
An Asymptotically Optimal On-Line Algorithm
for Parallel Machine Scheduling

Mabel Chou
Singapore-MIT Alliance

Department of Decision Sciences
National University of Singapore

Email: bizchoum@nus.edu.sg

Maurice Queyranne
University of British Columbia

Vancouver B.C., Canada V6T 1Z2

David Simchi-Levi
Massachusetts Institute of Technology

Cambridge MA 02139,USA

Abstract| Jobs arriving over time must be non-
preemptively processed on one of m parallel machines,
each of which running at its own speed, so as to minimize
a weighted sum of the job completion times. In this on-line
environment, the processing requirement and weight of a job
are not known before the job arrives. The Weighted Shortest
Processing Requirement (WSPR) on-line heuristic is a simple
extension of the well known WSPT heuristic, which is optimal
for the single machine problem without release dates. We
prove that the WSPR heuristic is asymptotically optimal for
all instances with bounded job processing requirements and
weights. This implies that the WSPR algorithm generates a
solution whose relative error approaches zero as the number
of jobs increases. Our proof does not require any probabilistic
assumption on the job parameters and relies extensively on
properties of optimal solutions to a single machine relaxation
of the problem.

I. Introduction
In the uniform parallel machine minsum scheduling

problem with release dates, jobs arrive over time and must
be allocated for processing to one of m given parallel
machines. Machine M» i (i = 1; : : : ; m) has speed si > 0
and can process at most one job at a time. Let n
denote the total number of jobs to be processed and let
N = f1; 2; : : : ; ng. Job j 2 N has processing requirement
pj ¸ 0, weight wj > 0, and release date rj ¸ 0. The
processing of job j cannot start before its release date rj
and cannot be interrupted once started on a machine. If
job j starts processing at time Sj on machine M» i , then it
is completed pj =si time units later; that is, its completion
time is Cj = Sj + pj =si. In the single machine case, i.e.,
when m = 1, we may assume that s1 = 1 and in this case
the processing requirement of a job is also referred to as
the job processing time.

We seek a feasible schedule of all n jobs, which min-
imizes the minsum objective

Pn
j=1 wj Cj, the weighted

sum of completion times. In standard scheduling notation,
see, e.g., [5], this problem is denoted Qjrj jP wj Cj . Our
main result concerns the case where the set of m parallel
machines is held ¯xed, which is usually denoted as problem
Qmjrj j P

wj Cj .
In practice, the precise processing requirement, weight

and release date (or arrival time) of a job may not be
known before the job actually arrives for processing. We

consider an on-line environment where these data pj , wj
and rj are not known before time rj . Thus scheduling
decisions have to be made over time, using at any time
only information about the jobs already released by that
time; see, e.g., [10] for a survey of on-line scheduling.

In a competitive analysis, we compare the objective
value, ZA(I); of the schedule obtained by applying a given
(deterministic) on-line algorithm A to an instance I to the
optimum (o®-line) objective value Z¤ (I) of this instance.
The competitive ratio of algorithm A, relative to a class
I of instances (such that Z¤ (I) > 0 for all I 2 I), is

cI(A) = sup
½

ZA(I)
Z¤ (I)

: I 2 I
¾

:

One of the best known results [11] in minsum schedul-
ing is that the single machine problem without release
dates, 1jjP wj Cj ; is solved to optimality by the following
Weighted Shortest Processing Time (WSPT) algorithm:
process the jobs in nonincreasing order of their weight-to-
processing time ratio wj =pj . Thus the competitive ratio
cI(W SP T) = 1 for the class I of all instances of the
single machine problem 1jj P

wjCj. Unfortunately, this
result does not extend to problems with release dates
or with parallel machines; in fact the single machine
problem with release dates and equal weights, 1jrj j P

Cj ,
and the identical parallel machine problem, P jj P

wj Cj
are already NP-hard [8]. Consequently, a great deal of
work has been devoted to the development and analysis of
heuristics, in particular, Linear Programming (LP) based
heuristics, with attractive competitive ratios.

A departure from this line of research was presented
in [6]. To present their results, de¯ne the asymptotic
performance ratio R1

I (A) of an algorithm A, relative to
instance class I, as

inf
n

r ¸ 1 j 9n0 s.t.
ZA(I)
Z¤(I)

· r;8I 2 I with n ¸ n0

o
:

Thus, the asymptotic performance ratio characterizes
the maximum relative deviation from optimality for all
\su±ciently large" instances in I. When A is an on-line
algorithm, and Z¤(I) still denotes the o®-line optimum

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

objective value, we call R1
I (A) the asymptotic competitive

ratio of A relative to instance class I.
[6] focused on the single machine total completion time

problem with release dates, i.e., problem 1jrj jP Cj and
analyzed the e®ectiveness of a simple on-line dispatch
rule, referred to as the Shortest Processing Time among
Available jobs (SPTA) heuristic. In this algorithm, at
the completion time of any job, one considers all the
jobs which have been released by that date but not yet
processed, and select the job with the smallest processing
time to be processed next. If no job is available the
machine is idle until at least one job arrives. Results in [6]
imply that the asymptotic competitive ratio of the SPTA
heuristic is equal to one for all classes of instances with
bounded processing times, i.e., instance classes I for which
there exist constants ¹p ¸ p ¸ 0 such that p · pj · ¹p for
all jobs j in every instance I 2 I.

