
 
 

  
Abstract— A hybrid design optimization method combining  

the stochastic method based on simultaneous perturbation 
stochastic approximation (SPSA) and the deterministic 
method of Broydon-Fletcher-Goldfarb-Shanno (BFGS) is 
developed in order to take advantage of the high efficiency of 
the gradient based methods and the global search 
capabilities of SPSA for applications in the optimal 
aerodynamic shape design of a three dimensional elliptic 
nozzle. The performance of this hybrid method is compared 
with that of SPSA, simulated annealing (SA) and gradient 
based BFGS method. The objective functions which are 
minimized are estimated  by numerically solving the 3D 
Euler and Navier-Stokes equations using a TVD approach 
and a LU implicit scheme.  Computed  results show that the 
hybrid optimization method proposed in this study shows a 
promise of  high computational efficiency and global search 
capabilities. 

 
Index Terms—Hybrid optimization method, Simulated 

annealing, Gradient-based optimization, Simultaneous 
perturbation stochastic approximation, aerodynamic shape 
design, CFD. 
 

I. INTRODUCTION 

ETERNIMISTIC optimization methods are efficient in 
finding the minima of continuously differentiable 

problems for which sufficiently accurate derivatives can be 
estimated at reasonable cost, but these methods may not 
lead to a global optimum and often restrict the design space 
to conventional designs. Besides deterministic methods, 

 
X. Q. Xing is a Research Fellow in HPCES, Singapore-MIT 

Alliance, Nanyang Technological University, 50 Nanyang Avenue, 
Singapore, 639798, (phone: 65-67904074; e-mail: xqxing@ 
ntu.edu.sg).  

M. Damodaran, is an Associate Professor of Nanyang 
Technological University and a SMA Fellow of HPCES, Singapore-
MIT Alliance,  50 Nanyang Avenue, Singapore, 639798, (phone: 
65-67905599; e-mail: mdamodaran@ ntu.edu.sg).  

 

stochastic methods such as genetic algorithm (GA), 
simulated annealing algorithm and SPSA etc have recently 
found applications in practical engineering design 
optimization problems. These non-deterministic algorithms 
are easily implemented in robust computer codes and they 
have the advantage of yielding a global minimum and 
overcome the limitations of deterministic gradient-based 
search methods which have a tendency of getting trapped 
in local minima. However, SA, SPSA and GA methods 
require a large number of function evaluations and 
relatively long computation times especially for the case of 
complex design problems. One approach to reduce 
computational time would be to use parallel optimization 
methods as outlined in Wang and Damodaran [1]. Although 
parallel optimization strategies can speedup the 
computation, they still need large computational resources. 

Based on previous investigations on aerodynamic shape 
design problems, such as 2D airfoil shape design 
with/without constraints, 3D blade shape design problem, 
2D axisymmetric nozzle shape design problem using 
different optimization methods including stochastic 
methods (SPSA and SA) and gradient based methods and 
hybrid methods of SPSA and BFGS [1-3], a hybrid method 
combining SPSA and BFGS is developed in order to find a 
high efficient stochastic-based method which can use the 
high efficiency of the gradient-based method, and the 
global search capability of SPSA method at the same time. 
A few benchmarking objective functions are selected to 
validate its performance. After validated, it is used to the 
optimal 3D nozzle aerodynamic shape design problem to 
maximize the thrust of the nozzle. 

The performance of this hybrid method is compared with 
SPSA, SA and BFGS optimization methods by applying 
these techniques to the optimal shape design of three-
dimensional elliptic nozzles in high speed compressible 
flows. The design objective function which is to be 
optimized is estimated using a finite volume compressible 
flow solver solving the 3D Euler and Navier-Stokes 
equations using a TVD approach and a LU implicit scheme.  
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II. HYBRID OPTIMIZATION METHOD 

A. SPSA method 

SPSA is an algorithm that is based on a “simultaneous 
perturbation” gradient approximation. The “simultaneous 
perturbation” approximation uses only two function 
measurements independent of the number of parameters 
(say, p)  being optimized. The SPSA algorithm works by 
iterating from an initial guess of the optimal vector 0X . 

