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ABSTRACT
We discuss a new approach to the construction of software
systems. Instead of attempting to build a system that is
as free of errors as possible, the designer instead identifies
key properties that the execution must satisfy to be accept-
able to its users. Together, these properties define the ac-
ceptability envelope of the system: the region that it must
stay within to remain acceptable. The developer then aug-
ments the system with a layered set of components, each
of which enforces one of the acceptability properties. The
potential advantages of this approach include more flexible,
resilient systems that recover from errors and behave accept-
ably across a wide range of operating environments, an ap-
propriately prioritized investment of engineering resources,
and the ability to productively incorporate unreliable com-
ponents into the final software system.
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1. INTRODUCTION
Software developers face increasing demands to improve

both the functionality and the reliability of the software that
they produce. This combination is challenging because of
the inherent tension between these two properties: increas-
ing the functionality increases the complexity, which in turn
increases the difficulty of ensuring that the software executes
reliably without errors.

We believe that current software engineering practices
may be approaching the limit of the combination of func-
tionality and reliability that they can deliver. This is of
some concern because of the compelling need for improve-
ments in both of these two properties:

• Functionality: Functionality pressure has tradition-
ally come from the dynamics of the desktop software
market. In this context, increased functionality has
been seen as a way to obtain a marketing advantage
over competitors, to motivate customers to purchase
upgrades, and to satisfy customer demands for more
useful or usable computer software.

In the future, several trends will increase the pres-
sure for additional software functionality (and there-
fore additional software complexity). First, increasing
interconnectivity places demands on the software to
interoperate with a wider range of systems and data
sources. Each new system and data source typically
requires the development of new functionality to sup-
port the interoperation.

Second, embedded systems are the next large software
growth area. As the scope and sophistication of the
phenomena that these systems monitor and control in-
creases, so must the functionality and complexity of
the software.

• Reliability: Because many embedded systems control
physical phenomena, failures can have immediate and
disastrous consequences that threaten human safety.
Reliability has therefore always been a primary con-
cern for embedded systems; its importance will only
increase as embedded systems continue to expand the
scope of the phenomena that they monitor and control.

Reliability has also been a central concern for tra-
ditional corporate information management systems:
down time translates directly into impaired operations,
lost profits, and frustrated customers may look to com-
petitors to satisfy their needs. The increased depen-
dence on highly interconnected information systems
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only magnifies the importance of reliability. As inter-
connectivity increases, more of the business becomes
unable to function in the absence of a working system,
and the system as a whole becomes increasingly vul-
nerable to cascading failures triggered by the failure
of a single component. Both of these phenomena in-
crease the consequences of failures, in some cases dra-
matically.

Finally, after many years in which features were the
primary concern, consumers of desktop productivity
software are tiring of dealing with software that fails.
Reliability is therefore becoming an important issue for
this kind of software, even though the consequences
of failure are usually small in comparison with em-
bedded systems or corporate information management
systems.

The standard approach for achieving reliability has been
simplicity, or to state it more pejoratively, lack of ambition:
keep the program simple enough so that it can be made
to work with standard techniques. As legitimate function-
ality demands increase, this approach will become increas-
ingly infeasible. The more ambitious alternative, namely
the deployment of increasingly less reliable systems, seems
unattractive and potentially disastrous. And the fact that
these issues play out against a backdrop of ruthless com-
petition, ever-increasing time and market pressures, accel-
erated development schedules, and continuously changing
requirements and computing environments only exacerbates
the need for better solutions.

If we step back and examine the situation, it becomes clear
that there is almost never just a single acceptable execution
that the program must deliver. Instead, there is usually a
range of acceptable executions, with some executions more
acceptable than others. This fact suggests the concept of
an acceptability envelope: a region of the execution that the
program must stay within to remain acceptable. This con-
cept, in turn, suggests the following development approach:
instead of trying to develop a perfect program, instead de-
velop a program that may contain errors, but that always
stays within its acceptability envelope in spite of those er-
rors. Several activities characterize this approach:

• Acceptability Property Identification: The de-
signer identifies properties that the state and behavior
must preserve for the program’s execution to be ac-
ceptable. The result is a set of (potentially) partially
redundant and prioritized acceptability properties. Un-
like traditional specifications, which completely char-
acterize the desired behavior, acceptability properties
are partial: they identify minimum acceptability re-
quirements for specific aspects of the execution.

• Monitoring: The developer produces components that
monitor relevant aspects of the program’s execution to
detect impending acceptability violations.

• Enforcement: Once the component detects an im-
pending acceptability violation, it takes actions de-
signed to bring the program’s execution back within
its acceptability envelope.

• Logging: The component logs important events such
as the detection of impending acceptability violations
and the actions that the system takes to avert such
violations.

1.1 Perspective Change
Acceptability-oriented computing promotes a perspective

change on the part of the developers and users of software.
In particular, the following notions are implicit but central
to this approach:

• The Goal of Perfection is Counterproductive:
The aspiration to eliminate as many programming er-
rors as possible creates a development process that dif-
fuses the focus of the project, wastes engineering re-
sources, and produces brittle software that is helpless
in the presence of the inevitable errors or faults. A
more productive aspiration is to develop systems that
contain errors and sometimes behave imperfectly, but
remain within their acceptable operating envelope.

• Flawed Software Has Enormous Value: The most
productive path to better software systems will involve
the combination of partially faulty software with tech-
niques that monitor the execution and, when neces-
sary, respond to faults or errors by taking action to
appropriately adjust the state or behavior.

If successful, this approach will enable the construction of
computer systems that can sustain (potentially self-inflicted)
damage, process unexpected or illegal inputs, and take in-
correct actions, yet nevertheless continue to execute produc-
tively.

1.2 Architecture
Acceptability-oriented systems have an architecture that

differs substantially from that of traditional systems. Specif-
ically, acceptability-oriented systems contain multiple par-
tial, redundant, and layered components that enforce ac-
ceptable system behavior and structure properties. Outer
layers take priority over inner layers, with the layers be-
coming progressively simpler, more partial, and more likely
to accurately capture the intended property as they move
towards the periphery of the layered structure.

The core innermost layer will typically consist of the source
code of the system, usually written in a standard program-
ming language. Conceptually, the core is intended to com-
pletely specify both the behavior of the system and the
structure required to completely implement this behavior.
The possibility of errors within the core or unanticipated
actions on the part of the environment in which the compu-
tation exists is the only reason that the core does not, by
itself, comprise a completely acceptable system.

The outer layers identify increasingly minimal require-
ments for acceptable system behavior and structure. Con-
ceptually, the information in these layers may be redundant
with the information in the innermost layer. The partial
nature of these outer layers means that many of the lay-
ers address orthogonal aspects of the system and are there-
fore largely independent. Others provide information that
is partially or completely redundant with other layers. The
outermost layers focus on only those most basic properties
required for minimal system acceptability while layers closer
to the core focus on more elaborate properties that, when
satisfied, enhance the value of the program.

The outer layers of the program monitor the execution
of the program to identify impending violations of the de-
sired acceptability properties. Potential responses to such
violations include repair actions that are designed to de-



liver an acceptable state for continued execution, exit ac-
tions that are designed to safely shut down the system and
await external intervention, and logging actions that record
the impending acceptability violations and the resulting ac-
ceptability enforcement actions.

The monitoring, repair, and safe exit algorithms will vary
depending on the kinds of requirements they are designed to
enforce. In many cases, it may be productive to express some
of the layers using a variety of high-level specification lan-
guages. Tools will translate the resulting specifications into
code that implements the monitoring, logging, repair, and
safe exit actions. In other cases, it may be more productive
to code the acceptability enforcement operations directly in
standard programming languages.

1.3 Acceptability Enforcement Approaches
We identify two approaches that a system can use to re-

spond to impending acceptability violations and enforce its
acceptability envelope:

• Resilient Computing Approaches: A resilient com-
puting approach responds to impending acceptability
violations by taking actions that are designed to bring
the system back into an acceptable state from which
it can continue to execute indefinitely.

• Safe Exit Approaches: A safe exit approach re-
sponds to impending acceptability violations by ex-
ecuting a safe exit strategy: a sequence of actions de-
signed to extricate the system safely from the problem-
atic situation in which it finds itself. This sequence is
designed to leave the system and any parts of the phys-
ical world with which it interacts in a stable state, or
a state in which it is acceptable for the system to take
no action at all until it is repaired by some external
intervention.

We expect safe exit approaches to be used primarily when
waiting for external intervention to repair the system is a
reasonable response to failures or the perceived negative
consequences of continuing to execute a potentially incom-
pletely repaired system outweigh the benefits. Many exist-
ing systems already contain a very conservative, limited ver-
sion of a safe-exit strategy: standard error checking mecha-
nisms (such as assertions) can be viewed as enforcing very
basic acceptability properties (the locally checkable condi-
tions that appear in the assertions) with a simple safe exit
strategy (halt the computation at the first sign of an accept-
ability violation). We expect that most such systems would
benefit from a more comprehensive and purposeful applica-
tion of acceptability-oriented computing, in particular, an
increased awareness and understanding of explicit accept-
ability properties, a more organized approach to detecting
impending acceptability violations, and a larger effort de-
voted to identifying more appropriate safe exit strategies.

We expect resilient computing approaches to be most ap-
propriate in several situations: when the repair is expected
to deliver a completely acceptable system, when the effect
of the repaired damage will be flushed out of the system
within an acceptable amount of time provided that it contin-
ues to execute, when external intervention is not practical,
or when there is a strong incentive for continued execution
over outright system failure, even if the continued execu-
tion may be somewhat compromised. In many embedded

systems that control unstable physical phenomena, for ex-
ample, compromised execution is far preferable to outright
failure. Resilient computing may be especially useful for
systems that are composed of several largely independent
components that share a fate — repairing one component
may enable the other components to continue with their
normal execution, while allowing the component to fail may
disable the remaining components. It may also be useful
when the software is known to execute incorrectly in certain
situations, but the developers are unwilling to risk the sys-
tem disruption or damage that might result from changing
the code, preferring instead to repair any damage after it
occurs.

