
ImprovedO(N) neighbor list method using
domain decomposition and data sorting

Zhenhua Yao
The Singapore-MIT Alliance,

National University of Singapore,
Singapore 117576

Jian-Sheng Wang
Department of Computational Science,

National University of Singapore,
Singapore 119260

Min Cheng
Department of Communication Engineering,

Nanyang Technological University,
Singapore 639798

Abstract— The conventional Verlet table neighbor list algo-
rithm is improved to reduce the number of unnecessary inter-
atomic distance calculations in molecular simulations involving
large amount of atoms. Both of the serial and parallelized
performance of molecular dynamics simulation are evaluated
using the new algorithm and compared with those using the
conventional Verlet table and cell-linked list algorithm. Re-
sults show that the new algorithm significantly improved the
performance of molecular dynamics simulation compared with
conventional neighbor list maintaining and utilizing algorithms
in serial programs as well as parallelized programs.

I. I NTRODUCTION

Some molecular simulation techniques such as molecular
dynamics and Monte Carlo method are widely used to study
the physical properties and chemical processes which contain
large amount of particles at the atomic level in statistical
physics, computational chemistry, molecular biology field [1].
All these methods involve evaluation of the sum of total inter-
atomic potential energyVtot of N atoms and/or the gradients
of potential energy. The interatomic potential contains various
interactions between atoms in the physical system, and are
usually functions of internal coordinates of atoms, or can be
expressed by interatomic distances between two atoms, bond
angles among three atoms, etc. For example in molecular
dynamics, the potential energy of liquids and gases are often
described as a sum of two-body (or pairwise) interactions over
all atom pairs. A common practice of two-body interatomic
interaction is expressed by Lennard-Jones potential function,
which is a simple function of the distancerij between atom
i and j and in shown as follows,

VLJ(rij) =
ε

4

[(
σ

rij

)12

−
(
σ

rij

)6
]

(1)

and the total potential energy of whole system is the sum of
pairwise interactions over all atoms,

Vtot =
1
2

N∑
i=1

N∑
j=1
j 6=i

VLJ(rij) (2)

In molecular dynamics simulation, evaluation of Eq.(2) and
its gradients costs usually most of CPU time. Apparently direct
calculation of Eq.(2) requiresN2 steps. If we notice that
V (rij) = V (rji), the total calculation steps can be decreased

to N(N − 1)/2. Obviously it is impactible to carry out such
a heavy calculation when the number of atoms is large, and
some methods to reduce the redundant computation related to
evaluation of Eq.(2) are strongly needed.

General way to reduce the number of calculation of Eq.(2) is
using a cutoff distancercut in potential functions, and assume
that both potential functions and its gradients beyond the cutoff
distance are zeroes. This treatment reduces the computing time
greatly by neglecting all atoms beyond the cutoff distance,
since interactions between these atoms are zeroes and needn’t
to be considered. A straightforward way to determine which
atoms are within cutoff distance is to evaluate all distances
over all atoms pairs, and this procedure needsN(N − 1)/2
steps.

A reduction of redundant calculation of interatomic po-
tential can be accomplished by conventional Verlet table
algorithm and cell-linked list algorithm.

The basic idea of Verlet table method is to construct and
maintain a list of neighboring atoms for every atoms in
the system. During the simulation, this neighbor list will be
updated periodically for a fixed interval or reconstruct itself
automatically when some atoms move too much and the list
is going to be out-of-date. During the interval of neighbor
list updating, each atom is assumed to interact only with
those in its neighbor list. Of course constructing of the Verlet
table needs to carry outN(N − 1)/2 times of interatomic
distance evaluation. The Verlet table method has been proven
to be efficient when a system contains a relatively small
number of atoms and the atoms move slowly. However, the
main drawback is that as the number of atoms increases,
the memory requirement for maintaining the neighbor lists
becomes forbidable, and the time to construct a Verlet table
increases as the orderO(N2). Moreover, as the atoms move
more quickly, either the “skin” (largest distance allowable
of an atom that won’t make the neighbor list invalid) must
increase or the frequency of reconstructing Verlet table must
increase. Both of these requirements make CPU time used to
maintain the Verlet table increase dramatically, and the whole
simulation becomes inefficient.

