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Abstract

This paper presents an approach to determine the proper number of levels required on independent product
architectura attributes, given their ability to generate added revenue through more direct targeting to smaller
segments, and given the added costs of doing so. Thisisdonein assimple and readily implementable manner as
possible, making use only of conjoint dataand cost estimates. From this, the order in which to consider added
breakouts across the different attributes are prioritized. From this, for any minimum level of profit worth
considering, a set of attribute levelsto offer on each architectural attribute can be selected. Then, for any selected
set of attribute levelsto offer, the most effective product family using those levelsis determined from the
permutations.

Introduction

Product families based upon acommon product architecture are often used in many industries to leverage the
common systems while yet tail oring some aspects of a product to more adequately match the product with a
customer’ s application. Y et, evenin industries with very slow technology and market change rates, known demand
volume, and known costs, there is no formulation of the optimal portfolio architecture to maximize profit. Inthis
paper, we develop this formulation, given market variety demands as modeled through conjoint data and complexity
cost coefficients for added levels of offering on attributes.

The formulation presented requires data with modest requirements to develop or estimate. We derive our model
from basic assumptions about both the market and costs of production/devel opment. From the derivation, a
methodol ogy is devel oped with two fundamental analysis components. First, for agiven minimum profit level to
bother with, the best permutative set of architectura attribute levelsis determined. Then, when restricted to this set
of levels, the product family constructed from that set that most effectively meets the market demand is determined.

We operate with design-independent product architecture attributes. Two architectural attributes are design-
independent if the numbers of levelsto offer of each does not impact the design of the other. For example, when
system architecting an automobile, the passing acceleration, interior price, and seat height are design-independent.
On the other hand, primary customer need variables such as towing capacity and passing acceleration are not, since
both depend on the design choice of engine size. Engine size and vehicle weight are design independent (though
perhaps there are rough interval constraints between them), and cover the concerns of passing acceleration and
towing capacity. Design independence is fundamentally concerned with and determined by the product architecture,
not on any statistical market considerations. Design independent variables are the ones that theinitial systems
engineering of aproduct family must operate with when determining numbers of levels on architecture attributes.

Thetraditional approach to determining the variety content capability of a product family architectureisto
qualitatively flow down variety requirements from amarket segment attack approach. That is, amarketing group
determines segments to attack, and definesideal product attributes for each segment that should be constructed.
Typicaly, this does not consider design, production and supply chain constraints, and so a negotiation ensuesto
define the actual product attributes. Our approach hereisto do these activities quantitatively. We do thisin two
steps using the underlying market data— first we determine the number of levels on each attribute, then second
determine the offered family from this set.

To understand this, consider the more common market segment attack approach. Analyticaly, theideaisto develop
conjoint data of market share, cluster analyze it to define market segments, thecentroids of which generally define
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architectural attribute targets for design teams. Unfortunately and commonly, however, this gives rise to excess
product architecture complexity. For example, consider two attributes. An effective segmentation may result in
three clusters, and so three products are to be devel oped, each with three separate sets of architectural attributes.
This generaly forces the design team to develop a product portfolio capable of 9 permutations of the architectural
attributes — 3levels over 2 attributes. Therefore, with this approach, excess complexity enters. Further, the product
portfolio tends to grow, since the platform design can relatively easily accommodate the nine product
configurations, they are often offered, when in fact seven are not particularly worthwhile. Theresult isthat
companies offer overly complex product families, when asmaller set of levels on some architectura attributes
would have been more profitable. Documented common examples of such product proliferation include film
(Jaime, 1998), electronics assembly (Mosher, 1999), photocopiers (Zamirowski, 1999), vehicle option content on
everything from rear end differentialsto interior content (Roberson, 1999), and commercial aircraft models (Weir,
2000), among many others. No industry has an effective set of analyses to simultaneously manage both revenue
from variety and costs from complexity.

