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Abstract— Backoff strategies have typically been ana-
lyzed by making statistical assumptions on the distribution
of problem inputs. Although these analyses have provided
valuable insights into the efficacy of various backoff strate-
gies, they leave open the question as to which backoff
algorithms perform best in the worst case or on inputs,
such as bursty inputs, that are not covered by the statistical
models. This paper analyzes randomized backoff strategies
using worst-case assumptions on the inputs.

Specifically, we analyze algorithms for simple multiple-
access channels, where the only feedback from each attempt
to send a packet is a single bit indicating whether the
transmission succeeded or the packet collided with another
packet. We analyze a class of strategies, called window
strategies, where each packet partitions time into a se-
quence 〈W1, W2, . . .〉 of windows. Within each window, the
packet makes an access attempt during a single randomly
selected slot. If its transmission is unsuccessful, it waits for
its slot in the next window before retrying.

We use delay-sequence arguments to show that for the
batch problem, in which n packets all arrive at time 0, if
every window has size W = Θ(n), then with high prob-
ability, all packets successfully transmit with makespan
n lg lg n ± O(n). We use this result to analyze window
backoff strategies with varying window sizes. Specifically,
we show that the familiar binary exponential backoff
algorithm, where Wk = Θ(2k), has makespan Θ(n lg n),
and that more generally, for any constant r > 1, the
r-exponential backoff algorithm in which Wk = Θ(rk)
has makespan Θ(n lglg r n). We also show that for any
constant r > 1, the r-polynomial backoff algorithm, in
which Wk = Θ(kr), has makespan Θ((n/ lg n)1+1/r).

All of these batch strategies are monotonic, in the sense
that the window size monotonically increases over time.
We exhibit a monotonic backoff algorithm that achieves
makespan Θ(n lg lg n/ lg lg lg n). We prove that this algo-
rithm, whose backoff is superpolynomial and subexponen-
tial, is optimal over all monotonic backoff schemes. In addi-
tion, we exhibit a simple backoff/backon algorithm, having
window sizes that vary nonmonotonically according to a
“sawtooth” pattern, that achieves the optimal makespan
of Θ(n).
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We study the online setting using an adversarial queueing
model. We define a (λ, T )-stream to be an input stream
of packets in which at most n = λT packets arrive during
any time interval of size T . In this model, to evaluate a
given backoff algorithm (which does not know λ or T ), we
analyze the worst-case behavior of the algorithm over the
class of (λ, T )-streams.

Our results for the online setting focus on exponential
backoff. We show that for any arrival rate λ, there exists a
sufficiently large interval size T such that the throughput
goes to 0 for some (λ, T )-stream. Moreover, there exists
a sufficiently large constant c such that for any interval
size T , if λ ≥ c lg lg n/ lg n, the system is unstable in the
sense that the arrival rate exceeds the throughput in the
worst case. If, on the other hand, we have λ ≤ c/ lg n
for a sufficiently small constant c, then the system is
stable. Surprisingly, the algorithms that guarantee smaller
makespans in the batch setting require lower arrival rates
to achieve stability than does exponential backoff, but when
they are stable, they have better response times.

I. Introduction

Backoff is the method of choice for resolving contention
in the use of multiple-access channels. The idea of
backoff is that whenever a packet experiences a collision
in the use of the channel, it retries, but with a diminished
probability of transmission in subsequent time slots.
If all packets coöperate in using this strategy and the
channel is not oversubscribed, all packets eventually can
be transmitted without interference from other packets.

Randomized backoff is perhaps best known in the
context of the Ethernet [32] local-area network. When
several packets attempt to use the multiple-access Eth-
ernet channel at the same time, a collision occurs,
and no packets are successfully transmitted. Ethernet’s
exponential backoff hardware resolves this contention
by retrying packet transmissions with exponentially de-
creasing frequency. Specifically, whenever an attempted
transmission fails due to network contention, the hard-
ware responsible for transmitting the packet doubles the
value of a counter, and then it waits for a random amount
of time whose expectation is proportional to the value of
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the counter before trying to transmit the packet again.
Backoff has proved itself to be an effective and

practical method for contention resolution in a myriad
of settings besides Ethernet, including radio and satellite
networks [1], email retransmission [5], [7], TCP con-
gestion control [36], Sun RPC congestion control [33],
HTTP congestion control [8], DHCP retry [42], setting
power levels on radio transmitters [44], barrier synchro-
nization in shared-memory multiprocessors [2], optical
switching [9], [11], [12], [15], contention resolution in
PRAMs [26], [30], randomized routing on fat trees [19],
transaction conflict resolution in databases [41] and
distributed databases [35], transactional memory ac-
cess [22], [24], lock conflicts [21], [23], etc.

