
CQ-Buddy: Harnessing Peers For
Distributed Continuous Query Processing

Wee Siong Ng1, Yanfeng Shu2, and Wee Hyong Tok2

1Singapore-MIT Alliance, 4 Engineering Drive 3, National University of Singapore, Singapore-117576
2Department Computer Science, 3 Science Drive 2, National University of Singapore-117543

Abstract— In this paper, we present the design and evaluation
of CQ-Buddy, a peer-to-peer (p2p) continuous query (CQ)
processing system that is distributed, and highly-scalable. CQ-
Buddy exploits the differences in capabilities (processing and
memory) of peers and load-balances the tasks across powerful
and weak peers. Our main contributions are as follows: First,
CQ-Buddy introduces the notion of pervasive continuous queries
to tackle the frequent disconnected problems common in a
peer-to-peer environment. Second, CQ-Buddy allows for inter-
sharing and intra-sharing in the processing of continuous queries
amongst peers. Third, CQ-Buddy peers perform query-centric
load balancing for overloaded data source providers by acting
as proxies. We have conducted extensive studies to evaluate CQ-
Buddy’s performance. Our results show that CQ-Buddy is highly
scalable, and is able to process continuous queries in an effective
and efficient manner.

Index Terms— CQ-Buddy, continuous queries, CQ, P2P, peer-
to-peer, distributed.

I. INTRODUCTION

Peer-to-Peer (P2P) technology, also called peer computing,
is emerging as a new paradigm that is now viewed as a
potential technology that could re-architect distributed archi-
tectures. In a P2P distributed system, a large number of nodes
(e.g., PCs connected to the Internet) can potentially be pooled
together to share their resources, information and services. The
nodes, which can be both a data consumer and provider, may
join and leave the P2P network at any time, resulting in a
truly dynamic and ad-hoc environment. Furthermore, the nodes
could have idle resources (processing and memory) which
can be exploited by other nodes in a secured manner to help
process a portion of a distributed task.

Continuous queries are queries that are executed for a
potentially long period of time, and are used in the moni-
toring of data semantics in the underlying data streams to
trigger user-defined actions. Continuous queries transform a
passive networked structure into an active environment, and
are particularly useful in distributed environments where huge
volumes of information are updated frequently and remotely.
For example, users may be interested in monitoring the trading
volume or price of a particular stock over a period of time.

Wee Siong Ng is with Singapore-MIT Alliance, National University of
Singapore, S16 #04-19, 3 Science Drive 2, Singapore 117543 (email: sman-
gws@nus.edu.sg).

Yanfeng Shu is with School of Computing, National University
of Singapore, 3 Science Drive 2, Singapore 117543 (email:
shuyanfe@comp.nus.edu.sg).

Wee Hyong Tok is with School of Computing, National University of Singa-
pore, 3 Science Drive 2, Singapore 117543 (email: tokwh@comp.nus.edu.sg).

They could then express their request in a continuous query
as follows:

Monitor the Singapore Stock Exchange indefinitely,
notify me when Straits Time Index
current value > 1300

Fig. 1. Example of a CQ Query.

In the literature on continuous queries, much of the existing
work focuses on efficiently handling the processing of a large
number of continuous queries by exploiting similarity in the
queries, and subsuming a new incoming query into existing
queries groups [1]. These existing techniques, however, are
not expected to perform well in a highly distributed envi-
ronment for several reasons. First, these techniques were de-
signed mainly based on a centralized client-server architecture.
Queries are routed and registered to a single continuous query
system (CQS). Thus, much of the existing work focuses on
supporting as many queries as possible against external data
sources. However, it is clear that there is a limit to the
number of queries that can be handled by a single server, no
matter how efficient the CQS may be. Second, most of these
techniques focus on the data stream consumer (i.e. the system
processing the continuous queries), and neglect that the data
providers themselves could be potential bottlenecks. A popular
data provider may be easily overwhelmed by requests and
consequentially delay the response of a CQS. Third, multiple
continuous query systems do not share computations, and each
function autonomously and is concerned with the efficient
and effective execution of continuous queries within itself.
Multiple CQSs also do not share any query processing task.
In short, much of the work performed by individual CQSs
is duplicated. Furthermore, resources at some CQSs could be
under-utilized. For example, a large number of CQSs may be
accessing the same data provider, thus overloading the data
provider and causing it to become a bottleneck.