Related Work

The development of product families built on product platforms and shared modules has been the subject of much
recent research. Meyer and L ehnerd (1997) have done extensive case studies on platforms, pointing out their
advantages and challenges, and demonstrating their ability to save costs. Other researchers such as Sanderson and
Uzumeri (1995) and Henderson and Clark (1990) have a so shown that the use of platforms has given companies an
edge on the number of productsthey can offer and on their profitability over their competitors. Other management
research has shown different approaches on managing the planning and use of platforms (Wheelwright and Clark,
1992; Erens and Verhulst, 1996; Robertson and Ulrich, 1998; Pedersen, 1999; Pulkkinen et al., 1999).

To determine marketshare for various products, conjoint analysis has long been studied and devel oped. Ben-Akiva
and Lerman (1997) provide a useful reference for conducting conjoint studies, as does Urban and Hauser (1993).
Sawtooth Inc. (2000) has multiple software tools for forming conjoint studies to question customersto determine
buying preference structures, to which product attributes and positioning can be optimized. These works, however,
ignore the costs of offering the combinations of levels on each attribute. For example, to meet three different
products over 2 attributes, often three levels are demanded on each attribute, resulting in an architecture that is
actually capable of nine different products. Portfolio complexity thereby grows. On the other hand, conjoint studies
do provide agood estimate of marketshare, given the utility functions of arepresentative sample of the market.
Given aset of offerings, software models exist to cal culate market share, based upon the orderings of the offerings
for each sample point (customer) in the market model.

Most related to the work here are efforts to determine a most effective set of product offerings, given conjoint data.
Moore et a (1999) consider conjoint dataand cost coefficientsfor each attribute to offer multiple levels. They
consider whether to platform avariable (1 level) or not (multiple levels), and rank order the attributes. In thiswork,
we extend these thoughts to multiple levels and define a break out sequence.

In the engineering design literature, one can find several design and manufacturing strategies for offering variety
that begin with commonality metrics (Martin and Ishii, 1997; Kotaand Sethuraman, 1998). Krishnan et al. (1998)
devel oped network modelsto design families of products that are measured along a single performance criterion.
Optimization approaches have been devel oped by Gonzalez-Zugasti et al. (1998) and Nelson et a. (1999) to design
product platforms and families of variants. Another optimization approach is used by Fujitaet al. (1999) for
designing afamily of products from catal ogs of existing swappable modules. These approaches are all downstream
component form devel opment exercises as compared to the portfolio architecture work here.

We next develop an analysisto define the profit extractable from any choice of levels on architectural variables. We
do this by first developing a revenue model, subsequently a cost model, which then defines aprofit model. Then we

develop thisinto a method to analyze the profit capability of any breakout choice. Given this choice, we then define
the portfolio to offer from the set of level permutations.

Profit from Variety

Determining theidea family based upon profit maximization will involve two different models, arevenue model
based upon conjoint data, and a cost model based upon cost-of-compl exity factors of production.
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Revenue from Variety

Revenue from a Customer

Consider amarket Sof customerss,. Definethe price that customer k will pay as afunction of desired architectural
attribute levelst;, asP,, where each architectural attribute is denoted x,. Expanding P, in a Taylor series about ',

R =f(xt,)
o If o %f 2 1
= P + —_— X -t + X -t +...
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where Py is the maximum that customer k will pay, and only when the product configuration is exactly at T, . Now,
E = 0, (2)
% I
since Py isat alocal maximum at €, . Therefore, to second order,
i
B =Po + a (% -ty )?. ©)
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The higher order effectsthat cause (3) to vary from (1) primarily arise for two reasons: highly nonlinear fall off of
price with variance of an offering from the individually desired target, and coupled variables that cause rotation of
the parabolic surface. That is, while the variables may be design independent, they may not be price independent to
customer k, causing rotation of the price surface. Nonetheless, (3) is effective for thinking about the primary mode
of pricefall-off: deviation from individually desired targets. For morecomplex pricing models, non-linear and
rotated variables can be applied as necmry Rewriting (3) with the partials as relative weighting variables,

R =Pac - @ Wi (x - )7 @
Thisisthe standard ideal point preference model (Ben-Akiva and Lerman,1997).