First, the counter index k is initialized to a value of 0, an 
initial guess of the design variable vector kX  and non-

negative empirical coefficients are defined. Next a p-
dimensional random simultaneous perturbation vector k∆  

is constructed and two measurements of the objective 
function, namely )( kkk cXy ∆+ and )( kkk cXy ∆−  are 

obtained based on the simultaneous perturbation around 

the given vector kX . The parameter )/(0
m

k kcc =  where 

0c  is a small positive number, k  is the loop index and m is a 

coefficient taken as 1/6 in this study. The term k∆  

represents the random perturbation vector generated by 
Monte-Carlo approaches and the components of this 
perturbation are independently generated from a zero-mean 
probability distribution and a simple distribution that has 
been used in this study is the Bernoulli 1±  distribution 
with probability of ½ for each 1±  outcome. This is followed 
immediately by the calculation of the gradient 
approximation based on two measurements of the objective 
function based on the simultaneous perturbation around 
the current value of the design variable vector. After the 
simultaneous perturbation, approximation to the gradient 

)( kXg  is generated, update the design vector kX to a new 

value 1+kX  using standard SA form, 

i.e. )(*1 kkkk XgaXX −=+ . Where the parameter 

( )αkcaa k += 00 / , 0a and α can be chosen to ensure 

effective practical performance of the algorithm. In this 
study α  is taken as 1. Finally the algorithm is terminated if 
there are insignificant changes in several successive 
iterations or if the maximum allowable number of iterations 
has been reached.  The details of the step-by-step 
implementation of the SPSA algorithm are outlined in Spall 
[4-6].  The choice of the coefficients and parameters 
pertaining to the algorithm is critical for the performance of 
SPSA (as is the case with the choice of coefficients and 
parameters pertaining to all other stochastic optimization 
algorithms such as Simulated Annealing). Spall offered 
some practical suggestions for choosing the values of 
these coefficients and parameters.  

B. Hybrid Optimization Method 

The motivation for using hybrid methods for the 
optimization of complex design problems stems from the 

need to reduce the number of design iterations required to 
reach optimal configurations and the possibility of 
exploiting good features of the optimization methods that 
form the hybrid to achieve that goal.  For example the 
application of stochastic or global optimization methods for 
aerodynamic airfoil shape design optimization problems 
require a large number of function evaluations before the 
global optimum is reached within some stipulated tolerance 
criteria. Hence there is a need to improve the efficiency of 
stochastic optimization methods.  There are many strategies 
for improving the efficiency of stochastic methods. Vicini 
[7], Poloni [8]  and Muyl et al [9]  have proposed hybrid 
methods by combining genetic algorithms(GA) and 
gradient-based methods.  The present authors [3]  had 
earlier proposed a hybrid method combining SPSA and 
gradient-based methods, which takes advantage of SPSA’s 
high rate of reduction of the objective function at the 
inception of the design process to drive the design 
variables towards the optimal zone at first, and then 
combining with other methods to perform the final stages of 
the convergence towards the optimal solutions.  In this 
study, a hybrid method is proposed to take advantage of 
the high efficiency of gradient-based method, and the 
global search capability of SPSA method to get a global 
optimum with a high efficiency. The BFGS method is 
introduced after a few design cycles of SPSA method. The 
approach consists of applying a few design iterations of 
BFGS to approximate the objective function so that the 
search efficiency of the hybrid method is improved while 
maintaining the global search character of stochastic 
algorithm. 