Given the prominent role played by randomized back-
off in computer systems, it is surprising that many as-
pected of backoff are not yet understood. How do backoff
algorithms perform in the worst-case when the arrivals
of packets are governed by an adversary rather than a
statistical queueing model? How do backoff algorithms
behave under the assumption that all packets arrive
at the same time versus when they arrive individually
over time? What is the proper rate for backing off:
exponential, quadratic, or something else? Is there any
advantage to “backing on,” or should the probability of
retransmission simply diminish over time?

The answers to these questions may depend greatly on
the model for the multiple-access channel. For example,
in some models, packets may have different sizes, taking
different amounts of time to transmit. Furthermore, a
collision of several packets may allow one or more
packet transmissions to succeed, as opposed to all pack-
ets failing. It may matter greatly how much information
is fed back to the sender when a transmission fails due
to a conflict. The backoff algorithm may or may not
be able to synchronize transmission attempts based on
knowledge of global time.

In this paper, we study the worst-case performance
of randomized backoff algorithms for simple multiple-
access channels. In this model, all packets take unit
time for transmission, and if several packets collide on
the channel, none is successfully delivered. The only
feedback to the backoff algorithm is the fact that the
message was not delivered. Moreover, the algorithm can-
not “listen” to the channel and glean information without
actually attempting a transmission. Finally, the algorithm
cannot exploit knowledge of a global clock in order
to synchronize the transmission attempts of different
packets. Simple multiple-access channels are useful not
only for understanding the shared properties of many
conflict resolution systems, but also for exactly modeling
some of these situations. For example, satellites such as
Aloha are not be able to listen to their channel because
of excessive delays [1], while 802.11 [25] wireless links

cannot do so because a sender’s own transmission is
so loud it drowns out the channel information. These
systems rely on various kinds of acknowledgments to
verify transmission.

We consider backoff strategies in which time is par-
titioned into a sequence 〈W1,W2, . . .〉 of windows, and
exactly one transmission attempt is made within each
window. A backoff strategy is monotone if Wi ≤ Wi+1.

Packets are injected over time via one of several
models. The most common model in the literature is that
the packets arrive according to a Poisson distribution
with arrival rate λ. We consider the batch model, in
which n jobs all arrive at time 0, and the adversarial
queueing model [6]. We define a (λ, T )-stream to be
an input stream of packets in which at most n = λT
packets arrive during any time interval of size T . Once
again, λ is referred to as the arrival rate, and T is called
the interval size.

We use several measures of performance of a backoff
strategy with respect to a packet model. For the batch
case, we define the makespan to be the time at which the
last packet completes. For a (λ, T )-stream, we define the
throughput to be the number of packets that complete in
a window of size T divided by T . The response time of
a packet is the amount of time it is in the system before
it successfully transmits.

A channel is said to seize when its throughput goes
to 0. We will say that a backoff strategy is unstable if
there exists a (λ, T )-stream such that the throughput is
less than the arrival rate. Otherwise, a backoff strategy
is stable.

Most of the prior analytical results for contention
resolution assume a statistical queueing-theory model,
that is, Poisson arrival of packets. The literature in
this area is very rich (see [10] for a nice survey).
We mention that Goldberg et al [14] showed that for
Poisson arrivals, there is an backoff strategy that achieves
O(1) expected response time. Kumar and Merakos had
simulation results [27] that bulk arrivals seem to lead
to greater stability than Poisson, when using exponential
backoff. We will show that the combination of bulk and
Poisson-like arrival substantially impaires the stability of
exponential backoff.

Several papers have bounds on polynomial backoff
rather than exponential [13], [16], [20], [37]. For ex-
ample, Hastad, Leighton, and Rogoff [20] show that
under certain queuing models, quadratic backoff (or
any polynomial backoff) is stable for any arrival rate
λ < 1, whereas there is a constant 0 < λ0 < 1, such
that exponential backoff is unstable for any arrival rate
λ > λ0. We will consider the makespan of polynomial
backoff in the batch case.