Market Revenue

Now for the entire market S, consider when the design team must choose a single set of architectural targets X* to
make the most revenue. For any choice of architectural targets X, the revenue will be

_ ] ] o O
RO=a P=a Pu- @ a Walx -tu) (5)
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Then, the maximum revenue generating solution is
R(%*)= & Pox - inf A aWilx -t ) 6)
sl S skl S i

That is, the solution to picking architectura targets X* isto choose the onesthat minimize market variance over the
coverage space S. For normally distributed t ;. data, one can derive that the solution to (6) iswhen

X+ =, (7)
the average of each architectural attribute over the market. Thisisfundamenta —that a design team should pick
targets that minimize market variance —and it simply presumes a quadratic loss model for each customer, and that
one should not position products with respect to the competition.

The maximum extractabl e revenue with that one average offering will be

R=Ry- g Wis 2, ®)

where |
Ro = & Pu ©

slS

has interpretation of the maximum possible revenue extractable from the market, if each customer s, was given their
mass-customization solution X, , and
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_— o]
W= q Wi (10)
sl S
is market-average squared importance coefficient for architectural attributei.

At this point it is worth making an argument over choice of variables. Thisisareduced preference model —an
attempt to fit marketshare directly to architectural attributes. Inthe marketing literature, thisisonly suggested for
so-called primary variables from customer interviews. That is, only the main descriptor variables that customers use
to describe a product should be used to fit marketshare, since most others (more architecturally detailed variables)
do not fit well, due to poor correlation and lack of fit. While the fitting problems may be true, what this doesis push
the fitting problem off to the design engineers. The market model fits marketshare well to primary customer need
variables, but then the design engineers must estimate some kind of mapping between the primary customer need
variables and the architectural attributes they must make decisions over. Often, the House of Quality or some
similar qualitative approach istaken, but thisis hardly avalidated quantitative equation relating levels of the
architectural variablesto levels on the primary customer needs. As such, effective choices on the architectural
attributes are not made.

Note therefore that it isirrelevant to think about other descriptor variables of the market for purposes of determining
the architectural attribute targets X* . For example, it isirrelevant that other rotated or mapped spaces provide
better fitting models of market revenue. The architectura attributes are what the design team must use to make
architecting decisions — using any other variables would force the team to un-transform the conjoint spaceinto the
architectural attribute space to make their architecting decisions. It isthe variable set that the design team must
operate with. For example, avehicle design team may be able to offer two engine sizes and two vehicle lengths.
Coupling these as one variable for improved statistical fitting purposes does not get around the fact that the design
team must decide on levels of engine size and levels of vehicle length, and these two variables are design-
independent architectural decisions.

Conjoint Data

Consider using architectural and external variables such as price discounts to partition the entire market S into well-
identified market segments§. Using these, one can form conjoint studies and query market samplesto form
customer preferences (utilities). Alternatively, one could also model the market through market salesdata. That is,
rather than sampling the space of customers S directly, one might model S by examining past sales as conjoint data.
The previous sales volumes on product modelsy, now form our market spaceS. Thisimpliesthetypical issues
when using conjoint data as a surrogate of customer questionnaires, such as the market being relatively stable, the
set of entriesin the conjoint being comprehensive of the market (including competitor data), and that the variety of
products on the market reflects the variety that the market desires.

In either case, the most effective transformation of the entire datainto the best fitting model can be applied to
partition the market Sinto segments §, for some number J of segments worth attacking. Given this partitioning, to
each subspace § one can associate the actual architectural attribute levels for each product in that subspace. The
result isJ subspaces of S, each complete with aset of t; statistical data on each x;, where we now index | over the
products sold to the space S, and include marketshare weightings, or over the number of customersin the market.
This covers the market Sthrough market selling statistics or through questioning each customer s,.