It is natural to try and extend the WSPT and
SPTA heuristics to problems with release dates and/or
parallel machines. A simple extension to the problem
Qjrj j P

wjCj considered herein, with both uniform paral-
lel machines and release dates, is the following WSPR algo-
rithm: whenever a machine becomes idle, start processing
on it an available job, if any, with largest wj =pj ratio;
otherwise, wait until the next job release date. This is
a very simple on-line algorithm which is fairly myopic
and clearly suboptimal, for at least two reasons. First,
it is \non-idling", that is, it keeps the machines busy so
long as there is work available for processing; this may
be suboptimal if a job k with large weight wk (or short
processing requirement pk) is released shortly thereafter
and is forced to wait because all machines are then busy.
Second, for machines with di®erent speeds, the WSPR
algorithm arbitrarily assigns jobs to the idle machines,
irrespective of their speeds; thus an important job may
be assigned to a slow machine while a faster machine
is currently idle or may become idle soon thereafter.
Thus it is easy to construct instance classes I, for
example with two jobs on a single machine, for which
the WSPR heuristic performs very poorly; this implies
that its competitive ratio cI (WSPR) is unbounded.

In contrast, the main result of this paper is that the
asymptotic competitive ratio R1

I (W SPR) of the WSPR
heuristic is equal to one for all classes I of instances with
a ¯xed set of machines and with bounded job weights and
processing requirements.

Formally, our main result is presented in the following
theorem.

Theorem 1: Consider any class I of instances of the
uniform parallel machines problem Qmjrjj

P
wjCj with a

¯xed set of m machines, and with bounded weights and
processing times, that is, for which there exist constants
¹w ¸ w > 0 and ¹p ¸ p > 0 such that w · wj · ¹w and p ·
pj · ¹p for all jobs j in every instance I 2 I: Then the
asymptotic competitive ratio of the WSPR heuristic is
R1

I (WSP R) = 1 for instance class I.

To put our results in perspective, it is appropriate at
this point to refer to the work of Uma and Wein [12]
who perform extensive computational studies with various
heuristics including WSPR as well as linear programming
based approximation algorithms for the single machine
problem 1jrj j P

wjCj. While Uma and Wein note that it
is trivial to see that the worst-case performance of the
WSPR heuristic is unbounded, they ¯nd that, on most
data sets they used, this heuristic is superior to all the
LP relaxation based approaches. The results in the present
paper provide a nice explanation of this striking behavior
reported by Uma and Wein. Indeed, our results show
that if the job parameters, i.e., weights and processing
times, are bounded, then the WSPR algorithm generates
a solution whose relative error decreases to zero as the
number of jobs increases. Put di®erently, WSPR has an
unbounded worst-case performance only when the job
parameters are unbounded.

II. A Mean Busy Date Relaxation for Uniform Parallel
Machines

Let N = f1; : : : ; ng be a set of jobs to be processed,
with a given vector p = (p1; : : : ; pn) of job processing
requirements. Given any (preemptive) schedule we asso-
ciate with each job j 2 N its processing speed function
¾j, de¯ned as follows: for every date t we let ¾j (t) denote
the speed at which job j is being processed at date t.
For example, for uniform parallel machines, ¾j(t) = si(j;t)
is the speed of the machine M» i(j;t) processing job j at
date t, and ¾j (t) = 0 if job j is idle at that date. Thus,
for a single machine with unit speed, ¾j(t) = 1 if the
machine is processing job j at date t, and 0 otherwise.
We consider schedules that are complete in the following
sense. First we assume that 0 · ¾j (t) · ¹s for all j and t,
where ¹s is a given upper bound on the maximum speed at
which a job may be processed. Next, we assume that all
processing occurs during a ¯nite time interval [0; T], where
T is a given upper bound on the latest job completion time
in a schedule under consideration. For the single machine
problem we may use ¹s = 1 and, for both the WSPR
and LP schedules, T = maxj rj +

P
j pj . For the uniform

parallel machines problem, we may use ¹s = maxi si and
T = maxj rj +

P
j pj = mini si. The assumption

Z T

0
¾j (¿) d¿ = pj

then express the requirement that, in a complete schedule,
each job is entirely processed during this time interval
[0; T]. The preceding assumptions imply that all integrals
below are well de¯ned.

The mean busy date Mj of job j in a complete schedule
is the average date at which job j is being processed, that
is,

Mj =
1
pj

Z T

0
¾j (¿) ¿ d¿ :

We let M = (M1; : : : ; Mn) denote the mean busy date
vector, or MBD vector, of the schedule. When the speed
function ¾j is piecewise constant, we may express the mean
busy date Mj as the weighted average of the midpoints
of the time intervals during which job j is processed at
constant speed, using as weights the fraction of its work
requirement pj processed in these intervals. Namely, if
¾j(t) = sj;k for ak < t < bk, with 0 · a1 < b1 < : : : <
aK < bK · T and

PK
k=1 sj;k(bk ¡ ak) = pj then

Mj =
KX

k=1

sj;k (bk ¡ ak)
pj

ak + bk

2
: (1)

Thus, if job j is processed without preemption at
speed sj;1, then its completion time is Cj = Mj + 1

2 pj =sj;1.
In any complete schedule, the completion time of every
job j satis¯es Cj ¸ Mj + 1

2 pj =¹s, with equality if and
only if job j is processed without preemption at maximum
speed ¹s.