Batch arrivals have been considered by several au-
thors [9], [11], [12], [15], [17], [18], [43], though they



were interested in routing h-relations, involving multiple
channels, while we consider a detailed analysis of one
channel.

Map and Results

In Section II, we use delay-sequence arguments [39]
to show that for the batch arrivals, if every window has
size W = Θ(n), then with high probability1, all packets
successfully transmit with makespan n lg lg n ± O(n).

We use this result to analyze window backoff strate-
gies with varying window sizes. Specifically, in Sec-
tion III, we show that the binary exponential backoff
has makespan Θ(n lg n), and that more generally, for
any constant r > 1, the r-exponential backoff algorithm
in which Wk = Θ(rk) has makespan Θ(n lglg r n). We
also show that for any constant r > 1, the r-polynomial
backoff algorithm, in which Wk = Θ(kr), has makespan
Θ((n/ lg n)1+1/r).

All of these batch strategies are monotonic. In Sec-
tion IV, we exhibit a monotonic backoff algorithm that
achieves makespan Θ(n lg lg n/ lg lg lg n). We prove that
this algorithm, whose backoff is superpolynomial and
subexponentional, is optimal over all monotonic backoff
schemes. In addition, we exhibit a simple backoff/backon
algorithm, having window sizes that vary nonmonoton-
ically according to a “sawtooth” pattern, that achieves
the optimal makespan of Θ(n).

In Section V, we study adversarial packet arrivals.
Our results focus on exponential backoff. We show that
for any arrival rate λ, there exists a sufficiently large
interval size T such that the throughput goes to 0 for
some (λ, T )-stream. Moreover, there exists a sufficiently
large constant c such that for any interval size T , binary
exponential backoff is unstable with respect to some
(λ, T )-stream, if λ ≥ c lg lg n/ lg n, while there is a
sufficiently small c such that binary exponential backoff
is stable with respect to any (λ, T )-adversary, if λ ≤
c/ lg n for a sufficiently small contant c. Surprisingly, the
algorithms that guarantee smaller makespans in the batch
setting require lower arrival rates to achieve stability than
does exponential backoff, but when they are stable, they
have better response times.

In Section VI, we wrap up with some analysis of non-
window backoff strategies and future work.

II. Fixed backoff

In this section, we analyze a simple backoff algorithm
for the batch setting, namely one in which there is

1Define high probability to mean with probability at least 1 −
O(n−O(1)). We say that a parameterized event Ep occurs with high
probability if for any constant c > 0 there exists a valid choice of
parameter p such that Pr {Ep} ≥ 1 − n−c.

no backoff. Specifically, we analyze the fixed backoff
algorithm when all windows have the same fixed size
which is proportional to the number of packets. We use
delay-sequence arguments to prove that with high prob-
ability, all packets successfully transmit with makespan
n lg lg n ± O(n). This result extends to the situation
where all windows have size Θ(n), but where they need
not all have the same size. We shall use these results in
Sections III and IV to analyze window backoff strategies
with asymptotically varying window sizes.

We shall find it convenient to analyze the fixed backoff
algorithm in terms of rounds, where each round consists
of a single window. Since we are in the batch setting,
the rounds are synchronized across all packets.

We use the technique of “delay sequences” [39], [40]
to prove the results of this section. Intuitively, a delay
sequence is a “minimal” explanation of why some packet
survives for a given number of rounds.

Definition 1: A length-k delay sequence is an event
described by a sequence 〈S1, S2, . . . , Sk〉 of sets of
packets, such that

1. Si+1 ⊆ Si (1 ≤ i < k);
2. 2|Si+1| ≥ |Si| (1 ≤ i < k);
3. |Sk| = 2.

We say that a delay sequence (S1, S2, . . . , Sk) occurs if
in round i, each packet in set Si collides with another
packet in Si, thus surviving round i. The volume of the
delay sequence is defined to be Ssum = |S1|+ · · ·+ |Sk|,
and the base of the delay sequence is S1.