III. VALIDATION OF THE HYBRID METHOD 

Three test objective functions were selected to validate 
the hybrid method. Rastrigin’s function (F1) which has the 
multi-modal property is given as: 
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For this study, Rastrigin’s function with n=10 design 
variables has been considered. Initial values of the design 
variables are given as 1.0*0.5)( iix −= . The design results 

obtained by BFGS, hybrid SPSA-BFGS, SPSA and SA are 
tabulated below: 

T ABLE  I 
RESULTS OBTAINED BY DIFFERENT OPTIMIZATION METHODS (F1) 

 BFGS Hybrid  
(SPSA-BFGS) 

SPSA SA 

Final objective  
function values 

195 0.0 0.0 3.979
8 

Function 
evaluations 

115 537 2112 29001     



 
 

The final values of the design variables obtained by  
BFGS, hybrid of SPSA-BFGS, SPSA and SA methods are  

,
T

BFGSX

]3.977772 

 3.977622,  3.977687,  3.978140,  3.980066,  3.977996, 

 4.971644,  4.972208,  4.972377,  4.972717, [* =

 

T

HybridX

]1.4738- 

 ,1.0690  ,2.9817-  ,2.0655  , 1.1980  , 1.8893  

,1.2283  , 3.3738  ,2.3783-  ,1.7695 [

5-

5-5-5-5-5-

-6-6-5-5* =

 

T

SPSAX

]4.8002

 ,2.1213- ,3.0026  ,4.4649- ,9.1732- ,3.3716 

 , 5.7605- ,1.6340- ,1.9257- ,6.2801- [

6-

6-6-6-7-7-

-6-6-6-7* =

 

T
SAX

],5.34131.4380- 0.9949, ,7.4511- 0.9949, 0.9949,

, 5.8705- ,5.3139- ,5.8193- ,2.0563- [
5-6-5-

-5-5-5-5* =
 

respectively. From table 1, it’s obviously that the gradient 
based BFGS method gets trapped into a local minimum.  

Neumaier’s function (F2) is a unimodal function with a 
narrow ridge and a sharp tip and takes the form shown as: 
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For this study, Neumaier’s function with n=10 design 
variables has been considered. Initial values of the design 
variables are given as 1.0*0.5)( iix −= . The design results 

obtained by BFGS, hybrid SPSA-BFGS, SPSA and SA are 
tabulated below: 

T ABLE  II 
RESULTS OBTAINED BY DIFFERENT OPTIMIZATION METHODS (F2) 

 
 

BFGS 
Hybrid 
(SPSA 
-BFGS) 

 
SPSA 

 
SA 

Finial 
objective 
 function 

values 

 
-209.93 

 
-209.72 

 
-201.92 

 
-210.00 

Function 
evaluations 

132 293 50760 31001 

The finial values of the design variables obtained by BFGS, 
hybrid of SPSA-BFGS, SPSA and SA methods are  

T
BFGSX

]9.8701  17.7210,  23.6807,  27.6633,  29.7825,

  29.9087,  28.0877,  24.2186,  18.1739,  10.1590,[* =

T

HybridX

] 9.6421  17.2622,  23.0602,  26.9432,  29.0398,

  29.0868,  27.1166,  23.2934,  17.4085,  9.6912, [* =

T
SPSAX

]8.319724  14.7898,   19.4604,  22.5119, 24.0350, 

 24.0313,  22.5108,  19.4411,  14.7356,  8.3005, [* =
 

T
SAX

] 9.9962  17.991,  23.986,  27.997,  29.993,  

30.004, 28.018, 24.019, 18.012, 9.9993, [* =
 

 respectively.  
 Shelkel-N function (F3) which has many local minima and 
which is a difficult test case for generic optimization 
algorithm takes the form shown as: 
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431 =a ,  132 =a ,  833 =a ,  634 =a ,  335 =a  
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For this study, Shelkel-N function with n=4 design variables 
has been considered. Initial values of the design variables 
are given as 1.0*0.5)( iix −= . The design results obtained 

by BFGS, hybrid SPSA-BFGS, SPSA and SA are tabulated 
below: 