Let w = (w1; : : : ; wn) denote the vector of given job
weights. We use scalar product notation, and let w>p =P

j wjpj and w>C =
P

j wj Cj , the latter denoting the
minsum objective of instance I of the scheduling problem
under consideration. We call w>M =

P
j wjMj the mean

busy date objective, or MBD objective, and the problem
ZP ¡MBD (I) = minfw>M : M is the MBD vector of a fea-
sible preemptive schedule for instance Ig the preemptive
MBD problem. Letting Z¤(I) denote the optimum minsum
objective value w>C of a feasible nonpreemptive schedule,
it follows from w ¸ 0 and the preceding observations
that Z¤(I) ¸ ZP ¡MBD (I) + (1=2¹s)w>p. Accordingly, we
shall also refer to the preemptive MBD problem as the
preemptive MBD relaxation of the original nonpreemptive
minsum scheduling problem.

The preemptive MBD problem is well solved, see [3]
and [4], for the case of a single machine with constant
speed s > 0 and job release dates:

Theorem 2 ((Goemans)): The LP schedule de¯nes an
optimal solution to the preemptive MBD problem
1jrj; pmtnj P

wj Mj.
Let C LP and MLP denote the completion time vector,
resp., the MBD vector, of the LP schedule, and let
ZMBD (I) = ZP ¡MBD(I)+(1=2¹s)w>p. Theorem 2 implies
that Z¤(I) ¸ ZMBD (I) = w>MLP + (1=2¹s)w>p.

We will bound the maximum delay that certain amounts
of \work" can incur in the WSPR schedule, relative to the
LP schedule. For this, we now present a decomposition
of the MBD objective w>M using certain \nested" job
subsets. Some of the results below were introduced in [3]
in the context of single machine scheduling. We consider a
general scheduling environment and a complete schedule,
as de¯ned towards the beginning of this Section. Assume,
without loss of generality, that the jobs are indexed in a
nonincreasing order of their ratios of weight to processing
requirement:

w1=p1 ¸ w2=p2 ¸ : : : ¸ wn=pn ¸ wn+1=pn+1 = 0: (2)

Accordingly, job k has lower WSPR priority than job j
if and only if k > j. In case of ties in (2), we consider
WSPR priorities and an LP schedule which are consistent
with the WSPR schedule. For h = 1; : : : ; n, let ¢h =
wh=ph ¡ wh+1=ph+1, and let [h] = f1; 2; : : : ; hg denote the
set of the h jobs with highest priority. For any feasible
(preemptive) schedule we have: w>M =

Pn
j=1

wj
pj

pjMj =
Pn

j=1

³Pn
k=j ¢k

´
pj Mj =

Pn
h=1 ¢h

P
j2[h] pj Mj : For

any subset S µ N = f1; : : : ; ng, let p(S) =
P

j2S pj
denote its total processing time, and let ¾S =

P
j2S ¾j

denote its processing speed function. De¯ne its mean
busy date MS = (1=p(S))

R T
0 ¾S (¿) ¿ d¿ . Note that, in a

feasible schedule,
R T
0 ¾S(¿) d¿ = p(S) and

P
j2S pjMj =R T

0 ¾S (¿) ¿ d¿ = p(S)MS . Therefore, we obtain the MBD
objective decomposition

w>M =
nX

h=1

¢h p([h]) M[h] : (3)

This decomposition allows us to concentrate on the mean
busy dates M[h] of the job subsets [h] (h = 1; : : : ;n).

For any date t · T , let RS (t) =
R T

t ¾S (¿) d¿ = p(S) ¡R t
0 ¾S (¿) d¿ denote the unprocessed work from set S at

date t. (Note that this unprocessed work may include the
processing time of jobs not yet released at date t.) Since
the unprocessed work function RS(t) is nonincreasing with
time t, we may de¯ne its (functional) inverse ¹RS as follows:
for 0 · q · p(S) let ¹RS (q) = infft ¸ 0 : RS(t) · qg. Thus
the processing date ¹RS (q) is the earliest date at which
p(S)¡ q units of work from set S have been processed. For
any feasible schedule with a ¯nite number of preemptions
we have Z T

0
RS (t) dt =

Z p(S)

0

¹RS (q) dq :

The mean busy date MS can be expressed using the
processing date function ¹RS :

p(S)MS =
Z T

0
¾S(t) t dt =

Z T

0

Z t

0
¾S (t) d¿ dt

=
Z T

0

Z T

¿
¾S (t) dt d¿ =

Z T

0
RS (¿) d¿ =

Z p(S)

0

¹RS(q) dq :

Combining this with equation (3) allows us to express the
MBD objective using the processing date function:

w>M =
nX

h=1

¢h

Z p([h])

0

¹R[h](q) dq : (4)

We now present a mean busy date relaxation for uniform
parallel machines and then use the above expression (4)
to bound the di®erence between the minsum objectives of
the WSPR and LP schedules.