Theresult is, we have ideally partitioned sub-markets § to which equations (6) — (10) can be applied, to define
product targets Xj*=m; . Explicitly, for the productsy, in each segment S, the basic revenue model is

_ o — O
RO=R-aWwa fil-t;). (12)
i wl's;
wherenow t;; isthe architectural attribute level of producty, on architectural attributex;, and f; is the marketshare of
producty;. (5) hasasolution
— . o — O
R()=Ro-inf QW @ filx-tq ). (12)
i wl's;
Independent of cost considerations, (6) —(10) imply a breakout ordering to the architectural attributes. One can
consider only 1 offer X* = m, the mean of each attribute across the entire space of salesS. Then, one can partition S
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into 2 segments, and eval uate the impact of breaking any architectural attribute into two levelsthrough therelative
increasein revenue

DR; :\NI(SI?. (s i22a +s i22b))- (13)
where s ,f isthe variance of architectural attributei across segmentj. One should break out into 2 levelsthe

attributei which has maximum increase in revenue DR. Similar analysis holds for each subsequent breakout into
higher levels, j =3, 4, 5, ... That definesthe meansto define a portfolio with maximum revenue generating
capability through minimal increases of complexity. Thisistrue provided the costs of such breakouts are the same
for each architectura attribute. Otherwise, cost factors must be considered.

Costs of Complexity

Costsincrease with added platform complexity, since increased levels on architectural attributes cause further
development problems, production logistic problems, and procurement/supply chain problems. For any architectural
attribute model, we can consider cost as being afixed baseline amount, plus added cost variable with the number of
levels offered, plus added cost variable with the deviation of each target’ s performance difference from the baseline
performance. That is,

Ck:CO+é Mi(#i'1)+éai(xik'xi0)1 (14)

I |

where G, isthefixed cost of the family, M; isthe cost increment for adding an additional level on architectura
attributei, a; isthe cost gain with a unit increase in performance of x; fromx;,, a baseline performance of
architectural attributei. x; isthe value of x; in the product purchased by customerk. Note that ;. is nhot necessarily
the target t;,; rather x; iswhat customer k actually purchased, and must be one of the values offered for x;. Notethat
Xio IS Simply abaseline used when evaluating C,, such as the cheapest offering. It isnot necessarily the level offered
with only one level on architectura attributei.

C, isthefixed cost associated with developing, producing, distributing and selling asingle product X, . M; isthe
cost with adding another offering level on architectural attributex;. Typically thisis composed development and
production/logistic costs. a; istypicaly composed of the cost gains due to product material changes from x;,.

Profit

To develop a portfolio sizing model considering profit, revenue from variety and cost of complexity must be
combined. Generdly, the profit P, extractable from any saeis

B =R - Cy. (15)
Summing this over the market spaceSfor any setof offered levels{x} definesthe extracted profit.

[¢]
P{x}) =a &
siS
2 , (16)
_ o o % o]
=Ry- a a Wkemin(x; - tjy)= - NCo- NM;(J; - D- Na;(x - %)
s1S i eild; 7]
where there areJ; levels offered on x;. Again, rather than summing over the market of customers, one can transform

thisinto aconjoint space by summing over the set of products currently offered in the market asin (11) and (12):
2

o — O . o)
PUx}=R,- aW q flgpljn(xij “t)2 < NCo= NM, (3, - - Nay (% - o). (17)
i yis i
Maximizing this over the number of possible levelsJ; and over the space offered {x;} definesthe set of levelsto
offer on each architectura attribute. Thisisafundamental result for sizing a product portfolio, and again is based
upon datathat is generally readily available.

