

 Abstract—This paper describes the design and
implementation of MATLAB*G, a parallel MATLAB on the
ALiCE Grid. ALiCE (Adaptive and scaLable internet-based
Computing Engine), developed at NUS, is a lightweight
grid-computing middleware. Grid applications in ALiCE are
written in Java and use the distributed shared memory
programming model. Utilizing existing MATLAB functions,
MATLAB*G provides distributed matrix computation to the
user through a set of simple commands. Currently two forms of
parallelism for distributed matrix computation are
implemented: task parallelism and job parallelism.
Experiments are carried out to investigate the performance of
MATLAB*G on each type of parallelism. Results indicate that
for large matrix sizes MATLAB*G can be a faster alternative
to sequential MATLAB.

Index Terms—MATLAB, DSM, Grid

I. INTRODUCTION

ATLAB is a popular mathematical software that
provides an easy-to-use interface for scientists and
students to compute and visualize various

computations. Computation intensive MATLAB
applications can benefit from faster execution if parallelism
is provided by MATLAB. With the increasing popularity of
distributed computing, researchers have been building
support for parallel computing into MATLAB. Up to now
there are at least twenty-seven parallel MATLABs available
[1].

With commodity computers getting more powerful and
more affordable, and with more people connecting to the
Internet, distributed computing is becoming more popular. A
distributed system can be classified as (i) a cluster system,
which is characterized by homogeneous compute nodes, fast
networks, and central management; or (ii) a computational
grid, which consists of a heterogeneous set of computing
machines without central management.

Grid computing is defined as coordinated resource sharing
and problem solving in dynamic, multi-institutional virtual
organizations [2], where a virtual organization is a collection

Manuscript received November 4, 2003.
Ying Chen is with Singapore-MIT Alliance, E4-04-10, 4 Engineering

Drive 3, National University of Singapore, Singapore 117576 (phone:
65-68744366; e-mail: smacy@nus.edu.sg).

Suan Fong Tan, is with the Department of Computer Science, National
University of Singapore, Singapore 117534. (e-mail:
tansuanf@comp.nus.edu.sg).

of compute nodes who share their resources. There is no
central control, the compute nodes are usually
heterogeneous, and the communication cost between any
two nodes varies depending on the nodes and time of
communication. The system is dynamic because existing
nodes may become unavailable without warning, and new
nodes may join the grid.

One example of grid computing is Seti@Home, where the
idle CPU times of desktop machines on the Internet are
shared to analyze radio signals in the search for
extra-terrestrial life; and file sharing systems like Napster
and Kazaa, where disk storage is the resource that is being
shared [3].

A grid middleware is a set of tools that can be used to
build a grid system. For example, the Condor System [4] and
the Globus System [5] are both middlewares. ALiCE
(Adaptive and scaLable Internet-based Compute engine) is a
grid computing middleware developed at NUS [6].

In this paper we present the design, implementation and
experimental results of MATLAB*G, a parallel MATLAB
on the ALiCE Grid, which can perform distributed matrix
computation using task parallelism and job parallelism.

The remainder of the paper is organized as follows:
classification and comparison among parallel MATLABs is
given in section II; the design of MATLAB*G is illustrated
in section III; in section IV the implementation of
MATLAB*G on ALiCE is shown; experimental results are
related in section V and some recommendations for future
work and conclusions are presented in Section VI.

II. RELATED WORKS

In this section, we classify existing parallel MATLABs
into different categories according to two criteria: First,
whether they provide implicit or explicit parallelism.
Second, the method used for inter-processor communication.

A. Implicit Parallelism vs. Explicit Parallelism

In order to execute a program which exploits parallelism,
the programming language must supply the means to identify
parallelism, to start and stop parallel executions, and to
coordinate the parallel executions. Thus from the
programming language level, the approaches to parallel
processing can be classified into implicit parallelism and
explicit parallelism [7]:

MATLAB*G: A Grid-Based Parallel MATLAB

Ying Chen 1 and Suan Fong Tan 2

1 Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore-117576

2 Department of Computer Science, National University of Singapore, Singapore-117534

M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Implicit parallelism allows programmers to write their
programs without any concern about the exploitation of
parallelism. Exploitation of parallelism is instead
automatically performed by the compiler or the runtime
system. Parallel MATLABs in this category include
RTExpress [8], CONLAB Compiler[9], and MATCH[10].
All of these parallel MATLABs take MATLAB scripts and
compile them into executable code.