Assume that we have m parallel machines M» 1; : : : ; M» m,
where machine M» i has speed si > 0. Job j has processing
requirement pj > 0; if it is processed on machine M» i
then its actual processing time is pij = pj=si . We assume

that the set of machines and their speeds are ¯xed
and, without loss of generality, that the machines are
indexed in nonincreasing order of their speeds, that is,
s1 ¸ s2 ¸ : : : ¸ sm > 0. We have job release dates
rj ¸ 0 and weights wj ¸ 0, and we seek a nonpreemptive
feasible schedule in which no job j is processed before its
release date, and which minimizes the minsum objectiveP

j wjCj. Since the set of m parallel machines is ¯xed,
this problem is usually denoted as Qmjrj jP wj Cj . First,
we present a fairly natural single machine preemptive
relaxation, using a machine with speed s [m] =

Pm
i=1 si.

We then compare the processing date functions for the
high WSPR priority sets [h] between the WSPR schedule
on the parallel machines and LP schedule on the speed-
s [m] machine. We show an O(n) additive error bound for
the WSPR heuristic, for every instance class with a ¯xed
set of machines and bounded job processing times and
weights. This implies the asymptotic optimality of the
WSPR heuristic for such classes of instances.

Consider any feasible preemptive schedule on the paral-
lel machines, with completion time vector C. Recall that
¾j(t) denotes the speed at which job j is being processed
at date t in the schedule, and that the mean busy date
Mj of job j is Mj = (1=pj)

R T
0 ¾j (¿) ¿ d¿ (where T is an

upper bound on the maximum job completion time in any
schedule being considered).

To every instance I of the uniform parallel machines
problem we associate an instance I [m] of the single
machine preemptive problem with the same job set N
and in which each job j 2 N now has processing time
p[m]

j = pj =s[m] . The job weights wj and release dates rj
are unchanged. Thus we have replaced the m machines
with speeds s1; : : : ; sm with a single machine with speed
s [m] =

Pm
i=1 si. Consider any feasible preemptive schedule

for this single machine problem and let C[m] denote its
completion time vector. Let I [m]

j (t) denote the speed
(either s [m] or 0) at which job j is being processed at
date t. Thus the mean busy date M [m]

j of job j for this
single machine problem is M [m]

j = (1=pj)
R T
0 I [m]

j (¿) ¿ d¿ .
In the following Lemma, the resulting inequality C [m]

j ·
Cj on all job completion times extends earlier results of [1]
for the case of identical parallel machines (whereby all si =
1), and of [9] for a broad class of shop scheduling problems
(with precedence delays but without parallel machines).
To our knowledge, the mean busy date result, M [m]

j = Mj,
which we use later on, is new.

Lemma 1: To every feasible (preemptive or nonpreemp-
tive) schedule with a ¯nite number of preemptions1 and
with mean busy date vector M and completion time vector
C on the uniform parallel machines, we can associate a
feasible preemptive schedule with mean busy date vector
M [m] and completion time vector C[m] on the speed-s[m]

1The ¯niteness restriction may be removed by appropriate appli-
cation of results from open shop theory, as indicated in [7], but this
is beyond the scope of this paper.

machine, such that M [m]
j = Mj and C[m]

j · Cj for all jobs
j 2 N .

Proof: Let Sj denote the start date of job j in the
given parallel machines schedule. Partition the time inter-
val [minj Sj ; maxj Cj] into intervals [at¡1; at] (t = 1; : : : ; ¿)
such that exactly the same jobs are being processed by
exactly the same machines throughout each interval. Thus
fat : t = 0; : : : ; ¿ g is the set of all job start dates and
completion times, and all dates at which some job is pre-
empted. Partition each job j into ¿ pieces (j; t) with work
amount qjt = si(j;t)(at ¡ at¡1) if job j is being processed
during interval [at¡1; at] on a machine M» i(j;t), and zero
otherwise. Since each job j is performed in the given
schedule, its processing requirement is pj =

P¿
t=1 qjt .

Since each machine processes at most one job during
interval [at¡1; at], we have

P
j2N qjt · s[m](at ¡ at¡1) for

all t, with equality i® no machine is idle during interval
[at¡1; at]. Therefore the speed-s [m] machine has enough
capacity to process all the work

P
j2N qjt during this

interval. Construct a preemptive schedule on the speed-
s[m] machine as follows. For each t = 1; : : : ; ¿ , ¯x an
arbitrary sequence (j1; t); : : : ; (jn(t); t) of the n(t) pieces
(j; t) with qjt > 0. Starting at date at¡1 process half of
each such piece (j; t) (i.e., for 1

2 qjt=s[m] time units) in
the given sequence. This processing is complete no later
than date ¹t = 1

