
Region Type Checking for Core-Java
Wei-Ngan Chin

��� �
, Shengchao Qin

��� �
, and Martin Rinard

��� �
�
Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576�

Singapore-MIT Alliance, Building 8-407, 77 Massachusetts Avenue, Cambridge, MA 02139 USA	
Department of Computer Science, National University of Singapore

Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract— Region-based memory management offers several
important advantages over garbage-collected heap, including
real-time performance, better data locality and efficient use of
limited memory. The concept of regions was first introduced for
a call-by-value functional language by Tofte and Talpin, and
has since been advocated for imperative and object-oriented
languages. Scope memory, a lexical variant of regions, is now a
core feature in a recent proposal on Real-Time Specification for
Java (RTSJ). In this paper, we propose a region-based memory
management system for a core subset of Java. Our region type
analysis can completely prevent dangling references and thus
is ready to cater for the no-dangling requirement in RTSJ. Our
system also supports modular compilation, which is an important
feature for Java, but was missing in recent related work.

Index Terms— Core-Java, Region Type, Type Checking.

I. INTRODUCTION

In region-based memory management, each new object is
added to a region with a designated lifetime. While objects
may be added to their respective regions at different times, the
entire set of objects in each region are freed simultaneously,
when the region is deleted. Various studies have shown that
region-based programming can provide safe memory man-
agement with good real-time performance. Data locality is
also improved when related objects are placed together in the
same region. By classifying objects into regions based on their
lifetimes, better utilization of memory can be achieved when
dead regions are recovered on a timely basis.

Region-based memory management was first invented in
1994 by Tofte and Talpin[14], and has been implemented
for Standard ML[13]. A type and effect program analysis
was used to associate every value with a region, together
with automatic inference on the lifetime (or scope) of these
regions. Region type rules guarantee that a well-typed region-
annotated program never access a dangling reference to a
region that has already been deallocated. Recently, several
works have investigated region-based programming for Java-
based languages [9], [5], [4]. Most of these works (e.g. [5],
[4]) use region type-checking to guarantee that well-typed

Wei-Ngan Chin is with the Department of Computer Science, School of
Computing, National University of Singapore,3 Science Drive 2, Singapore
117543, Republic of Singapore. Email: chinwn@comp.nus.edu.sg

Shengchao Qin is the author for correspondence. He is with the Department
of Computer Science, School of Computing, National University of Singa-
pore,3 Science Drive 2, Singapore 117543, Republic of Singapore. Email:
qinsc@comp.nus.edu.sg. Tel: +65-6874 1298

Martin Rinard is with the Department of Electrical Engineering and Com-
puter Science at the Massachusetts Institute of Technology, 545 Technology
Square NE43-620A Cambridge, MA 02139. Email: rinard@lcs.mit.edu

programs never access dangling references, so that runtime
tests for dangling references can be omitted.

Our main contribution is a new region type system, which
has the following important features.� Our region type rules prevent dangling references by

requiring that all field references outlive the current ob-
ject. We formalise this explicitly through region lifetime
constraints, without the need for an effect-based typing.� In comparison with the work [5], our system adopts
the open world assumption for region annotations, thus
modular compilation is possible.� Our system supports classes and methods with region-
polymorphism, and also supports polymorphic recursion
for methods.

The remainder of this paper is organised as follows. Section
II introduces the language and the region parameterized type.
We present the region type rules in Section III. Section IV
discusses related works, followed by some concluding remarks
in Section V.

II. CORE-JAVA AND REGION TYPES

In this section, we present the syntax of a significant (subset
of) Java-like language named Core-Java and introduce region
types we shall adopt.

Fig 1 presents the syntax for our language Core-Java. Core-
Java is designed in the same minimalist spirit as Featherweight
Java[12]. It supports assignments but is also an expression-
oriented language where statements are expressions with the
void type. There is no while loop construct as this can be
captured by tail-recursion. The language is extended with
region types and region constraints for each class and method.
Also, local region with a designated scope is introduced by the
letreg declaration.

