another area of future work, an iterative gappy procedure
can be used to derive a set of POD basis vectors using incom-
plete snapshot data. This would, for example, enable the CFD
and PIV measurements to be combined when determining the

error represents a measure of the quality of the least squaP€sD basis vectors. It would also enable effective handling of
fit for the known evolution of the modal coefficients. It isimperfect PIV measurement data, a situation often encountered

not obvious how accurate the prediction would be for flowis practice.

where the relative modal content is different to that used for
calibration. The gappy estimation procedure does not require
knowledge of the actual modal coefficients, and should yield
accurate results for a range of different flows, provided t
flow can be resolved with a sufficient number of availablﬁ]
basis vectors.

For the cylinder flow, which exhibits strong periodicity,
the heuristic approach to sensor placement results in a well-
conditioned gappy problem and accurate reconstructions f?f]
the first four modes. In this case, the greedy algorithm did
not find a twelve-sensor configuration that yielded a better
condition number. However, the greedy algorithm provides
satisfactory alternative for cases where the heuristic approach
may not be appropriate. For example, if the POD basis vectof8
do not exhibit a strong sinusoidal structure, location choicea]
may not be obvious. The locations of modal optima may also
not be physically available for sensing (for example, in the
cylinder case it is assumed that velocity measurements a
available anywhere in the flow). Finally, the heuristic approach
often may not extend to estimation of higher modes. If théé]
higher modes exhibit sinusoidal behavior, then an increasing
number of sensors per mode will be required to capture aj,
optima. If the higher modes lose their structure (as is often
the case for flow applications) then it will not be clear wherd®!
to choose the sensor locations. The gappy formulation easily
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