2 (at¡1 + at), the midpoint of the interval
[at¡1; at]. Then \mirror" this partial schedule about this
midpoint ¹t by processing the other half of each piece in
reverse sequence so as to complete this mirrored partial
schedule precisely at date at . Since no job starts before
its release date, all the processing requirement of every
job is processed, and the speed-s[m] machine processes at
most one job at a time, the resulting preemptive schedule
is indeed feasible. Furthermore each job j completes at
the latest at date maxfat : qjt > 0g = Cj , so C[m]

j · Cj .
Finally, the \mirroring" applied in each interval [at¡1; at]
ensures that, for all jobs j 2 N
Z at

at¡1

¾[m]
j (¿)¿d¿ =

qjt

s[m] s [m] ¹t =
qjt

si
si ¹t =

Z at

at¡1

¾j(¿)¿d¿

where si is the speed of the machine M» i on which job j
is processed during interval [at¡1; at] in the given paral-
lel machines schedule. Adding over all intervals implies
M [m]

j = Mj for all jobs j 2 N . The proof is complete.
Lemma 1 implies that the preemptive single machine

problem, with a speed-s [m] machine, is a relaxation of
the original uniform parallel machines problem, for any
objective function (including the minsum objective with
all wj ¸ 0) which is nondecreasing in the job comple-
tion times. For the minsum objective

P
j wj Cj , we may

combine this result with Theorem 2 and obtain:
Corollary 1: Let Z¤(I) denote the optimum objective

value for instance I of the parallel machines problem
Qjrj j P

wj Cj . Let MLP [m] denote the mean busy date
vector of the LP schedule for the corresponding instance

I [m] of the single machine problem. Then

Z MBD[m](I) := w>MLP [m] +
1

2 s [m] w>p · Z¤(I) : (5)

Proof: Let Z [m](I) denote the optimum value of
the minsum objective

P
j wjC [m] among all feasible pre-

emptive schedules for instance I [m] . From Theorem 2 it
follows that w>MLP [m] + 1

2 s[m] w>p · Z [m](I). From the
inequalities C[m]

j · Cj in Lemma 1 and w ¸ 0, it follows
that Z [m](I) · Z¤(I). This su±ces to prove the corollary.

Remark 1: For the problem P jj P
wj Cj with identical

parallel machines and all release dates rj = 0, each
si = 1. Therefore, for any nonpreemptive parallel machines
schedule, the mean busy date Mj and completion time Cj
of every job j satisfy M j = Cj ¡ 1

2 pj . On the other hand
s [m] = m and, since the LP schedule is nonpreemptive
for identical release dates, MLP [m]

j = CLP [m]
j ¡ pj=2m.

Applying the mean busy date relationships M [m]
j = M¤

j
of Lemma 1 to the MBD vector M¤ = C ¤ ¡ 1

2p of an
optimal parallel machine schedule, we obtain the slightly
stronger bound: Z¤(I) = w>C¤ = w>M ¤ + 1

2 w>p =
w>M [m] + 1

2 w>p ¸ w>MLP [m] + 1
2 w>p = w>C LP [m] +

1
2

¡
1 ¡ 1

m

¢
w>p : We refer to the above inequality as

Inequality (1).
Let Zn(I) = w>p denote the optimum value of

the n-machine version of the problem, and Z1(I) =
w> ¡

M LP [m] + 1
2m w>p

¢
the minsum ob jective value of

the LP schedule for instance I [m] of the single speed-
m machine version of the problem. Recall that, in the
absence of release dates, Z1(I) is the optimum value of
a feasible nonpreemptive schedule on a single machine
operating at m times the speed of each given parallel
machine. Inequality (1) may be written as

Z¤(I) ¡ 1
2

Zn(I) ¸ 1
m

µ
Z1(I) ¡ 1

2
Zn(I)

¶

which is precisely the lower bound obtained in [2] using
algebraic and geometric arguments.

III. Asymptotic Optimality of the WSPR Rule for
Uniform Parallel Machines

We now show the asymptotic optimality of the WSPR
rule for uniform parallel machines. The simple version of
the WSPR heuristic considered herein is de¯ned as follows:
whenever a machine becomes idle, start processing the
available job, if any, with highest WSPR priority, i.e., job j
such that j < k according to (2); if no job is available,
wait until the next job release date. Note that we allow the
assignment of jobs to machines to be otherwise arbitrary.
(We suspect that one can design versions of the uniform
parallel machine WSPR heuristic which may be preferable
according to some other performance measure, but this is
not needed for the present asymptotic analysis.) As before,
let C W SP R

j (resp., MW SP R
j) denote the completion time

(resp., mean busy date) of job j in the WSPR schedule.2

Recall that sm is the speed of the slowest machine and,
to simplify, let pmax = maxj2N pj .

Following [2], it is easy to obtain a job-by-job bound
for the WSPR schedule in the absence of release dates:

Lemma 2 (Job-by-Job Bound Without Release Dates):
For the uniform parallel machines problem Qjj P

wj Cj
without release dates, the completion time vectors of the
WSPR and LP schedules satisfy

CW S P R
j · C LP

j +
µ

1
sm

¡ 1
s[m]

¶
pmax for all j 2 N: (6)

Proof: Assuming the jobs in WSPR order (2), the
completion time of job j in the LP schedule is CLP

j =
p([j])=s[m] . In the WSPR schedule, job j starts at the earli-
est completion time of a job in [j¡1], that is, no later than
p([j ¡ 1])=s[m], and completes at most pj =sm time units
later. Therefore CW SP R

j · C LP
j +

¡
1=sm ¡ 1=s[m]