We note that it is possible to apply resilient computing
and safe exit responses in the same system, with some unac-
ceptabilities repaired via the resilient computing techniques
and others triggering a safe exit strategy.

1.4 Acceptability Enforcement Mechanisms
It is possible to apply acceptability-oriented computing to

all aspects of a system’s structure and behavior. We have
explored mechanisms that interpose acceptability filters on
input and output streams, that dynamically traverse data
structures to find and repair violations of key data structure
consistency properties, and that enforce properties that re-
late the content of the data structures to the input and out-
put values. Other likely candidates include enforcing pro-
cess structure properties (such as the presence of processes
that implement a crucial part of the system’s functionality),
system configuration properties (these constrain the values
of various system configuration setting), and library usage
properties (that involve the order in which clients may in-
voke library operations and the values that they may pass
to the library).

We distinguish several distinct classes of mechanisms that
can be used to apply acceptability-oriented computing:

• Black-Box Mechanisms: A black-box mechanism
treats the core as a unit. It does not modify the core
at all and affects it only through well-defined aspects
of its interface such as its input and output streams.

• Gray-Box Mechanisms: A gray-box mechanism does
not modify the code of the core, but may use more in-
vasive techniques (such as procedure call interception
and data structure modification) that affect conceptu-
ally internal aspects of the core.

• White-Box Mechanisms: A white-box mechanism
augments the core directly with new acceptability en-
forcement code.

The basic trade-off is that less invasive techniques require
less knowledge of the core system and are less likely to in-
troduce new errors, but typically require more involved im-
plementation mechanisms and may be limited in the amount
of control they can exert over the core. More invasive tech-
niques offer more control and typically use simpler imple-
mentation mechanisms, but require the developer to operate
within a more complex implementation environment and of-
fer greater opportunities for collateral damage in the form
of inadvertently introduced errors.



1.5 Structure of the Paper
The remainder of the paper is structured as follows. In

Section 2 we use a running example to present several differ-
ent resilient computing techniques. We discuss issues associ-
ated with these techniques as they arise. In Section 3 we dis-
cuss several other techniques that we expect acceptability-
oriented developers to use. In Section 4 we discuss several
broader technical and social issues associated with the po-
tential use of acceptability-oriented computing. In Section 5
we present several more aggressive extensions that may in-
terfere more deeply with the core system in an attempt to
generate more reliable execution. We discuss related work
in Section 6, unrelated work in the area of reliability in Sec-
tion 7, and conclude in Section 8.

2. EXAMPLE
We next present a simple example that illustrates how

to apply the basic concepts of acceptability-oriented com-
puting. The core component in our example implements
a simple map from names to numbers. We assume that
this component will be used to translate names to numeri-
cal identifiers, as in, for example, a name server that maps
a bank of printer names to printer network addresses.

Like many Unix components, the core component in our
example accepts its inputs as a sequence of commands on
the standard input stream (stdin) and writes its outputs
to the standard output stream (stdout). It accepts three
commands: put name num, which creates a mapping from
name to num; get name, which retrieves the num that name

maps to; and rem name, which removes the mapping asso-
ciated with name. In response to each command, it writes
the appropriate num onto the standard output: for put com-
mands it writes out the number from the new mapping, for
get commands it writes out the retrieved number, and for
rem commands it writes out the number from the removed
mapping.

Figure 1 presents the code for the main procedure, which
parses the input stream of commands, invokes the appro-
priate procedure (put for put commands, get for get com-
mands, and rem for rem commands), then writes the re-
turn value of the procedure to the output stream. Figure 2
presents the code for these procedures. We have omitted the
definitions of several constants (LEN, N, and M) and auxiliary
procedures. The complete code for all of the examples in
this paper is available at
www.cag.lcs.mit.edu/∼rinard/paper/oopsla03/code.

The core maintains a hash table that stores the mappings.
Each bin in the table contains a list of entries; each entry
contains a mapping from one name to one num. The bin

procedure uses a hash code for the name (computed by the
hash function) to associate names to bins. The procedures
alloc and free manage the pool of entries in the table,
while the find procedure finds the entry in the table that
holds the mapping for a given name.

2.1 Acceptability Properties
We identify several acceptability properties that the core

should satisfy:

• Continued Execution: Our first acceptability prop-
erty is that the core continues to execute so that as
many of its mappings as possible remain accessible to
its client. The rationale for this property might be,

int main(int argc, char *argv[]) {
char cmd[LEN], name[LEN];
int val;
initialize();
while (scanf("%s", cmd) != EOF) {

val = 0;
if (strcmp(cmd, "put") == 0) {

if (scanf("%s %d", name, &val) == 2) {
put(name, val);

}
} else if (strcmp(cmd, "get") == 0) {

if (scanf("%s", name) == 1) {
val = get(name);

}
} else if (strcmp(cmd, "rem") == 0) {

if (scanf("%s", name) == 1) {
val = rem(name);

}
}
printf("%d\n", val);
fflush(stdout);

}
}

Figure 1: Implementation of main Procedure of Core

for example, that the client (and potentially the rest
of the system) will hang unless it receives a response
for each request. Our acceptability enforcement tech-
niques must therefore protect the core against prob-
lematic inputs and internal data structure inconsisten-
cies that could cause it to fail.

• Output Sanity: Ideally, the core would always return
the correct number for each get command. We may,
however, be willing to relax this constraint to allow it
to return 0 (indicating no mapping) even if a past put
command established a mapping. We may also be will-
ing to accept (or even require) the core to return any
number within the minimum and maximum numbers
to which mappings have been established. The ratio-
nale for these properties might be, for example, that
the bank of printers has been allocated a contiguous
range of addresses, and while it might be acceptable to
deliver a job to any printer within the range, it might
not be acceptable to route the job to some other arbi-
trary printer.

Note that both of these acceptability properties fall well
short of requiring the core to execute correctly. They also
depend, to some extent, on the needs of the client in the
context of the larger system. In general, we expect the ac-
ceptability properties for the different components to vary
depending on the context in which they are deployed. Fi-
nally, we note that the client can reasonably hope for more
than just acceptability property satisfaction — instead of
returning 0 for every get query, it is reasonable to expect
the core to return the correct value much of the time.

2.2 Data Structure Repair
The alloc procedure in Figure 2 assumes that there is

always a free entry to return to the caller; the put procedure
assumes that it always gets a valid entry back from the alloc
procedure. If these assumptions are violated (presumably
because the client has attempted to put too many mappings
into the table), there is a memory corruption error and the
core may fail. The standard way to fix this problem is to



struct {
int _value;
int _next;
char _name[LEN];

} entries[N];

#define next(e) entries[e]._next
#define name(e) entries[e]._name
#define value(e) entries[e]._value

#define NOENTRY 0x00ffffff
#define NOVALUE 0

int end(int e) { return (e == NOENTRY); }

int table[M], freelist;

int alloc() {
int e = freelist;
freelist = value(e);
return e;

}

void free(e) { value(e) = freelist; freelist = e; }

int hash(char name[]) {
int i, h;
for (i = 0, h = 0; name[i] != ’\0’; i++) {

h *= 997; h += name[i]; h = h % 4231;
}
return h;

}

int bin(char name[]) { return hash(name) % M; }
int find(char name[]) {

int b = bin(name), e = table[b];
while (!end(e) && strcmp(name, name(e)) != 0)

e = next(e);
return e;

}

int rem(char name[]) {
int e = find(name);
if (!end(e)) {

int val = value(e), b = bin(name);
table[b] = next(e);
name(e)[0] = ’\0’; free(e);
return val;

} else return NOVALUE;
}

int put(char name[], int val) {
int e = alloc();
value(e) = val; strcpy(name(e), name);
int p = find(name);
if (!end(p)) free(p);
int b = bin(name);
next(e) = table[b]; table[b] = e;
return val;

}

int get(char name[]) {
int e = find(name);
if (end(e)) return NOVALUE;
else return value(e);

}

Figure 2: Implementation of Map Core Procedures

modify the core software to recognize when it is out of entries
and augment it with code to handle this case.

This approach, of course, requires the developer to oper-
ate directly within the core software. Two potential pitfalls
include the need for the developer to understand the core
software and collateral damage in the form of introduced
errors. Moreover, the standard approach to running out of
memory is to have the allocation routine return a value in-
dicating that the allocation failed, leaving the application to
deal with the problem. The application usually has no idea
how to recover and exits (if it checks the return code at all).
The alternative, distributing infrequently executed recovery
code throughout the application, may be unattractive not
only because of the increased complexity and damage to the
structure of the code but also because of the difficulty of
delivering recovery code that executes acceptably.

Modification also requires access to compilable source code,
which may be problematic either because the core was de-
livered in executable form only, because the original source
code has been lost, because legal considerations preclude
modification, because recertification costs make modifica-
tions impractical, because another organization maintains
the code and any local modifications will be wiped out in
future releases, or because the core is coded in an archaic
language for which a compiler is no longer available.

An alternate view is that the core is failing because its
data structures do not satisfy the data structure consistency
property that the freelist must point to a valid entry when
the alloc procedure executes, and the way to eliminate the
failure is to enhance the core with a component that detects,
then repairs, any data structure consistency violations.

Further investigation reveals another consistency prob-
lem. The following input causes the core to infinite loop
while processing the get g command:

put a 1

put c 2

put a 3

put e 4

get g

The cause of the infinite loop is a circularity in one of the
lists of entries. This circularity violates the data structure
consistency property that there is exactly one reference to
each element of the entries array (these references are im-
plemented as indices stored in the freelist, table array,
and next and value fields of the entries). It may be worth-
while to ensure that this property holds as well.

