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Abstract— Although existing continuum models for the of amorphous polymers under isothermal conditions be-
elasto-viscoplastic response of amorphous polymeric ma- |ow their glass transition temperaturedlthough these
terials phenomenologically capture thelarge deformation models phenomenologically capture taege deforma-

response of these materials in a reasonably acceptablet. lastic-vi lasti f th terials i
manner, they do not adequately account for thecreep lon elastic-viscoplasiaesponse o1 these materials in

response of these materials at stress levels below thosed reasonably acceptable manner, they do not adequately
causing “macro-yield”, as well as the Bauschinger-type account for thereepresponse of these materials at stress
reverse yielding phenomena at strain levels less thar:  |evels below those causing “macro-yield”, as well as the
30% associated wnh_the macro-yield transient. Anand [1_] Bauschinger-type reverse yielding phenomena at strain
has recently generalized the model of Anand and Gurtin % iated with th ield

[2] to begin to capture these important aspects of the Ievels_ less thar= 30% associated with the macro-_yle
mechanical response of such materials. In this work, we transient. A reasonable model for the “small-strait’ (
summarize Anand’'s constitutive model and apply it to 30%) viscoelastic response is of importance to describe

the amorphous polymeric solid poly(methyl methacrylate) the structural response of components made from these
(PMMA), at ambient temperature and compressive stress materials.

states under which this material does not exhibit crazing. A d 11 h fl lized th del of
We describe our compression-tension and creep experi- nand [1] has recently generalize € model o

ments on this material from which the material parameters Anand and Gurtin [2] to begin to capture important
in the model were determined. We have implemented the aspects of the complex mechanical response associ-
constitutive model in the finite-element computer program ated with the macro-yield transient of these materials.
ABAQUS/Explicit [3], and using this finite-element pro- — Anang's theory is based on the mathematical approach

gram, we show numerical results for some representative L . . .
problems in micro-indentation of PMMA, and compare and physical ideas contained in [2] and, following these

them against corresponding results from physical experi- authors, he also utilizes the &ter [8]-Lee [9] decom-
ments. The overall predictions of the details of the load, P, position, F = F<¢F?, of the deformation gradienF
versus depth of indentaion, h, curves are very encouraging. into elastic and plastic part€c and F? , and also
assumes that the plastic flow is irrotation®? =
Index Terms— Polymers, viscoplasticity, PMMA, micro- 0, so that the evolution equation foF? is FP =
indentation. DPFP, with DP deviatoric. However, as a departure
from the previous theory he assumes further thet
is given by the sum ofV 4+ 1 micro-mechanisms, such
. INTRODUCTION that D» = S Dr(®). He chooses the inelastic

VER the past twenty years a significant advand®icro-mechanism indexed by = 0 to represent the
dominant “macro-yield” response, while the inelastic

in continuum-level modeling of the plastic de--~ 3 )

formation of amorphous polymers has been made [Bycro-mechanisms indexed by = 1,..., N are cho-
Parks, Argon, Boyce, Arruda, and their co-workers [4]§en to represent the f|r_1er deta|l_s of the_ “viscoelastic”
[6], and by Wu & van der Giessen [7]. Recently/€SPOnse qf the material e}ssouated_wnh the macro-
Anand and Gurtin [2] have generalized the work oY'eJ)d ”f‘”s'gnt- COflfVespon'dlngly, he introduces =
these authors and developed frame-indifferent and (s, 50, s@), . s(), alist of (N+1) positive-valued

thermodynamically-consistertheory for the plasticity s_calar fields, and another list of (N+1) symmetric tensor
fields. A = (A, AW A AWM) that represent

SMA Fellow AMMNS and IMST Programmes; E- aspects of the intermolecular resistances to plastic flow
mail:anand@mit.edu associated with each inelastic micro-mechanism. Further,
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since a key feature controlling the macro-yield of amor-

phous materials is known to be the evolution of the local?: free energy density per
free-volume associated with the metastable state of these unit volume of relaxed
materials, he also utilizes a scalar internal varigbtbat configuration,

represents the local free-volume. Introduction of thesél, T =T, Cauchy stress,
internal-state variables allows the model to phenomenog, 7 — detF > 0, deformation gradient,