The advantage is that the parallelism is transparent to the
programmer. However, extracting parallelism implicitly
requires much effort for the system developer.

Explicit parallelism is characterized by the presence of
explicit constructs in the programming language, aimed at
describing the way in which the parallel computation will
take place. Most parallel MATLABs use explicit
parallelism, like MATLAB*P [11], MATmarks [12], and
DP-Toolbox [13].

The main advantage of explicit paralleism is its
considerable flexibility, which allows the user to code a wide
variety of patterns of execution. However the management
of the parallelism, a quite complex task, is left to the
programmer.

For example, MATmarks extends the MATLAB language
with commands to enable shared variables and process
synchronization. In order to perform a parallel computation
in MATmarks, the user must explicitly write the required
communication and synchronization code. This is in contrast
with an implicitly parallel MATLAB, where the system
would handle the communication and synchronization
“behind the scenes”.

MATLAB*P is an explicitly parallel MATLAB designed
at MIT. Unlike MATmarks, MATLAB*P handles
communication and synchronization for the user. Where it
differs from implicitly parallel MATLABs however, is that
MATLAB*P requires the user to explicitly indicate the
matrices which are to be distributed.

MATLAB*G is an explicitly parallel MATLAB. It is
similar to MATLAB*P, in that it handles the communication
and synchronization details for the user. However, while
users are not required to indicate the matrices to be
distributed, they have to explicitly specify the MATLAB
computations to be parallelized.

B. Inter-processor Communication

In designing a parallel system, processors must have the
ability to communicate with each other in order to
cooperatively complete a task. There are two methods of
inter-processor communication, each suitable for different
system architectures:

Distributed Memory Architectures employ a scheme in
which each processor has its own memory module. Each
component is connected with a high-speed communications
network. Processors communicate with each other over the
network. Well-known packages such as MPI [14] provide a
message passing interface between machines.

Most parallel MATLABs are built upon distributed

memory architecture, e.g. MATLAB*P, Cornell
Multitasking Toolbox for MATLAB, and Distributed and
Parallel Application Toolbox, etc. One advantage of these
parallel MATLABs is that MPI and PVM are mature
standards which have been available for several years and
offers a high degree of functionality. However, almost all of
these parallel MATLABs exploit standard message passing
interface, which means they can only run on homogenous
clusters.

Distributed Shared Memory systems have two main
architectures [15]:

• Shared Virtual Memory (SVM) systems share a single

address space, thereby allowing processor
communication through variables stored in the space.
For example, MATmarks, an environment that allows
users to run several MATLAB programs in parallel
using the shared memory programming style is built
on top of TreadMarks, a virtual SVM which provides
a global shared address space across the different
machines on a cluster. The environment extends the
MATLAB language with several primitives to enable
shared variables and synchronization primitives.

• Object-based Distributed Shared Memory (DSM):
Processes on multiple machines share an abstract
space filled with shared objects. The location and
management of the objects is handled automatically
by the runtime system. Any process can invoke any
object's methods, regardless of where the process and
object are located. It is the job of the operating system
and runtime system to make the act of invoking work
no matter where the process and the object are
located. DSM has a few advantages over SVM: (i) it
is more modular and more flexible because accesses
are controlled, and (ii) synchronization and access
can be integrated together cleanly.

MATLAB*G is currently the only parallel MATLAB

built on object-based DSM. MATLAB*G is designed for
ALiCE Grid which uses Sun’s Jini and JavaSpaces
technologies.

A shared memory interface is more desirable than a
message passing interface from the application
programmer's viewpoint, as it allows the programmer to
focus more on algorithmic development rather than on
managing communication. But such a parallel MATLAB
depends on another system providing shared memory upon
different machines. Furthermore, whether a parallel
MATLAB can be run in a heterogeneous environment
depends on whether the DSM supports heterogeneous
machines.