In this paper, we present the design and evaluation of CQ-
Buddy, a peer-to-peer (P2P) continuous query (CQ) processing
system that is distributed and highly-scalable. CQ-Buddy ex-
ploits the differences in capabilities (processing and memory)
of peers and load-balances the tasks across powerful and
weak peers. Furthermore, CQ-Buddy introduces the notion
of pervasive continuous queries, to allow complex continuous
queries to be processed by other buddy peers when a peer gets
disconnected. Second, CQ-Buddy allows for inter-sharing and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


intra-sharing in the processing of continuous queries amongst
peers. In CQ-Buddy, intra-sharing of queries is achieved by
grouping similar queries and processing them within the con-
tinuous query mechanism of the node, whereas inter-sharing
is achieved when multiple CQ-Buddies help one another
by processing continuous queries in a distributed manner.
Third, we note that data providers may be overwhelmed with
queries, and may become a bottleneck.CQ-Buddy peers help
to alleviate overloaded data providers by performing query-
centric load balancing for overloaded data source providers
by acting as proxies.

II. TOWARDS P2P CONTINUOUS QUERY PROCESSING

In this section, we first provide scenarios on distributed
continuous query processing on multiple sites. Next, we look
at the features of P2P systems and provide examples on how
P2P technology can be used to process continuous queries
in a distributed manner. We also look at how peers can help
and complement each other in processing queries and perform
load balancing. This will also serve to motivate the need for
continuous query processing using P2P technology. For this
purpose, we shall refer to a node in the distributed P2P network
as a peer.

A. Duplicate Processing of Similar Queries

Most existing continuous query systems [2], [3], [1], [4],
[5] are designed to process continuous queries in an efficient
manner at a single-site. In a network where there is a large
number of computers (nodes), each CQS executing on each
computer would process continuous queries independently.
There is therefore a large possibility of duplicate processing
of continuous queries in a network.

However, if the multiple CQSs executing at various peers
could cooperate and “help” each other in processing the
queries, the amount of duplicate processing can be signif-
icantly reduced, and thus improving overall system respon-
siveness. The grouping of similar queries to allow for sharing
of computation has in fact been the focus of many CQSs.
With increased opportunities for sharing, query processing can
be further optimized holistically across all CQSs. Contrast
this with a single CQS, where there are relatively lesser
opportunities for similar queries.

B. Data Providers - Bottlenecks?

When a large number of peers access the same data source,
the data provider itself becomes a bottleneck. Most of the
existing work focuses on tackling adaptive query processing
at the CQS end, but not at the data provider end. However,
the data providers themselves may be overloaded by requests
from multiple CQSs and hence their performance suffers. In
our model, we consider two different configurations for data
providers.

1) Data Provider with Multiple Nodes: In the first scenario,
the data provider consists of multiple nodes, with each node
providing the same set of data. The peers accessing the data
providers are aware of the multiple data providers, and uses a
selection policy to determine which data provider node would
service a request.

2) Peers as Proxies: In the second scenario, the data
provider consists of a single node. The node maintains a list of
neighboring peers which it can delegate as proxy peers. Proxy
peers fetch data on behalf of other peers, which must otherwise
access the data provider node themselves. This cuts down the
number of concurrent requests to the data provider node. As
the load of the data provider node reduces significantly, the
overall responsiveness of the system improves.

WWW
DS

1

2
3 n

q1

q2 q3 qn

Fig. 2. Multiple peers accessing a popular data source.