T ABLE  III 
RESULTS OBTAINED BY DIFFERENT OPTIMIZATION METHODS (F3) 

 
 

BFGS 
Hybrid 
(SPSA 
-BFGS) 

 
SPSA 

 
SA 

Finial  
objective 
 function 

values 

 
-10.0531 

 
-10.0535 

 
-10.0528 

 
-10.0535 

Function 
evaluation

s 

36 94 2037 22001 

The finial values of the design variables obtained by  BFGS, 
hybrid of SPSA-BFGS, SPSA and SA methods are 

T
BFGSX ]3.9980734  3.999283,  4.000137,  .000254,4[* = , 

T
HybridX ]000088.4,000054.4,999968.3,999840.3[* =

, T
SPSAX ] 3.998710  3.998559,  3.998720,  3.998549,[* =  

and T
SAX ]3.999984  3.999981,  3.999983,  3.999982,[* =  

respectively.  
From the three benchmarking test functions, it can be 

seen that SPSA and SA method require thousands of 
function evaluations to reach convergence, and gradient-
based BFGS method has high computational efficiency, but 
sometimes it gets trapped into local optimum, such as the 
case with Rastrigin’s function.  The hybrid method 
proposed in this study has almost same computational 
efficiency with BFGS method and has the capability of 
finding  the global optima. In next section, it will be used  
for a  nozzle shape design problem, to test its performance 
for engineering  design optimization problems. 



 
 

IV. APPLICATION OF THE HYBRID METHOD IN 3D 
NOZZLE SHAPE DESIGN OPTIMIZATION 

Aerodynamic shape design combining modern CFD and 
optimization methods has potential applications in the 
design of airfoils and wings, flight vehicles, aerospike, 
wind-tunnels, nozzles, diffusers and jet engine components. 
The design test case chosen for the application of the 
hybrid method concerns the optimal design of a 3D elliptical 
nozzle shape. The elliptical nozzle is chosen since it is 
relatively simple to model and can be viewed as having 
applications in integral rocket ramjet, scramjet and high 
speed internal flow systems. In order to initiate the design 
process, there is a need for the parametric representation of 
the surfaces of the 3D elliptical nozzle shape. 

A. Parameterization of 3D Nozzle Geometry 

Parameterization of the shape is used for defining design 
parameters for initiating the design optimization. A number 
of choices exist for this. In this work, cubic splines as 
outlined in Wang and Damodaran [10] are used to define 
surfaces and design parameters for the shape design. Cubic 
splines produce an interpolated function which preserves 
continuity in its second derivative and smoothness in its 
first derivative. For the three dimensional shape design 
studied in this work, bi-cubic splines which interpolate one 
functional value alone first and which then interpolates 
another functional value are used to define the design 
variables and the shape of the surface in the 3D space. To 
solve the 2D problem, for the given tabulated 
function )( ixy , (i = 1,…M) the function value )(xy  

formulated by the cubic splines on the interval ),( 1+ii xx  

can be represented by 
''

1
''

1)( ++ +++= iiii DyCyByAyxy              (4) 

where the A, B, C and D are the functions of )( ixx −  or 

)( 1+− ixx , the ''
iy  and ''

1+iy  are unknown which can be 

determined by solving a set of equations: ''
1

''
+= ii yy , at 

point ixx = , ( i=2 to m-1 ). These continuity requirements 

across the boundary between the intervals ),( 1 ii xx −  and 

),( 1+ii xx  are defined by the cubic splines. 

For establishing the bicubic splines in 3D space for the 
given tabulated functions ),( ii yxz , ( i=1,…M, j=1, …N), 

one can perform a series of 1D splines for the given 
(expected) value y on the interval ),( 1+jj yy , 

''
1

''
1),( ++ +++= jjjji DzCzBzAzyxz ,   i=1,M;     (5) 

where the A, B, C and D are the functions of )( jyy − or 

)( 1+− jyy , following these interpolated M points (with 

same y values), and ''
jz   and ''

1+jz are solved in the same 

way as above. One can further interpolate x on the interval 

),( 1+ii xx  to formulate the bicubic splines  
''

1
''

1),( ++ +++= iiii zDzCzBzAyxz             (6) 

where, A , B , C  and D  are the functions of )( ixx −  or 

)( 1+− ixx , which can be solved as same as equation (6). 