We first prove the upper bound of n lg lg n + O(n)
for the fixed backoff algorithm. Although it is straight-
forward to show a makespan of Θ(n lg lg n) with high
probability (proving this result is an exercise in [34]),
we shall see in Section III that backoff protocols can
be exquisitely sensitive to constants. Consequently, our
analysis relegates asymptotic notation to second-order
terms.

Theorem 2: Consider a batch instance in which all n
packets have fixed linear window size W ≥ 3e3n. Then,
all packets transmit successfully in time n lg lg n + cn
with probability at least 1 − n−2c+2.
Proof Sketch. The full proof argues that if some packet
p survives k rounds, then some length-k delay sequence
occurs. It then shows that the probability of a given
length-k delay sequence (S1, S2, . . . , Sk) occurring is at
most (e|S1|/2W )Ssum/2. The number of distinct length-k
delay sequences for given values of |S1| and Ssum can
then be bounded as

NUMDS( |S1|, Ssum) ≤
(

ne2(Ssum + |S1|)
|S1|2

)|S1|

.

The sets S1, . . . , Sk obey the following size restrictions:

1. |S1| ≤ 2k;
2. Ssum ≥ 2 (|S1| − 1 + k − lg |S1|).



Let PROBDS( |S1|, Ssum) represent the probability that
a given delay sequence occurs having the values |S1| and
Ssum. The probability that any length-k delay sequence
occurs is at most

2k

∑

|S1|=2

k|S1|
∑

Ssum=2(|S1|−1+k−lg |S1|)

NUMDS( |S1|, Ssum)PROBDS( |S1|, Ssum) .

Observe that the largest term in the sum occurs when the
volume is as small as possible and the base is as large
as possible. Plugging in W ≥ 3e3n and k = lg lg n + c
completes the proof.

The bounds from Theorem 2 hold even if the windows
have different sizes in different stages, as long as they
are sufficiently large.

Corollary 3: Consider a uniform batch instance in
which the packet windows have size W ≥ 3e3n, (i ≥ 1).
All packets transmit successfully in at most lg lg n + c
windows with probability at least 1 − n−2c+2.

We now use a delay-sequence argument2 to prove that
if all the n packets have a fixed linear window size W =
Θ(n), then some packet requires time n lg lg n − O(n)
with high probability to transmit successfully.

The delay sequence for the lower bound is as follows:
Definition 4: A length-k delay sequence is an event

described by ordered pair (Tk, J), where

1. Tree Tk is a complete binary tree of height k;
height is defined so that a single node has height 1.

2. Ordered set J is a sequence of 2k distinct packets.
3. Each node u ∈ Tk is an ordered pair of packets
(uleft, uright).

4. Let nodes v and w be the left and right children
respectively of node u. Then, uleft = vleft and uright =
wleft.

A length-k delay sequence (Tk, J) occurs if the follow-
ing conditions hold:

1. For each node u ∈ Tk of height h, packets uleft

and uright collide with each other in round h.
2. Moreover, for each node u ∈ Tk of height h,

packets uleft and uright collide with no other packets
(including packets not in J) in this round.

3. For each node u ∈ Tk of height h, packet uright

completes in round h+1, i.e., in round h+1 packet
uright collides with no other packets.

Consider two delay sequences (Tk, J) and (T ′
k, J) that

are identical except that the order of the packets in the
root node of the tree is reversed; (Tk, J) and (T ′

k, J)
describe the same computational event. We say that two
delay sequences are distinct if they described different
events. We say that two delay sequences (Tk, J) and
(T ′

k′ , J ′) overlap if they share common packets, i.e., J ∩
J ′ 6= ∅.

2Note to reviewers: The authors would be interested to learn of any
other lower bounds proved using a delay-sequence argument.

Theorem 5: For n packets with window size 2n ≤
W ≤ 4n, there exists one packet not completed after k =
blg lg nc−3 rounds with probability at least 1−4n−3/8.
Proof Sketch. The full proof argues that if a length-
k delay sequence occurs, then some packet p survives
exactly k + 1 rounds. It then shows that the probability
that a given delay sequence (Tk, J) occurs is at least

(

1

W

)2k−1 (

W − n

W

)2k+1−2

.

The number of distinct length-k delay sequences is the
number of ways of selecting set J with order divided
by 2, and this quantity can therefore be bounded as
(1/2)n!/(n − 2k)!.