Let us consider an example. In Figure 2, we have mul-
tiple peers each issuing continuous queries to a popular
data provider. The data provider node quickly becomes a
bottleneck, since it has to handle multiple query requests from
multiple peers and send individual responses to each of them.

We conduct a simple experiment to validate this example.
In the first experiment, we create a total of 100 peers (varies
from 10 to 100). Each peer submits 50 queries on runtime
to a CQS. In the first set of experiment, there is a single
data provider node servicing the requests from the multiple
peers. The average response time of peers (see Figure 3(a)) is
recorded.

In the second experiment, we allow the data provider node
to delegate several proxy peers to service the requests. Queries
are submitted to these peers in a random manner. Figure 3(b)
shows that the response time improves significantly. Thus, we
can observe that by introducing proxy peers, we are able to
improve the overall responsiveness of the system.

0

10

20

30

40

50

10 50 100

R
es

po
ns

e 
ti

m
e 

(m
s)

Number of peers

Single data source

(a) Single Data Provider
Node

0

10

20

30

40

50

0 1 2 3 4 5

R
es

po
ns

e 
ti

m
e 

(m
s)

iso-peers

100 Peers

(b) Proxy Peers

Fig. 3. Experiment to show the advantages of introducing intermediate
proxies

C. Resource Sharing Strategies

P2P technology facilitates the sharing of data and computing
resources. Intuitively, if we can harness peers in a P2P network



to service continuous queries, there is immense potential for
enhancing the reliability and performance of all the CQS par-
ticipating in the P2P network. Figure 4(a) illustrates a scenario
where several “selfish” peers do not share the processing
of continuous queries with their neighbors, and choose to
process them by themselves. Let us now consider the scenario
in Figure 4(b). Each peer does not handle the entire CQ
processing of its own query. Instead, it shares the processing
workload with other peers in its neighborhood. Intuitively, the
workload can thus be evenly distributed amongst the peers,
instead of having several single overloaded peers.

1 2 3

A B C A B B C

(a) Selfish Peers.

1 2

3

A B

C

(b) Sharing
Peers.

Fig. 4. Peers’ relation.

Furthermore, peers may not have equal resources. Peers can
be running on a variety of devices, ranging from a Personal
Digital Assistants (PDA) to a laptop or a desktop. The basic
idea behind CQ-Buddy is to allow peers that are weaker
than its neighboring peers to seek help from buddy peers in
processing similar continuous queries.

D. Frequent Connection/Disconnection of Peers

Before leaving this section, let us look at an example that
motivates the need for pervasiveness in continuous queries.

Let us consider a business traveller, who wishes to perform
a long running computation (based on a complex financial
model) on real-time updates of the STI Composite index.
Furthermore, he needs the computed results upon arrival at
the destination. When the traveller boards the plane, his PDA
is disconnected from the network of peers. However, prior to
disconnecting, his peer software asks for help from its buddy
peers to perform the query. When he arrives at his destination,
he powers up his PDA and immediately, the buddy peers
provide him (rather his PDA) with the computed results from
the complex, long running function that has been applied to
an underlying continuous data stream (i.e. from the Singapore
Stock Exchange).

We refer to this class of continuous queries that are pro-
cessed by a peer on behalf of another peer, and retrieved at a
later time period as pervasive continuous queries. It is useful
when a peer can leverage on other buddy peers to process a
long running processing during its absence from the network.

III. CQ-BUDDY: A DISTRIBUTED CQS USING PEER

TECHNOLOGY

In this section, we shall present CQ-Buddy, a peer-to-peer
(P2P) continuous query system. We shall first look at the CQ-

Buddy network and the architecture of a CQ-Buddy node. For
illustration, Figure 5 shows a CQ-Buddy network with several
heterogeneous peers, including a handheld device (Peer 1),
laptop (Peer 6), PCs and a server-type peer.

A. CQ-Buddy Network

Fig. 5. Overview of CQ-Buddy Network.