Figure 3 presents a procedure, repair, that detects and
repairs any data structure consistency violations in our ex-
ample program from Figure 2. The repair procedure first
invokes repairValid to replace all invalid references with
NOENTRY. The procedure then invokes repairTable, which
ensures that all entries in lists in the table have at most
one incoming reference from either an element of the table

array or the next field of some entry reachable from the
table array. This property ensures that each element of
table refers to a distinct NOENTRY-terminated list and that
different lists contain disjoint sets of entries. Finally, repair
invokes repairFree to collect all of the entries with reference
count 0 (and that are therefore not in the table) into the free
list. If the free list remains empty (because all entries are
already in the table), the procedure chooseFree chooses an
arbitrary entry and inserts it into the free list, ensuring that



int valid(int e) { return (e >= 0) && (e < N); }

void repairValid() {
int i;
if (!valid(freelist)) freelist = NOENTRY;
for (i = 0; i < M; i++)

if (!valid(table[i])) table[i] = NOENTRY;
for (i = 0; i < N; i++)

if (!valid(next(i))) next(i) = NOENTRY;
}

static int refs[N];

void repairTable() {
static int last = 0; int i, e, n, p;
for (i = 0; i < N; i++) refs[i] = 0;
for (i = 0; i < M; i++) {

p = table[i];
if (end(p)) continue;
if (refs[p] == 1) {

fprintf(stderr, "t[%d] null (%d)\n", i, p);
table[i] = NOENTRY; continue;

}
refs[p] = 1; n = next(p);
while (!end(n)) {

if (refs[n] == 1) {
fprintf(stderr, "n(%d) null (%d)\n", p, n);
next(p) = NOENTRY; break;

}
refs[n] = 1; p = n; n = next(n);

}
}

}

void chooseFree() {
static int last = 0; int i, n, p;
fprintf(stderr, "freelist = %d\n", last);
n = last; last = (last + 1) % N;
name(n)[0] = ’\0’; value(n) = NOENTRY; freelist = n;
for (i = 0; i < M; i++) {

p = table[i];
if (end(p)) continue;
if (p == freelist) {

fprintf(stderr, "t[%d]=%d (%d)\n", i, next(p), p);
table[i] = next(p); return;

}
n = next(p);
while (!end(n)) {

if (n == freelist) {
fprintf(stderr, "n(%d)=%d (%d)\n", p, next(n), n);
next(p) = next(n); return;

}
p = n; n = next(n);

}
}

}

void repairFree() {
int i, f = NOENTRY;
for (i = 0; i < N; i++)

if (refs[i] == 0) {
next(i) = value(i); value(i) = f; f = i;

}
if (end(f)) chooseFree();
else freelist = f;

}

void repair() {
repairValid(); repairTable(); repairFree();

}

Figure 3: Data Structure Repair Implementation

freelist refers to a valid entry. It then removes this entry
from the table.

The repair algorithm maintains a reference count ref[e]

for each entry e and uses this count to guide its repair ac-
tions. It also logs each repair action to stderr. The result-
ing log may make it easier to become aware of and investi-
gate any errors in the core and to understand the behavior
of the repaired system should it become desirable to do so.

The repair algorithm has several properties:

• Heuristic Structure Preservation: When possi-
ble, the algorithm attempts to preserve the structure
it is given. In particular, it has no effect on a con-
sistent data structure and attempts to preserve, when
possible, the starting linking structure of inconsistent
data structures. The repaired data structure is there-
fore heuristically close to the original inconsistent data
structure.

• Continued Execution: When the free list is empty,
the repair algorithm removes an arbitrary entry from
the table and puts that entry into the free list. This
action removes the entry’s mapping; the overall effect
is to eject existing mappings to make way for new map-
pings. In this case the repair algorithm converts failure
into somewhat compromised but ongoing execution.
Because the repair algorithm also eliminates any cy-
cles in the table data structure, it may also eliminate
infinite loops in the find procedure.

This example illustrates several issues one must consider
when building components that detect impending accept-
ability violations and enforce acceptability properties:

• Acceptability Property: The developer must first
determine the acceptability property that the compo-
nent should enforce. In our example, the acceptability
property captures aspects of the internal data struc-
tures that are directly related to the ability of the core
to continue to execute. Note that the acceptability
property in our example is partial in that it does not
completely characterize data structure consistency —
in particular, it does not attempt to enforce any re-
lationship between the values in the entries and the
structure of the lists in the table data structure. In a
fully correct implementation, of course, the hash code
of each active entry’s name would determine the list
in which it is a member.

• Monitoring: The monitoring component in our ex-
ample simply accesses the data structures directly in
the address space of the core to find acceptability vio-
lations. In general, we expect the specific monitoring
mechanism to depend on the acceptability property
and on the facilities of the underlying system. We an-
ticipate the use of a variety of mechanisms that allow
the monitor to access the address space of the core pro-
cesses (examples include the Unix mmap and ptrace in-
terfaces), to trace the actions that the program takes,
or to monitor its inputs, outputs, procedure calls, and
system calls.

• Enforcement: A white-box application of data struc-
ture repair would insert calls to the repair procedure
at critical places in the core program, for example just



before the put, get, and rem procedures in our ex-
ample. It is also possible to wait for the core to fail,
catch the resulting exception, apply data structure re-
pair in the exception handler, then restart the appli-
cation from an appropriate place.

A gray-box implementation might use the Unix ptrace

interface (see Section 2.5) or mmap to get access to the
address space(s) of the core process(es). All of these
mechanisms update the data structures directly in the
address space of the core, heuristically attempting to
preserve the information present in the original incon-
sistent data structure.

In general, we expect that enforcement strategies will
attempt to perturb the state and behavior as little as
possible. We anticipate the use of a variety of mecha-
nisms that update the internal state of the core, cancel
impending core actions or generate incorrectly omitted
actions, or change the inputs or outputs of the core,
components within the core, or the underlying system.

• Logging Mechanism: Our example simply prints
out to stderr a trace of the instructions that it exe-
cutes to eliminate inconsistencies. In general, we antic-
ipate that the logging mechanism will vary depending
on the needs of the application and that some devel-
opers may find it desirable to provide more organized
logging support. Note also that logging is useful pri-
marily for helping to provide insight into the behavior
of the system. The log may therefore be superfluous in
situations where it is undesirable to obtain this insight
or it is impractical to investigate the behavior of the
system.

We note one other aspect that this example illustrates.
The problem in our example arose because the core (like
many other software systems) handled a resource limitation
poorly. Data structure repair enables continued execution
with compromised functionality. But because no system can
support unlimited resource allocation, even the best possi-
ble implementation must compromise at some point on the
functionality that it offers to its clients if it is to continue
executing.

Finally, there is another way to prevent put from failing
because the free list is empty — change the implementation
so that it checks if the free list is empty and, if so, skips
the call to put. This mechanism is an instance of condi-
tional code excision as discussed below in Section 5.4. Al-
though this technique does not protect the core against the
full range of potential data structure corruption problems,
it does avoid a specific execution that is known to cause
corruption.

2.3 Input Monitoring and Rectification
Our example program uses fixed-size character arrays to

hold the name in each entry, but does not check for input
names that are too large to fit in these arrays. It may there-
fore fail when presented with input names that exceed the
array size. A standard way to fix this problem is to modify
the core so that it either checks for and rejects excessively
long names or uses dynamic memory allocation to correctly
handle names of arbitrary length.

An acceptability-oriented approach might instead inter-
pose a filter on the input. This filter would monitor the in-
put stream to detect and eliminate inputs that would cause

int main(int argc, char *argv[]) {
int count = 0, c = getchar();
while (c != EOF) {

if (isspace(c)) count = -1;
if (count < LEN-1) { putchar(c); count++; }
else fprintf(stderr, "character %c discarded\n",

(char) c);
if (c == ’\n’) fflush(stdout);
c = getchar();

}
}

Figure 4: Token Length Filter Implementation

array overflow. Figure 4 presents the code for just such
a filter. The filter truncates any token (where a token is
a contiguous sequence of non-space characters) too long to
fit in the name arrays from Figure 2. Using the Unix pipe
mechanism to pass the input through this filter prior to its
presentation to the core ensures that no token long enough
to overflow these arrays makes it through to the core.

There are several issues that arise when building these
kinds of input filters:

• Acceptability Property: The developer must first
determine the acceptability property that the filter
should enforce. In our example, the property is sim-
ple: no token longer than LEN characters. For systems
with real-time constraints, one twist is that the prop-
erty may involve timing characteristics such as the fre-
quency at which the inputs arrive.

Note that the acceptability property in our example
is partial in that it does not completely characterize
the legal inputs. It instead captures a simple property
that every input must satisfy to be acceptable. This
simplicity enables the filter to avoid the complexity of
performing a complete legality check on the input. The
result is a simpler filter that requires less development
effort and is less likely to have acceptability problems
of its own.

• Interposition: The input filter must use some mech-
anism that allows it to observe and potentially process
the input before passing it along to the core. In our
example we use the standard Unix pipe mechanism to
pass the input through the filter before it reaches the
core. This black-box approach requires no modifica-
tions to the core at all.

If the core uses procedure calls to obtain its input,
a gray-box interposition mechanism may redirect the
calls to invoke the filter’s procedures, which then ob-
tain and process the input before returning it back
to the core. Ways to implement this redirection in-
clude providing a new implementation of the invoked
procedure, using binary rewriting techniques [16] to
change the invoked procedure, using operating systems
mechanisms to redirect an invoked system call [2], or
using aspect-oriented programming mechanisms to in-
tercept method calls [15]. If the core uses memory-
mapped I/O, it may be possible to use memory pro-
tection mechanisms to have the attempted I/O oper-
ations generate a memory protection fault. The pro-
vided fault handler would then implement the inter-
position. Other mechanisms may be appropriate for
other input strategies.