Because a lower bound is being established, the proof
cannot use the union bound as in a majority of delay-
sequence arguments, including the proof of Theorem 2.
Instead, the full proof identifies discrete events that can
be added together with no overestimation. Specifically,
the probability that exactly one height-k delay sequence
occurs is exactly

∑

(Tk,J)

Pr {Only delay sequence (Tk, J) occurs} .

Definition 4 is structured to ensure that if two delay
sequences (Tk, J) and (T ′

k′ , J ′) overlap, then at most one
of (Tk, J) and (T ′

k′ , J ′) can occur. Consequently, when
two delay sequences both occur, they have no common
packets.

Suppose that a height-k delay sequence (Tk, J) oc-
curs. The probability that a second height-k delay se-
quence (T ′

k, J ′) occurs is at most the probability of there
exists a delay sequence of height k for n − 2k packets
(again with window size W ). This probability is less or
equal to the probability of having at least one packet not
completed after k rounds starting from n − 2k packets
with window size W . This last probability is less or equal
than the probability p of having at least one packet not
completed after k rounds starting from n packets and
with window size W .

For each delay sequence (Tk, J), we have

Pr {(Tk, J) occurs and no other delay sequences occur} ≥ (1 − p)

(

1

W

)2k−1 (

W − n

W

)2k+1−2

.

Let p be the probability that at least one packet is not
completed after k rounds. Because there are n!/2(n −
2k)! delay sequences, we have

p ≥ Pr {At least one delay sequence of height k occurs}
≥ Pr {Exactly one delay sequence of height k occurs}

≥ n!

2(n − 2k)!
(1 − p)

(

1

W

)2k−1 (

W − n

W

)2k+1−2

.



The full proof simplifies further to obtain

p ≥ (1 − p)
n

4

( n

8W

)2k−1

.

Observe that n/(8W ) ≥ 2−5 and k = blg lg nc − 3.
Thus, we have p ≥ (1 − p)2(3/8) lg n−2, implying that

p ≥ 1 − 4n−3/8

= 1 − o(1) .

III. Exponential and polynomial
backoff

This section analyzes exponential and polynomial back-
off strategies in the batch setting. We show that the
familiar binary exponential backoff algorithm, in which
every packet’s kth window has size Wk = Θ(2k),
has makespan Θ(n lg n) with high probability. More
generally, we show that for any constant r > 1, the r-
exponential backoff algorithm, in which Wk = Θ(rk),
has makespan Θ(n(lg n)lg r) with high probability. We
also show that for any constant r > 1, the r-polynomial
backoff algorithm, in which Wk = Θ(kr), has makespan
Θ((n/ lg n)1+1/r) with high probability. Thus, exponen-
tial backoff is superior to polynomial backoff in the batch
setting.

Theorem 6: Binary exponential backoff has makespan
at most 6e32c+1n lg n with probability at least 1 −
n−2c+2, and makespan at least n lg n/196 with prob-
ability at least 1 − 1/(1 +

√
n/2).

Proof Sketch. The main part of the analysis begins after
the first n/2 steps, after which the window size is Θ(n).
At most n/2 packets can be transmitted during this
interval, although small window sizes mean that many
fewer packets are in fact transmitted; for the upper bound
we can assume that no packets transmit. We show that
once the window size is Θ(n), only lg lg n+O(1) rounds
are necessary and sufficient to transmit all packets. The
upper bound follows from Corollary 3; the larger window
sizes ensure that no more rounds are necessary than in
Theorem 2.

It may seem surprising that the number of rounds is no
fewer than lg lg n + O(1) even though the window sizes
are exponentially increasing; the proof of this claim is
similar to the proof of Theorem 5. The delay-sequence
argument gives intuition why: most of the nodes in the
tree-structure of the delay sequence are near the leaves,
meaning that the probability that the delay sequence
occurs only increases marginally.

Observe the exquisite sensitivity of exponential back-
off to the constants: an additive constant in the number

of rounds translates to a multiplicative constant in the
makespan. Thus, if instead of doubling window sizes in
each round, we quadrupled the window sizes, then the
makespan would become Θ(n log2 n). More generally,
we have the following corollary.

Corollary 7: Any r-exponential backoff algorithm
has makespan Θ((n/ lg n)1+1/r) with high probability.