CQ-Buddy is a P2P-enabled distributed CQS. In CQ-Buddy,
we distinguish between two different roles of peers. First, peers
can act as proxies to data providers and help to reduce the
number of concurrent requests to the data provider nodes (e.g
Peer 2 and 5 in Figure 5). Second, each peer implements a
continuous query system that cooperatively interacts with other
peers to process continuous queries (e.g. Peer 3 to 6 in Figure
5).

Let us consider the case where a new query Q2 = se-
lect * from sti.stream where Stock.symbol =’Creative 50’
or Stock.symbol = ’SIA’ is submitted to Peer 2. sti.stream
retrieves the stock indexes from the Straits Time Index which
is provided by the Singapore Stock Exchange. All incoming
queries that are submitted by the user to a peer are first
optimized. If a query is similar to one of the existing queries,
it is subsumed into an existing query group.

If the query is not similar, the peer could either process it
by itself or ask another peer (ie CQ-Buddy) which is already
processing a similar query to help. In the second option, the
peer sends a “help” message with the newly arrived query
to other peers to see whether they are already processing a
similar query. This hypothetical model is practical especially
in a P2P environment, where some peers are more reliable
and stable than the others, e.g., workstations as compared to
PDAs, and dedicated network lines as compared to modem
dial-ups. Stronger peers, with more resources (i.e. processing
and memory) help weaker peer in processing continuous
queries. Note that the objective is to locate peers which
currently handle similar processes (i.e., monitoring data source
sti.stream with projection attributes Stock.symbol), so no exact
match of projection attributes is necessary.

When Peer 2 sends a “help” message to other peers, it has no
advance knowledge of the number of peers that will respond.
Instead, it relies on a predefined threshold (e.g., stop when 2



peers return results or when timeout sets in). In the case of an
empty result, the query will be sent to the original CQS, e.g.,
Peer 3 and Peer 5. A new process will be created in the process
pool of Peer 3 and Peer 5 since there are no similar queries
that are currently running. Note that although Peer 3 and Peer
5 can always process the incoming query (either merge it into
the existing local process pool for similar queries, or create a
new process to handle it), that option will only be taken last
in order to avoid building up a single data source bottleneck.

When a peer receives a request, it may either handle the
query if it has similar queries running in its local process pool,
or drop the message otherwise. Msg X keeps on propagating
to neighboring peers and the live time is controlled by TTL
(Time-to-Live). TTL indicates the maximum number of hops
the message can be passed on before it expires, and this is
used to avoid flooding the network. In order to break potential
message loops, each peer keeps a queue of the recent messages
and rejects the ones that have been processed before. Peers
which are able to handle the query (i.e. able to merge the
incoming query into their existing process groups) will send
an acknowledgement directly to Peer 2 with its identity, BPID
1. Peer 2 keeps the BPIDs, which may be used for further
reference, e.g., to remove the query.

B. Architecture of a CQ-Buddy Node

Let us consider the architecture of a CQ-Buddy node. Figure

Fig. 6. Architecture of a Peer.

6 depicts the architecture of an autonomous peer in CQ-
Buddy. CQ-Buddy is an extension of the BestPeer platform
that provides low-level P2P facilities, e.g., communication, and
search mechanism. The core of a peer in CQ-Buddy is the CQ-
Manager that accepts user queries through a user interface and
then invokes the underlying execution engine. Each query is
optimized by the Query/Group optimizer, where it is integrated
into a group of queries if it is similar to them. An incoming
query will first be optimized internally with a peer. The queries
or grouped queries that cannot be subsumed into an existing
query will then be used as input for the P2P search engine to
locate the other peers that can handle the queries. Note that the
Data Manager module may not be operational in a peer, since
it simply consumes data provided by the data provider and act
as an intermediate proxy for other peers if there is a need for

1CQ-Buddy is built on top of BestPeer [6]. BPID is a global identity used
in BestPeer to uniquely identify different peers and their respective location
in the dynamic network.

load balancing. The data manager in a peer monitors the data
sources (i.e. a flat file, DBMS or data streams from devices in
the network). Here, we assume that the data are read-only, and
that there is an implicit time attribute tagged to all data. CQ-
Manager invokes the execution engine to evaluate the installed
continuous queries. Second, the CQ-Manager orchestrate the
queries that are processed by other peers, and handles the
return of the results to the CQ-Buddy GUI.