• Monitoring: The monitor processes the input to de-
tect inputs that do not satisfy the acceptability prop-
erty. In our example, the monitor keeps a running
count of the number of contiguous non-space charac-
ters. When it encounters a character that would cause
this count to exceed LEN, it has detected an impend-
ing violation of the acceptability property. We expect
input monitoring implementations to vary depending
on the property that they are designed to check. Note
that the monitor may maintain state to help it check
the acceptability of the input. In our example, the
count variable is an example of this kind of state.

• Enforcement: In addition to enforcing the accept-
ability property, the filter will typically attempt to
keep the rectified input (heuristically) close to the orig-
inal input. In our example, the filter truncates overly
long tokens but otherwise leaves the input stream un-
changed. Alternative filters might split overly long to-
kens by inserting spaces into the middle of long non-
space character sequences or remove overly long to-
kens altogether. We rejected these alternatives be-
cause splitting or removing tokens appears to be more
likely to confuse the core’s input stream processing
than truncation.

In general, we expect that enforcement strategies will
tend to be application dependent and heuristic. Error-
correcting parsers insert keywords to make an input
program parse [1]; spell-checkers use a dictionary of
known words to correct misspellings. For systems whose
acceptability properties involve real-time constraints,
the enforcement mechanism may delay inputs that ar-
rive too early and/or spontaneously generate replace-
ments for inputs that arrive too late.

• Logging: In this example the filter simply logs the
discarded characters. A more elaborate logging imple-
mentation might provide more information about the
truncated tokens and the position in the input where
the truncation occurred.

Note that in our example we applied input filtering at a
well-defined interface consisting of input and output streams.
It is possible, of course, to apply input filtering at arbitrary
granularities throughout the software. Many implementa-
tions of standard libraries, for example, have extensive error
checking that is designed to catch incorrect usage patterns
(although the usual response is to signal an error, not to
rectify the input and continue the execution).

2.4 Output Monitoring and Rectification
The core in our example, like many software systems, may

produce unacceptable results under certain inputs. For ex-
ample, the following input:

put x 10

put y 11

rem y

put x 12

rem x

get x

causes the core to generate the output 10 11 11 12 12 2

instead of 10 11 11 12 12 0 (a 0 returned from a get com-
mand indicates that there is no mapping associated with

the name). The problem is that the free procedure, when
invoked by the put procedure to remove the entry that im-
plements the map from x to 10, does not actually remove
the entry. It instead puts the entry on the free list (which
uses the value field to link together the free entries), leaving
it also linked into the table of active entries.

One way to fix this problem is to change the implemen-
tation of the core. But (especially for larger, more complex
components with sophisticated internal state and behavior)
developing the understanding required to safely change this
implementation may take an enormous amount of time and
effort. And changing the core always raises the possibility
of introducing new errors.

Figure 5 presents a component that enforces the accept-
ability property that any output must either 1) be between
the minimum and maximum values inserted into the map-
ping, or 2) be 0. It enforces this property by creating two
filters. The first filter (the extract procedure) processes the
input to determine whether or not the next command is a
get, put, or rem. The other filter (the rectify procedure)
processes the output to record the minimum and maximum
values put into the table. It uses these values to ensure that
all outputs for get and rem commands are either between
the minimum and maximum or 0; we call this activity rec-
tification. The first filter uses the channel stream to pass
the command information to the second filter. The main

procedure sets up the channels, creates the two filters, and
starts the core. Figure 6 graphically presents the resulting
process structure.

When confronted with an out of bounds result from the
core, the output filter replaces the result with 0. An alter-
native approach would be to simply replace the result with
the minimum or maximum value. This approach might be
preferable when any value in the table is acceptable. Con-
sider our motivating usage context of a client that uses the
core to map a bank of printer names to network addresses.
Assuming the minimum and maximum values remain valid,
the filter would ensure the delivery of the print job to some
printer. If all of the printers are acceptable to the client,
the result would be a system that could deliver acceptable
results even in the face of unreliable behavior on the part of
the core.

The code in Figure 5 uses a black-box approach: the im-
plementation of the core remains unchanged. As may often
be the case with such solutions, the management code re-
quired to implement the communication between the filters
and the interpositions on the input and output streams dom-
inates the code required to enforce the acceptability prop-
erty. A white-box approach may require less code because
the state and communication may be more easily accessi-
ble. The drawback, of course, is that the white-box code
must execute in a more complex and presumably less well
understood context.

Figure 7 presents a white-box reimplementation of the
core main procedure from Figure 1. We have augmented this
procedure to maintain the minimum and maximum values
put into the mapping and to coerce out of bounds values to
0. The code is substantially smaller than the black-box code
in Figure 5, but is embedded within the input and output
processing code in the main procedure. As should be the
case, the filter code is added around the edges of the core
— it does not appear within the procedures (put, get, rem)
that implement the primary functionality of the core.



void extract(int fd) {
char cmd[LEN], name[LEN];
int val;
while (scanf("%s", cmd) != EOF) {

if (strcmp(cmd, "put") == 0) {
if (scanf("%s %d", name, &val) == 2) {

printf("%s %s %d\n", cmd, name, val);
fflush(stdout);
write(fd, "p", 1);
fsync(fd);

}
} else if (scanf("%s", name) == 1) {

printf("%s %s\n", cmd, name);
fflush(stdout);
write(fd, cmd, 1);
fsync(fd);

}
}

}

void rectify(int fd) {
int val;
char c;
static int min = MAXINT;
static int max = 0;
while (scanf("%d", &val) != EOF) {

read(fd, &c, 1);
if (c == ’p’) {

if (val < min) min = val;
if (max < val) max = val;

} else {
if (val < min) val = 0;
if (val > max) val = 0;

}
printf("%d\n", val);
fflush(stdout);

}
}

int main(int argc, int *argv[]) {
int input[2], output[2], channel[2];

pipe(input);
pipe(channel);
pipe(output);

if (fork() == 0) {
dup2(input[1], 1);
extract(channel[1]);

} else if (fork() == 0) {
dup2(input[0], 0);
dup2(output[1], 1);
execv(argv[1], argv+1);
fprintf(stderr, "io: execv(%s) failed\n", argv[1]);

} else {
dup2(output[0], 0);
rectify(channel[0]);

}
}

Figure 5: Black-Box Implementation of Min/Max
Output Monitoring and Rectification
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Figure 6: Process Structure for Black-Box Imple-
mentation of Min/Max Output Monitoring and Rec-
tification

int main(int argc, char *argv[]) {
char cmd[LEN], name[LEN];
unsigned val;
static int min = MAXINT;
static int max = 0;
initialize();
while (scanf("%s", cmd) != EOF) {

val = 0;
if (strcmp(cmd, "put") == 0) {

if (scanf("%s %u", name, &val) == 2) {
put(name, val);
/* record min and max */
if (val < min) min = val;
if (max < val) max = val;

}
} else if (strcmp(cmd, "get") == 0) {

if (scanf("%s", name) == 1) {
val = get(name);

}
} else if (strcmp(cmd, "rem") == 0) {

if (scanf("%s", name) == 1) {
val = rem(name);

}
}
/* enforce acceptability property */
if (val < min) val = 0;
if (val > max) val = 0;
printf("%u\n", val);
fflush(stdout);

}
}

Figure 7: White-Box Implementation of Min/Max
Output Monitoring and Rectification



int scan(char name[], int val) {
int i;
for (i = 0; i < N; i++)

if (strcmp(name, name(i)) == 0)
return(value(i));

return val;
}

Figure 8: Code to Scan entries Array

The primary new consideration when implementing com-
bined input and output filters is the mechanism that the
filters use to communicate. The black-box implementation
in Figure 5 uses a Unix pipe to carry the extracted command
information to the output filter. The white-box implementa-
tion in Figure 7 uses variables. Other potential mechanisms
include network connections and shared memory segments.
Other issues (such as interposition mechanisms, monitoring,
and acceptability property enforcement) are similar to those
discussed in Section 2.3.

2.5 Structure and Behavior
Further testing may reveal another anomaly — the fol-

lowing input:

put a 5

put c 6

rem a

get c

produces the output 5 6 5 0 instead of the output 5 6 5 6.
One hypothesis may be that the core is dropping mappings
because it has exceeded its mapping capacity, but this hardly
seems likely with only three mappings. It turns out that
there is a different problem. When the rem procedure in
Figure 2 removes a mapping, it removes (in addition to the
removed entry) all entries in the list before the removed
entry.

As with the previous deletion example from Section 2.4,
it is possible to recode parts of the core so that the rem

procedure does not delete the preceding list entries. The
same disadvantages (the need to understand the core code,
the potential to introduce new errors) apply.

An alternative is to apply an acceptability property that
relates the data structures that the core builds to the out-
puts that it generates. Specifically, the entries array con-
tains the mappings that the get procedure makes available
to the client. An appropriate acceptability property is there-
fore that get should never return 0 if there is a mapping
present in the entries array for the name passed as an ar-
gument to the put command. One can therefore view the
table data structure as (like a cache) providing quick access
to a set of mappings that may provide an acceptable answer.
But if this data structure fails to provide an answer, the im-
plementation should examine the entries array directly to
find the mapping.