An alternative backoff strategy is quadratic backoff
or, more generally, polynomial backoff. It turns out
that quadratic backoff is too slow in general, having
makespan Θ((n/ lg n)3/2) with high probability. The
following theorem proves this result for the general case
of polynomial backoff.

Theorem 8: For any constant r > 1, the r-polynomial
backoff algorithm, in which Wk = Θ(kr), has makespan
Θ((n/ lg n)1+1/r) with high probability.
Proof Sketch. Because polynomial backoff increases
window sizes slowly, it is not as sensitive to constants
as exponential backoff. Specifically, there are Θ(W 1+r)
time steps before the window sizes reach W . While the
window size is cn/ lg n, for sufficiently small c, few
packets successfully transmit. For larger c, however, the
probability of a successful transmission increases and
all packets transmit successfully before the window size
increases by a constant factor.

Thus, for quadratic backoff in particular, and for
polynomial backoff in general, the dominant cost is
waiting until the window size grows sufficiently large.

IV. Optimal backoff for the batch set-
ting

All of the batch strategies we have seen thus far are
monotonic, in the sense that the window sizes increase
monotonically over time, but none are optimal, even
over the set of all monotonic backoff strategies . In
this section, we exhibit a monotonic backoff algorithm
that achieves makespan Θ(n lg lg n/ lg lg lg n). We prove
that this “log-log iterated” backoff algorithm, which is
superpolynomial and subexponential, is optimal over all
monotonic backoff schemes. In addition, we exhibit a
nonmonotonic backoff/backon algorithm that achieves
the optimal makespan of Θ(n). This algorithm, which
is simple in both design and analysis, has window sizes
that vary nonmonotonically according to a “sawtooth”
pattern.

The log-log iterated backoff algorithm behaves like
exponential backoff in that it repeatedly doubles its
window size, but it stays with each window size W for
2 lg lg W rounds before doubling.

Theorem 9: Log-log iterated backoff has makespan
O(n lg lg n/ lg lg lg n) with high probability.



Proof Sketch. The full proof divides time into rounds,
where each round contains exactly one window. When
the windows are smaller than cn/ lg lg lg n, for c < 2,
we need not assume any successful transmissions: the
few packets that successfully transmit only decrease the
makespan.

The main part of the analysis begins when the window
size is at least cn/ lg lg lg n, for c bounded above 2 by
a constant. We claim that all the packets transmit suc-
cessfully before the window size doubles. Specifically,
after lg lg n further rounds there are at most n/ ln ln ln n
packets left in the system with high probability because
the probability of a transmission is one over an expo-
nential in Θ(lg lg lg n). By Theorem 2, these remaining
packets transmit within the next lg lg n rounds with high
probability.

We now show that any monotone strategy has
makespan Ω(n lg lg n/ lg lg lg n) with high probability.
This lower bound uses a modification of Theorem 5 and
a counting argument.

Theorem 10: Any monotone window backoff
strategy for n packets has makespan at least
Ω(n lg lg n/ lg lg lg n) with high probability.
Proof Sketch. The full proof first establishes that with-
out loss of generality, the expected number of pack-
ets that transmits per timestep must be O(lg lg lg n)
or the probability of a collision is too great and few
packets transmit successfully. Consequently, at least a
constant fraction of the packets must have window
size Ω(n/ lg lg lg n). For a sufficiently small constant
c, we can let any packet with window size smaller
than cn/ lg lg lg n transmit successfully within even ac-
counting for the increase in makespan from collisions
with these packets. A constant fraction of packets still
remain in the system. All packets must have maximum
window size O(n lg lg n/ lg lg lg n) in order to have hope
of achieving the bounds.

Packets p and p′ have approximately synchronized
windows if for all i, the packets’ ith windows are at
least 95% overlapping. The full proof uses a delay-
sequence argument to establish that for any constant c,
if Ω(n/(lg lg n)O(lg lgc n) ) packets have approximately
synchronized windows of size at most O(n lg lg n), then
with high probability Ω(lg lg n) rounds are necessary to
transmit all jobs.

The full proof uses an accounting argument to show
that while most packet’s windows need not be synchro-
nized, there exists a sufficiently large set of packets
whose windows are approximately synchronized. First,
the proof divides time into O(lg lg n) epochs of size
O(n/ lg lg lg n) where each epoch is a constant factor
smaller than the minimum window size. The proof
also divides packet window sizes into classes ranging
in size from Θ(n/ lg lg lg n) to Θ(n lg lg n/ lg lg lg n).

