
 
 

  Abstract—This paper describes the design and 
implementation of MATLAB*G, a parallel MATLAB on the 
ALiCE Grid. ALiCE (Adaptive and scaLable internet-based 
Computing Engine), developed at NUS, is a lightweight 
grid-computing middleware. Grid applications in ALiCE are 
written in Java and use the distributed shared memory 
programming model. Utilizing existing MATLAB functions, 
MATLAB*G provides distributed matrix computation to the 
user through a set of simple commands. Currently two forms of 
parallelism for distributed matrix computation are 
implemented: task parallelism and job parallelism. 
Experiments are carried out to investigate the performance of 
MATLAB*G on each type of parallelism. Results indicate that 
for large matrix sizes MATLAB*G can be a faster alternative 
to sequential MATLAB. 

Index Terms—MATLAB, DSM, Grid 

I. INTRODUCTION 

ATLAB is a popular mathematical software that 
provides an easy-to-use interface for scientists and 
students to compute and visualize various 

computations. Computation intensive MATLAB 
applications can benefit from faster execution if parallelism 
is provided by MATLAB. With the increasing popularity of 
distributed computing, researchers have been building 
support for parallel computing into MATLAB. Up to now 
there are at least twenty-seven parallel MATLABs available 
[1]. 

With commodity computers getting more powerful and 
more affordable, and with more people connecting to the 
Internet, distributed computing is becoming more popular. A 
distributed system can be classified as (i) a cluster system, 
which is characterized by homogeneous compute nodes, fast 
networks, and central management; or (ii) a computational 
grid, which consists of a heterogeneous set of computing 
machines without central management. 

Grid computing is defined as coordinated resource sharing 
and problem solving in dynamic, multi-institutional virtual 
organizations [2], where a virtual organization is a collection 
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of compute nodes who share their resources.  There is no 
central control, the compute nodes are usually 
heterogeneous, and the communication cost between any 
two nodes varies depending on the nodes and time of 
communication.  The system is dynamic because existing 
nodes may become unavailable without warning, and new 
nodes may join the grid. 

One example of grid computing is Seti@Home, where the 
idle CPU times of desktop machines on the Internet are 
shared to analyze radio signals in the search for 
extra-terrestrial life; and file sharing systems like Napster 
and Kazaa, where disk storage is the resource that is being 
shared [3]. 

A grid middleware is a set of tools that can be used to 
build a grid system. For example, the Condor System [4] and 
the Globus System [5] are both middlewares. ALiCE 
(Adaptive and scaLable Internet-based Compute engine) is a 
grid computing middleware developed at NUS [6]. 

In this paper we present the design, implementation and 
experimental results of MATLAB*G, a parallel MATLAB 
on the ALiCE Grid, which can perform distributed matrix 
computation using task parallelism and job parallelism. 

The remainder of the paper is organized as follows: 
classification and comparison among parallel MATLABs is 
given in section II; the design of MATLAB*G is illustrated 
in section III; in section IV the implementation of 
MATLAB*G on ALiCE is shown; experimental results are 
related in section V and some recommendations for future 
work and conclusions are presented in Section VI. 

II. RELATED WORKS 

In this section, we classify existing parallel MATLABs 
into different categories according to two criteria: First, 
whether they provide implicit or explicit parallelism. 
Second, the method used for inter-processor communication. 

A. Implicit Parallelism vs. Explicit Parallelism 

In order to execute a program which exploits parallelism, 
the programming language must supply the means to identify 
parallelism, to start and stop parallel executions, and to 
coordinate the parallel executions. Thus from the 
programming language level, the approaches to parallel 
processing can be classified into implicit parallelism and 
explicit parallelism [7]: 
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Implicit parallelism allows programmers to write their 
programs without any concern about the exploitation of 
parallelism. Exploitation of parallelism is instead 
automatically performed by the compiler or the runtime 
system. Parallel MATLABs in this category include 
RTExpress [8], CONLAB Compiler[9], and MATCH[10]. 
All of these parallel MATLABs take MATLAB scripts and 
compile them into executable code.  