¢
pj . This

implies (6).
We now turn to the case with release dates rj ¸ 0. Let

N (i) denote the set of jobs processed on machine M» i in
the WSPR schedule. Since MW SP R

j = C W SP R
j ¡ 1

2 wjpj=si
for all j 2 N (i), we have

ZW SP R = w>M W SP R +
1
2

mX

i=1

X

j2N(i)

wj
pj

si

· w>M W SP R +
1

2 sm
w>p : (7)

Combining inequalities (5) and (7) with the decomposition
(4) of the MBD objective, we only need to compare the
processing date functions of the speed-s[m] machine LP
schedule and of the parallel machines WSPR schedule.
The next Lemma shows that, for any instance with a
¯xed set of machines, no amount of work from any set [h]
can, in the parallel machines WSPR schedule, be delayed,
relative to the single machine LP schedule, by more than
a constant multiple of pmax time units.

Lemma 3 (Parallel Machines Work Delay Lemma):
Assume the jobs are ranked according to the WSPR
order (2). Consider the WSPR schedule on uniform
parallel machines, and the speed-s[m] machine LP
schedule de¯ned above. Then, for all h · n and for all
0 < q · p([h]),

¹RW SP R
[h] (q) · ¹RLP

[h] (q)+
µ

1
s1

+
m ¡ 1

sm
+

s[m]

(sm)2

¶
pmax (8)

Proof: We ¯x h 2 f1; : : : ; ng and we de¯ne

® = m ¡ 1 +
s[m]

sm
:

2To properly speak of \the WSPR schedule" we would need to
de¯ne a rule for assigning jobs to machines in case several machines
are available when a job starts processing. For example, we may
assign the highest priority available job to a fastest availablemachine.
In fact, our analysis applies to any nonpreemptive feasible schedule
which is consistent with the stated WSPR priority rule, irrespective
of the details of such machine assignments.

We start by considering the LP schedule on the speed-
s [m] machine. Let [ak ; bk] (where k = 1; : : : ;K) denote
the disjoint time intervals during which set [h] is being
processed continuously in the LP schedule. Thus 0 · a1
and bk¡1 < ak for k = 2; : : : ; K. The unprocessed work
function RLP

[h] starts with RLP
[h] (t) = p([h]) for 0 · t ·

a1; decreases at rate s[m] in the intervals [ak; bk] while
remaining constant outside these intervals; and it ends
with RLP

[h] (t) = 0 for bK · t · T . Let J (k) = fj 2 [h] :
ak < CLP

j · bkg denote the set of jobs in [h] that are
processed during time interval [ak ; bk] in the LP schedule.
Note that ak = minj2J (k) rj and bk = ak + p(J (k))=s[m].
Furthermore, Qk =

P
`>k p(J (`)) is the total work from

set [h] released after date bk , where QK = 0 and Q0 =
p([h]). For all k = 1; : : : ; K we have Qk = Qk¡1 ¡ p(J (k)).
In the interval [Qk ;Qk¡1) the processing date function
¹RLP

[h] decreases at rate 1=s [m] from ¹RLP
[h] (Qk) = bk . Thus

¹RLP
[h] (q) = ak + (Qk¡1 ¡ q)=s[m] for all Qk · q < Qk¡1.
Now consider the WSPR schedule on the uniform

parallel machines and ¯x an interval [ak ; bk). We claim
that, for every k = 1; : : : ; K and every date ak · t < bk
the unprocessed work

RW SP R
[h] (t) · RLP

[h] (t) + ® pmax : (9)

By contradiction, assume that (9) is violated at date
t 2 [ak ; bk). Let t̂ = infft : (9) is violatedg. Since the func-
tions RW SP R

[h] and RLP
[h] (t) are continuous, RW SP R

[h] (t̂) ¸
RLP

[h] (t̂)+®pmax, and the di®erence RW SP R
[h] (t)¡ RLP

[h] (t) is
strictly increasing immediately to the right of t̂. But since
RLP

[h] is constant outside the intervals [ak; bk] and RW SP R
[h]

then we must have ak · t̂ < bk for some k 2 f1; : : : ;K g.
This implies that at least one machine M» i is not processing
a job in [h] immediately after date t̂. If at least one machine
is idle just after date t̂ then let µ = t̂; otherwise, let
µ · t̂ be the latest start date of a job not in [h] and in
process just after date t̂. Since no job in [h] was available
for processing at date µ, then all work released no later
than µ must either have been completed, or be started on
a machine M» u 6= M» i . Note that at least p([h]) ¡ RLP

[h] (µ)
units of work have been released by date µ. On the other
hand, a total of at most (m ¡1)pmax units of work can be
started on machines M» u 6= M» i just after date t̂. Therefore

p([h]) ¡ RLP
[h] (µ) · p([h]) ¡ RW SP R

[h] (µ) + (m ¡ 1)pmax

If µ < t̂ then the job j 62 [h] started at date µ has
processing requirement pj · pmax and is processed at
least at the slowest machine speed sm. Since this job is
still in process at date t̂, we must have t̂ < µ + pmax=sm.
The unprocessed work function RLP