Note that � denotes a region variable, while
 represents a
data variable. The suffix notation � � denotes a list of zero or
more distinct syntactic terms that are separated by appropriate
separators, while � � represents a list of one or more distinct
syntactic terms. The syntactic terms, � , could be
 , � ,

���
�� ,
field, etc. For example,

���
�� � denotes
�����
 ����������� �
 � � where!#"%$.

The constraint � �'& ��(indicates that the lifetime of region� � is not shorter than that of � (. The constraint � �*) � (
denotes that � � and � (must be the same region, while � �,+) � (
denotes the converse. Note that this is a reserved data variable
referring to the current object, while heap is a reserved region

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-/.�.)
def

�
meth

�10�2
def

.�.)
class ca

�
extends ca (where rc 3 field

�
meth

��4
576 .�.)

cn 8�� �:9
field

.�.)*�
f

meth
.�.)*�

mn 8�� � 9 (�;�
�� �) where rc
0�2

� .�.) 576=< prim 8 9
prim

.�.)
int < bool < void0�2 .�.) 3 ���
>� � 0?4

0 .�.)
(576) null <A@=<
 <
 �

f < 0�2
< new 576 (
 �) <
 �

f
) 0 <
) 0

<
 �
mn 8�� � 9 (
 �) < mn 8�� � 9 (
 �) < 0 �

;
0 (< if
 then

0 �
else

0 (< letreg � in
0B2

rc
.�.) � � & � (< � �C) � (< � �D+) � (<

< rc
�#E

rc (< true

Fig. 1. The Syntax of Core-Java

to denote the global heap with unlimited lifetime, that is for
any � : heap

& � .
Each class definition is parameterised with one or more

regions, to form a region type [14], [15], [5], [4]. For instance,5�! 8�� ����������� � �F9 is a class annotated with region parameters� �G�H������� � � . Parameterisation allows programmers to implement
a region-polymorphic class whose components can be allo-
cated in different regions. The first region parameter � � is
special: it refers to the region in which a specified object of
this class will be allocated. All other regions should outlive
this region via the constraint

E#IKJ ��LML � � � I & � � � . That is the
regions of the components (possibly in � � �H������� � �) should have
longer or equal lifetimes than the region (namely � �) of its
object. This condition, called no-dangling requirement, can
prevent dangling references completely, as it guarantees that
each object can never reference another object in a younger
region.

Every method is also decorated with zero or more region
parameters. They are intended to capture the regions used by
each method’s parameters and result. Each method also has a
region lifetime constraint that is consistent with the operations
performed in the method body.

Two example programs are shown in Fig 2 and Fig 3 for
the Pair and PList classes.

Note that in Fig. 2 the regions (r1,r2,r3) for the subclass
(Pair) is an extension of that (r1) of the superclass (Object).
The class invariant (r2 N r1 O r3 N r1) ensures that the re-
gions for the components outlive the region for the object. Also
notice that each method (e.g. cloneRev) has a pre-condition
(e.g. r2 N r6 O r3 N r5) that should be satisfied at call sites
before the method is invoked. With these constraints being
satisfied when instantiated with actual regions, no dangling
references can occur during the execution of the program.

The PList class in Fig. 3 describes a recursive list, elements
of which are of type Pair. For simplicity, and also for

class Pair P r1,r2,r3 Q extends Object P r1 Q
where r2 N r1 O r3 N r1 R
Object P r2 Q fst
Object P r3 Q snd
Object P r4 Q getFst P r4 Q ()
where r2 S r4 R fst T
void setSnd P r4 Q (Object P r4 Q o)
where r3 S r4 R snd=o T
Pair P r4,r5,r6 Q cloneRev P r4,r5,r6 Q ()
where r2=r6 O r3=r5 R
Pair P r4,r5,r6 Q tmp