Figure 8 presents code that scans the entries array to
find the mapping for a given name. A white-box implemen-
tation of the acceptability property discussed above would
simply invoke the the scan procedure whenever the get pro-
cedure (from Figure 2) returns 0. With this change, the im-
plementation correctly returns 6 as the result of the get c

command for the input discussed above.

void extract(int fd) {
char cmd[LEN];
char name[LEN];
int val;
while (scanf("%s", cmd) != EOF) {

if (strcmp(cmd, "put") == 0) {
if (scanf("%s %d", name, &val) == 2) {

printf("%s %s %d\n", cmd, name, val);
fflush(stdout);
write(fd, name, strlen(name));
write(fd, "\n", 1);
fsync(fd);

}
} else if (scanf("%s", name) == 1) {

printf("%s %s\n", cmd, name);
fflush(stdout);
write(fd, name, strlen(name));
write(fd, "\n", 1);
fsync(fd);

}
}

}

int main(int argc, int *argv[]) {
int input[2], output[2], channel[2], pid;

pipe(input);
pipe(channel);
pipe(output);

if (fork() == 0) {
dup2(input[1], 1);
extract(channel[1]);

} else if ((pid = fork()) == 0) {
dup2(input[0], 0);
dup2(output[1], 1);
execv(argv[1], argv+1);
fprintf(stderr, "st: execv(%s) failed\n", argv[1]);

} else {
dup2(output[0], 0);
rectify(pid, channel[0]);

}
}

Figure 9: Implementation of name Extractor for
entries Filter

It is also possible to develop a gray-box implementation.
One approach interposes an output filter and scans for 0
outputs. It then uses the Unix ptrace package to gain ac-
cess to the address space of the core process and examine
the contents of the entries array to determine if it should
replace 0 with some other value. As in the example in Sec-
tion 2.4, the output filter needs some information from the
input stream. It is possible to use the same solution: an
input filter that extracts the information and uses a sepa-
rate channel to pass it along to the output filter. Figure 9
presents the code for this input filter. The extract proce-
dure implements this filter — it extracts the names from the
input stream and passes them to the output filter. The main

procedure creates the input filter, the core, and the output
filter and sets up the connections between them.

Figure 10 presents the code for the output filter. The
addr procedure uses the readelf command to extract the
symbol table information for the core process and find the
address of the entries array within this process. It uses the
getLine procedure to parse the symbol table information.
The rectify procedure implements the output filter. It



int getLine(FILE *f, char buf[], int len) {
int i = 0, c;
while (((c = fgetc(f)) != EOF) && (i < len-1)) {

buf[i++] = c;
if (c == ’\n’) break;

}
buf[i] = ’\0’;
return(i);

}

#define SIZE 256

int getAddr(int pid, char sym[]) {
char cmd[SIZE], buf[SIZE];
int addr = 0;
sprintf(cmd, "readelf -s /proc/%d/exe", pid);
FILE *f = popen(cmd, "r");
while (getLine(f, buf, SIZE) != 0) {

if (strstr(buf, sym) != NULL) {
int i = 0, j = 0;
while ((buf[i] != ’:’) && (buf[i] != ’\0’)) i++;
i++;
sscanf(buf + i, "%x", &addr);

}
}
return addr;

}

int getEntries(int pid, int offset) {
int i;
for (i = 0; i < sizeof(entries) / sizeof(int); i++) {

((int *) entries)[i] =
ptrace(PTRACE_PEEKDATA, pid, offset+i*sizeof(int));

if (((((int *) entries)[i]) == -1) && (errno != 0))
return -1;

}
return i;

}
void rectify(int pid, int fd) {

int val;
int offset = getAddr(pid, "entries");
char name[LEN];
int i;
int stat;

while (scanf("%d", &val) != EOF) {
for (i = 0; i < LEN; i++) {

read(fd, &name[i], 1);
if (name[i] == ’\n’) break;

}
name[i] = ’\0’;
if (val == 0)

if (ptrace(PTRACE_ATTACH, pid, 1, 0) != -1) {
if ((waitpid(pid, &stat, 0) != -1) &&

(getEntries(pid, offset) != -1))
val = scan(name, val);

ptrace(PTRACE_DETACH, pid, 0, 0);
}

printf("%d\n", val);
fflush(stdout);

}
}

Figure 10: Implementation of entries Filter
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Figure 11: Process Structure for entries Filter

examines the output stream and, when it finds a 0 output,
uses the ptrace package to attach to the core process. It
then invokes the load procedure to copy the contents of the
entries array from the core into its own local version and
invokes the scan procedure to find an appropriate entry (if
one exists) and return the value from this entry.

Figure 11 graphically presents the process structure that
the entries filter generates when combined with the min/max
filter from Section 2.4. There are two input filters: the first
extracts the command information from the input stream
to pass it to the min/max output filter; the next extracts
the name information to pass it to the entries filter. The
entries filter uses the ptrace interface to access the data
structures in the core.

This example illustrates how to use the structures that
the core builds as a foundation for stating and enforcing
acceptability properties. Instead of specifying output prop-
erties as a function of the inputs, it is instead possible use
properties that capture the relationship between the out-
puts and the structures that the core builds as it processes
the inputs. Leveraging the core data structures may sub-
stantially reduce the complexity and implementation effort
required to enforce some acceptability properties — without
these data structures, the enforcement component may be
forced to reimplement much of the data structure function-
ality to store the input information that it needs to enforce
its acceptability property.

It may also be useful to enforce acceptability properties
involving the inputs and the resulting core data structures.
Many of these properties can be viewed as capturing accept-
ability properties of the core state as a function of the core’s
interaction history with the environment.



There is a conceptual connection between some transac-
tion processing failure recovery algorithms and resilient com-
puting mechanisms that enforce acceptability relationships
between the input and the state. Transaction processing
systems typically maintain a log of all operations performed
against the database. Conceptually, the database is sim-
ply a data structure (like the table in our example) that
the transaction processing system uses to accelerate access
to the data (whose primary representation is in the log).
When the database fails, the recovery system may rebuild
the database by replaying part or all of the log. One can
therefore view the recovery algorithm as enforcing a correct-
ness relation between the input history in the log and the
structure of the database.

3. MORE TECHNIQUES
In Section 2 we presented a range of acceptability-oriented

computing techniques in the context of an example program.
We next discuss other potential techniques and applications.

3.1 Data Structure Consistency
The data structure repair implementation discussed in

Section 2.2 consists of a set of hand-coded procedures that
dynamically detect and repair violations of key data struc-
ture consistency properties. While this code satisfies its re-
pair goals, hand-coded data structure repair code can be
difficult to develop (because the developer cannot assume
that the data structures satisfy their normal invariants and
because the final code can be quite complex). And it can be
difficult to examine the code to determine which properties
it does and does not enforce.

We have therefore developed a new specification-based
approach to enforcing data structure consistency proper-
ties [10]. The goal is to reduce development effort and place
the field on a firmer foundation by making the enforced con-
sistency properties explicit. Our system accepts as input a
specification of the desired data structure consistency prop-
erties. During the execution of the program, it traverses the
data structures in the heap to find specific objects that vio-
late the consistency properties. When it finds a violation, it
applies repair actions that coerce the data structures back
into a consistent state. It is also possible to apply the in-
consistency detection and repair process to a persistent data
structure (such as an application data file) just before a pro-
gram attempts to access the data structure.

One complication is that correct programs may temporar-
ily violate the consistency constraints during data structure
updates. We address this complication by enabling the pro-
grammer to identify the points in the program where he or
she expects the data structures to be consistent. The tool
enforces data structure consistency at only those points.

A potential concern is that repair followed by continued
execution may lead to the silent generation of unexpected
results. Our approach generalizes to support the tagging of
all values computed using repaired data. These tags would
support user interfaces that suitably distinguish results pro-
duced from repaired data, alerting the user to potentially
questionable results.

We have applied our system to several applications —
an air-traffic control system, a multi-player game, a sim-
plified version of the Linux ext2 file system, and Microsoft
Word documents. We found that the specifications had ac-
ceptable development overhead and that the resulting re-

pair algorithms enabled the systems to effectively recover
from otherwise fatal errors. We found the air-traffic con-
trol system to be a particularly interesting application. It
tracks hundreds of aircraft and implements features that
provide different kinds of functionality (flow visualization,
route planning, conflict detection, trajectory projection, and
scheduling). Without data structure repair, an error in any
one of the aircraft or any one of the features can cause the
entire system to fail, denying the controller access to any of
its functionality. Data structure repair enables the system
to continue to execute and provide normal functionality for
almost all of the aircraft and features.

3.2 Process Structure Consistency
Many distributed systems are structured as collections

of communicating processes. Like data structures, these
process structures often come with consistency properties.
These properties typically become violated because processes
(or the machines that host them) fail, hang, or become in-
accessible. It is possible to augment these programs with
additional components that monitor the process structure
for inconsistencies caused by the presence of failed, inacces-
sible, or duplicated processes. Like most other monitoring
components, these components could be manually coded or
automated generated from a specification of relevant consis-
tency properties.

Resilient computing techniques might repair inconsistent
process structures by regenerating failed or inaccessible pro-
cesses and shutting down duplicate processes (after rerout-
ing connections to a chosen primary process). In our map
example from Section 2, one might isolate the core behind
an input and output filter. If the core fails, the filters would
cooperate to restart it. An extension might record put com-
mands, then replay these commands to reinitialize the new
core. Safe exit techniques might shut down the remaining
processes after taking appropriate actions to move to a sta-
ble state.

3.3 Configuration Consistency
Many programs and operating systems must be config-

ured to operate correctly. System administrators are typ-
ically responsible for (more or less manually) configuring
systems and maintaining the configurations to ensure that
they support the needs of the user and are consistent with
the surrounding computing infrastructure. A configuration
can become inconsistent in a variety of ways: updates to the
computing infrastructure in which the system is embedded,
botched, incompatible, or undesirable software installations,
or attacks such as software viruses. Different applications
may also require different configurations. It is possible to
augment these systems with components that monitor the
configuration to detect inconsistent or suboptimal configu-
rations. Resilient computing approaches might reconfigure
the system automatically; safe exit approaches might notify
a system administrator and block any actions affected by
the inconsistent or suboptimal part of the configuration.

3.4 Library Usage Consistency
Many libraries come with implicit consistency require-

ments on the sequence in which the operations must be
invoked. Standard examples include requiring files to be
opened before reading or writing and ordering constraints
(such as two phase locking) on lock and unlock operations.



It is possible to monitor the execution of the program to
detect violations of these ordering requirements. When a
violation is detected, resilient computing techniques could
automatically insert or remove library calls to move a pro-
gram from inconsistent to consistent execution sequences.
For example, if a client passes an invalid file descriptor to a
read or write operation, the operation can simply open a
default file and perform the operation on that file.