III. SYSTEM DESIGN

In MATLAB, a normal matrix addition can be performed
by executing the program in Figure 1.

Fig. 1. A MATLAB program for matrix addition.

The first line creates a 10-by-10 matrix A, The second
lines creates a 10-by-10 matrix B. The third line creates a
10-by-10 matrix C, and lets it have the value: A+B.

To parallelize the matrix addition, a user can write a
MATLAB*G program as shown in Figure 2.

Fig. 2. A MATLAB*G program for the parallel matrix addition.

The third line creates a 10-by-10 matrix C, performs
parallel matrix addition between A and B, ad returns the
result to C.

From the user’s point of view, these two programs are
equivalent because after execution the resulting matrix C in
both programs has the same value in both programs.

However, the executions of these two programs are quite
different: the first program is executed purely inside
MATLAB environment, but the second exploits parallelism
provided by MATLAB*G.

To achieve parallelism, MATLAB*G exploits a
client-server model using Object-based Distributed Shared
Memory (DSM). User submits his job interactively from
MATLAB environment. The client gets the job, divides it
into a number of tasks, sends tasks into the DSM, and then
keeps polling the DSM for the result. A server always tries to
get a task from DSM. After receiving a task, the server
processes it, and then sends the result back to DSM. On the
client side, after getting all results from servers, it assembles
them into a complete result and returns it to the user. The
system architecture is shown in Figure 3.

Fig. 3. MATLAB*G Client-Server Architecture

A. The Client

As shown in Figure 3, the client side consists of two
components: Extension and MGClient.

A more detailed diagram for the MATLAB*G client
architecture is shown in Figure 4.

Fig. 4. MATLAB*G Client

Extension includes a few MATLAB M files. It provides

user interfaces for parallelism and links MATLAB with
MGClient.:
a) ppstart: This is a MATLAB function introduced by

MATLAB*G Extension. When the user calls ppstop(n),
n servers are initialized and reserved for future
computations.

b) ppstop: This function releases the reservations by a
prior ppstart.

c) mm: This function lets the user assign a parallel job. The
syntax of mm is: A=mm(‘fname’, tasknum, matrices).
fname is the computation that the user wants to execute,
matrices are the arguments for this computation and
tasknum is the task number specified by the user. The
user can decide the task granularity according to the
complexity of the computation and the size of matrices.
We anticipate that in the next version, the tasknum
argument will be removed and the task number will be
generated by the system automatically according to
certain algorithms. Finally, A is the result of
computation.

Another component, MGClient, includes a number of Java
classes, and provides two main functionalities:
a) Communicate with all the servers. MGClient

communicates with the servers through DSM; it does
not need to know their locations.

b) Distribute tasks and assemble results. According to the
user’s input program, MGClient generates a number of
tasks, which can be executed on the servers. MGClient
also has to assemble all results from servers into one
complete and correct result and return it to the user.

MGClient can be invoked only by Extensions, which
makes the command set simpler. Pseudocode for MGClient
is shown in Figure 5 below:

Extension

MGClient

MATLAB

 PPSTART PPSTOP MM

1: A=randn(10,10);
2: B=randn(10,10);
3: C=plus (A, B);

1: A=randn(10,10);
2: B=randn(10,10);
3: C=mm(‘plus’, 2, A, B);

Server n

 MATLAB

Extension

MGClient

Client

MGProducer

MATLAB

Server 1

Link

 MGProducer

MATLAB

Server 2

Link

 MGProducer

MATLAB

Link

DSM

Fig. 5. MGClient Pseudocode

Besides Extension and MGClient, a running instance of
MATLAB is also required on the client side. This MATLAB
session provides a programming environment to the user and
thus lets the user invoke function calls in Extension.

B. The Servers

As communication latency is quite unpredictable on a grid
system, it would be costly to pass data frequently among the
compute nodes. Thus currently only embarrassingly parallel
mode of computation is supported, whereby each server
receives a work package, performs computation without
coordination with other servers, and sends results back to the
client.