=new Pair P r4,r5,r6 Q (null,null);
tmp.fst=snd; tmp.snd=fst;
tmpT

void swap() where r2=r3 R
Object P r2 Q tmp=fst;
fst=snd;
snd=tmp;TT

Fig. 2. The Class Pair

class PList P r1,r2,r3,r4 Q extends Object P r1 Q
where r2 N r1 O r3 N r1 O r4 N r1 O r3 N r2 O r4 N r2 R
Pair P r2,r3,r4 Q p
PList P r1,r2,r3,r4 Q next
Pair P r5,r6,r7 Q getPair P r5,r6,r7 Q ()
where r5=r2 O r6=r3 O r7=r4R p T
PList P r5,r6,r7,r8 Q getNext P r5,r6,r7,r8 Q ()
where r5=r1 O r6=r2 O r7 N r3 O r8=r4R next T
void setNext P r5,r6,r7,r8 Q
(PList P r5,r6,r7,r8 Q o)
where r5=r1 O r6=r2 O r7 N r3 O r8=r4R next = o TT

Fig. 3. The Class PList

data locality, we adopts region-monomorphism for recursive
classes. Therefore, the recursive field has the same region
annotation as its class.

III. REGION TYPE SYSTEM

In this section we build a region type system for Core-Java.
We shall formulate the region type rules for Core-Java through
the following set of typing relations.� def U P. It denotes a class within a given program P.� meth U P. It denotes a static method within a given

program P.� P V mbr U ca. It indicates that mbr is a member of
class ca, either declared in current class ca, or inherited
from its superclass. mbr can be a field or a method.
Direct membership without inheritance is captured by
P V mbr UXW ca.

� P Y R V constr
���[Z

. The constraint that should be imposed
on type

�
is

Z
.� P Y R Y]\^V type
�
. The type

�
is well-formed with respect

to program P, the set of alive regions R and the region
constraint \ .� P Y R Y]_V formal

�
v. A field (

�
v) in a class or a formal

parameter of a method is well formed.� P V cn 8;` ��LML a 9cb .
cn 8;`ed��LML f 9���g . This captures a subtype

relation between cn 8�` ��LML h 9
and cn di8�`:d�]LML h 9 with substitutiong

to enforce identical parameter regions.� P Y R Y]\^V �jb . � d . This states that
�

is a subtype of
� d

under the constraint \ .� P V def def. It denotes that class declaration cdecl is well-
formed in program P.� P Y�klY R Y�\mV meth meth. It specifies that method meth is
well-defined with respect to program P, type environmentk , live regions R and the region constraint \ .� P Y�klY R Y�\nV 0 . �

. It indicates that expression
0

is of type�
with respect to program P, type environment k , the set

of alive regions R and the constraint \ .� V P
. �

. It indicates that program
-

is well-formed with
main expression of type

�
.

We shall begin with some auxiliary typing relations that
are used to extract classes, methods and fields from a given
program, together with checks on the well-formedness of
types, parameters and subtyping.� The following two rules are for extracting the classes and

static methods from a given program.

P Spoqoqo def oqoqo meth r eb Q

def s P

P S def rtoqoqo meth oqouo eb Q

meth swv
� Methods/fields defined in a class.

Let mbr
)

field < meth be a class member (i.e. field
or instance method). We first define direct membership
using the following rules:

class cn Pyx �{z z | Q}oqoqoMRBoqouo mbr ouoqo Tns~v
P � mbr s�� cn Pyx �{z z | Q

Fields/methods may be inherited through the superclass.
This could be dealt by the following membership with
inheritance relation.

P � mbr s � cn Pyx �{z z | Q
P � mbr s cn Pyx �{z z | Q

class cn Pyx �{z z | Q extends cn ��Pyx �{z z � Q}ouoqo�s�v
P � mbr s cn ��Pyx �{z z � Q P � mbr �s � cn Pyx �{z z | Q

P � mbr s cn Pyx �{z z | Q
For convenience, we may drop P from our relations using
mbr U cn 8��7� LML �F9 .� Well-formedness of types and fields/parameters.
The first three rules derive the invariant associated with
each type. For each class type, there is some invariant

describing the lifetime relation on regions involved, while
for primitive and Object types, no invariant is imposed
since they have at most one region parameter.