Ioglca_lly capture |mp(_)rtant aspects _of the creep responsEI,, det FP = 1, plastic def. gradient,
of solid polymers prior to macro-yield, as well as the . . . i _
highly non-linear stress-strain behavior that precedes thE” = FF*7", detF¢ >0 elastic def. gradient,

yield-peak and gives rise to post-yield strain-softening.F°¢ = R°U°®, polar decomp. oF¢,

Anand’s theory explicitly accounts for the dependence 3

of the Helmholtz free energy on the tensorial internalU¢ = ZAgra R Ty, spectral decomp. die,

state variables in a thermodynamically-consistent man- a=1

ner. This dependence leads directly to backstresses in trﬁe _ > . L . .

underlying flow rule, and allows the model to capture = > (A )ra @ra,  logarithmic elastic strain,

aspects of the strong Bauschinger-type reverse-yielding o=t

phenomena typically observed in amorphous polymerid™* = J~/°F, distortional part ofF’,

solids upon unloading after inelastic deformations. C* = F*F*, right Cauchy-green ten-
The plan of this paper is as follows. We summarize sor corresponding t&"*,

Anand's [1] three-dimensional constitutive theory in g N

Section II. In Section Il we apply this model to the

amorphous polymeric solid poly(methyl methacrylate) ©) ()
(PMMA). We describe our compression-tension and‘A:(A e A )’}

left Cauchy-green tensor
corresponding td*,

symmetric tensor inter-

creep experiments at ambient temperature and stress A (@) — A(‘”T, nal variables

states under which this material does not exhibit craz-
ing; these experiments were used to calibrate the ma-

— (50 (N)
terial parameters in the constitutive model. We have ? — (577,087, scalar internal variables,
implemented the constitutive model in the finite-element s >0,
]Sompulter program ABAQUS/Ex_pllcn [3], anr(]:i using th|s_ o, internal variable repre-
inite-element program, in Section IV we show numeri- senting free volume.

cal results for some representative problems in micro- ) o ) ) )
indentation, and compare them against correspondiﬁae special set of constitutive equations is summarized

results from physical experiments. We close in Sectidiflow:
V with some final remarks. 1) Free Energy.
N
NOTATION Y =9 (E°) + U(C*) + Y (A, 0). (1)
V and Div denote the gradient and divergence with =0
respect to the material poiiX in the reference configu- Here,
ration; grad and div denote these operators with respect V° = GIEG]® + JKIrE°[?, 2

to the pointx = y(X,¢) in the deformed configuration;

a superposed dot denotes the material time-derivative.
Thus,F = Vy is the deformation gradient. Throughout,
we write Fe=! = (F¢)~!, F»~7 = (F?)77, etc.

whereG > 0 and K > 0 are the elastic shear and
bulk moduli, respectively.
For ¥(C*) we define aneffective (distortional)

stretch
We write symA, skwA, A, and symA respectively, N L e 3)
for the symmetric, skew, deviatoric, and symmetric- V3 ’
deviatoric parts of a tensak. Also, the inner product of and adopt thd.angevin-inverséorm
tensorsA andB is denoted byA - B, and the magnitude -
of A by |A| = VA - A. w2 | (X x—l—ln( r )_
AL sinh x
[I. CONSTITUTIVE MODEL FOR AMORPHOUS (1> _ ln( : Yy )} . (4
POLYMERS AL sinhy
The underlying constitutive equations relate the fol- o A a1
lowing basic fields: =L A ) y==~ A ) )



2)

3)

4)

where£~! is the inverse of the Langevin function
L(...) = coth(...)—(...)~1. The material param-
eter up is called therubbery modulusand )\, is
called thenetwork locking stretch

For the free energie$* (A (), ) we defineeffec-
tive stretches

o) def
A E Vi A, (6)
and adopt the simplaeo-Hookearform
3 2
a_ (a)° (@))” _
& = ) 3 {(A ) 1} )
p =), a=0,...,N;  (8)

the material parametens®, which are assumed
to be functions of the free-volume, are called
back stress moduli