The Server consists of two main components:
MGProducer and Link.

MGProducer runs on a server and waits for tasks from
DSM. On receiving a ppstart from DSM, MGProducer
starts a MATLAB session at the backend through Link.
Similarly, on receiving a ppstop, MGProducer terminates
the MATLAB session. Upon receiving a computation task,
MGProducer performs calculation and sends the result back
to DSM. The pseudocode for MGProducer is shown in
Figure 6.

Fig. 6. MGProducer Pseudocode

Link is another component on the server. It is used by

MGProducer to start a MATLAB session, stop a MATLAB
session, and execute MATLAB programs. To implement
Link, we make use of an existing Java interface to the
MATLAB engine called JMatLink [16].

C. DSM

A tuplespace is a shared datastore for simple list data
structures (tuples) [17]. A simple model is used to access the
tuplespace, usually consisting of the operations write, take
and read. A tuplespace provides DSM if every data inside it
is an object. In MATLAB*G, communication between
processors is handled through a tuplespace where processors
post and read objects. Submatrices are deposited into space
for server nodes to retrieve. The server nodes then perform
computations on submatrices and return the results back to
space.

IV. SYSTEM IMPLEMENTATION

MATLAB*G is written in Java and implemented on
ALiCE Grid.

A. Mapping MATLAB*G onto ALiCE

There are two main components in ALiCE: a runtime
system that handles management of grid resources, and a set
of programming templates for users to develop applications
on ALiCE. Figure 7 illustrates the ALiCE architecture.

Fig. 7. Layers in ALiCE Architecture

The ALiCE Runtime System consists of three
components: Consumer, Producers, and a Resource Broker.
The Consumer provides a user interface for job submission,
monitoring and collections of results. The Producers
interface with local schedulers of shared grid resources. The
Resource Broker manages the applications, scheduling of
resources, communications and security of the system. The
bottom two layers can be visualized in detail in Figure 8.

Fig. 8. ALiCE Runtime and Network Resources

The Object Network Transport Architecture (ONTA)
provides a layer for communication between JavaSpaces
[18] and the Consumer/Resource-Broker/Producer layer.

The JavaSpaces provides a distributed persistence and
object exchange mechanism for code written in Java.
Processes are loosely coupled and communicate and
synchronize their activities using a persistent object store
called a space, rather than through direct communication.

The mapping from MATLAB*G onto ALiCE is

Networked Resources

ALiCE Runtime System

Application Development Templates

ALiCE Grid Applications

Physical System: Heterogeneous Networks and machines

Distributed Shared Memory

Object Network Transport Architecture (ONTA)

Consumer Resource Broker

Producer

Loop Forever
 If take PPSTART message fails, go to 1
 Start MATLAB
 Acknowledge the client
 Loop Forever
 Wait for message from the client
 If message is PPSTOP, then
 Stops MATLAB
 Break
 Else
 Process message
 Acknowledge completion of task and

send result to the client
 End If
 End Loop
End Loop

Switch of command passed in by Extension:
Case: ppstart

Send ppstart into DSM;
Case: ppstop

Send ppstop into DSM;
Case: mm

Partition matrices;
Marshal message into a number of tasks;
Send tasks into DSM;
Wait for result by polling DSM;
Return result;

illustrated in Figure 9. Shaded boxes are MATLAB*G
components. A user submits a job through ALiCE
Consumer. In response to the submission of a job, the ALiCE
Resource Broker will instantiate a MATLAB*G Client, and
ALiCE Producers will instantiate MATLAB*G Servers.

Fig. 9. Mapping between MATLAB*G and ALiCE components

B. ALiCE Program Generated by MATLAB*G

ALiCE does not provide any interface to allow a user to
directly run a MATLAB*G client on the Task Manager or
run a MATLAB*G server on a Producer. An application has
to be submitted in the form of an ALiCE Program through
the Consumer interface.

An ALiCE program template consists of following
elements: Task, which runs on the Producer; TaskGenerator,
which runs on the Resource Broker; and ResultCollector
which runs on the Consumer to collect the results obtained
from the execution of tasks generated by the Task Manager.