P � R � constr prim P;Q}� true

x's R
P � R � constr Object PyxBQ}� true

def S class cn Pyx �{z z | Q extends � where ��R�oqoqo T
def s P �p��R7� � ��ouoqoq� � | T

P � R � constr cn Py� �{z z | Q}��� x ���� � � ��oqouoq� x |��� � |�� �
The next two rules are used to check the well-formedness
of types and fields, under a region constraint \ .

P � R � constr � ��� �����
P � R ����� type �

P � R ��� � type t

P � R ���¡� formal t ¢
� Subtyping relation.

As mutations are possible on the fields, the subtype
relation requires the region parameters to be invariant
(both contra-variant and co-variant). This is achieved
through equality constraints on the regions of both the
subtype and its supertype, as follows.

£ S*� �>¤ �� � � ¤ � ¤y¥ �{z z |
P � cn Py� �{z z | Q�¦%§ cn Py� � �{z z | Q}� £

def S class cn Pyx �{z z | Q extends cn � Pyx �{z z � Q}oqoqo
def s P

P � cn �;Py� �{z z � Q#¦%§ cn � �;Py��� �{z z ¨ Q}� £
P � cn Py� �{z z | Q�¦%§ cn � � Py� � �{z z ¨ Q}� £

P � � ¦%§ � ��� £ ��� ctr © £?ª
P � R ����� type � P � R ����� type � �

P � R �}��� � ¦%§ � �
The first two rules attempt to derive the needed region

equality constraint in terms of a substitution mapping.
The third rule checks that the derived equality constraint
is valid under \ . Note that function ctr

��g � converts a
substitution mapping to its corresponding set of equality
constraints. For example, ctr

��« ` �­¬®
 � ` (¬® ¯%° �)� ` �C)
 E ` ()±¯ � .
We shall now describe typing relations for classes and meth-
ods.� Well formed class definitions: P V def def

This relation states that class declaration def is well-
formed in program P.

def S class cn Pyx �{z z | Q extends � where �²R field �{z z ¨ meth �{z z ³ T
def s P �´��µ>¶X§G·�oqo ¸,¹�x ¤ N�x �

R S R7x � �]o]o�o��{x | � heap Tµ>¶X§»º�oqo ¼½¹ P �}R this § cn Pyx �{z z | Q TB� R ���c� meth meth ¤µ>¶¾§?º�oqo ¿1¹ P � R � �´� formal field ¤
P � def def

A class is well defined if all its fields and methods
are well-formed and the constraint specifies necessary
lifetime relations among its regions.� Well formed methods: P Y�klY R Y]\­V meth meth
This relation specifies that method meth is well-defined
with respect to program P, type environment k , the set
of live regions R and the region constraint \ .

À �>S À �]©y¢]ÁÂ§ � Á ª Á7Ã �{z z ¨ R �>S R ÄwR7x � �]o]o�o��{x � T
P � R � ��� � � type � Á �ÆÅÂSÈÇÉ��oqoq��¿ � � S ��Ow� �
P � À ��� R ��� �Ê�>�,Ë�ÌÊ§ � � Í P � R �;���Ê�>� � � Í½¦%§ � Í

P � À � R ����� meth � Í mn Pyx �{z z � Q�©{© � Á ¢ Á ª Á�Ã �{z z ¨ ª where � � Ë�Ì
Region constraint of variables are checked at declaration
block. For each type, all regions used must be alive in
R and has an invariant that is satisfied by the expected
context, \ d .

Our next typing relation P Y}kÎY R Y�\ÏV 0 . �
indicates that

expression
0

is of type
�

with respect to program P, type
environment k , the set of alive regions R and the constraint\ . Some cases are defined next.� Constants and variables.

P � R ����� type cn Pyx �{z z | Q
P � À � R �����´© cn Pyx �{z z | Q ª null § cn Pyx �{z z | Q

P � R ����� type �{Ð
P � À � R � � �DÑ,§ � Ð

©y¢[§ � ª s À
P � À � R � � �1¢[§ �

Take note that region constraints of variables are checked
at declaration sites, rather than at their uses.� Expression block.