The advantage is that the parallelism is transparent to the 
programmer. However, extracting parallelism implicitly 
requires much effort for the system developer.   

Explicit parallelism is characterized by the presence of 
explicit constructs in the programming language, aimed at 
describing the way in which the parallel computation will 
take place. Most parallel MATLABs use explicit 
parallelism, like MATLAB*P [11], MATmarks [12], and 
DP-Toolbox [13].  

The main advantage of explicit paralleism is its 
considerable flexibility, which allows the user to code a wide 
variety of patterns of execution. However  the management 
of the parallelism, a quite complex task, is left to the 
programmer.  

For example, MATmarks extends the MATLAB language 
with commands to enable shared variables and process 
synchronization. In order to perform a parallel computation 
in MATmarks, the user must explicitly write the required 
communication and synchronization code. This is in contrast 
with an implicitly parallel MATLAB, where the system 
would handle the communication and synchronization 
“behind the scenes”. 

MATLAB*P is an explicitly parallel MATLAB designed 
at MIT. Unlike MATmarks, MATLAB*P handles 
communication and synchronization for the user.  Where it 
differs from implicitly parallel MATLABs however, is that 
MATLAB*P requires the user to explicitly indicate the 
matrices which are to be distributed. 

MATLAB*G is an explicitly parallel MATLAB. It is 
similar to MATLAB*P, in that it handles the communication 
and synchronization details for the user. However, while 
users are not required to indicate the matrices to be 
distributed, they have to explicitly specify the MATLAB 
computations to be parallelized. 

B. Inter-processor Communication 

In designing a parallel system, processors must have the 
ability to communicate with each other in order to 
cooperatively complete a task. There are two methods of 
inter-processor communication, each suitable for different 
system architectures: 

Distributed Memory Architectures employ a scheme in 
which each processor has its own memory module. Each 
component is connected with a high-speed communications 
network. Processors communicate with each other over the 
network. Well-known packages such as MPI [14] provide a 
message passing interface between machines. 

Most parallel MATLABs are built upon distributed 

memory architecture, e.g. MATLAB*P, Cornell 
Multitasking Toolbox for MATLAB, and Distributed and 
Parallel Application Toolbox, etc. One advantage of these 
parallel MATLABs is that MPI and PVM are mature 
standards which have been available for several years and 
offers a high degree of functionality. However, almost all of 
these parallel MATLABs exploit standard message passing 
interface, which means they can only run on homogenous 
clusters. 

Distributed Shared Memory systems have two main 
architectures [15]: 

 
• Shared Virtual Memory (SVM) systems share a single 

address space, thereby allowing processor 
communication through variables stored in the space. 
For example, MATmarks, an environment that allows 
users to run several MATLAB programs in parallel 
using the shared memory programming style is built 
on top of TreadMarks, a virtual SVM which provides 
a global shared address space across the different 
machines on a cluster. The environment extends the 
MATLAB language with several primitives to enable 
shared variables and synchronization primitives. 

• Object-based Distributed Shared Memory (DSM): 
Processes on multiple machines share an abstract 
space filled with shared objects. The location and 
management of the objects is handled automatically 
by the runtime system. Any process can invoke any 
object's methods, regardless of where the process and 
object are located. It is the job of the operating system 
and runtime system to make the act of invoking work 
no matter where the process and the object are 
located. DSM has a few advantages over SVM: (i) it 
is more modular and more flexible because accesses 
are controlled, and (ii) synchronization and access 
can be integrated together cleanly.  

 
MATLAB*G is currently the only parallel MATLAB 

built on object-based DSM. MATLAB*G is designed for 
ALiCE Grid which uses Sun’s Jini and JavaSpaces 
technologies.  

A shared memory interface is more desirable than a 
message passing interface from the application 
programmer's viewpoint, as it allows the programmer to 
focus more on algorithmic development rather than on 
managing communication. But such a parallel MATLAB 
depends on another system providing shared memory upon 
different machines. Furthermore, whether a parallel 
MATLAB can be run in a heterogeneous environment 
depends on whether the DSM supports heterogeneous 
machines.  