Equation for the stress

T=T4+Tpg, 9)
with
T, = J—lRe Se ReT
4 ( A) (10)
S4% = 2GE{ + K(trE°)1,
and
Ty = JﬁluBBﬁ,
DY WD 11)
HB = KR <3>\> <)\L>
Equations for the backstresses
S = u ™A@ a=0,...,N. (12)
Flow rule:
F? = DPF?, FP(X,0)=1, (13)

with D? given by the sum of plastic stretchings
from (N + 1) micro-mechanisms

N e (@)
D _ () (SA)O — (Sback)o
DP = Z v (27_(0) ,
1 (14)
(@)

v =g (@) 1 ol ’
s(@) +

where

a=0

_(a 1 e o
7@ = 518500 - (Sidol,  (15)

is an equivalent shear stresgor each micro-
mechanism, and
1

is a mean normal pressure. The quantify) is
an equivalent plastic shear strain rater the ath

5)

6)

7

micro-mechanism, and is taken in a simple power
law form, with v a reference plastic shear strain
rate, and0 < m(® < 1 arestrain rate sensitivity
parameters The limit m(® — 0 corresponds
to the rate-independent limit, whilex(®) = 1
corresponds to the linearly-viscous limit. Also,
a,(f”) are pressure sensitivitparameters for each
micro-mechanism.

Evolution equation for the internal variables
A

These are taken as

A = prle) Al@) 4 A(@prle)

7
A®(X,0)=1.

Evolution equations for the scalar internal vari-

ables s(® and ¢:

We consider the evolution equations fgf) and
® in the special coupled rate-independent form

0
0 g (1- 22 o,
50 (p)
(18)

. ()
® = go <m) - 1) U(0)7
Scv
with
() = sQ +blpew — @), (19)

Where{ho,go,sée),b, ey} are additional material
parameters. The initial values &f?) and ¢ are
denoted by

sz(.o) and ©;-
The remaining scalar internal variables are
assumed to beonstants

S(O‘)zsga), a=1,...,N. (20)

wheres*) denote their initial values.
Evolution equations for backstress moduli
Finally, the backstress moduli¢®) are taken to
evolve with the free-volume> according to

where ;) are the initial values of:(®) when
is equal to its initial valuep;, while ¢(*) > 0, and
Mg;? > 0 are material constants for each We
expect that's) < u!®), so thatu(®) decreases to
its final valueps) as increases.



To complete the constitutive model for a particulato tension, are shown in Fig. 2; each curve represents a
amorphous polymeric material the constitutive paranseparate experiment, and as before, compressive stresses

eter/functions that need to be specified are and strains are plotted as positi/.is important to note
the very sharp change in the shape of the unloading por-
{G, K, g, Az, v, m, al™, ho, go, tion of the stress-strain curves, especially as the méteria
L0 L0 (@) @) @) @ transitions into the tension regime. This is ewglence of
ov s 5 Pevs 8 T Piy S T My »HMsat [ - the presence of strong internal stresses leading to the

The number of material parameters scales with trirong Bauschinger-like phenomenon at the macroscopic

number of assumed micromechanismsnd as we shall level. Since the total strain levels in these curves are
see, this number can get large if one wishes to accurat@iit® small,< 20%, the origin of these strong internal
reproduce the mechanical response of the material. stresses mot due to the internal stresses gengratgd due
We have implemented our constitutive model in thi¥ Stretching and locking of the polymer chaingnich
finite-element computer program ABAQUS/Explicit [3]becomes significant only at the strain levels larger than

by writing a user material subroutine. about75%. o
Finally, Fig. 3 presents strain-time results from creep

tests that were carried out at stress levels of 24 MPa, 50
) o MPa, 63 MPa, and 75 MPa which abelow the stress
We have applied the constitutive model to captur@ye| of approximatelyt 10 MPacorresponding to macro-
the salient features of the mechanical response of the g Note that for the creep experiment at a stress level
amorphous polymeric solid poly(methyl methacrylat€jt 75 Mmpa, one obtains a creep strain of as much as 6%
(PMMA), in an initially well-annealed conditioh.We afier one hour, and this is under conditions for which the

have conducted compression-tension strain-controllgtherial is stressed to a state well below its macro-yield
experimentg, as well as stress-controlled creep expersoint!

ments in stress states under which this material does NOthe material parameters in the constitutive model

exhibit crazing; these experiments were used to calibrafg, e ghtained by fitting the model to these experiments.
the material parameters in the constitutive model. Tr@ur judicious (but heuristic) fitting procedure yields the

complete sample preparation details as well as the det%ﬁowing set of material parametefs:
of the experimental procedures may be found in [11].