P � R ����� type � ¤ ¶:S*º��]oqoq��¿À � S À1Ò ©y¢�¤X§ � ¤ ª ¤ Ã �{z z ¨
P � À ��� R �����wË%§ �

P � À � R ������R�© � ¤ ¢ ¤ ª ¤ Ã �{z z ¨ Ë�TÂ§ �
� Object creation.

P � R ����� type cn Py� �{z z | Q
fieldlist © cn Py� �{z z | Q ª S±© � ¤ f ¤ ª ¤ Ã �{z z ¨©y¢ ¤ § � � ¤ ª s À

P � R ����� � � ¤ ¦%§ � ¤ ¶ÓSpº���ouoq��¿
P � À � R ����� new cn Py� �{z z | Q�©y¢ � �]oqou� ¢ ¨ ª § cn Py� �{z z | Q

Note that function fieldlist
�
cn 8�` ��LML � 9 � returns a list com-

prising all available fields in class cn 8�` ��LML �Ô9
, including the

fields of its superclasses. They are organised in an order
determined by the constructor function.� Object field access.

P �´© � f ª s cn Pyx �{z z | Q©y¢[§ cn PyÕ �{z z | Q ª s À
� � S±� x ���� Õ � ��ouoqoq� x |t�� Õ |É� �

P � À � R �����,¢�o f § � �Ö Object field update and assignment.
Let lhs S×¢jØ»¢�o f be either a variable ¢ or an object field ¢�o f.
The following rule covers both object field update and general
assignment.

P � À � R ����� lhs § �
P � À � R �}���,Ë%§ � �
P � R �}��� � � ¦%§ �

P � À � R � � � lhs SÈËC§ void

� Method invocation.
We highlight instance method invocation. The rule for
static method invocation is similar.

©y¢ Í § cn PyÕ � Q ª s À
P � meth s cn Pyx � Q

meth S � mn PyxH�qr�Q�©{© � ¤ ¢ ¤ ª ¤ Ã �{z z | ª where � Í Ë�Ì©y¢ �¤ § � � ¤ ª s À �l¶�Spº��]oqoq� ¸£ SÊÙKÚ[� x � �� Õ � �Îx��Mr �� ÕÉ�Mr � ��� £ � Í
P � R �}��� � �¤ ¦%§ £ � ¤Û�Î¶�Spº���oqoq� ¸

P � À � R ��� �D¢ Í o mn PyÕ �qr Q�©y¢ � �{z z | ª § £ �� Sequential composition.

P � À � R �����wË � § � �
P � À � R �����wË � § � �

P � À � R �}� �DË � ; Ë � § � �� Conditional.
¢[§ bool P;Q�s À

P � À � R �����,Ë�Ì � § � � P � R ����� � � ¦%§ �
P � À � R �����,Ë�Ì � § � � P � R ����� � � ¦%§ �
P � À � R �}��� if ¢ then Ë7Ì � else Ë�Ì � § �

Conditional branches are checked separately before a
most specific super-class is identified through subtyping.� Region declarations.

�´S*© R Ü�x ª freereg © t ª�Ý R
P � À � R Ä�R�x�TB�}�²O,�c�DË�ÌÊ§ �
P � À � R ����� letreg x in Ë7Ì�§ �

Local blocks are checked with an extra live region,
and the constraint R ÜÞx , which is an abbreviation forß�à á ¥ R ©yx � N­x%O´x � �Sâx ª . Also, freereg

�
t � returns all free

region variables in t.

Lastly, we give the typing relation for the entire program usingV P
. �

. It indicates that program P is well-typed (with type�
).