III. SYSTEM DESIGN 

In MATLAB, a normal matrix addition can be performed 
by executing the program in Figure 1. 



 
 

  
 
 
 

 
Fig. 1.  A MATLAB program for matrix addition. 

 

The first line creates a 10-by-10 matrix A, The second 
lines creates a 10-by-10 matrix B. The third line creates a 
10-by-10 matrix C, and lets it have the value: A+B. 

To parallelize the matrix addition, a user can write a 
MATLAB*G program as shown in Figure 2. 

 
 

 
 
 
Fig. 2.  A MATLAB*G program for the parallel matrix addition. 

 

The third line creates a 10-by-10 matrix C, performs 
parallel matrix addition between A and B, ad returns the 
result to C. 

From the user’s point of view, these two programs are 
equivalent because after execution the resulting matrix C in 
both programs has the same value in both programs. 

However, the executions of these two programs are quite 
different: the first program is executed purely inside 
MATLAB environment, but the second exploits parallelism 
provided by MATLAB*G.  

To achieve parallelism, MATLAB*G exploits a 
client-server model using Object-based Distributed Shared 
Memory (DSM). User submits his job interactively from 
MATLAB environment. The client gets the job, divides it 
into a number of tasks, sends tasks into the DSM, and then 
keeps polling the DSM for the result. A server always tries to 
get a task from DSM. After receiving a task, the server 
processes it, and then sends the result back to DSM. On the 
client side, after getting all results from servers, it assembles 
them into a complete result and returns it to the user. The 
system architecture is shown in Figure 3. 

 
Fig. 3.  MATLAB*G Client-Server Architecture  

A. The Client 

As shown in Figure 3, the client side consists of two 
components: Extension and MGClient.  

A more detailed diagram for the MATLAB*G client 
architecture is shown in Figure 4. 

 

 
Fig. 4.  MATLAB*G Client 

 
Extension includes a few MATLAB M files.  It provides 

user interfaces for parallelism and links MATLAB with 
MGClient.: 
a) ppstart: This is a MATLAB function introduced by 

MATLAB*G Extension. When the user calls ppstop(n), 
n servers are initialized and reserved for future 
computations. 

b) ppstop: This function  releases the reservations by a 
prior ppstart. 

c) mm: This function lets the user assign a parallel job. The 
syntax of mm is: A=mm(‘fname’, tasknum, matrices). 
fname is the computation that the user wants to execute, 
matrices are the arguments for this computation and  
tasknum is the task number specified by the user. The 
user can decide the task granularity according to the 
complexity of the computation and the size of matrices. 
We anticipate that in the next version, the tasknum 
argument will be removed and the task number will be 
generated by the system automatically according to 
certain algorithms. Finally, A is the result of 
computation.  

Another component, MGClient, includes a number of Java 
classes, and provides two main functionalities: 
a) Communicate with all the servers. MGClient 

communicates with the servers through DSM; it does 
not need to know their locations. 

b) Distribute tasks and assemble results. According to the  
user’s input program, MGClient generates a number of 
tasks, which can be executed on the servers. MGClient 
also has to assemble all results from servers into one 
complete and correct result and return it to the user. 

MGClient can be invoked only by Extensions, which 
makes the command set simpler. Pseudocode for MGClient 
is shown in Figure 5 below: 
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MGClient 

MATLAB 

  PPSTART    PPSTOP MM 

 

1: A=randn(10,10); 
2: B=randn(10,10); 
3: C=plus (A, B); 
 

1: A=randn(10,10); 
2: B=randn(10,10); 
3: C=mm(‘plus’, 2,  A, B); 
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Fig. 5.   MGClient Pseudocode 

 

Besides Extension and MGClient, a running instance of 
MATLAB is also required on the client side. This MATLAB 
session provides a programming environment to the user and 
thus lets the user invoke function calls in Extension. 

B. The Servers 

As communication latency is quite unpredictable on a grid 
system, it would be costly to pass data frequently among the 
compute nodes.  Thus currently only embarrassingly parallel 
mode of computation is supported, whereby each server 
receives a work package, performs computation without 
coordination with other servers, and sends results back to the 
client. 