1) Strategies for Processing Similar Queries: When a peer
receives a new continuous query for processing, it first deter-
mines whether the continuous query is similar to any of the
queries running in its existing pool. The similarity between a
newly arrived continuous query and all the running queries
is computed. If the newly arrived query is similar to one
of the existing running queries, it will be added onto the
existing query. If the newly arrived query is similar to none
of the existing running queries, the peer can choose from two
strategies.

In the first strategy, which we refer to as SELF-HELP, the
peer initiates a new processing task to handle this new query
itself. In this manner, the peer behaves exactly like a single
CQS. In the second strategy, which we refer to as BUDDY-
HELP, the peer asks its buddy peers for “help” in processing
the query. The buddy peers then process the query on behalf of
the peer, and provide the peer with the results of the continuous
query. In Section IV, we perform an extensive study on the
effectiveness of these two proposed strategies.

IV. A PERFORMANCE STUDY

We have conducted detailed simulation to study the various
CQ-Buddy features discussed in the previous sections. In
this section, we present our extensive performance evaluation
of CQ-Buddy. First, we show the benefits of CQ-Buddy in
allowing multiple CQSs in a P2P network to cooperate and
help each other. Second, we show how stronger peers can help
weaker peers process continuous queries. Third, we consider
the various proxy peer selection policies which can help a data
provider reduce the number of simultaneous requests being
sent to it. Finally, we look at the effects of the number of
delegated peers on query response time.

A. Experiment Parameters

1) Data Sets: We run our experiments against two different
data sets, R and S. Relation R and S consists of 50,000 and
100,000 tuples respectively. We assume every join query in our
experiments is a one-to-one, (i.e., each tuple in one relation
finds a corresponding matching tuple in the other relation)
binary join. The size of each tuple is about 1K bytes and the
data values are uniformly distributed.

2) Queries: In our experiments, we use three types of
queries to represent the possible queries that users may submit
to a CQS. We categorize queries into Simple Selection Query,
Range Selection Query and Join Query. Simple Selection
Query is a group of queries that have the same expression
signature on the equal selection predicate on Identity. Range
Selection Query is a group of queries that have the same
expression signature on range selection predicate on Change



Ratio. Join Query is a class of queries that contain expression
signature for both selection and join operators. Selection
operators are pushed down under join operators.

B. CQ-Buddy vs. Independent CQS

In the first experiment, we compare the performance of
existing CQSs with CQ-Buddy. Existing CQSs can generally
be classified into two types. In the first type of CQSs, queries
are shared (grouped sharing)[1], [5] techniques. In the second
type of CQSs, queries are not shared [3]. We refer to the
former CQS type as GroupCQ and the latter as TraditionalCQ.
In the experiment, we shall consider GroupCQ, since the
later is able to allow computation for similar queries to be
shared and is thus more efficient and effective compared to
TraditionalCQ.

(a) Independent CQS. (b) CQ-Buddy

Fig. 7. Independent CQS vs CQ-Buddy

Each CQ peer consists of 10 basic queries, and another
query set consisting of 10 queries following the 80-20 rule
(i.e., 80% of the queries access a hot region representing 20%
of the entire data stream) is introduced into the system at
runtime. Queries are submitted to the peers.

Similar to the case of a single CQS, a new query is checked
to determine whether it can be shared with one of the basic
queries. If the incoming queries cannot be shared, they are
processed separately from the existing queries. We set the
degree of overlap, for similar queries to be α = 0.4. We vary
the number of peers from 100 to 1000 peers.