4. ISSUES
Acceptability-oriented computing as presented in this pa-

per is largely untested and it is unclear to what extent it will
succeed. It has the potential to significantly change many
of the engineering and social trade-offs associated with soft-
ware development, in both obvious and quite subtle ways.
The overall success of the technique will depend, in large
part, on the interaction between these changes.

4.1 Continued Execution After Repair
Resilient computing systems are strongly biased towards

continued execution even after the confirmed detection of an
incorrect or unexpected execution in part of the system. In
many situations it may be far from clear when this contin-
ued execution is more desirable than the more traditional
approach of terminating the computation, then relying on
human intervention to restore the system to an acceptable
operating state, or on the slightly more powerful concept of
monitoring for unacceptable states or behavior, then exe-
cuting a safe exit strategy.

Resilient computing should therefore be most easily ac-
cepted in situations where continued execution, even if com-
promised, has clear advantages over outright failure. Ex-
amples of such situations include autonomous systems that
must execute largely without human intervention, systems
with long recovery times and stringent availability expecta-
tions, and when (such as in image processing software) the
basic acceptability of a proffered result is immediately ob-
vious upon inspection. Resilient computing may be useful
when the software is known to execute incorrectly in cer-
tain situations, but the developers are unwilling to risk the
system disruption that might result from fixing the incorrect
code, preferring instead to repair any damage after it occurs.
It may also be useful for systems with multiple largely inde-
pendent components — repairing an otherwise fatal flaw in
one component may enable the system as a whole to continue
its execution, with the remaining components continuing to
provide their normal functionality.

Resilient computing may be less acceptable when (as is
the case for many numeric calculations) the acceptability
of the result is difficult to determine by simple inspection,
especially when a repaired error may cause the produced
result to satisfy stated consistency properties but still devi-
ate from a correct or acceptable result. Ways to attack this
problem include the use of credible computation (computa-
tions that produce a checkable proof of the correctness or
acceptability of their results) [20, 21] or explicit tagging of
results that depend on repaired state or computation.

4.2 Easy Adoption Path
Technologies that require wholesale changes to current

practice typically have a difficult adoption path, even when
it is clear that they offer substantial advantages. Technolo-
gies that require few changes typically have a much easier

time. This dichotomy is especially acute for technologies
that involve a large, stable installed base. The installed
base of C and C++ programmers, for example, has in the
past comprised a substantial (and in many cases unsur-
mountable) obstacle to the adoption of new programming
languages, even when these languages were clearly superior.

Acceptability-oriented computing has a very easy adop-
tion path. It can be incrementally added to preexisting
core software written in standard legacy languages such as
Fortran, C, or C++. There are no serious obstacles that
significantly complicate its use in multilingual software sys-
tems. Only those developers actively producing the accept-
ability monitoring and enforcement components or specifi-
cations need even be aware of its presence in the system;
other developers can continue to obliviously use the same
practices they have always used. In fact, resilient comput-
ing techniques may even reinforce current software develop-
ment practices — by increasing the reliability of software
produced using these practices, they may postpone or elim-
inate the need to move to new practices. Even if organi-
zations wind up never using its failure recovery features in
deployed systems, the inconsistency detection features may
facilitate the detection and localization of errors during the
development phase. And the exercise of identifying the key
acceptability properties may help the organization to under-
stand the properties that the system should preserve and to
focus their development effort. Acceptability-oriented com-
puting therefore has the profile of technology that can pro-
liferate very rapidly throughout the software development
ecosystem once its advantages become apparent.

4.3 Poorly Understood Software Components
With current development practices, the use of potentially

unreliable or poorly understood components introduces a
substantial amount of uncertainty about the behavior of the
system. In particular, it can be difficult or impossible to rea-
son about what circumstances might cause unacceptable be-
havior to occur, what form the unacceptable behavior might
take, and the ultimate consequences of the unacceptable be-
havior. This situation is unfortunate, because these kinds of
components may, in many circumstances, provide substan-
tial functionality and development advantages. For exam-
ple, machine learning, neural networks, and software evolu-
tion (all of which produce software that may be difficult or
impossible to understand) can efficiently deliver function-
ality that is difficult to obtain at any cost using standard
development techniques. And many incompletely developed
or debugged software packages also implement (albeit par-
tially) valuable functionality.

Acceptability-oriented computing may be able to elim-
inate much of the uncertainty associated with the use of
such potentially unreliable or poorly understood compo-
nents. The acceptability enforcement mechanisms bound
the range of potential system behaviors, making it possi-
ble to reason concretely and precisely about the potential
impact of these components. Acceptability-oriented tech-
niques therefore promise to enable a much more aggres-
sive approach to software reuse and to the incorporation
of poorly-understood software into the system. The end re-
sult may be a dramatic reduction in the difficulty of building
acceptable software systems and corresponding increase in
the amount of functionality that we can incorporate into an
acceptable system.



4.4 Appropriate Engineering Investment
In almost every software development project, some parts

of the system are, in practice, more important than others.
An efficient development process would clearly devote more
care to the engineering of these parts of the system. But tra-
ditional requirements analysis processes fail to prioritize the
requirements, leaving the developers without any guidance
as to how they should most efficiently invest their engineer-
ing resources to deliver the most acceptable system within
their means.

Because acceptability-oriented computing provides such a
prioritization, it may trigger the development of new soft-
ware engineering processes that direct different amounts of
engineering resources to different tasks based on the per-
ceived importance of each task to the overall acceptability
of the final system.

4.5 Impact on Software Quality
If acceptability-oriented computing delivers on its promise

to make systems execute acceptably in spite of errors, it
will also reduce the incentive to produce reliable software
in the core. One potential outcome would be a substantial
reduction in the amount of engineering required to produce
an acceptable piece of software. Instead of sinking a large
amount of engineering resources into finding and eliminating
programming errors in the core software system, the organi-
zation would simply accept a larger number of core software
errors, then rely on the outer layers to compensate for their
presence.

The success of this particular scenario depends on the as-
sumption that the production of close to perfect software
is more expensive than the production of software that is,
in the presence of a sufficiently sophisticated acceptability
enforcement mechanisms, just acceptably flawed. But note
that even in a resilient system, the core software must reach
a certain level of reliability before the system as a whole can
function acceptably. And it is also clear that, in a variety
of settings that range from manufacturing [8] to personal
relationships [17, 7], the mere presence of mechanisms that
are designed to detect and compensate for human error has
the effect of reducing the effectiveness of the participants in
the setting and, in the end, the overall quality of the sys-
tem as a whole. A potential explanation is the bystander
effect — that the participants start to rely psychologically
on the error detection and compensation mechanisms, which
reduces their motivation to reduce errors in their own work.
In fact, the most successful manufacturing process in the
world today (lean production) can be viewed as designed to
magnify the negative impact of each error on the process
and to therefore increase the vulnerability of the system as
a whole to these errors [23]. The rationale is that this ap-
proach makes each error immediately obvious and serious
and therefore immediately addressed. The goal is also to
increase the motivation of the human participants to reduce
their individual errors to the lowest possible level and to ap-
ply their efforts to eliminating errors within the system as a
whole.

The knowledge that they are developing software for an
acceptability-oriented system with error detection and com-
pensation mechanisms may therefore reduce the motivation
and ability of the developers to produce quality software.
They may even be incapable of delivering software that sat-
isfies even the reduced requirements for successful inclusion

in a resilient system. It may turn out to be the case that, in
the end, the best way to build reliable software is to place
each developer in a position where 1) each error that he or
she makes will have serious consequences, and 2) he or she
is solely responsible for ensuring the absence of errors in
the parts of the system that he or she develops. The error
monitoring and compensation mechanisms at the heart of
acceptability-oriented computing are obviously counterpro-
ductive in such a scenario.

A related problem is that developers may subconsciously
adjust their activities and work habits so that, across a very
broad range of development processes, the same amount of
effort is required to deliver a minimally acceptable software
system regardless of the development methodology or sys-
tem structure. In this case acceptability-oriented computing
would not produce a better system, and its more sophisti-
cated structure could be seen only as a disadvantage.

4.6 Automatic Property Generation
Acceptability-oriented computing requires the presence of

identification of acceptability properties. We expect that,
compared to the specification for the core software system,
these specifications will be quite small and relatively easy
for developers to produce. However, it may be desirable
to produce these specifications automatically to reduce the
development burden.

One approach is to statically analyze the program to ex-
tract likely acceptability properties. This analysis would ob-
viously need to be unsound (if not, the core program would
never violate the properties). Of course, the trade-off is that
an unsound analysis has the freedom to generate more am-
bitious and potentially more useful properties.

Another approach is to monitor the execution of the code
to learn key input, output, and data structure properties [9,
11]. The system would then enforce these properties for all
executions. Potential issues include ensuring that the sys-
tem observes enough behaviors so that it does not inflexibly
enforce a overly narrow set of properties and eliminating un-
desirable properties generated by unacceptable executions.

4.7 Monitoring and Repair Overhead
Acceptability-oriented computing may introduce additional

overhead in the form of the monitoring and repair software.
The potentially most serious form of this overhead occurs
when the system suffers from a recurrent error that is re-
peatedly repaired, and therefore masked, by the error com-
pensation software. In this scenario, the system might spend
most of its time executing the error recovery software, with
the human users oblivious to the true source of the com-
promised performance and therefore unable or unmotivated
to solve the problem. In the worst case, the problem could
become progressively more serious until the recovery mech-
anisms were finally unable to compensate. In the absence
of such monitoring and repair, of course, the error would
become immediately obvious and problematic to its users,
who would then repair the system and eliminate the error.

Logging mechanisms are designed to attack this problem
— they produce information about repaired errors in part
to alert the human users or administrators to the potential
problem. It is unclear how effective such warnings would
be in practice, given the discipline required to take action
in response to warnings of errors that do not immediately
interfere with the operation and use of the system.