[h] decreases by at most
s [m](t̂ ¡ µ) between dates µ and t̂, whereas RW SP R

[h] is
nonincreasing. Therefore

RLP
[h] (t̂) ¸ RLP

[h] (µ) ¡ s[m](t̂ ¡ µ)

> RLP
[h] (µ) ¡ s[m] pmax

sm

¸ RW SP R
[h] (µ) ¡ (m ¡ 1)pmax ¡ s[m] pmax

sm

¸ RW SP R
[h] (t̂) ¡ ® pmax

¸ RLP
[h] (t̂) ;

a contradiction. Thus claim (9) is proved.
Claim (9) implies that whenever Qk + ® pmax < q <

Qk¡1, the processing date functions satisfy

¹RW SP R
[h] (q) · ¹R[h](q) +

® pmax

s [m]
: (10)

Let q̂ = minfQk + ® pmax ; Qk¡1g and consider the last
q̂ units of work released from set J (k). If q̂ < Qk¡1 then
claim (9) implies that ¹RW SP R

[h] (q̂) · bk , that is, the ¯rst
p([h])¡q̂ units of work are completed by date bk. If some of
the remaining q̂ units of work is being processed at a date
~t > bk then, since all work from J (k) has been released
by date bk , there will be no date ¿ at which no work
from J (k) is in process until all this work from J (k) is
completed, that is, until date ¹RW SP R

[h] (Qk). Furthermore,
this work is processed at least at the minimum speed
sm > 0, so ¹RW S P R

[h] (Qk) · ~t + q̂=sm. Note also that,
unless ¹RW SP R

[h] (Qk) = bk , a machine becomes available
for processing these q̂ units of work between dates bk and
bk + pmax=s1, where s1 is the fastest speed of a machine.
Thus, for Qk · q · Qk + q̂ we have

¹RLP
[h] (q) = bk ¡ (q ¡ Qk)=s[m] (11)

and
¹RW SP R

[h] (q) · bk +
pmax

s1
+

® pmax ¡ q
sm

: (12)

Inequalities (10), (11) and (12) imply (8) and the proof is
complete.

Integrating inequality (8) from 0 to p([h]) implies
Z p([h])

0

³
¹RW SP R

[h] (q) ¡ ¹RLP
[h] (q)

´
dq

·
µ

1
s1

+
m ¡ 1

sm
+

s[m]

(sm)2

¶
pmax p([h]) : (13)

The next theorem combines inequality (13) with the
cost decomposition (4) and inequalities (5) and (7), to
derive a O(n) bound on the di®erence between the minsum
objective values of the parallel machines WSPR schedule
and the single machine LP schedule, for all instances with
bounded weights and processing requirements.

Theorem 3: Consider any instance of the uniform par-
allel machine problem Qjrj j P

wj Cj such that 0 · wj · ¹w
and 0 < p · pj · ¹p for all jobs j 2 N . Then

ZW SP R(I) · ZMBD[m](I) + ¯ ¹w ¹p n

where ¯ =
¹p
p

µ
1
s1

+
m ¡ 1

sm
+

s[m]

(sm)2

¶
+

1
2

µ
1

sm
¡ 1

s[m]

¶
:

(14)

Proof: Using (4), inequality (13), all ¢h ¸ 0, and
the given bounds on all wj and pj, we have

ZW SP R(I) ¡ ZMBD[m](I)

· w>MW SP R +
1

2sm
w>p

¡
µ

w>MLP [m] +
1

2s[m]
w>p

¶

=
nX

h=1

¢h

Z p([h])

0

³
¹RW SP R

[h] (q) ¡ ¹RLP
[h] (q)

´
dq

+
µ

1
2sm

¡ 1
2s[m]

¶
w>p

·
nX

h=1

¢h

µ
1
s1

+
m ¡ 1

sm
+

s [m]

(sm)2

¶
pmax p([h])

+
1
2

µ
1

sm
¡ 1

s [m]

¶
n ¹w ¹p

· w1

p1

µ
1
s1

+
m ¡ 1

sm
+

s[m]

(sm)2

¶
n ¹p2

+
1
2

µ
1

sm
¡ 1

s [m]

¶
n ¹w ¹p

· n ¹w¹p
µ

¹p
p

µ
1
s1

+
m ¡ 1

sm
+

s[m]

(sm)2

¶
+

1
2

µ
1

sm
¡ 1

s[m]

¶¶

This proves Theorem 3.
Now we are ready to prove Theorem 1.

Proof: [of Theorem 1] For every instance I 2 I,
let Z¤(I) (resp., ZM BD (I); resp., ZW SP R(I)) denote the
minsum objective of an optimal non-preemptive schedule
(resp., the LP schedule; resp., a WSPR schedule). Theo-
rem 2 and Theorem 3 imply

ZMBD[m](I) · Z¤(I) · ZW SP R(I) · ZMBD[m](I)+¯ ¹w¹pn;

where ¯ is as de¯ned in (14).
Note that ZMBD[m](I) ¸ w

s[m]
n(n+1)

2 p. Therefore

ZW SP R(I)
Z¤(I)

· 1 +
2s[m]

n + 1
¹w
w

¹p
p

:

Thus, for every r > 1, there exists n0 such that for all
instances I 2 I with n ¸ n0 we have ZW SP R(I)=Z¤(I) ·
r . The proof is complete.