Windows in the same class differ in size by most
a (1 + O(1/ lg lg n)) factor, implying that there are
O(lg lg n lg lg lg n) classes. The proof then argues that
if for all i, packets p and p′ have their ith windows in
the same class and their first windows are approximately
synchronized, then p and p′ have all their windows
approximately synchronized.

The proof then counts the number of choices each
packet has for all of its window sizes: for each of the
O(lg lg n) epochs, there are Θ(lg lg n lg lg lg n) choices,
yielding a total of O((lg lg n)O(lg lg n lg lg lg n)) possibil-
ities. Because there are Θ(n) packets, some set of at
least Ω(n/(lg lg n)O(lg lg n lg lg lg n)) packets agree on all
choices and therefore are approximately synchronized.
Because there are Ω(lg lg n) rounds for these packets
and each round has size Ω(n/ lg lg lg n), the theorem
follows.

In fact, there exists an optimal nonmonotone backoff
algorithm with Θ(n) makespan, which we call “saw-
tooth” backoff, because the jagged increases and de-
creases in transmission probabilities is reminiscent of the
structure of a saw blade. This simple backoff algorithm
is similar to those proposed in [9], [19].

The sawtooth backoff strategy involves a doubly
nested loop. The outer loop performs repeated doubling
to “guess” a window size W proportional to the number
n of competing messages. The inner loop consists of
Θ(lg W ) phases of “backon,” where the window size
reduces from the guess W by a constant factor for each
phase.

Theorem 11: There is a sawtooth backoff strategy for
the batch setting having makespan Θ(n).

Proof Sketch. We first examine the phases correspond-
ing to the first guess W that equals or exceeds the
number n of packets, that is, n ≤ W < 2n. Since,
after the first phase, at most a constant fraction of
the n messages remain, the second phase shrinks the
window by a slightly smaller constant factor, and the
algorithm repeats. The intuition is that every phase uses
a window that tracks closely the number of packets not
yet successfully transmitted. There are Θ(lg n) phases,
but since the window size shrinks geometrically, the
makespan is Θ(n). The full proof provides the complete
combinatorial argument.

Of course, the sawtooth algorithm doesn’t know n, but
its outer loop repeatedly doubles its previous guess. Once
the guess exceeds n, all packets complete as before.
The repeated doubling only increases the makespan by
a constant factor.



V. Online backoff

We now turn to the online setting which we analyze
using an adversarial queueing model. Our results focus
on exponential backoff and log-log iterated backoff. We
show that for any arrival rate λ, there exists a sufficiently
large interval size T such that the throughput goes
to 0 for some (λ, T )-stream. Moreover, there exists a
sufficiently large constant c such that for any interval
size T , if λ ≥ c lg lg n/ lg n, the system is unstable in
the sense that the arrival rate exceeds the throughput in
the worst case. If, on the other hand, we have λ ≤ c/ lg n
for a sufficiently small constant c, then the system is sta-
ble. Surprisingly, the algorithms that guarantee smaller
makespans in the batch setting require lower arrival rates
to achieve stability than does exponential backoff, but
when they are stable, they have better response times.

For the online setting, arrivals are determined by a
worst-case (λ, T )-stream which injects at most n = λT
packets in any window of size T . We say that a backoff
strategy is unstable if there exists a (λ, T )-stream such
that the rate at which packets complete, that is, the
throughput, is lower than the arrival rate. Otherwise, a
backoff strategy is stable.

We give bounds on the stability of exponential backoff
as follows.

Theorem 12: The is a sufficiently small constant c so
that exponential backoff is stable for any (λ, T )-stream,
as long as λ ≤ c/ lg n.
Proof Sketch. We show by induction that every packet
transmits successfully in c′ lg n attempts, for c′ < c, with
high probability Thus, the contention remains a constant
less than 1, and the throughput matches the arrival rate.