The Server consists of two main components: 
MGProducer and Link. 

MGProducer runs on a server and waits for tasks from 
DSM.  On receiving a ppstart from DSM, MGProducer 
starts a MATLAB session at the backend through Link. 
Similarly, on receiving a ppstop, MGProducer terminates 
the MATLAB session. Upon  receiving a computation task, 
MGProducer performs calculation and sends the result back 
to DSM. The pseudocode for MGProducer is shown in 
Figure 6. 

 

 
Fig. 6.  MGProducer Pseudocode 

 
Link is another component on the server.  It is used by 

MGProducer to start a MATLAB session, stop a MATLAB 
session, and execute MATLAB programs. To implement 
Link, we make use of an existing Java interface to the 
MATLAB engine called JMatLink [16].  

C. DSM 

A tuplespace is a shared datastore for simple list data 
structures (tuples) [17]. A simple model is used to access the 
tuplespace, usually consisting of the operations write, take 
and read. A tuplespace provides DSM if every data inside it 
is an object. In MATLAB*G, communication between 
processors is handled through a tuplespace where processors 
post and read objects. Submatrices are deposited into space 
for server nodes to retrieve. The server nodes then perform 
computations on submatrices and return the results back to 
space. 

IV. SYSTEM IMPLEMENTATION 

MATLAB*G is written in Java and implemented on 
ALiCE Grid.  

A. Mapping MATLAB*G onto ALiCE  

There are two main components in ALiCE: a runtime 
system that handles management of grid resources, and a set 
of programming templates for users to develop applications 
on ALiCE. Figure 7 illustrates the ALiCE architecture. 

 
Fig. 7.  Layers in ALiCE Architecture 

The ALiCE Runtime System consists of three 
components: Consumer, Producers, and a Resource Broker. 
The Consumer provides a user interface for job submission, 
monitoring and collections of results.  The Producers 
interface with local schedulers of shared grid resources.  The 
Resource Broker manages the applications, scheduling of 
resources, communications and security of the system. The 
bottom two layers can be visualized in detail in Figure 8. 

 

Fig. 8.  ALiCE Runtime and Network Resources 

The Object Network Transport Architecture (ONTA) 
provides a layer for communication between JavaSpaces 
[18] and the Consumer/Resource-Broker/Producer layer. 

The JavaSpaces provides a distributed persistence and 
object exchange mechanism for code written in Java. 
Processes are loosely coupled and communicate and 
synchronize their activities using a persistent object store 
called a space, rather than through direct communication. 

The mapping from MATLAB*G onto ALiCE is 
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Loop Forever 
    If take PPSTART message fails, go to 1 
    Start MATLAB 
    Acknowledge the client 
    Loop Forever 
        Wait for message from the client 
        If message is PPSTOP, then  
            Stops MATLAB 
            Break 
        Else  
            Process message 
            Acknowledge completion of task and 

send result to the client 
        End If 
    End Loop 
End Loop 

                           

Switch of command passed in by Extension: 
Case: ppstart 

Send ppstart into DSM; 
Case: ppstop 

Send ppstop into DSM; 
Case: mm 

Partition matrices; 
Marshal message into a number of tasks; 
Send tasks into DSM; 
Wait for result by polling DSM; 
Return result; 

 



 
 

illustrated in Figure 9. Shaded boxes are MATLAB*G 
components. A user submits a job through ALiCE 
Consumer. In response to the submission of a job, the ALiCE 
Resource Broker will instantiate a MATLAB*G Client, and 
ALiCE Producers will instantiate MATLAB*G Servers. 

 
Fig. 9.  Mapping between MATLAB*G and ALiCE components 

B. ALiCE Program Generated by MATLAB*G 

ALiCE does not provide any interface to allow a user to  
directly run a MATLAB*G client on the Task Manager or 
run a MATLAB*G server on a Producer.  An application has 
to be submitted in the form of an ALiCE Program through 
the Consumer interface.  

An ALiCE program template consists of following 
elements: Task, which runs on the Producer; TaskGenerator, 
which runs on the Resource Broker; and ResultCollector 
which runs on the Consumer to collect the results obtained 
from the execution of tasks generated by the Task Manager. 