Details of this procedure are outlined in Press [11]. In this 
study the natural cubic spline, which has zero second 
derivative at the inlet and outlet boundaries of the nozzle 
configuration, is chosen.  

B. CFD Models for Estimating Objective Functions 

A three-dimensional compressible CFD solver for solving 
the Reynolds-averaged Euler/Navier-Stokes equations is 
used to compute the flow field in which converged steady 
state solutions are obtained by time-marching scheme from 
the initial conditions. The computed flow field is then used 
to estimate the objective function which is to be optimized. 
In order to enhance convergence Euler/Navier-Stokes 
equations are solved using the LU-SGS implicit scheme 
proposed by Yoon and Kwak [12]. In order to improve the 
resolution of the computed flow field the TVD scheme 
proposed by Yee and Harten [13] is  implemented. Details 
have been reported in Wang and Damodaran[10]. 

C. 3D Nozzle Design Using Inviscid Flow 

This test case is designed for optimizing the shape of a 
3D elliptical nozzle for which the inflow flow field conditions 
are defined. The goal is to find an optimal shape of the 
nozzle wall or cross-sectional area distribution along the 
flow direction to maximize the thrust of nozzle. The 
objective function )(xF  which is to be optimized is 

expressed in normalized form as follows: 

dSupuxF ∫ += )/()()( 2
00

2 ρρ                  (7) 

where the dS  corresponds to the elemental area dydz  on 

the exit cross section (y-z) lane. Note that )(xF  has been 

normalized by the inflow condition 2
00uρ , where 0ρ  and 

0u  are the inflow density and velocity respectively which 

are taken as reference values for scaling flow quantities in 
internal flow simulations using CFD analysis, and X is the 
vector of design variables i.e., 1 2 16( , ... )X x x x= . The 

integration is evaluated on the cross-section of nozzle exit. 
The flow field is calculated by numerically solving the Euler 
equations by the method outlined earlier on a structured 3D 
grid consisting of 71x15x15 grid points. The inflow Mach 
number at the inlet is 0.926 with subsonic inflow and 
supersonic outflow at the nozzle exit. The Reynolds number 

0748.1Re += E based on characteristic length of major 
axis of ellipse of the inlet cross section. The cross-sectional 
areas at inlet, throat and outlet are fixed in the optimization 
process and are set to be ellipses. The inlet cross-sectional 
shape is defined by selecting the ratio of the minor axis b to 
the major axis a i.e.(b/a) = 0.5/1.0 and for the throat and 



 
 

outlet their ratio is 0.45/0.90 and 1.0/2.0 respectively. Nozzle 
configuration consists of 16 design variables which in this 
case are nodes on the surface of the nozzle, the positions of 
which are shown in Fig. 1(a), which shows a quadrant of the 
nozzle.  

 
 Fig 1.(a): Design variables in 3D nozzle design (one quadrant) 

 
Fig. 1(b) distribution of design variables on the cross-section of the 

elliptical nozzle 
In the design optimization process the design surface 
nodes are constrained not to move axially along the length 
of the nozzle, and are also fixed in the circumferential 
direction along the 0, 30, 60 and 90 degree rays emanating 
from the centre of the nozzle section as shown in Fig. 1(b). 
The 16 points are free to move along radial direction and are 
grouped into 4 cross-sectional planes which are uniformly 
located along length of nozzle as shown in Fig. 1(a). The 
radii Ri ( i = 1, 16 ) denoted in Fig. 1(a) are the control points 
which are defined as the design variables to be optimized. 
In this study, the constraints are given in a simple way, the 
design variables only subject to the defined upper and 
lower limits. The maximization of thrust can be defined in 
the sense of a minimization problem [ ])(/1 xfMin . 