Two cases provide specia insight into the formulation, the case of asingle offer and the case of negligible
performance cost gainsa;.
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Single Offer
With asingle offer, we can determine the profit extracted from the market as
. [o]
P(x) =a R
sl S
o o . (18)
=Ry- @ A Wi (% - ti)?- NCy - Na; (% - %)
slS i
where there are N customersin S. The configuration X* to offer isthe one such that
ox . g:"o o] 2 9
P(x*)=Ry - NCo - inf Q@ Wi (x; -t )? +Naj (x; - Xio) 2, (19)
esis i o

which in general no longer resultsin X* = masin (7). Instead, x* will back away from the mean in the direction of

the sign of a;. Itismore profitable to make offerings that are less costly and slightly off from what the customer
demands on average. Further, an optimization is required to solve for these X* .

Practically, wefind (19) is an effective formulation to solve for targets X* for any selected subspace S, on
architectural attributes that can be easily adjusted.

Flat Cost Gains

As another context, consider when the cost gainsa; for architectural attribute level changesare negligible compared
to the cost gainsM; for added numbers of levels. That is, the architectural attribute changes are easy to provide
multiple levelsin terms of changing product material, but it is difficult to expand the development and production
facilities to accommodate multiple offers. Inthiscase, (16) reducesto

.2
- o O .
P{®)=R,- NCo- a a V\/iké?n,'n(&j -t ik)9 -NM;(J;- D) (20)
sisi e | %]
and once again the solution isto use the cluster means, X;* =m, , for any partitioning into levelsJ,. Thatis,

— O — O

PAX) =R, - NCO'a\Niasijz' NM;(Ji - ) (21)
i i

(21) provides asimple and effective means to determine an maximally profitable portfolio size. That is, one can
consider asingle offering for the market. Asbefore, the profit extractable will be
< o -
P(%)=Rg- NCo- g Wis & (22)
i
One can similarly evaluate (21) at any number of partitionsJ. What isimportant to compute, though, isthe profit
increase that will occur when offering more levelsto any attributei. To determinethis, evaluaten and s;; for each
segment at several levelsof partitioning J. Then evaluate the profit increase margin for each architectural attribute,
through

_ @) , I 29
DPi:V\lugasij'aSij;' M; (23)
ej=1 il g

One should expand the number of levelsJ; on the architectura attributei for which thisismaximum. Thisis
repeated for each additional breakout, thereby defining a breakout sequence —which architectura attributesto
expand into an additional level of offering, and in which order among the architectural attributes. Thisisthe
fundamental result of the paper.

Limitations

At this point, it is again worth pointing out the limitations of the formulation. While beneficial due to the inherent
objectivity, there are caveats, particularly due to the use of conjoint data. First, the conjoint data must be appropriate
for specifying the new product architecture. There are two concerns here, that the datais complete and that it is
representative.
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The conjoint data must be comprehensive of the sales of all productsin the entire market the new architectureis
intended to cover. In particular, competitor conjoint datais required, both in sales volumes and architectural
atribute data. If only internal sales datais used, afamily will result that most easily replaces the previous sales and
goes after no additional competitor sales.

The conjoint data must be representative of the new market that the new architecture isintended to attack. This
means the market must be slowly changing — the past sales data must be representative of future sales. Thiscanbea
tenuous assumption in some markets, such as high technology content markets.

The conjoint data must be representative of salesthat can be attained. In particular, thismodels ignores effects of
competitor actionsin the market. If acompetitor has an offering near one offered, the profit will beless. This
analysis incorporates no competitor modeling, where one might downgrade the revenue generated by any particular
market segment due to competition. Rather, this model assumesthat one will make offers across the entire market,
no matter what the competition does.

Finally, if salesdataisused instead of customer interviewsto represent market preference, the sales datamust be
complete. Most permutations of the architectural attributes need to be offered on the market so that sales volume
impacts of each attribute can be estimated. Often thisisdifficult, and so customer questionnaires are needed.