A typical true stress versus true train curve for PMMA

Ill. M ATERIAL PARAMETERS FORPMMA

in monotonic simple compression to a compressive strain G = 1.58 GPa K =4.12 GPa ur = 15 MPa
of 100%, followed by an unloqdmg to zero stres_s, N =17 MEO) — 0 GPa /h('l’m) — 35 GPa
taken from Hasan [10], is shown in Fig. 1; compressive ) @

stresses and strains are plotted as positive. After arv = 0 GPa tey = 1.1 GPa pes = 0.4 GPa
initial approximately linear region, the stress-straimeu  ,(3) — 0.2 GPa s\ = 45 MPa s = 15 MPa

becomes markedly nonlinear prior to reaching a peak in ) (3) ©)

the stress at a strain of approximately 8%. The materidii — 2> MP2 s; =35 MPa Sev = 36 MPa
then strain-softens until a minimum in stress is reached’) = 4.5 GPa ? = 1.8 GPa ® =1.3 GPa
ata s.train of approximately 30%.. After _this, the material vo = 0.0005 ho = 4 GPa go = 0.012
exhibits a broad region .of rapid strain hardenu_ng, as , _gxp 05 =0 ooy = 0.001
the stress once again rises because of the alignmen ) (1.2.3)

and locking of the polymer chains. The unloading curvé? = = 0.085 mm = 0.18 ap = 0.204

after 100% compressive strain shows a Bauschinger-likg,,arison of this numerically calculated material re-

phenomenon. . . . _ sponse using this set of material parameters against cor-
Results for tests in which the specimens are f|r§£

. . O sponding experiments is shown for large-strain simple
deformed to various strain levels up to 20% in Slmpl't::‘ompression in Fig. 4, for moderate strain compression

compression, followed by change in straining direction1 Fig. 5, and creep in Fig. 6. To the best of our

1As is well known, the mechanical response of amorphous thermgno‘Nledge' all previous constitutive models for amor-
plastics is very sensitive to prior thermo-mechanical prsiogshistory. phous polymers are able to only adequately capture the
Our experiments were conducted on PMMA specimens which werarge strain response shown in Fig. 4, but are unable to

annealed at the glass transition temperature of this matéfiaP C, t th Il trai . t .
for 2 hours, and then furnace-cooled to room temperature pnoap Capture the smaller strain compression-tension response,

mately 15 hours. The experiments reported here were conduntist

isothermal conditions at room temperature. 3The tensile stress levels to which the specimens were seblject
2All experiments were conducted at an absolute value of stesn  were restricted such that they were not enough to initiségiog.

of 0.0003 s~1, except for the experimental stress-strain curve in Fig. “The steps and guidelines used in the fitting procedure aesletit

1, from Hasan [10], which was conducted at a strain rag@@d1 s—1. in [11].