In the GroupCQ case, we make use of several peers each
running a CQS, independent of each other. Peers in the
GroupCQ case do not interact with each other, and process the
continuous queries with no knowledge of the continuous query
that are being processed in other CQSs. In the CQ-Buddy
case, peers help one another in processing similar queries. We
compare the performance of these two cases.

We study the performance of GroupCQ and CQ-Buddy
using three types of queries: Simple Selection Query, Range
Selection Query and Join Query. Figure 8 shows the results
of the experiments. From Figure 8(a), we note that GroupCQ
performs slightly better than CQ-Buddy when the number of
peers is small (less than 250). This is due to cost of passing
message to explore which other peers can process a similar
query. However, when the number of peers increases, it can
be observed that CQ-Buddy outperforms GroupCQ. In Figure
8(b) and Figure 8(c), as the nature of the operations get
more complex (i.e. join queries), the benefits of being able to

cooperatively process similar queries amongst peers become
apparent.

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e 
(m

s)

Number of Peer

Single CQS
CQ-Buddy

(a) Selection Queries

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e 
(m

s)

Number of Peer

Single CQS
CQ-Buddy

(b) Range Queries

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
es

po
ns

e 
(m

s)

Number of Peer

Single CQS
CQ-Buddy

(c) Join Queries

Fig. 8. Traditional CQS vs. CQ-Buddy for Different Query Types

It can be observed from Figure 8 (a)-(c) that when the num-
ber of peers is small, the cost of message passing between CQ-
Buddy peers dominates, and hence the performance of CQ-
Buddy suffers. However, in a large P2P network, the number
of peers participating is potentially large, and hence substantial
benefits can be reaped from being able to cooperatively process
queries.

V. RELATED WORKS

Continuous queries are used extensively as a useful tool
for the monitoring of updated information. The concept of
continuous queries was first introduced by Terry et al. [2] who



implemented timer-based continuous queries over append-only
database. The approach is too restricted, i.e., it is confined to
append-only systems and disallows deletions and modifica-
tions. Hence it is not adaptable to dynamic environments such
as those found in a distributed or P2P context.

There has been considerable research done in continuous
queries processing. More recently, there are several CQ sys-
tems developed or proposed for monitoring and delivering
information on the Internet. OpenCQ [3] employs an SQL like
query language and runs on top of a distributed information
mediation system that integrates heterogeneous data sources.
The NiagaraCQ system [1] and Xyleme system allow the
monitoring of XML documents found on the web. In addition,
both CACQ [4] and AdaptiveCQ [5] take note of the need
for adaptivity and propose techniques based on the eddies
mechanism to facilitate adaptive continuous query processing.

All the systems mentioned above are fundamentally dif-
ferent from CQ-Buddy in several ways. First, most of these
existing systems utilize a centralized approach in which the
server performs the processing and treat the clients as simply
receiving and presenting the information to the end-user. This
is typical of a client-server approach. B. Gedik and L. Liu have
proposed a distributed CQ system (PeerCQ) for information-
monitoring [7]. Although PeerCQ is similar to our approach
on supporting CQ processing using peers, the fundamental
architectures are different. PeerCQ is built on a structured
DHT-based topology. In order to balance the load among
the distributed peers, PeerCQ requires a careful design on
mapping CQ identifiers and peer identifiers. A poor decision
might form hop-spots in the network. In contrast, CQ-Buddy
does not require a structured network which avoids hop-spots
generation.

The requirements of CQ-Buddy match the characteristics
of the P2P technology perfectly. In a pure P2P environment
there are no global services, resource or schema control.
P2P systems, like Napster [8], Gnutella [9] , ICQ [10] and
SETI@Home provide for content sharing, communication and
sharing of computational power. An evaluation of P2P systems
can be found in [11]. These systems are limited to transferring
content at the object level and cannot support the execution of
complex queries across multiple sources, nor use intermediate
results in order to answer consecutive queries.