Templates for these three elements are provided by
ALiCE. Thus our job is just to add MATLAB*G code into
proper templates to generate customized ALiCE program
elements.

1) MGTaskGenerator
Besides the client side code, the user’s MATLAB

program is also embedded in the Task Generator template to
create MGTaskGenerator.

MGTaskGenerator first starts a MATLAB session, and
then initiates n tasks by issuing command ppstart(n) to
MATLAB. It then asks MATLAB to run the user’s
MATLAB programs. When finished, it issues a ppstop
command to terminate tasks. MGTaskGenerator sends
output it receives from MATLAB to MGResultCollector as
the result from the computation.

The pseudocode of MGTaskGenerator is as in Figure 10.

1. Start MATLAB
2. Starts the required number (N) of Tasks
3. Issue “PPSTART(N)” to MATLAB
4. Issue command to MATLAB to run user program
5. Issue “PPSTOP” to MATLAB
6. Stop MATLAB
7. Return result

Fig. 10. MGTaskGenerator Pseudocode

2) MGTask
MGTask is created by adding the server side code into

ALiCE Task template. Each MGTask instantiates an
MGProducer and runs it. The pseudocode for MATLAB*G
Task is as in Figure 11.

1. Instantiates MGProducer
2. Execute the run method in MGProducer

Fig. 11. MATLAB*G Task Pseudocode

3) MGResultCollector
MGResultCollector extends the ALiCE Result Collector

template. Running on the ALiCE Resource Broker, it simply
waits for the result from JavaSpaces.

An ALiCE program is created when we compile these
elements together. The structure of such a program is
described in Figure 12.

Fig. 12. Structure for a ALiCE Program generated by MATLAB*G

After an ALiCE program is submitted to ALICE, the
system dynamically finds available resources to join in the
parallel computation, and each component is dynamically
loaded by various machines as shown in Figure 13. Shaded
boxes are ALiCE program elements for MATLAB*G.

Fig. 13. MATLAB*G running on ALiCE

ALiCE Resource
Broker

ALiCE
Producer

ALiCE Consumer

JavaSpaces

MGTask

MGTask

MGTask

ALiCE
Producer

ALiCE
Producer

MGTaskGenerator

MGResultCollector

ALiCE

Consumer

ALiCE

Producer

MATLAB*G

Server

ALiCE

Producer

MATLAB*G

Server

ALiCE

Producer

MATLAB*G

Server

ALiCE
Resource
Broker

MATLAB*G

Client

JavaSpaces

ALiCE Task Generator Template

 User program MATLAB*G client

ALiCE Task Template

MATLAB*G server

ALiCE Result Collector Template

MGTask

MGRCollector

MGTaskGenerator

C. Batch Mode

ALiCE supports two types of applications. Batch
applications are non-interactive applications and involve
minimum user intervention. This mode is for executing large
jobs. After submitting the application, the Consumer can
disconnect itself and later reconnect for collecting the
results. The result collection mechanism is implemented at
the Resource Broker. Interactive applications require
User/Consumer intervention during execution process. In
this mode, Users/Consumers can program a graphical user
interface (GUI) to visualize the progress of the execution.
Results of executing individual tasks generated by the Task
Manager are returned to the Consumer.

The current MATLAB*G implementation supports batch
applications: the user submits a complete MATLAB
program instead of entering commands interactively at a
MATLAB environment. This is accomplished by embedding
the MATLAB program into MGTaskGenerater so that it can
be submitted to the ALiCE Resource Broker.

V. EXPERIMENTAL RESULTS

We compare the performance of MATLAB*G with
sequential MATLAB on the ALiCE Grid.

The experiments are conducted on ALiCE Grid Cluster
with twenty-four nodes connected by 100 Mbps Ethernet.
Four nodes are used, each of which is a PIII 0.866GHz, 256
MB RAM machine running Linux 2.4.