D. 3D Nozzle Design Considering Viscous Flow 

Three dimensional nozzle design considering viscous 
flow is also conducted for examining the efficiency of the 
hybrid method of SPSA and BFGS while using the Navier-
Stokes equations to evaluate the objective functions and to 
consider the effects of viscous and turbulence on the 
nozzle design. The turbulent viscosity is calculated using 
the simple zero-equation algebraic turbulence  model.  

A fine grid consisting of 51x25x25 grid pointsis used for 
simulating turbulent flows. The parameters of the inflow 
and initial geometry of the nozzle are the same as those 
pertaining to the nozzle used for inviscid flow analysis.   

V. RESULTS AND DISCUSSION 

Optimization results obtained by solving 3D Euler/ 
Navier-Stokes equations with BFGS, hybrid SPSA-BFGS, 
SPSA and SA method are given in this section.  

The  criteria for termination for optimization using  
inviscid and viscous flow solvers is to stop the program  if 
the absolute change in the objective function between 
certain number of consecutive design iterations is less than 
10-5 or if the maximum allowable number of iterations has 
been reached. Table IV-V show function evaluations 
needed by the four optimization methods and the optimal 
objective function values obtained by different optimization 
methods with inviscid and vis cous flow respectively. Since, 
the various tuning parameters present in the optimization 
algorithms affect the performance of each optimization 
method, different values of the tuning parameters 
corresponding to each optimization method have been 
attempted to yield the best performance for this problem. 
All the results listed in the table and shown in the figures 
correspond to the tuning parameters which give the best 
performance for each optimization  method. 

 

Table. IV RESULTS OBTAINED BY DIFFERENT OPTIMIZATION 
 METHODS (INVISCID FLOW) 

 
 

BFGS Hybrid (BFGS-
SPSA) 

SPSA SA 

Finial objective 
 function values 

3.2979 3.3042 - 3.2744 

Function 
evaluations 

130 192 - >500 

 

Table V RESULTS OBTAINED BY DIFFERENT OPTIMIZATION  
METHODS (VISCOUS FLOW) 

 
 

BFGS Hybrid (BFGS-
SPSA) 

SPSA SA 

Finial objective 
 function values 

3.2594 3.2623 - 3.2607 

Function 
evaluations 

76 145 - 201 

 
The attainment of the optimal value of the objective 
function using BFGS, SA, SPSA and the hybrid SPSA-
BFGS method over the number of objective function 
evaluations is shown in Fig. 2, from which it can be seen 
that SPSA and SA require a greater number of  function 
evaluations to reach the user-defined criteria  for 
convergence termination, while BFGS and the hybrid 
method appear to be more efficient requiring fewer design 
iterations.  The BFGS method requires about 130 function 
evaluations and the hybrid method of SPSA-BFGS 
proposed requires about 192 function evaluations to satisfy 
the objective function convergence criteria. This implies 
that the hybrid method of BFGS-SPSA has the almost same  
order of computational efficiency as the gradient-based 



 
 

BFGS method for the 3D nozzle design using Euler 
equations based CFD model.  Both  BFGS and the hybrid 
BFGS-SPSA have high computational efficiencies compared 
with SA and SPSA methods. From table.1, it can be seen 
that the optimal function value 3.3042 obtained by the 
hybrid method proposed in this study is the highest when 
compared with the values obtained by other methods and 
this suggests that the design result of the hybrid method is 
the nearest to the global optimum. 
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Fig.2(a) Comparison of convergence history obtained by different 

optimization methods with inviscid flow 

Evaluations of objective functions
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Fig.2(b) Comparison of convergence history obtained by different 