Templates for these three elements are provided by 
ALiCE. Thus our job is just to add MATLAB*G code into 
proper templates to generate customized ALiCE program 
elements.   

1) MGTaskGenerator 
Besides the client side code, the user’s MATLAB 

program is also embedded in the Task Generator template to 
create MGTaskGenerator. 

MGTaskGenerator first starts a MATLAB session, and 
then initiates n tasks by issuing command ppstart(n) to 
MATLAB. It then asks MATLAB to run the user’s 
MATLAB programs. When finished, it issues a ppstop 
command to terminate tasks.  MGTaskGenerator sends 
output it receives from MATLAB to MGResultCollector as 
the result from the computation. 

The pseudocode of MGTaskGenerator is as in Figure 10. 
 
 
 

1. Start MATLAB 
2. Starts the required number (N) of Tasks 
3. Issue “PPSTART(N)” to MATLAB 
4. Issue command to MATLAB to run user program 
5. Issue “PPSTOP” to MATLAB 
6. Stop MATLAB 
7. Return result 

Fig. 10.  MGTaskGenerator Pseudocode 
 

2) MGTask 
MGTask is created by adding the server side code into 

ALiCE Task template. Each MGTask instantiates an 
MGProducer and runs it.  The pseudocode for MATLAB*G 
Task is as in Figure 11. 

 
1. Instantiates MGProducer 
2. Execute the run method in MGProducer 

Fig. 11.  MATLAB*G Task Pseudocode 

 
3) MGResultCollector 
MGResultCollector extends the ALiCE Result Collector 

template. Running on the ALiCE Resource Broker, it simply 
waits for the result from JavaSpaces. 

An ALiCE program is created when we compile these 
elements together. The structure of such a program is 
described in Figure 12. 

 
Fig. 12.  Structure for a ALiCE Program generated by MATLAB*G 

 

After an ALiCE program is submitted to ALICE, the 
system dynamically finds available resources to join in the 
parallel computation, and each component is dynamically 
loaded by various machines as shown in Figure 13. Shaded 
boxes are ALiCE program elements for MATLAB*G. 

 
Fig. 13.  MATLAB*G running on ALiCE 
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C. Batch Mode 

ALiCE supports two types of applications. Batch 
applications are non-interactive applications and involve 
minimum user intervention. This mode is for executing large 
jobs. After submitting the application, the Consumer can 
disconnect itself and later reconnect for collecting the 
results. The result collection mechanism is implemented at 
the Resource Broker. Interactive applications require 
User/Consumer intervention during execution process. In 
this mode, Users/Consumers can program a graphical user 
interface (GUI) to visualize the progress of the execution. 
Results of executing individual tasks generated by the Task 
Manager are returned to the Consumer.  

The current MATLAB*G implementation supports batch 
applications: the user submits a complete MATLAB 
program instead of entering commands interactively at a 
MATLAB environment. This is accomplished by embedding 
the MATLAB program into MGTaskGenerater so that it can 
be submitted to the ALiCE Resource Broker. 

V. EXPERIMENTAL RESULTS 

We compare the performance of MATLAB*G with 
sequential MATLAB on the ALiCE Grid. 

The experiments are conducted on ALiCE Grid Cluster 
with twenty-four nodes connected by 100 Mbps Ethernet. 
Four nodes are used, each of which is a PIII 0.866GHz, 256 
MB RAM machine running Linux 2.4. 

The current implementation of MATLAB*G can exploit 
two forms of parallelism. The first is task parallelism. When 
a user wants to perform computation involving matrices, the 
computation can be divided into a number of tasks. Each task 
has the computation name and parameter submatrices. Tasks 
are sent to space and each producer gets a task from space 
and performs computation on its submatrices. The number of 
tasks a matrix computation should be split into is largely 
influenced by the complexity of the computation. A simple 
matrix computation (e.g. matrix addition) should be split into 
a small number of tasks so that the communication overhead 
does not dominate the computation time. Conversely, a 
complex matrix computation (e.g. computation of 
eigenvalues) should be split into a relatively large number of 
tasks. In general the number of tasks should be larger the 
number of Producers for load balancing consideration, as 
each node in the grid may have different computation ability 
and different network latency. 