The current implementation of MATLAB*G can exploit
two forms of parallelism. The first is task parallelism. When
a user wants to perform computation involving matrices, the
computation can be divided into a number of tasks. Each task
has the computation name and parameter submatrices. Tasks
are sent to space and each producer gets a task from space
and performs computation on its submatrices. The number of
tasks a matrix computation should be split into is largely
influenced by the complexity of the computation. A simple
matrix computation (e.g. matrix addition) should be split into
a small number of tasks so that the communication overhead
does not dominate the computation time. Conversely, a
complex matrix computation (e.g. computation of
eigenvalues) should be split into a relatively large number of
tasks. In general the number of tasks should be larger the
number of Producers for load balancing consideration, as
each node in the grid may have different computation ability
and different network latency.

 The second is job parallelism. When there are a number
of matrix computations (jobs) to be executed one after the
other, the user can specify for them to be executed in parallel.
This will result in each matrix computation being executed
on a single producer.

We perform experiments to discover the performance of
the MATLAB*G implementation on each type of
parallelism. Specifically, we measure performance in terms
of the time elapsed on the client side from submission of
application to receipt of results.

A. Task Parallelism

The designer of MATLAB has previously stated that one
reason for not developing a parallel MATLAB is that it takes
much more time to distribute the data than perform the
computation because a matrix that fits into the host’s
memory would not be large enough to make efficient use of
the parallel computer [19]. However this is true only for
functions provided by MATLAB itself, which can be
performed quite fast by MATLAB. For some MATLAB
scripts written by a user, it is possible that the computation
time for a normal size matrix is long enough that we can
benefit from doing it in parallel.

For example, we have a user program as in Figure 14.

Fig. 14. An example computation intensive program
exp(X) is the exponential of the elements of X, e to the X

We time this program in MATLAB and in MATLAB*G

on various input matrix size and reproduce the results in
Figure 15.

0

100

200

300

400

500

600

700

800

900

1000

100*100 500*500 1000*1000 1500*1500 2000*2000

Matrix size

T
im

e(
se

c)

MATLAB MATLAB*G

Fig. 15. Timing for Task Parallelism on varying matrix size

It can be seen that for small matrix size (e.g. 100x100), the
elapsed time for sequential MATLAB is still less than that of
MATLAB*G. This phenomenon is attributed to the
communication and partitioning overhead which is much
larger than the computation time. However, as matrix size
increases, the performance of MATLAB*G improves
relative to sequential MATLAB, eventually overtaking it at
the crosspoint of approximately 500x500.

B. Job Parallelism

E = pinv(X) is the pseudoinverse function provided by
MATLAB. If a user has to perform pinv() on a few matrices,
he can perform pinv() on each matrix one by one;
alternatively he can parallelize these jobs as shown in Figure
16.

Function result=Exp_1(A)
For (i=1:1000)
exp(A);
End;
Result=A;

Fig. 16.a. Compute pinv()s Sequentially

Fig. 16.b. Compute pinv()s in Parallel

We time for the sequential program as in Figure 16.a and

the parallel program as in Figure 16.b on various matrix size
and reproducer the results in Figure 17.

0

100

200

300

400

500

600

700

800

100*100 300*300 500*500 700*700 900*900 1100*1100

Matrix size

T
im

e(
se

c)

MATLAB MATLAB*G

Fig. 17. Timing for Job Parallelism on varying matrix size

Once again we see that for small matrix size the elapsed
time for sequential MATLAB is still less than that of
MATLAB*G. But as matrix size exceeds 500x500,
MATLAB*G outperforms sequential MATLAB.

VI. CONCLUSION AND FUTURE WORK

MATLAB*G provides parallel MATLAB for the ALiCE
Grid users. Currently two types of parallelism for matrix
computation are implemented: task parallelism and job
parallelism. Results of its performance indicate that for large
matrix sizes MATLAB*G can be a faster alternative to
sequential MATLAB. One direction for future work is to
implement for-loop parallelism as they are one of the most
time-consuming parts in many MATLAB programs.
Optimizations are also required to reduce the cost of
overheads such as communication time and matrix
partitioning.