as well as the creep response at pre-peak stress levieisconjunction with with suitable scaling relatiohgo
In contrast, the versatility of our new constitutive modedlevelop a promising methodology for estimating the
is highlighted by its capability to obtain very reasonabl¥oung’s modulus, yield strength, strain-hardening expo-
fits for all three diverse loading cases. nent, as well as the hardness of metallic materials from
As noted previously, the list of material parametersieasured P-h curves in micro-indentatfon.
in our theoryis rather large but a large number of A search of the literature reveals that although numer-
material parameters is needed to describe the complexitys investigators have conducted nano/micro-indentation
of the material response shown in Fig. 4 to Fig. 6. Wexperiments to obtain P-h curves for polymeric ma-
also note the values of material parameters determingdials (e.g., [22]-[26]), a corresponding methodology
by our heuristic procedure is not unique; however, thier extracting material property information from the
non-uniqueness is not of substantial significance fexperimental data is not as well develogedhis sit-
demonstrating the major features predicted by the theonation for polymeric materials exists primarily because
In the next section we apply the constitutive model tbaseline numerical analyses of sharp indentation of
predict numerical results for some representative propelymeric materials using appropriate large deformation
lems in micro-indentation of PMMA, and compare thenconstitutive models for the elastic-viscoplastic resgons
against corresponding results from physical experimentd. polymeric materials appear not to have been pre-
viously reported in the literature. Before one can use
experimentally-measured P-h curves from indentation
experiments to extract material property information for
a given materiala particular constitutive model must be
The development of very low-load depth-sensing iressumed, the sensitivity of the P-h curves to variation in
dentation instruments over the past twenty years or dbe values of the constitutive parameters in the model
which allow one to make indents as shallow as a femust be studied, and the key material parameters that
nanometers, makes these instruments particularly welleminate the P-h response must be determirféof
suited for indentation experiments on materials availablastance, it is well known that room temperature stress-
only in small volumes, such as thin coatings (e.gstrain curves obtained from large deformation compres-
[12]; [13]). Since these instruments allow one to corsiorf experiments are very sensitive to (#)e range
tinuously record both load, P, down to micro-Newtongyf strains at small strains some amorphous polymers
and indentation depths, h, down to nanometers duris§ow a strain softening phenomenon, but at large strains
the indentation cycle, results from such nano/micrdhey show a very rapid strain-hardening response; (b)
indentation experiments hold the promise of thesitu changes in strain pathpolymeric materials exhibit a
estimation of mechanical properties of materials fromronounced Bauschinger effect upon unloading;t(e)
the measured P-h curves. effects of strain rateroom temperature for polymeric
Indentation experiments have long been used to megaaterials is usually not far from their glass-transition
sure the hardness of materials. Interest in instrumented melt temperatures, and they show substantial strain-
indentation experiments as a means to estimate a wigée sensitivity of plastic flow; (d)arge hydrostatic
variety of other mechanical properties (e.g, elastic mog@ressures most amorphous polymeric materials show
uli, yield strength, strain-hardening characteristiesjd- a sizable positive pressure-sensitivity of the resistance
ual stresses, and fracture toughness (for very brittle-mate plastic flow. Without detailed numerical analyses of
rials) has grown rapidly in recent years. It is clear frorgharp indentation, it is unclear which of these phenomena
the recent literature (e.g., [14]-[16]) that the problerfignificantly affect the P-h curves, and which material
of estimating material properties from experimentallyproperties one can even hope to extract with reasonable
measured P-h curves depends crucially on the availabilggcuracy.
of a large catalog of numerically calculated P-h curves, A simple, rate-independent, power-law strain-
the attendant details of the time-varying “true projecteddardening Mises type model, as has been used to
contact areas”, “pile-up/sink-in profiles”, and stress argimulate the indentation response of metallic materials
strain distributions in the inhomogeneously-deforminée.g., [16], [17]), does not respresent the various
volume of material under the indenter. With a focughysical phenomena — strain-softening and then strain-
on metallic materials most of the recent analyses of
indentation (e.g., [16]-[18]) have been performed usingSAiso see [17], [18].
a large deformation version of the classical isotropic °Two of the earliest, and still widely-used, methods for estinga
strain-hardening, rate-independent, elasto-plasiifow _he Iahess and Yours maculs (Tom he e oad and te
theory. Suresh and co-workers (e.g., [16], [19], [20]) 7However, see [27] for a recent attempt.
have used the results from such numerical analyse$And also tension experiments on polymers which do not craze.