An example of this kind of problem arises in intermittently
faulty hard disks, which may require multiple reads of the
same disk block to successfully retrieve the data. The system
may spend much of its time repeatedly attempting to read
the same disk block, but this fact is hidden because the
retries are transparent to the client of the low-level disk
hardware. Despite the fact that such intermittent errors
are typically logged and often indicate an impending total
disk failure, many users do not regularly monitor the log to
preemptively replace faulty disks before they fail.

4.8 Acceptability Requirements Identification
One of the prerequisites for applying resilient computing

is identifying key acceptability properties, which typically
take the form of structural consistency properties or basic
behavioral requirements. Many software engineers believe
that explicitly identifying and documenting these kinds of
properties improves the software development process, even
if they are never explicitly used once they have been identi-
fied and documented. Potential benefits include obtaining a
better understanding of the system under development and
facilitating the communication of this understanding within
the development team. What is now understood as a key
advantage of acceptability-oriented computing (a more reli-
able system through automated compensation for errors and
faults) may prove, over time, to be most important as an in-
centive that convinces organizations to explicitly document
key system acceptability requirements.

4.9 Error Tracking
It is often desirable to be able to understand why a system

behaves the way it does. In general, we expect that resilient
computing techniques may complicate this analysis — the
additional layers may obscure or even completely mask the
original sources of errors. One way to attack this problem is
to ensure that the monitoring mechanisms adequately log all
of the impending acceptability violations that they detect.
The log entries should help the developer trace interesting
events in the system and reconstruct potential reasons for
its behavior. The logs may even make a system augmented
with acceptability-oriented mechanisms easier to understand
than the original, unaugmented system.

4.10 Close to Perfect Software
The recent proliferation and success of bug-finding soft-

ware development tools and safe programming languages
such as Java raises the possibility that developers may be
able, in the near future, to dramatically increase the quality
of the software that they produce. It is possible that this
increase may be large enough to render the additional ben-
efit of the resilient approach small enough to be not worth
the additional cost and complexity.

4.11 More Creative Software
Acceptability-oriented programming may free developers

from the tyranny of perfection, enabling the creative devel-
opment and deployment of code with only a hazy, intuitive
idea of what the code will do in some or even most situa-
tions. Instead of engaging in detailed reasoning about what
will happen, programmers may simply adopt a more empiri-
cal approach in which they quickly throw together some code
that they feel is close to what they might want, try it in the
system to see how it works out, then incrementally modify

it until it exhibits approximately the desired behavior most
of the time, relying on the acceptability enforcement mech-
anisms to avoid the introduction of unacceptable behavior.

The potential advantages of this approach include faster
exploration of the implementation space and a reduced need
for developers to understand the software system. It may
also reduce the cognitive capabilities required to function
effectively in the system, enabling less competent developers
to make meaningful contributions.

5. EXTENSIONS
As described so far, resilient computing can be seen as

a way to inject redundancy into a system to increase ac-
ceptability. Its focus on influencing the execution via data
structure updates and input and output filters often leaves
the core software untouched. But resilient computing tech-
niques may make some dramatically different approaches to
developing and manipulating the core practical.

5.1 Failure-Oblivious Computing
Consider a safe language with null pointer checks and ar-

ray bounds checks. If the program fails one of these checks,
the run-time system throws an exception. Because program-
mers usually can’t be bothered or don’t know how to handle
these exceptions in a more intelligent fashion, the program
usually terminates.

Instead of terminating, the system can instead replace
the execution of the offending statement with a simple de-
fault action that enables the system to continue to execute
without throwing an exception. So, for example, if the pro-
gram attempts to load a value from a null reference, the
system might return a default, previously observed, or ran-
dom value as the result of the load and continue to execute
without throwing an exception. The system could also sim-
ply discard values stored to illegal addresses. One can view
this approach as applying resilient computing at a low level
with simple automatically generated recovery actions and
no specification required from the developer.

One justification for this approach is that the program
may produce many results, only some of which may be af-
fected by any given error. But all of the results need the
flow of control to pass through the computation that gener-
ates them. One artifact of the standard sequential comput-
ing paradigm is that the flow of control is artificially mul-
tiplexed between independent computations, with a failure
in any one of the computations causing the flow of control
to be unavailable to the others. A similar artificial resource
constraint occurs in token ring networks and may be one
of the reasons that these networks have proved to be less
popular than other kinds of networks.

An alternate approach would apply techniques from lazy
programming languages to view the computation as a (lazily
generated) dependence graph containing computations that
lead to the results. If the dependence graph for a given result
contains an error, the program simply does not produce that
result. Independent computations, of course, would still pro-
duce their results. Given this insight, it is possible to trans-
late the basic philosophy of the approach back to sequential
languages. This approach would use the sequential flow of
control only to order interfering accesses (two accesses inter-
fere if they access the same location and one of the accesses
is a write). The failure of one computation would not pre-
vent independent computations from successfully producing



their results. It is, of course, possible to generalize this idea
to allow independent computations to produce results even
if one of the computations does not terminate. One gener-
alization would reason statically about the complete set of
effects performed by potentially nonterminating loops to ex-
ecute independent computations following the loop even in
the absence of loop termination. An alternative generaliza-
tion would simply forcibly exit loops that fail to terminate
either within some predetermined number of iterations or
after substantially exceeding previously observed numbers
of executions.

5.2 Code and Input Variation
A traditional approach to surviving faults is to periodi-

cally checkpoint, then react to failure by rolling back to a
previously checkpointed state, then restart. The disadvan-
tage, of course, is that the system will simply fail again if
presented with the same input.

One way to avoid this problem is to perturb the input
in some way to elicit different behavior from the system.
The specific perturbation will depend on the context, but
examples could include varying the timing and order of in-
puts from independent sources, removing parts of the input,
or transforming the values in the inputs in some way. Of
course, this input transformation may cause the program
to generate different results — but then, this is the whole
point: to change the behavior of the program to move it
away from failure.

Another alternative is to use fault injection to perturb
the execution of the program for some time after failure.
Potential targets of fault injection include modifying the
data structures and changing the direction of conditional
branches. The data structure modification could be guided
by consistency property specifications if they are available.
This approach would reduce the chance of the recovery mech-
anism causing new failures.

5.3 Code Omission
Much of the code in the core typically falls into one of two

categories: common case code that implements the basic
functionality and executes on almost all inputs, and uncom-
mon case code that is there to correctly handle very rare
combinations of events. It is well known that uncommon
case code complicates the structure of the program and can
make the program substantially larger and more difficult to
understand.

Resilient computing opens up the possibility of simply
omitting the uncommon case code. In most cases the omis-
sion would have no effect because the omitted code would
not have executed. If the code would have executed, the ac-
ceptability enforcement mechanisms may produce a result
that (while potentially different from the correct result that
the omitted code would theoretically have produced) the
user can live with.

The potential benefits of this approach include smaller,
simpler code that is easier and cheaper to develop and mod-
ify. These advantages may enable the developers to pro-
duce common-case code with fewer errors, in which case
the system as a whole may be more reliable than a system
which contains code for the uncommon cases. The mere
elimination of the uncommon case code may also, by itself,
increase the reliability of the system. Because complex, in-
frequently executed code is notoriously difficult to develop

without errors, its elimination (even with no replacement)
may increase the overall reliability of the system.

As discussed below in Section 6.5 the use of garbage col-
lection can be seen as an instance of code omission (an appli-
cation that uses garbage collection omits all of the code used
to support explicit memory management). The benefits of
that garbage collection delivers (elimination of references
and memory leaks; increased reliability) provide an indica-
tion of the potential advantages that code omission may offer
when applied to other aspects of the computation.

5.4 Code Excision
In some cases the mechanism that detects acceptability

violations may be able to identify the code that caused the
violation. If a given piece of code is responsible for many
violations, it may be beneficial for the acceptability enforce-
ment mechanism to excise the code from the system so that
it will not continue to cause problems. The excised code
may be replaced by alternate code or simply removed from
the system with no replacement of the functionality that
it was intended to provide. The potential benefits may in-
clude reduced repair overhead and fewer faults propagated
to otherwise acceptable parts of the system.

A generalization of code excision identifies properties whose
satisfaction causes the code to fail, then uses if statements
to skip the code in question when these properties are sat-
isfied. We call this generalization conditional code excision;
the conditional skipping of put invocations when the free
list is empty as discussed in Section 2.2 is an example of
this technique.

5.5 Code as an Inconsistency Generator
A correct data structure update can often be viewed as

creating intermediate inconsistent data structures, then re-
pairing the inconsistency. Given an automated consistency
restoration mechanism, it may be possible to simply omit the
explicit consistency restoration code, relying on the auto-
mated consistency restoration algorithm to restore the con-
sistency properties and complete the update. Once again,
the potential advantages include smaller and simpler code.

This approach may turn out to be especially useful for
data structure initialization. The standard approach is to
functionally decompose the initialization to match the de-
composition of the data structure. Unfortunately, there are
often complex interdependences between these different ini-
tialization components, which complicates the staging of the
initialization. In the worst case, the need to eliminate cyclic
initialization dependences can force counter-intuitive code
refactorings, with the initialization code remaining brittle
in the face of incremental data structure changes.

An alternative approach is to declaratively specify the
consistency properties for initialized data structures, elimi-
nate the explicit data structure initialization code, then in-
voke the data structure consistency enforcer after an alloca-
tion of the initial item in the data structure. The consistency
enforcer will automatically generate a legal initialization se-
quence, eliminating the need for the developer to produce
code that correctly orders the initialization steps.

5.6 Core Elision
All of the techniques discussed so far eliminate part of the

system but leave other parts intact. The extreme logical
endpoint is to simply eliminate all of core code so that the



system consists of nothing more than a set of acceptability
specifications written in a variety of languages. We expect
this approach to work best for relatively simple systems, and
in fact some work in model-based computing and domain-
specific languages can be seen as an instance of this core
elision technique.