Cell-linked list algorithm is another effective method to
reduce the calculation of potential and force evaluation when
the number of atoms is large. This approach partitions the
simulation domain into small cells, and every atoms are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


assigned to these cells by their coordinates. Since the neigh-
borhood cells of each cells are known and won’t change
during the simulation, and the lengths of three edges (for three
dimensional simulation domain) of cells can be selected to
equal to rcut, then neighborhood atoms of an atom can be
listed by enumerating all atoms in all neighborhood cells and
the cell itself. The implementation of cell-linked list algorithm
is usually to construct a cell neighbor list table at first, and
then assign each atoms to the cells before potential and force
evaluation step. The first process requires little CPU time
and is need to be carried out only once, and the second
process needs the order ofO(N) steps to be carried out. The
overhead to update the neighbor list, i.e., assign each atom to
corresponding cells, is very small, but considering there are 26
surrounding cells for each cells, a big number of interatomic
distance still need to be calculated, in which usually over 80%
are fall outside the cutoff distance, and this makes cell-linked
list method rather inefficient compared to Verlet table method
when the number of atoms is small.

Basically there is a tradeoff between overhead for main-
taining neighbor list table and reduction of calculation of
unnecessary interatomic distance.

In this paper conventional Verlet table method is improved
and the overhead to maintain the neighbor list table has been
reduced to the order ofO(N), and the efficiency of calculating
interatomic distance is still as high as of Verlet table and cell-
linked list method in almost all instances. Furthermore it is
easy to parallelize on SMP platforms as well as on workstation
clusters.

Conventional Verlet table algorithm and cell-linked list algo-
rithm have been widely parallelized and have shown significant
reduction in total computing time. In this work it is intend
to optimize serial performance on single processor as well
as parallel environment. The modifications of the algorithm
and demonstration of the improved performance on single
processor computer and dual–processors are described in this
paper. Moreover the molecular dynamics program based on
the improved Verlet table method has shown good scalability
on Linux workstation cluster system.

II. M ETHOD OF IMPROVEDVERLET TABLE ALGORITHM

The conventional Verlet table method and cell-linked list
method have been detailed in a classical book about molecular
simulations by Allen and Tildesley [5]. So the implementation
details of basic algorithms are not written down in this paper.

A. Conventional Verlet table algorithm

In conventional Verlet table algorithm the potential cutoff
sphere of radiusrcut is surrounded by a “skin”, to give a
larger sphere of radiusrs [5]. At the first step of simulation a
neighbor list is constructed for every atoms in the system, and
an atom is considered as a “neighbor” if the distance between
two atoms is equal to or shorter thanrs. Over the next few
time steps this neighbor list is used in the force and potential
evaluation routine. For every atoms, only interatomic distance
of which atoms in its neighbor list table are calculated, all

other atoms are skipped, thus a huge amount of unnecessary
interatomic distance calculation is eliminated and the overall
performance is increased. In the following from time to time,
the neighbor list is reconstructed and the similar procedure
is repeated. It should be noticed that the “skin” around the
cutoff distance is chosen to be large enough so that between
reconstruction intervals any atoms which is not in the neighbor
list of an atom cannot penetrate through the skin into the cutoff
sphere.

The interval between updating of neighbor list table can
be a fixed value in the program, and this value varies for
different system with different atom mobility. Neighbor list can
also be automatically updated by monitoring the accumulation
of atoms’ displacement vectors, when difference of any two
atoms’ displacement vectors is large enough, the neighbor list
is reconstructed.

In conventional Verlet table algorithm, it is need to evaluate
the interatomic distances between all atom pairs, so the total
steps to construct a neighbor list table is the order ofO(N2).
But once the neighbor list is constructed and between the
interval of updating, evaluation the forces / potentials of the
system is efficient because there are only atoms in the neighbor
list, i.e., in the sphere ofrs as the radius, need to be evaluate
the interatomic distances, and this procedure requires the order
of O(N · Nneighbor) steps, in whichNneighbor is the average
number of neighbors in the material and won’t change with
the system size.

The advantage of conventional is the efficiency of using
neighbor list in the evaluation of forces / potentials, as the
average number of neighbors in the list is only a few more
than actual needed (they are atoms which fall inside the
“skin”). Its disadvantage is the inefficiency of constructing
neighbor list, as the procedure requires the order ofO(N2)
steps (more precisely,N(N − 1)/2 steps). Therefore if the
reconstruction algorithm can be improved, it will be a good
choice in molecular simulation.

B. Cell-linked list algorithm

In the conventional cell-linked list algorithm the simulation
space is partitioned into several cells, and each edges of cells
are equal to or larger than cutoff distance of the potential
function. All atoms are assigned to the cells according to
their positions, and during this procedure a linked list of the
atom indices is created. At the beginning of a simulation,
an array that contains a list of cell neighbors for each cells
is created, and this list remains fixed unless the simulation
domain changes during the simulation [5].