Independent of the conjoint data parameters, the cost coefficientsM; must also be estimated. These are not the
percentage cost contributions of each attribute to the product, but rather the devel opment/production cost increases
when offering additional levels. Estimating these numbers often involves estimating logistical costs within a plant
and/or within product development activities, aswell as the added material costs. While ideally the development
and production facilities would maintain information systems capable of providing such time and cost data, often
thisisdifficult. In such cases, we have found comparative estimates can be made. Picking one attribute as a
reference, the comparativeincrease or decrease in difficulty to offer multiple levels of the other attributes can be
estimated. These can be normalized against the variable costs of running the plant to determine cost coefficients.

Despite these concerns, though, we have found that the conjoint approach here isworthwhile for its very
objectiveness. The architecture that most can most profitably cover the past salesisworth determining, evenin
rapidly changing environments. If one knows the direction the market is heading, one can always expand the
determined levels appropriately in that expansion direction, using the same estimating approaches as before.

Product Family Definition

The analysis above provides the means to define a most profitable product family for afixed market with no
competitive positioning strategies. The approach isasfollows:

Develop a statistical dataset of products on the market, with marketshare, price and architectural attribute levels
Estimate VT/I through regression, sensitivity analysis, or estimation

Cluster the dataset into clustersof size 1, 2, 3, 4, ...

Determine my and s;; for each cluster

Estimate M; through time/cost production data analysis or estimation

Evaluate the best breakout sequence using (23)

. For any set of architectural attribute levels, determine the subset of the permutations to offer asafamily

We discuss each of these steps next.

NouohswDdNE

Conjoint Analysis

Thefirst step in the processisto collect marketshare and architectura attribute level data on all productsin the
market, including competitor data. This data should then be analyzed to determine each architectural attribute’s
contribution to revenue, VT/I . Thisisnot particularly simple, sinceit involves finding and least squares fitting a non-

linear equation of product model revenuesRin terms of their architectural attributesx;. This can be difficult to fit.
Almost certainly, asimple quadratic model will not fit well due to coupled attributes. 1f awell-fit model can be
determined, then Taylor series expansion can provide the desired coefficients.
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Another approach isto analyze the breakdown of revenue variance with architectural attribute variance. The
architectural attributes causing high revenue variance have larger W, . Thisis readily accomplished with an
ANOVA andysis of the architectura attributes contribution to revenue. Simple linear ANOVA, though, would

underestimate the contribution, since thiswould determine only the direct linear contribution of x; to revenue, and
not higher order and interaction terms.

Alternatively, W can be estimated. One such model is
W=— (24)

where Risthe total market revenue, | isthe number of attributes, and s;; isthe total market variance of x;. This
provides equal weighting to all architectural attributes, and states that with a single offer, limiting each architectura
attribute to one value provides the same percentage contribute to revenueloss. If customer importance ratings are
available from questionnaires or the ANOV A studies, (24) can be modified to

—_ R W

W = _2°_| , (29)

SiaWw

where w; isthe average importance rank of x;. This approach assigns revenue increases for each break out on a
variable according to the variety reduction in the marketplace (as the new standard deviation over the full market
standard deviation), as weighted by the customer importance.

These VT/I arefixed averages over the entire market. One could refine thisto consider averages over sub-spacesS.

Indeed, the revenue surface fitting approach could also be similarly fit only on subspaces. At some point, oneruns
into alack of data, however. We have found (25) workswell, especially given thisisintended for preliminary
architecting decisions.

Cluster Analysis

Next, the dataset of products should be clustered into segments, for 1, 2, 3, 4, ... segments. This can be done with
clustering algorithms such as Ward’ s method, and by clustering upon the each architectural attribute. Then for each
cluster, the means and standard deviations of each architectural attribute should be calculated.

Breakout Table

With an estimate of M; for each architectura attribute, al required information is attained. This can be summarized
in a breakout analysistable, which lists as columns the increase in revenue, cost, and changein profit with each
increasein level, for each row-listed attribute. For any breakout level of profit change, one can then examinethe
table to determine how many levels of each attribute should be offered. That is, for a profit change of D, some
atributes will solve (23) at 2 levels, othersat 1 level, others perhaps at 8 levels. Thus, for aminimum level of profit
to bother with, the number of levels of each attributeis determined. Further, for amarket with no competition, the
architectural attribute target levelsto offer are the ssgment meansnj for each attribute, with j at the level determined
by D. Thiswill be explored in detail in the example.