The base case tells most of the story. Consider the
first packet p that has survived until its window is of
size at least T , which happens after lg T run attempts.
Now, consider the probability of success in each further
run attempt. Packet p survives if its transmission attempt
collides with a subsequently injected packet. Of these
small packets, packets with windows of size at most
T each make at most lg T = Θ(lg n) run attempts
before having large windows for a total of Θ(n lg n) =
Θ(T ) run attempt in any window of size T . For large
enough c, these packets fill an arbitrarily small constant
fraction of time slots with their run attempts. Similarly,
we count the number of packets with large window
sizes and their number of run attempts. While there
can be more large-window packets in the system than
small-window packets, large packets make transmission
attempts less frequently. We conclude that each of p’s run
attempts succeeds with constant probability, thus giving
the desired bound.

The inductive step handles packets injected before the
packet p, of interest. But, by induction, there are few

large packets that have survived to interfere with p’s run
attempts, and a straightforward counting argument with
Chernoff bounds finishes approved .

We now show a lower bound.
Theorem 13: The exists a sufficiently large constant

c so that exponential backoff is unstable for any (λ, T )-
stream, as long as λ ≥ c log log n/ log n.
Proof Sketch. The injection strategy is constructed as
follows: Every T steps, n/2 packets are injected; every
2 log n/c log log n steps, one packet is injected. Thus, n
packets are injected in any window of size T . We call
the first n/2 packets the bolus and the following packets
the drip.

The proof proceeds by showing that in any window
of T steps beginning with the injection of the bolus
O(n/ lg lg n) packets complete. To bound the number
of completed packets, we show that the contention
remains above lg lg n with high probability, and thus
packets complete on average every Ω(lgc n) steps, where
constant c can be is a function of the constant in the
arrival rate.

To bound the contention, we show that by the time
the contention due to the bolus reaches lg n – during
which time, essentially no packets complete – enough
drip packets have been injected to contribute c′ lg lg n
to the contention, for some c′ > 1. We use Chernoff
bounds, with a few technical twists, to show that the con-
tention due to drip packets stays well above lg lg n with
high probability, even though some packets successfully
transmit.

VI. Conclusion

Our results for window backoff on simple multiple-
access channels can be extended in two ways. First, in
some settings, one may wish to use a backoff strategy
that is not based on windows. Second, one may wish
to employ backoff in a multiple-access channel where
more information is available from an unsuccessful
transmission than is provided by the simple multiple-
access channel. To conclude, we discuss the possiblities
for future results along both these lines.

In the model of a simple multiple-access channel, a
backoff strategy can be viewed as a sequence p0, p1, . . .
of random variables, where pt is the probability that
an as-yet undelivered packet is transmitted on the tth
step after its arrival. We say that a backoff strategy is
Bernoulli if pt is a function only of t, in which case all pt

are mutually independent. How do Bernoulli backoff
strategies compare with window strategies?

It turns out that in the batch case, any
monotone Bernoulli backoff algorithm has makespan
Ω(n lg n/ lg lg n) with high probability, even when



n is known. This result is tight, because monontone
Bernoulli backoff strategies exist that match this bound,
even without knowing n. Thus, the log-log interated
backoff algorithm, which is optimal for monotone
window backoff, offers smaller makespans by a factor
of Θ((lg lg lg n)/(lg lg n)2) over the optimal monotone
Bernoulli backoff. For nonmonotone Bernoulli backoff,
however, a Bernoulli sawtooth algorithm can achieve
the same Θ(n) makespan as the window sawtooth
algorithm.

With respect to other models of multiple-access chan-
nels, the opportunities for future research seem rife. For
example, what happens if a sender gets more information
back from the channel than just success or failure? For
example, a sender may know when others are transmit-
ting, as in the 802.11 wireless standard [25]. Error codes
can be used to determine whether a packet collides with
exactly one other packet or several. Can this information
be used to improve performance? What happens if during
a collision, one of the packets succeeds, as in [38]? What
happens if packets take different amounts of time to
transmit?

These questions appear particularly relevant for online
settings, which occur more commonly in practice than
batch settings. Currently, most computer engineers rely
on simulations, not theoretical analyses, to gain confi-
dence in backoff algorithms. As a consequence, systems
employing backoff are generally nonalgorithmic, in the
sense that performance is not guaranteed, not even
statistically. Consequently, systems can exhibit wildly
unpredictable performance, making it difficult or impos-
sible to meet real-time constraints. We are optimistic that
further research on backoff algorithms, using techniques
such as adversarial queueing theory, will lead to more
stable and higher-performing computer systems.
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