Any cell should be one of the neighbors of a cell if it has at
least one point within the cutoff distance of any point. Since in
the conventional method all edges of each cell are equal to or
larger thanrcut, considering the periodic boundary condition
any cell has 8 neighbors (for two dimensional domain) or
26 neighbors (for three dimensional domain). All atoms not
located in neighbors of a cell are fall outside of potential
function cutoff distance.



A modification to cell-linked list algorithm is to reduce
the cell size so that the possible neighbors of atoms can be
reduced, as described in Ref [5].

In the conventional method the edges of cells are often
chosen to the cutoff distancercut, then for any cells all atoms
in 27 cells, or in the volume of27 × r3

cut, will be evaluate
the interatomic distances. Ideally, only atoms in the volume
of 4

3πr
3
cut ≈ 4.189 r3

cut are fall in the cutoff distance and need
to evaluate the interatomic distances. However, if a small cell
edge is used, volume used to contain atoms whose interatomic
distance need to be calculated will dramatically reduced. For
example if 1

2rcut is chosen as the edge of cells, the volume is
(2.5)3 r3

cut, only 57.87% of one in conventional method.
Furthermore, the edges of cells can be chosen to as small

as at most one atom can be contained only. This treatment
seems completely solve the problem of over-counting too
many atoms, but actually it is not convenient to enumerate
all neighbors for each cells, thus the overall performance is
limited.

Compare with conventional Verlet table method, we can
know that the advantage of cell-linked list method is the
fast and efficient building of “neighbor list”, in this method
it is just assigning each atom to appropriate cells, and the
disadvantage is that there are too many unnecessary atoms
need to evaluate the interatomic distances in the “neighbor list”
and the improved methods seem increase the complexity of
constructing and using algorithm but the overall performance
has little improvement only.

C. Improved method of Verlet table

In the section II-A one can known that the reason why
the steps of maintaining Verlet table in conventional method
is the order ofO(N2) is enumerating every atoms in the
simulation domain for finding out the neighbors of an atom.
And also in section II-B, we know that cell-linked list method
doesn’t have this trouble so that its neighbor list constructing
speed is higher, but the efficiency of utilizing neighbor list in
force / potential evaluation is sacrificed. If the advantages of
both methods can be combined together, the algorithm can be
optimized.

In this work conventional Verlet table method and cell-
linked list method are combined together, to prevent the
constructing of the neighbor list table from over-counting
too many atoms. Like the cell-linked list method, the whole
simulation domain is partitioned into several cells, and the
edges of these cells can be larger or smaller than the potential
function cutoff distancercut, every time before constructing
neighbor list table, each atoms are assigned to these cells by
their coordinates, and then Verlet table search algorithm is
used to construct the neighbor list table, but only atoms in
neighbor cells are need to evaluate the interatomic distances,
instead of all atoms in the system.

By considering the pipeline architecture of modern CPUs
nowadays, further effort has been made to boost the computa-
tion performance: sorting the storage sequences of atoms in the
memory and make atoms which in the same cell or neighbor

cells are also in adjacent memory locations, thus the data can
be loaded and cached more efficiently.

The overall procedure for constructing neighbor list table is
shown in Algorithm 1.

Algorithm 1 Improved neighbor list algorithm

{Assigning all atoms into their appropriate cells}
for all atoms in the systemdo

calculate the indexi of its appropriate cell;
append the index of atom into the list of celli;

end for
{Sorting atoms by their coordinates}
{Now carry out conventional Verlet table procedure}
for all atomsi in the systemdo
l⇐ the cell number of atomi
for all cellsm among neighbors of celll and celll do

for all atomsj in cell m do
calculate interatomic distancerij ;
apply the periodic boundary condition;
if rij < rcut then

appendj into the neighbor list of atomi;
end if

end for
end for

end for

III. R ESULTS

A molecular dynamics simulation program using Lennard-
Jones(12−6) two-body potential is developed to compare the
performance of three different neighbor list algorithms. The
benchmarks are carried out on Compaq Alpha Server DS20
with two EV67/667 MHz processors and Tru64 5.1A operating
system installed, the program is written in Fortran 90 and com-
piled by Compaq Fortran compiler V5.5–1877. We also run
the same benchmarks on a PC with one Intel Pentium III 866
MHz CPU and Red Hat Linux 8.0 installed, and a HP RX2600
workstation with two Intel Itanium2 900 MHz processors and
Red Hat Linux Advanced Workstation installed. CPUs in these
three platforms have different architectures: Alpha EV67 is a
typical RISC (Reduced Instruction Set Computing) CPU, Intel
Pentium III is a CISC (Complex Instruction Set Computing)
CPU, and Itanium2 is declared as EPIC (Explicitly Parallelized
Instruction Computing) architecture. The performances on
three platforms differ largely, however the comparison between
three different algorithms are qualitively similar. All data given
in this section are results from Alpha Server DS20.