ACKNOWLEDGMENT

 We would like to thank Prof. Yong Meng Teo for his
invaluable support, guidance and patience; Yih Lee for his
original conception, design and implementation of
MATLAB*G; Ron Choy and Prof. Alan Edelman for their
creation of MATLAB*P, from which MATLAB*G was
inspired.

REFERENCES

[1] R. Choy, (2003, Oct. 12). Parallel MATLAB Survey [Online].
Available: http://theory.lcs.mit.edu/~cly/survey.html.

[2] I Foster, C Kesselman, S. Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Intl. J. of Supercomputer
Applications, 2001. Available:
http://www.globus.org/research/papers/anatomy.pdf

[3] SETI@Home Project. [Online]. Available:
http://setiathome.ssl.berkeley.edu/

[4] Condor Project. [Online]. Available: http://www.cs.wisc.edu/condor/
[5] Globus Project. [Online]. Available: http://www.globus.org/
[6] ALiCE Grid Computing Project. [Online]. Available:

http://www.comp.nus.edu.sg/~teoym/alice.htm
[7] Vincent W. Freeh. (1994, Aug). A Comparison of Implicit and

Explicit Parallel Programming. Journal of Parallel and Distributed
Computing. [Online].

[8] Parallel MATLAB® Development for High Performance Computing,
[Online] Available: http://www.rtexpress.com/isi/rtexpress/

[9] Cornell Multitasking Toolbox for MATLAB. [Online]. Available:
http://www.tc.cornell.edu/Services/Software/CMTM/

[10] MATCH. [Online]. Available: http://www.accelchip.com
[11] R. Choy, “MATLAB*P 2.0: Interactive Supercomputing Made

Practical.” Master of Science Thesis, EECS, MIT, Sep 2002.
[12] MATmarks [Online]. Available: http://polaris.cs.uiuc.edu/matmarks/
[13] Distributed and Parallel Application Toolbox (DP-Toolbox).

[Online]. Available: http://www-at.e-technik.uni-rostock.de/dp/
[14] Message Passing Interface. [Online]. Available:

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
[15] DOSMOS project. [Online]. Available:

http://www.ens-lyon.fr/~llefevre/DOSMOS/dosmos.html
[16] JMatLink. [Online]. Available:

http://www.held-mueller.de/JMatLink/index.html
[17] N. Carriero, D. Gelernter, “Linda in Context,” CACM 32/4, pp.

444-458, 1984
[18] JavaSpaceTM Specification, June 27, 1997. [Online]. Available:

http://java.sun.com
[19] C. Moler. Why There Isn’t a Parallel Matlab. [Online]. Available:

http://www.mathworks.com/company/newsletter/pdf/spr95cleve.pdf

Ying Chen obtained her B.E. and M.E. in computer science from Xian
Jiaotong University in China in 1999 and 2002 respectively, and MSc in
computer science from Singapore-MIT Alliance in 2003. She is currently a
research assistant in Singapore-MIT Alliance. Her current research
interests include distributed systems, parallelism and grid computing.
Author’s Present Address: Singapore-MIT Alliance, E4-04-10, 4
Engineering Drive 3, National University of Singapore, Singapore 117576,
smacy@nus.edu.sg.

Suan Fong Tan is an undergraduate pursuing a B.Sc. in computer science
from the National University of Singapore. His current research interests
include distributed systems, parallelism and grid computing. Author’s
Present Address: Computer Systems Laboratory, S14-06-17, 3 Science
Drive 2, National University of Singapore, Singapore 117543,
tansuanf@comp.nus.edu.sg.

A1=randn(1000);
A2=randn(1000);
A3=randn(1000);
A4=randn(1000);
E1=pinv(A1);
E2=pinv(A2);
E3=pinv(A3);
E4=pinv(A4);

A1=randn(1000);
A2=randn(1000);
A3=randn(1000);
A4=randn(1000);
X(1:1000, :)=A1;
X(1001:2000,:)=A2;
X(2001:3000, :)=A3;
X(3001:4000,:)=A4;
Y=mm(‘pinv’, 4, X);
E1=Y(1:1000,:);
E2=Y(1001:2000,:);
E3=Y(2001:3000,:);
E4=Y(3001:4000,:);