 The second is job parallelism. When there are a number 
of matrix computations (jobs) to be executed one after the 
other, the user can specify for them to be executed in parallel. 
This will result in each matrix computation being executed 
on a single producer. 

We perform experiments to discover the performance of 
the MATLAB*G implementation on each type of 
parallelism. Specifically, we measure performance in terms 
of the time elapsed on the client side from submission of 
application to receipt of results. 

A. Task Parallelism 

The designer of MATLAB has previously stated that one 
reason for not developing a parallel MATLAB is that it takes 
much more time to distribute the data than perform the 
computation because a matrix that fits into the host’s 
memory would not be large enough to make efficient use of 
the parallel computer [19]. However this is true only for 
functions provided by MATLAB itself, which can be 
performed quite fast by MATLAB. For some MATLAB 
scripts written by a user, it is possible that the computation 
time for a normal size matrix is long enough that we can 
benefit from doing it in parallel.   

For example, we have a user program as in Figure 14.  
 

 
Fig. 14.  An example computation intensive program 
exp(X) is the exponential of the elements of X, e to the X 

 
We time this program in MATLAB and in MATLAB*G 

on various input matrix size and reproduce the results in 
Figure 15. 
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Fig. 15.   Timing for Task Parallelism on varying matrix size 

 

It can be seen that for small matrix size (e.g. 100x100), the 
elapsed time for sequential MATLAB is still less than that of 
MATLAB*G. This phenomenon is attributed to the 
communication and partitioning overhead which is much 
larger than the computation time. However, as matrix size 
increases, the performance of MATLAB*G improves 
relative to sequential MATLAB, eventually overtaking it at 
the crosspoint of approximately 500x500.  

B. Job Parallelism 

E = pinv(X) is the pseudoinverse function provided by 
MATLAB. If a user has to perform pinv() on a few matrices, 
he can perform pinv() on each matrix one by one; 
alternatively he can parallelize these jobs as shown in Figure 
16. 

Function result=Exp_1(A) 
For (i=1:1000) 
exp(A); 
End; 
Result=A; 



 
 

 
Fig. 16.a.  Compute pinv()s Sequentially 

 

 
Fig. 16.b.  Compute pinv()s in Parallel 

 
We time for the sequential program as in Figure 16.a and 

the parallel program as in Figure 16.b on various matrix size 
and reproducer the results in Figure 17. 
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Fig. 17.  Timing for Job Parallelism on varying matrix size 

 

Once again we see that for small matrix size the elapsed 
time for sequential MATLAB is still less than that of 
MATLAB*G. But as matrix size exceeds 500x500, 
MATLAB*G outperforms sequential MATLAB.  

VI. CONCLUSION AND FUTURE WORK 

MATLAB*G provides parallel MATLAB for the ALiCE 
Grid users. Currently two types of parallelism for matrix 
computation are implemented: task parallelism and job 
parallelism. Results of its performance indicate that for large 
matrix sizes MATLAB*G can be a faster alternative to 
sequential MATLAB. One direction for future work is to 
implement for-loop parallelism as they are one of the most 
time-consuming parts in many MATLAB programs. 
Optimizations are also required to reduce the cost of 
overheads such as communication time and matrix 
partitioning.  
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A1=randn(1000); 
A2=randn(1000); 
A3=randn(1000); 
A4=randn(1000); 
E1=pinv(A1); 
E2=pinv(A2); 
E3=pinv(A3); 
E4=pinv(A4); 
 

A1=randn(1000); 
A2=randn(1000); 
A3=randn(1000); 
A4=randn(1000); 
X(1:1000, :)=A1; 
X(1001:2000,:)=A2; 
X(2001:3000, :)=A3; 
X(3001:4000,:)=A4; 
Y=mm(‘pinv’, 4, X); 
E1=Y(1:1000,:); 
E2=Y(1001:2000,:); 
E3=Y(2001:3000,:); 
E4=Y(3001:4000,:); 

 

 