optimization methods with viscous flow 

Fig.3 – Fig.6 show the computed optimised results 
obtained using the hybrid optimization method. Fig.3(a) and 
Fig.3(b) show the locations of the initial and final design 
variables in radial direction for hybrid optimisation using 
inviscid and viscous flow solvers for function evaluations 
respectively. Fig. 4(a), Fig.4(b) and Fig. 4(c) show the initial 
shape and the final optimized shape of the 3D elliptical 
nozzle using invsicid and viscous flow solvers  
respectively. It can be seen that the initial shape and the 

optimized shape of the 3D elliptical nozzle are different since 
the nozzle shape has to change to give the improved  
thrust. It can also be seen that the final shapes obtained by 
optimization using inviscid and viscous flow solvers are 
similar. Both of them appear to have evolved a second 
‘throat’ in the vicinity of the nozzle  outlet. Since a finer grid 
in the circumferential direction is introduced, the nozzle 
shape obtained with viscous flow is smoother. 

Fig. 5(a) and Fig. 5(b) show contours of the normalized 

total pressure )/()( 2
00

2 upu ρρ + from inlet to the outlet 

corresponding respectively to the initial state and the final 
optimized state with inviscid flow. It can be seen that 
normalized total pressure increases near the outlet 
compared with the initial value. These result in improved 
thrust. Fig. 6(a) and Fig. 6(b) show contours of the 

normalized total pressure )/()( 2
00

2 upu ρρ + from inlet to 

the outlet corresponding respectively to the initial state and 
the final optimized state with viscous flow. It can be seen 
that normalized total pressure increases at the exit, 
especially along the major axis of the section elliptical 
compared with the initial value and this results in improved 
objective function value. Optimization results of the 3D 
nozzle design using  inviscid or viscous flow solvers verify 
the performance of the hybrid method, and seems to 
suggest that the hybrid method has the capability to find 
the design nearest to the global optimum for the 3D nozzle 
design problems, not only for the design considering 
inviscid flow problem, also for that considering viscous 
flow.  
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Fig.3(a). Locations of Initial and final design variables obtained by 

the hybrid method with inviscid flow 
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Fig.3(b). Locations of Initial and final design variables obtained by 

the hybrid method with viscous flow 
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Fig.4(a)  Initial shape of the 3D elliptical nozzle 
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Fig 4.(b) Final shape of the 3D elliptical nozzle obtained by  
the hybrid method with inviscid flow 
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Fig.4(c) Final shape of the 3D elliptical nozzle obtained by 

 the hybrid method with viscous flow 
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VI. CONCLUSION 

The proposed hybrid optimization method combining the 
simultaneous perturbation stochastic approximation (SPSA) 
and gradient-based BFGS method has been investigated in 
the optimal design of a three-dimensional elliptical nozzle 
shape to improve thrust production. Its performance has 
been compared with those of simultaneous perturbation 
stochastic approximation, simulated annealing and gradient-
based BFGS method. Comparison of these optimization 
methods using CFD solvers based on inviscid flow and 
viscous flow problems to evaluate the objective function 
has also been considered in this study. The numerical 
results show that  the gradient-based method is the most 
efficient method for both inviscid and viscous flow solvers 
used in the design optimization. However using the 
gradient-based method may result in getting trapped into 
local minimum and this can be observed from the design 
results, shown in Table.1 and Table. 2.  From the design 
results, it can be seen that the hybrid method has a high 
computational efficiency and that it can decrease 
computational cost significantly compared with stochastic 

methods such as SPSA method and SA for the three-
dimensional nozzle design for both inviscid and viscous 
flow solvers, and has almost same computational efficiency 
as the gradient-based BFGS method. Also the value of the 
optimised objective function computed by the hybrid 
optimization method is higher than those obtained by the 
other methods and may  be closer to the global optimum. 
The hybrid method of BFGS-SPSA does take advantage of 
the high efficiency of the gradient-based methods, and the 
global search capability of SPSA method at the same time.  
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