For measuring the performance quantitatively a new unit
namedatom·step/secondis defined. It can simply calculated
by multiply number of atoms and number of steps simulated
divided by number of seconds elapsed. The larger is this value,
the better is the overall performance.

In the simulation, some uniformly distributed Argon atoms
with random locations are placed in the domain firstly, and
the density of gas are predetermined. Then simulation in
canonical ensemble is performed, and the number of steps



is 102 for 104 atoms and above, or103 for 103 ∼ 104 atoms,
or 104 for 999 atoms or less. The Nośe–Hoover thermostat is
used to implement the canonical ensemble simulation, and the
temperature of system is 300 K.

To verify the improved Verlet table algorithm, all neighbor
lists were dumped to the disk files and compared those
in Verlet table algorithm for different system size. In the
verification simulation the statistical quantities, such as total
potential energy, total kinetic energy, transient temperature of
system and the trajectory of atoms have been recorded for
every 10 steps, and three sets of data generated from three
algorithms are compared and ensure they differ in round-
off errors only. A series of tests showed that neighbor lists
from improved Verlet table method are exactly as same as
those from conventional methods, and simulations with three
different algorithms output exactly same results.

For different simulation the volume of system is increased
with constant density, thus the number of atoms is increased
correspondingly, and the performance is calculated.

Comparison of performances of molecular dynamics sim-
ulation with different algorithms are shown in Fig. 1 (single
processor results) and Fig. 2 (dual-processor results)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 1000 10000 100000 1e+06

P
er

fo
rm

an
ce

Number of atoms

cell-linked list
Verlet table

our work

Fig. 1. Comparison of three algorithms on single processor system. The
performance is measured in the unit of “atom·step/second”, and its value can
be calculated by multiply number of atoms by number of steps and divided
by the whole simulation time. The three curves from top to bottom stand
for performances of our improved method, Verlet table and cell-linked list
method, respectively.

IV. CONCLUSIONS

Nowadays the performance of CPU is increased follows
Moore’s law, and more and more powerful supercomputers are
emerged continuously, thus larger and complicated molecular
simulations will be attempted which involve larger amount of
atoms and more complex potential functions. The expectation
of running molecular simulation faster and easier for larger
systems on existing platforms make it important to improve
the conventional neighbor list updating algorithm in order
to reduce the unnecessary interatomic distance calculations.
A significant improvement of molecular dynamics simulation
performance has been shown in this paper by improved

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

100 1000 10000 100000 1e+06

P
er

fo
rm

an
ce

Number of atoms

cell-linked list
Verlet table

our work

Fig. 2. Comparison of three algorithms on dual-processor system. The three
curves from top to bottom stand for performances of our improved method,
Verlet table and cell-linked list method, respectively.

orderO(N) Verlet table algorithm both on single processor
platforms and dual-processor platforms. All results have shown
that the new algorithm is superior than conventional Verlet
table and cell-linked list algorithm in serial programs as well
as parallelized programs.

ACKNOWLEDGMENTS

This work was supported under the project “Heat transport
in nanostructure — molecular dynamics and mode-coupling
theory” of the Singapore-MIT Alliance, National University
of Singapore.

REFERENCES

[1] J. M. Thijssen, Computational Physics, Cambridge University Press,
Cambridge, 1999.

[2] L. Verlet, Physics Review,159: 98–103 1967.
[3] D. Fincham, B. J. Ralston, Computer Physics Communication,23: 127–

134, 1981.
[4] B. Quentrec, C. Brot, Journal of Computational Physics,13, 430–432

(1975); R. W. Hockney, J. W. Eastwood, Computer simulation using
particles, McGrow–Hill, New York, 1981.

[5] M. P. Allen, D. J. Tildesley, Computer simulation of liquids, Oxford
University Press, New York, 1990.

[6] W. Mattson, B. M. Rice, Computer Physics Communications,119: 135–
148, 1999.

[7] J. H. Walther, P. Koumoutasakos, Journal of Heat Transfer,123: 741–
748, 2001.