WFClasses © P ª FieldsOnce © P ª
MethodsOnce © P ª InheritanceOK © P ª

P S def �{z z | meth �{z z � eb Q µ>¶¾§?º�oqo ¸�¹ P � def def ¤µ>¶X§»º�oqo ãÞ¹ P � äG�}R heap TB� true � meth meth ¤
P � äG�}R heap TB� true � eb § t� P § t

A region-annotated program is well typed if all declared
classes and static methods are well-formed and the body of the
program is well-typed. The predicates in the premise are used
to capture standard well-formedness conditions for object-
oriented programs. That is:

� no duplicate definitions of classes and no cycle in class
hierarchy.� no duplicate definitions of fields.� no duplicate definitions of methods.� soundness of class subtyping and method overriding.

The auxiliary rules for these predicates are omitted here.
Our region type system enjoys several properties, like a

well-typed program will never go wrong, the execution of
a well-type program will not generate any dangling pointers.
These memory-safety properties are very important for region-
based memory management. The dynamic semantics and the
proofs for all these safety properties will appear in a future
paper.

IV. RELATED WORK

Tofte and Talpin [14], [15] proposed a region inference
approach for a typed call-by-value å -calculus, and tested
their approach in a region-based implementation of Standard
ML. In their approach, all values (including function values)
are put into regions at runtime, and all points of region
placement can be inferred automatically using a type and effect
based program analysis. The treatment of reference type is
similar to that for objects; as all values stored in a given
reference must be placed in the same region which in turn
outlives the region where the reference is located. Apart from
this imperative feature, their approach is focused mainly on
functional language features.

Christiansen and Velschow proposed a similar region-based
approach to memory management in Java [5]. They call their
system RegJava, in which a stack of lexically scoped regions
are introduced for the allocation of objects. They proposed a
region type system and demonstrated its soundness by linking
the static semantics with the dynamic semantics. However,
their system adopts the close world assumption, thus modular
compilation cannot be supported.

Gay and Aiken implemented a region-based extension of C,
called C@, which used reference counting on regions to safely
allocate and deallocate regions with a minimum of overhead
[10]. Using special region pointers and explicit deleteregion
calls, they provided a means of explicitly manipulating region-
allocated memory. This approach allows non-lexical regions
where earlier deallocation of regions are possible, but stack
implementation of regions is no longer valid. Their work
indicated that region-based programming often use less mem-
ory and is faster than traditional malloc/free-based memory
management. However, counting escaping references can incur
noticeable overhead.

Beebee and Rinard [1] gave an early implementation of
scoped memory for Real-Time Java in the MIT Flex compiler
infrastructure. They relied on both static analysis and dynamic
debugging to help locate incorrect uses of scoped memory.
Later, Boyapati et. al. [4] combined region types [14], [15],
[8], [11], [5] and ownership types [7], [6], [2], [3] in a unified
framework to capture object encapsulation and yet prevent
dangling references. Their static type system guaranteed that
scope-memory runtime checks will never fail for well-typed
programs. It also ensured that real-time threads do not interfere

with the garbage collector. Using object encapsulation, an
object and all components it owns are put into the same region;
in order to optimize on the regions used. Our region type
system is quite similar to theirs, but we separate out object
encapsulation and RTSJ issues, and prefer to infer region types
automatically (will appear in a future paper).

V. CONCLUDING REMARKS

Our eventual aim is to provide a fully-automatic region
inference type system for a core subset of Java. To achieve
this, we proposed a new region type system in this paper,
which allows classes and methods to be region-polymorphic,
with polymorphic recursion for methods. We have seen how
appropriate region instantiations are decided by the region
lifetime constraints, which are meant exclusively at preventing
dangling references.

The present work is at a preliminary stage, there remain
a number of important issues that should be resolved and
improved further. We are currently working on the safety of
our region type system and an automatic inference algorithm
to insert region annotations into normal Java programs. These
results will be reported in a future paper.

ACKNOWLEDGMENTS

The authors would like to thank William Beebee, Chan-
drasekar Boyapati, Mong Leng Sin, Siau-Cheng Khoo, Florin
Cracium, Dana Xu, and Nguyen Huu Hai for helpful discus-
sions and various pointers. We would also like to acknowledge
the financial support of Singapore-MIT Alliance and research
grant R252-000-092-112.