Breakout Sequence

Given the breakout analysis table, one can explore arange of possible D, and observe how the breakouts expand.
With a high breakout level D, no attribute can attain that level of profit change and so all architectural attributes are
fixed at 1 level. AsDislowered, at some point one architectural attribute can achieve that level of profit increase by
offering two levels. AsDislowered further, another architectural attribute can also achieve the level of profit
increase. At some point, some can by offering threelevels. And so on. Doing this spanning of D, one can define a
breakout sequence for the product family. At any level of D, thereis adefined number of levelsfor each

architectural attribute, and amaximum family size equal to the possible permutations of architectural attribute
levels.
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Family Determination

For any set of levels on the attributes, the set of permutationsis not the family to offer — there are permutations that
are not near any market segment. To determine the family to offer, one must compare the market distribution of
customers to the offerings possible from the set of permutations. To do this, one can complete standard conjoint
product-positioning studies, where, for agiven number of permitted product variants, ones selectswhich levelsto
use on each attribute for each variant, selecting values from the previous analysis. These conjoint studies are sorted
on the vector of attributes considered as one.

One simplified way to do thisisto combine the attributes into a weighted sum metric, and again iteratively sort the
current products on the market into clusters. One can determine the number of segmentsto attack by starting with
one segment, and increasing the number up to the point where no additional products are derived from the
permutation of offered levels. This defines the maximum effective family size for the set of offered levels{x}.

That is, if we treat the entire market as one cluster, the level on architectural attributex; to offer isthe level x;; that is
closest tom. For two clusters, the levels of architectural attributex; to offer is/are the level(s) x;; that are closest to
my and tom,. This defines two offerings (X;, X, ) that are closest to m; and m,, respectively. And so on, for each

clustering a 3, 4, 5, ... segments. The breakout values and the cluster means are not exactly the same values, for
example, sincethe selected set of levels{x;} may only have 1 level on an attribute if it is particularly expensive to
offer levels upon, whereas the segmentation may ask for several levelson x;. Therefore to attack such a cluster, one
cannot use the cluster mean, but instead the single offered value. Generally, for each segment one uses the available
level that is closest to each cluster mean.

When considering afiner and finer clustering and comparing the cluster meansto the closest available designs from
the set of permutations, at some point the number of offered products will not change. Asthe segmentation becomes
finer, each cluster uses the same closest available configuration. Thus, there is amaximum profitable family size for
agiven set of architectural attribute levels.

We now present an example of using this approach.

Application: Sport Utility Vehicle Architecture

For an automotive manufacturer, a question considered is how many sport utility vehicle (SUV) variantsto offer.
This questions flows back to questions on how the SUV family should bearchitected, in terms of variety and
complexity. Should thefirm offer 3 levels of frame height to permit 3 seat sizes? How many different interior
packages? How many different cargo/passenger combinations, and so how many frame lengths? How many
different acceleration capabilities, and so how many engine sizes?

One answer to help in this question isto consider how many product variants are required to cover the existing set of
SUV s on the market, no matter the manufacturer, using the above analysis. For each SUV, attribute measurements
were collected, aswell as sales volumes and pricing. The attributes studied included rear knee room, turning circle,
seat height, front interior width, passing acceleration, and interior content price. The levels on each attribute are
iteratively clustered into 2 clusters, 3 clusters, etc., weighted by the sales volumes. This provides the standard
deviations of Equation (23). Each attribute was relatively weighted in importance from marketing survey data,
using Equation (25) to determineW.