VI. CONCLUSION

In this paper, we have presented a distributed system that
processes continuous queries using Peer-to-Peer technology,
called CQ-Buddy. We have shown that CQ-Buddy is able to
provide significant performance gains by sharing continuous
queries with other peers in an efficient and effective manner.
The system is fully distributed and highly scalable as there
is no single-point failure and single-source bottleneck. The
CQ-Buddy network is dynamic and it does not require any
specific network structure to be defined. Peers in the CQ-
Buddy network also turn their heterogeneity to their advantage,
so that “weaker” peers such as PDAs and other mobile devices
are helped by “stronger” peers for complex query processing.

As shown in the evaluation, CQ-Buddy achieves significant
performance gains with respect to traditional CQ systems. This

is accomplished by (i) Allowing inter-sharing and intra-sharing
in the processing of continuous queries amongst peers. (ii)
Performing query-centric load balancing for overloaded data
source providers by allowing peers to act as proxies.

REFERENCES

[1] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “Niagaracq: A scalable
continuous query system for internet databases,” in ACM SIGMOD Intl.
Conf. on Management of Data, 2000, pp. 379–390.

[2] D. Terry, D. Holdberg, D. Nichols, and B. Oki, “Continuous queries over
append-only database,” in ACM SIGMOD Intl. Conf. on Management of
Data, 1992, pp. 321–330.

[3] L. Liu, C. Pu, and W. Tang, “Continual queries for internet scale event-
driven information delivery,” in IEEE Knowledge and Data Engineering,
Special Issue on Web Technology, vol. 11, No.4, 1999, pp. 610–628.

[4] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Continuously
adaptive continuous queries over streams,” in ACM SIGMOD Intl. Conf.
on Management of Data, Madison, USA, 2002, pp. 49–60.

[5] W. H. Tok and S. Bressan, “Efficient and adaptive processing of multiple
continuous queries,” in Intl. Conf. on Extending Database Technology
(EDBT), Prague, Italy, 2002, pp. 25–27.

[6] W. Ng, B. Ooi, and K. Tan, “Bestpeer: A self-configurable peer-to-peer
system,” in Intl. Conf. on Data Engineering (Poster) (ICDE), 2002, p.
272.

[7] B. Gedik and L. Liu, “Peercq: A decentralized and self-configuring peer-
to-peer information monitoring system,” in Intl. Conf. on Distributed
Computing Systems (ICDCS), 2003.

[8] Napster Home Page, http://www.napster.com/.
[9] Gnutella Development Home Page, http://gnutella.wego.com/.

[10] ICQ Home Page, http://www.icq.com/.
[11] B. Yang and H. Garcia-Molina, “Comparing hybrid peer-to-peer sys-

tems,” in Intl. Conf. on Very Large Data Bases (VLDB), 2001, pp. 561–
570.

Wee Siong Ng Ng Wee Siong is a research fellow in the National University
of Singapore under the Singapore-MIT Alliance (SMA). His current research
interests cover Peer-to-Peer data management, distributed query processing
and database performance issues. He has received BIT (Bachelor of Infor-
mation Technology) from University Malaysia Sarawak (UNIMAS). He has
submitted his Ph.D. thesis recently.

Yanfeng Shu got her MSc from SouthEast Univery, china, in 1996, and
her BSc from Harbin Institute of Technology, China, in 1993. She is now a
Phd student in Computer Science Department, NUS. Her research interests
includes query processing and optimization in relational databases, and P2P.

Wee Hyong obtained his MSc, BSc (Hons) from School of Computing
(SoC), National University of Singapore (NUS) in 2002, 2000 respectively.
Currently, he is a teaching assistant in the Computer Science Department,
NUS. His research interests includes adaptive query processing and optimiza-
tion issues in continuous query (CQ) systems, XML.