Zero processing time jobs: Assume now that we have a
set Z , disjoint from N , of zero jobs j with pj = 0. The
total number of jobs is now n0 = n + jZ j. Note that, for
all j 2 Z , C LP

j = rj since every job j 2 Z is immediately
inserted into the LP schedule at date rj . On the other
hand, C W SP R

j < rj +pmax=s1, where pmax = maxj2N pj ·
¹p denotes the longest processing requirement, and s1 is
the fastest machine speed; indeed, in the WSPR schedule
every job j 2 Z is processed either at date rj or else at
the earliest completion of a job in N in process at date rj.
Therefore, with ¯ as de¯ned in Theorem 1 and assuming

wj · ¹w for all j 2 Z , we have

X

j2N[Z

wj CW SP R
j ¡

X

j2N[Z

wj CLP
j · ¯ ¹w¹pn+w(Z)

¹p
s1

· ¹w¹p¯n0

since ¯ ¸ 1=s1. So the O(n0) bound in Theorem 1 extends
to the case of zero processing time jobs if one de¯nes
p = minfpj : pj > 0g.

For Theorem 3 to extend to this case as well, it su±ces
that the number n of nonzero jobs grow faster than the
square root

p
n0 of the total number of jobs. Indeed in

such a case a lower bound on the MBD objective value
ZMBD(I), which is quadratic in n, grows faster than
linearly in n0. In this respect, one may recall the class of
\bad instances" presented in [4] for the single machine
problem, which we rescale here by dividing processing
times by n0 and multiplying weights by n0, so ¹p = ¹w =
1. For these instances the objective value ZW SP R(I)
approaches e ¼ 2:718 whereas the MBD lower bound
ZMBD(I) approaches e ¡ 1. Thus one cannot use this
MBD lower bound to establish the asymptotic optimality
of the WSPR schedule in this case. This is due to the fact
that, for these instances, the number of nonzero jobs is in
fact constant (equal to one), and the optimum objective
value does not grow at a faster rate than the additive error
bound.

References

[1] Chekuri, C., Motwani, R., Natarajan, B., Stein, C.: Approxi-
mation Techniques for Average Completion Time Scheduling.
Proceedings of the Eight Annual ACM-SIAM Symposium on
Discrete Algorithms (1997) 609{618

[2] Eastman, W. L., Even, S., Isaacs, I. M.: Bounds for the Optimal
Scheduling of n Jobs on m Processors. Management Science 11
(1964) 268{279

[3] Goemans, M. X.: Improved Approximation Algorithms for
Scheduling with Release Dates. Proceedings of the 8th ACM-
SIAM Symposium on Discrete Algorithms (1997) 591-598

[4] Goemans, M. X., Queyranne, M., Schulz, A. S., Skutella, M.,
Wang, Y.: SingleMachine Scheduling with ReleaseDates. Report
654, Fachbereich Mathematik (1999), Technische UniversitÄat
Berlin, Germany. Available at URL: http://www.math.tu-
berlin.de/coga/publications/techreports/1999/Report-654-
1999.html

[5] Graham, R.L., Lawler, E. L., Lenstra, J. K., Rinnooy Kan,
A. H. G.: Optimization and approximation in deterministic
sequencing and scheduling: a survey. Annals of Discrete Mathe-
matics 5 (1979) 287{326

[6] Kaminsky, P., Simchi-Levi, D.: Probabilistic Analysis of an On-
LineAlgorithmforthe Single MachineCompletion TimeProblem
With Release Dates. Operations Research Letters 21 (2001) 141{
148

[7] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys,
D. B.: Sequencing and Scheduling: Algorithms and Complexity.
In: S. C. Graves, A. H. G. Rinnooy Kan and P. H. Zipkin (eds.),
Logistics of Production and Inventory, Handbooks in Operations
Research and Management Science 4 (1993), North{Holland,
Amsterdam.

[8] Lenstra, J. K., RinnooyKan, A. H. G., Brucker, P.:Complexity of
Machine Scheduling Problems. Annals of Discrete Math 1 (1977)
343{362

[9] Queyranne, M., Sviridenko, M.: Approximation algorithms for
shop scheduling problems with minsum objective. Faculty of
Commerce, University of British Columbia (1999)

[10] Sgall, J.: On-line scheduling | a survey. In: A. Fiat and
G.J. Woeginger (eds.), Online Algorithms: The State of the
Art, Lecture Notes in Computer Science 1442 (1998) 196{231,
Springer, Berlin.

[11] Smith, W.: Variousoptimizers for single-stage production.Naval
Res. Logist. Quart. 3 (1956) 59{66

[12] Uma, R. N., Wein, J.: On the Relationship between Combinato-
rial and LP-Based Approaches to NP-hard Scheduling Problems.
In: R. E. Bixby, E. A. Boyd and R. Z. Rios-Mercado (eds.), Inte-
ger Programming and Combinatorial Optimization. Proceedings
of the Sixth International IPCO Conference, Lecture Notes in
Computer Science 1412 (1998) 394{408, Springer, Berlin.