IV. APPLICATION TO MICRO-INDENTATION OF
PMMA



hardening, Bauschinger effects, strain-rate sensitivitwere conducted for maximum loads of 0.16 N, 0.32
pressure sensitivity of plastic flow — observed i\, and 0.64 N. The P-h curves showing the expected
polymeric materials. A more sophisticated constitutivereep during the dwell period are shown in Fig. 9. The
model which comprehends these effects is needamhrresponding numerically predicted P-h curves are also
and such a model has been developed and calibragkwn in this figure. Again, the overall prediction of
for PMMA in the previous sections of this paperthe P-h curves is in reasonably good agreement with the
In this section we check to see if this model caexperiments. Fig. 10 shows details of the dwell depth
adequately predict the P-h response in sharp-indentatiersus dwell time curves for the three loads. For all
of PMMA with conical indenters Consistent with loads, the simulations slightlynder-predictthe dwell-
other researchers, we use a conical indenter with areep that is achieved in the experiments. However,
included angle of 140% which gives the same nominaloverall, the prediction is very respectable.
contact area per unit depth as a Berkovich indenter; i.e.Fig. 11 shows the P-h curve from another experiment
A = 24.5h?, where A is the nominal contact area andwhich involves holding the indenter at a given load
h is the indentation depth. during the unloading portion of the P-h curve. Note
The apparatus for the micro-indentation experimenthat in this case the creep is in a direction which
reported in this paper is the one developed and used dpusesrecoveryof the indentation depth. A numerical
Gearing [28]° Details of sample preparation, apparatusimulation of this indentation-recovery experiment is
calibration, and experimental procedures may be fourdmpared with the corresponding experimental result in
in [11]. All instrumented indentation experiments werdig. 11. In this case, although the model predicts the
conducted to loads less than 1 N on annealed PMMA @ght trend, it under-predicts the amount of recovery of
a loading rate of 25 mN/s. the indentation depth during the load-hold period. Details
Our constitutive model, as implemented irof the recovery depth versus time plots are shown in
ABAQUS/Explicit [3], was used to simulate theFig. 12. The numerical simulation for the dwell-recovery
indentation experiments. Fig. 7 shows the axisymmetrégxperiment does not perform quite as well as those
mesh used in the conical-indentation simulations. Thghown for the dwell-creep experiments shown in Fig.
section of PMMA modelled is 20Qum tall and has 10; the simulation in this case recovers only about 66%
a radius of 400:m, which is of a sufficiently large of the depth that is observed in the experiment.
size to minimize boundary effects for th§12 pm
indenter penetrations that are expected. The block is
meshed with 2940 CAX4R elements, and has a higher V. CONCLUSIONS

density of elements near the indenter tip where mostThe constitutive model for amorphous polymeric ma-
of the deformation takes place. The mesh density wasrials [1] presented in this work differs in considerable
chosen such that at least 15 elements would contact #gail from previous such models (e.g., [2], [4]-[7]),
indenter at the lowest load of 0.16 N. _ is quite versatile, and is able to account for the creep

Using the material parameters for PMMA estimated ifesponse of amorphous glassy polymers at stress lev-
the previous section, simulations of conical indentatiogls below those causing “macro-yield”, as well as the
were conducted at a loading rate of 25 mN/s to loads gfauschinger-type reverse yielding and subsequent zero-
0.16 N, 0.32 N, and 0.64 N. The resulting P-h curv&igad strain recovery phenomena at strain levels less than
are shown in Fig. 8 along with the experimental results, 30% associated with the macro-yield transient. While
The numerical predictions of the P-h curves are in velyoing so, the model still retains its ability to capture the
good agregment Wlth the corresponding expenment;. large strain deformation of this class of materials.

Indentation experiments under load control, which The model has been used to predict the load, P,
include a “dwell” of 300 seconds at the maximum loadersus indentation depth, h, response in instrumented

9Recently, Gearing [28], using the model of [2] (which is a simpl mlcr(_)-l_ndentat|on experiments on PMMA. Overall, the
fied version of the model presented in this paper), has perfbaiee  predictions of the P-h response compare very favorably
tailed numerical analyses of micro-indentation of polymeth;ﬁacry- with corresponding experiments. The model also exhibits
late, polycarbonate, and polystyrene and developed anosipmate e experimentally observed dwell-creep at maximum
method to estimate the Young’s modulus, flow strength, rate sem Xperi y \ W p Ximu
sitivity parameter, and pressure sensitivity parameter forekstic- indentation loads, as well as the dwell-recovery at loads
perfectly-plastic type constitutive model from P-h curvestained ¢|gse to complete unloading. However, there is some
from instrumented indentation experiments. The work preseint this di b h | dicted dwell
paper is an attempt to better predict the micro-indentati@paese Iscrepancy between the actual pre !Cte well-recovery
of PMMA in comparison to that reported in [28], and serve as ¥ersus those that have been experimentally measured.
verification of the predictive quality of our new constiteti model Neyvertheless. the results obtained thus far for the micro-
for engineering applications. The development of an invens¢hod indentation ’red' fi .. d b

t predictions are very promising, and may be

to estimate material parameters for our new model from instrusden ’ : :
indentation P-h curves is left for future work. useful in the future for developing inverse procedures for



estimating material properties of glassy polymers fromg] A. E. Giannakopolous and S. Suresh, “Determinantionladte-
nano/micro-indentation experiments.

[20]
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