Next, cost of variety coefficientsM; were estimated from production costs. Then W, M; and each s;; were combined
using Equation (23) to for estimated profit that can be extracted through higher pricing permitted by positioning
products closer to each customer. The resultsfor 4 attributes are shown in Figure 1, which presents relative data
(means of zero and standard deviations of one on the segment statistics, and a maximum revenue of 100%). This
shows that two levels of rear knee room are profitable, but three are not. Only one standard size of turning circle
(vehiclewheelbase) is profitable. Two levels of seat height (body-in-white height) are profitable, and four levels of
passing acceleration (engine size) are profitable. Thisisthe main result of the analysis.

Further conclusions can be drawn from the results of Figure 1. The profitability numbersinclude costs, which
means the recommendations consider the current devel opment/production. One can examine the number of levels at
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which each attribute begins to turn negative profit, and ask whether costs can be decreased. Areaswherethere are
high complexity costs are particular areas of concern. For example, it would be revenue advantageous (24 revenue
point increase) to offer two levels of turning circle (vehicle frame lengths), if it were not for the excessive
complexity cost to thefirm. Thisistrue ascompared to, for example, three levels of seat height (14 point revenue
increase) or rear knee room (5 point revenue increase). The high demand-for-variety numbers on vehicle frame
length indicate that thisis an areafor the firm to expend R& D resources—to more easily permit multiple vehicle
lengths.

N m S DR nC DP N m IS DR nC nP
il 0 1 1] o 1
2[-0.367|0.6297 | 57.694| -17.27 | 40.424 2|-0.44410.5908| 23.76 | -31.09 | -7.326
1.82 0 16319| 0
3|-0.019/0.1397(4.7371| -17.27 | -12.53 3|-0.086|0.2376|4.1166] -31.09 | -26.97
1.82 0 16319| 0
-1.125|0.6146 -1.275| 0.195
4|-0.019/0.1397(6.0161| -17.27 | -11.25 4[-0.224]0.1213|0.2863| -31.09 | -30.8
1.82 0 16319 0
-0.94310.2447 -1.275 0.195
-2.82410.3403 0.1685]0.1829
Rear Knee Room Turning Circle (Vehicle Frame Length)
N m S DR pC DP N m [ DR pC DP
i 0 1 1 0 1
2| -1.754 10.4419|78.472| -17.27 | 61.201 2| -0.36 |0.595143.291| -6.908 | 36.383
0.434410.4968 7.4966 [ 0.5239
3| -1.754 10.4419(14.073| -17.27| -3.197 3/0.1802]0.1215[12.603| -6.908 | 5.695
2.1103| © -0.861 | 0.4081
0.3147] 0.221 1.63080.5531
4| -1.315| 0,025 |6.9524| -17.27] -10.32 4| -1,56 10.1046| 7.061 | -6.908 | 0.153
2.1103] 0 0.180210.1215
0.3147] 0.221 0562 | 0
2193 | 1E-14 | : 1.630810.5531] I
Seat Height (Interior Frame Height) Passing Acceleration (Engine Size)

Figure 1: Profitability from offering different levels on attributes. N isthe number of levels, mistherelative target
for the segment, s isthe segment standard deviation of a customer when buying that target, DRisthelost revenue
due to not getting a higher price, DC isthe cost in offering added levels, and DP is the added profit.

The next step isto determine a set of offeringsto construct out of the number of levels selected on each attribute.
Clustering the current SUVs using all of their attributes, we determined SUV targets for various numbers of SUVsin
thefamily. Then, we determined which combination of levels was closest to each cluster mean. This determined
the family of SUVsto offer, aswell astheir design attribute targets from the maximally profitable set available.

Conclusions

This paper presented an approach to determine the proper number of levels required on independent product
architectural attributes, given their ability to generate added revenue through more direct targeting to smaller
segments, and given the added costs of doing so. Thiswas done in areadily implementable manner, making use
only of conjoint dataand cost estimates. For any selected set of attribute levelsto offer, from the permutations the
most effective product family using those levels can then be determined.
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