6. RELATED WORK
We next discuss several existing techniques that can be

seen as instances of acceptability-oriented computing. We
focus on resilient computing techniques. Most deployed sys-
tems contain embryonic safe exit techniques in the form of
assertions or input safety checks, although as mentioned
above in Section 1.3, we expect that these systems would
benefit from an increased awareness and understanding of
explicit acceptability properties, a more organized approach
to detecting impending acceptability violations, a larger ef-
fort devoted to identifying more appropriate safe exit strate-
gies, and, when appropriate, the application of resilient com-
puting techniques. We note that monitoring for impending
acceptability violations is a key component of acceptability-
oriented computing. Monitoring is a well-established field of
computer science; monitoring techniques have been develop-
ing in a wide range of fields and deployed to accomplish a
variety of goals.

6.1 Hand-Coded Data Structure Repair
Data structure repair has been a key part of two of the

most reliable software systems ever built: the IBM MVS
operating system [18] and the software for the Lucent 5ESS
switch [13]. Both of these systems contain a set of manually
coded procedures that periodically inspect their data struc-
tures to find and repair inconsistencies. The reported results
indicate an order of magnitude increase in the reliability of
the system [12].

These successful, widely used systems illustrate the util-
ity of performing data structure inconsistency detection and
repair. We view the use of declarative specifications for data
structure repair (see Section 3.1) as providing a significant
advance over current practice, which relies on the manual de-
velopment of the detection and repair code. The declarative
approach enables the developer to focus on the important
data structure consistency constraints rather than on the
operational details of developing algorithms that detect and
correct violations of these constraints. The expected result
is a substantial reduction in the amount of effort required to
develop reliable inconsistency detection and repair software.

6.2 Persistent Data Structures
Persistent structures are an obvious target for many in-

consistency elimination algorithms. An inconsistency in a
small part of the system can prevent the system from ac-
cessing any of the data at all. And the standard default
error recovery technique, rebooting, does not eliminate the
problem since the inconsistencies persist across reboots. File
systems, for example, have many characteristics that moti-
vate the development of automatic repair programs (they
are persistent, store important data, and acquire disabling
inconsistencies in practice). Developers have responded with
utilities such as Unix fsck and the Norton Utilities that at-
tempt to fix inconsistent file systems. Databases also have
many characteristics that justify inconsistency detection and
repair, and database researchers have investigated a vari-

ety of integrity management techniques [6, 5, 22]. These
techniques update the relations in the database to enforce
database consistency constraints.

6.3 Partial Reboots
Researchers have developed a technique that exploits the

structure in component-based systems to avoid complete
system reboots [4]. When the system starts to exhibit anoma-
lous behavior, they apply techniques that attempt to reboot
a minimal set of components required to restore the system
to normal operation. The goal is to minimize recovery time
by leaving as much of the system as possible intact.

6.4 Application-Specific Techniques
The utility of the acceptability-oriented approach can be

seen in several cases in which developers have opportunisti-
cally applied such techniques to improve their systems. We
are aware, for example, of avionics software with two flight
control systems: one is a venerable, fairly conservative, and
well-tested version, while the other is a newly developed,
more sophisticated and aggressive version. The acceptabil-
ity property is that the aggressive version must keep the
aircraft within the same flight envelope as the conservative
version. This strategy enables the developers to apply more
sophisticated flight control algorithms without compromis-
ing the safety of the aircraft. We are also aware of a graph-
ics rendering package that simply discards problematic tri-
angles instead of including complex special-case code that
attempts to render the triangle into the scene [14]. Embed-
ded systems developers have used layered approaches that
apply safe exit strategies to increase the probability that the
system behaves acceptably even when confronted with unan-
ticipated situations [19]. Given the utility of acceptability-
oriented techniques, we expect that they have been applied
in an application-specific manner in many other systems.

6.5 Garbage Collection
One reasonable acceptability property is that all mem-

ory in a system is either reachable via the application’s
data structures or present in the free list and available for
allocation. Garbage collection can be seen as a resilient
computing technique that enforces this property. From this
perspective, developers who use standard garbage-collected
languages such as Java can be seen as adopting a deliberate
code omission strategy as discussed in Section 5.3. Specifi-
cally, the developers omit all of the code that is designed to
support, enable, and perform explicit memory management.
This perspective highlights some of the potential advantages
of code omission. Explicit memory management code is no-
toriously difficult to get correct and is a serious source of
problems in many deployed software systems. Removing
this code and replacing it with a single uniform implemen-
tation that enforces a well-defined acceptability property can
produce a substantially more reliable system.

7. UNRELATED WORK
Reliability has been a central issue in computer science

ever since the very first computers were built. Early research
in the area tended to focus on ways to enable the system to
continue to operate after sustaining various kinds of physi-
cal damage. The standard approach is to apply some form
of redundancy to enable the system to recognize or even
reconstruct damaged data. This redundancy is sometimes



connected to mechanisms that allow the system to recom-
pute any results lost or incorrectly computed because of the
damage. We identify this research as unrelated research
because its primary goal is to simply preserve the correct
execution of the program in the face of damage or errors,
not to actively monitor and change the execution to ensure
that it satisfies acceptability properties.

7.1 Physical Redundancy
Physical redundancy provides the system with multiple

copies of its basic components, enabling the system to con-
tinue to operate even if some of the components become
inoperable. This basic idea can be applied at all levels of
the system design, from the basic logic gates in the com-
puter system to larger components such as processors and
memories. Since broken hardware components may not be
able to recognize that they are no longer functioning cor-
rectly, there is often some way to compare results from all
components and choose the result that is perceived to be
most likely to be correct. The standard mechanism is to use
majority voting, which obviously works best with at least
three versions of each potentially faulty component.

7.2 Information Redundancy
The basic idea behind information redundancy is to repli-

cate information to enable the system to reconstruct missing
or damaged data. The standard approach is to use parity or
more sophisticated versions of error correcting code. This
approach can be applied in space (redundancy in the bits in
memory) or in time (redundancy in bits transmitted). The
primary downside is the extra physical resources (memory
or bandwidth) required to apply the technique. If the tech-
nique supports detection but not correction, another poten-
tial downside is decreased reliability. The standard response
to the detection of an uncorrectable error is to terminate the
computation. Because many of these errors may have a min-
imal effect on the overall system, it may be better for the
system to simply continue to execute through the error.

7.3 Computation Redundancy
The basic idea behind computation redundancy is to repli-

cate computation to enable the system to recognize and dis-
card any incorrect results. One flavor basically boils down to
physical redundancy in that the same computation is repli-
cated on multiple hardware platforms. If one of the plat-
forms sustains damage and produces an incorrect result, a
comparison with the other results will reveal the discrep-
ancy. The standard response is to discard the incorrect re-
sult and, in some circumstances, initiate a repair action.

Another way to replicate computation is to produce multi-
ple different implementations of the same specification. The
idea is that if one implementation is incorrect and produces
an incorrect output, the other implementations will most
likely not suffer from the same error and will produce cor-
rect output. As in hardware computation replication, a com-
parison of the results enables the system to recognize and
discard the incorrect result. Note that the success of this
approach relies on developers producing independent errors.
In practice, even independent developments have an annoy-
ing tendency to produce implementations that often fail on
the same inputs [3]. Another potential problem is that the
specification may be incorrect.

7.4 Checkpoint and Reboot
A standard approach to corrupted or damaged state is

to rebuild the state from scratch by simply rebooting the
system. This approach works extremely well provided the
corrupted state is discarded during the reboot process, it is
acceptable to lose of the discarded state, and it is acceptable
to disable the system during the period of time when it is
rebooting.

This approach can be augmented with periodic check-
pointing, enabling the reboot to lose less information by
starting from recent state. One can view actions that save
state to disk as periodically checkpointing parts of the state
to ensure that it persists across failures. One potential prob-
lem with checkpointing is that the checkpoint may silently
contain corrupted or inconsistent state.

At first glance, rebooting may seem to be pointless —
after all, won’t the system just fail again once it is rebooted
and asked to retry the task that elicited the error? It turns
out that, in practice, many software errors occur only under
unusual combinations of circumstances, and that rebooting
the system and retrying the task often changes the state and
various aspects of the inputs (such as their timing) enough to
avoid the specific combination of circumstances that caused
the error.

7.5 Transactions
Transactions are a standard way to avoid corrupting data

structures in the presence of errors in updates [12]. The
transaction processing system implements a semantics in
which the entire set of updates performed during the trans-
action become visible to the rest of the system atomically.
If the transaction fails for any reason none of its updates
become visible. It is possible to dynamically check for con-
sistency at the end of each transaction just before it commits
and abort the transaction if it leaves any of the updated data
in an inconsistent state.

7.6 Comparison
All of the mechanisms discussed in this section either

attempt to protect the computation and its state against
physical damage, or to protect the system against errors
that corrupt its data structures by eliminating the effect of
any computation that leaves the state inconsistent or at-
tempts to perform an illegal action. A fundamental differ-
ence with acceptability-oriented computing in general and
resilient computing in particular is that these last two ap-
proaches accept the need to incorporate at least some of the
effects of erroneous computations into the system and its
state. Reasons why it might make sense to do this include
the need to make forward progress in the computation and
eliminating recovery time.

8. CONCLUSION
Software engineering has been dominated by the aspira-

tion to produce software that is as close to perfect as pos-
sible, with little or no provision for automated error recov-
ery. We discuss an alternate approach that explicitly rejects
the aspiration of attempting to produce perfect software as
counterproductive. Software built using this alternate ap-
proach instead consists of layers of partial and potentially
redundant acceptability specifications, with the layers be-
coming progressively simpler, more partial, and more likely
to accurately capture the intended acceptability property as



they move towards the periphery of the layered structure.
This approach may make it possible to build resilient sys-
tems that continue to execute productively even after they
take an incorrect action or sustain damage. It may also en-
able organizations to prioritize their development processes
to focus their efforts on the most important aspects of the
system, reducing the amount of engineering resources re-
quired to build the system and enabling a broader range of
individuals to contribute productively to its development.
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