REFERENCES

[1] W. Beebee and M. Rinard. An Implementation of Scoped Memory
for Real-Time Java. In Proceedings of Embedded Software, First
International Workshop (EMSOFT ’01), Tahoe City, California, October
2001.

[2] C. Boyapati, R. Lee, and M. Rinard. Ownership types for safe
programming: Preventing data races and deadlocks. In Proceedings of
the ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’02), Seattle, Washington,
November 2002.

[3] C. Boyapati, B. Liskov, and L. Shrira. Ownership Types for Object
Encapsulation. In Proceedings of the ACM Symposium on Principles of
Programming Languages (POPL ’03), New Orleans, Louisiana, January
2003.

[4] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership Types
for Safe Region-Based Memory Management in Real-Time Java. In
Proceedings of the ACM Conference on Program Language Design and
Implementation (PLDI ’03), San Diego, California, June 2003.

[5] M. V. Christiansen and P. Velschow. Region-Based Memory Man-
agement in Java. Master’s Thesis, Department of Computer Science
(DIKU), University of Copenhagen, 1998.

[6] D. G. Clarke and S. Drossopoulou. Ownership, Encapsulation and
Disjointness of Type and Effect. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’02), Seattle, Washington, November 2002.

[7] D. G. Clarke, J. M. Potter, and J. Noble. Ownership Types for Flexible
Alias Protection. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’98), October 1998.

[8] K. Crary, D. Walker, and G. Morrisett. Typed Memory Management in
a Calculus of Capabilities. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL ’99), January 1999.

[9] M. Deters and R. Cytron. Automated Discovery of Scoped Memory
Regions for Real-Time Java. In Proceedings of the International
Symposium on Memory Management (ISMM ’02), June 2002.

[10] D. Gay and A. Aiken. Memory Management with Explicit Regions. In
Proceedings of the ACM Conference on Programming Language Design
and Implementation (PLDI ’98), June 1998.

[11] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-Based Memory Management in Cyclone. In Proceedings of the
ACM Conference on Programming Language Design and Implementa-
tion (PLDI ’01), June 2001.

[12] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal
Core Calculus for Java and GJ. In Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’99), Denver, Colorado, November
1999.

[13] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T.H. Olesen, and
P. Sestoft. Programming with Regions in the ML Kit (for Version 4).
The IT University of Copenhagen, September 2001.

[14] M. Tofte and J. Talpin. Implementing the Call-By-Value æ -calculus
Using a Stack of Regions. In Proceedings of the ACM Symposium on
Principles of Programming Languages (POPL ’94), January 1994.

[15] M. Tofte and J. Talpin. Region-based memory management. Information
and Computation, 132(2), 1997.

Wei Ngan Chin is an Associate Professor at the Depart-
ment of Computer Science, School of Computing, National
University of Singapore, and a Fellow in the Computer Science
Programme of the Singapore-MIT Alliance. He received his
B.Sc. and M.Sc. in Computer Science, in 1982 and 1983,
respectively, from University of Manchester, United Kingdom,
and PhD in Computing, in 1990 from the Imperial College
of Science, Technology and Medicine, United Kingdom. His
current research interests are functional programming, pro-
gram transformation, parallel systems, software models and
methods.

Shengchao Qin is a research fellow in the National Univer-
sity of Singapore under the Singapore-MIT Alliance (SMA).
He received his BSc in information science and PhD in applied
mathematics, in 1997 and 2002, respectively, from Peking
University, China. His main research interests include type-
based program analysis, formal specification and verification,
refinement calculus and transformation, formal techniques in
hardware/software co-design, embedded systems.

Martin Rinard is an Associate Professor in the Department
of Electrical Engineering and Computer Science at the Mas-
sachusetts Institute of Technology, and a Fellow in the Com-
puter Science Programme of the Singapore-MIT Alliance. He
received his BSc. in computer science from Brown University
in 1984, and his Ph.D in computer science from Stanford Uni-
versity in 1994. His research interests and achievements can be
found at his homepage 8 http://www.cag.lcs.mit.edu/ ç rinard/

9
.

