
 1

XXXXXXXXXXXXXX
XXXXXXXXXXXX

MODULARIZING PRODUCT ARCHITECTURES USING DENDROGRAMS

Katja Hölttä, Victor Tang, and Warren P. Seering

Abstract
Finding common modules across products for platforming a product family or to find a
common module for joint development with a partner can be challenging. At the moment
there are no repeatable methods for grouping functions into modules and for choosing from
different module candidates to form a good platform. We have developed a five-step
algorithm that accomplishes this task of grouping and creating a dendrogram. The algorithm
is based on a metric, distance function, which we define in the paper. The salient features of
this algorithm are: it applies to modularization among simple as well as complex systems; it
addresses the synthesis issue by a method that creates a hierarchy of modules, it does not rely
on qualitative ordinal measures; it does not rely on non-repeatable heuristics, and it can be
implemented and executed in a computer. The algorithm is applied on a group of four
products: an intraoral camera, electronic pipette, pencil sharpener, and a fruit/veggie peeler.

Keywords: Product structuring, modularization and standardization, platforming

1 Introduction

A module is a structurally independent building block of a larger system with well-defined
interfaces. A module is fairly loosely connected to the rest of the system allowing an
independent development of the module as long as the interconnections at the interfaces are
well thought of. [1][2]

The advantages of modularity are possible economies of scale and scope and economies in
parts sourcing [1]. Modularity also provides flexibility that enables product variations and
technology development without changes to the overall design [2]. Same flexibility allows
also for independent development of modules, which is useful in concurrent design or
overlapped product development [3], collaborative projects, or when buying the module from
a supplier [4]. Modularity also eases the management of complex product architectures [2]
and therefore also their development. Modularity can also be used to create product families
[5] [6] [7]. This saves design and testing costs and can allow for greater variation but one
must be aware of possible excess functionality costs if a low cost and low functionality part is
replaced by a higher cost part in order to use the same part in both products [8] [9].

Modularity and product platforms have been shown to be useful [e.g. 6] but there seem to be
few methods to choose the best modules for a product family or joint development platform.
Baldwin and Clark [1] discuss how to modularize but they do not address the problem of
what exactly should be included in a module. Ericsson [2] has developed a modularization
method called Modular Function Deployment (MFD) but it is intended for single products
only, not product families. Also Design Structure Matrix clustering [10] [11] is intended for
single products, but it has an advantage that it has been reduced to a repeatable algorithms that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4381452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

can be run by a computer, which enables the modularizing of also complex systems. Stake
[11] introduces a clustering algorithm for MFD to group functions according to modularity
driver scores. He and Blackenfelt [12] also show how MFD and DSM can be integrated to
combine benefits of the two methods but they are still intended for single products only. Kota
et al. [13] present a benchmark method to compare own platform to competitor’s platform.
The method takes manufacturing, component’s size, and material into account in addition to
functionality, but it is not a platforming tool. Stone et al. [14] discuss heuristics to group
functions in a function structure [for more about function structure see 15] into modules
within a product and Zamirowski and Otto [7] add three additional heuristics to apply across
products in a product family. Dahmus [5] et al. apply the heuristics and introduce a
modularity matrix to help decide what modules should and what should not be shared across a
product family. The weakness of the heuristics is that they are not repeatable since the
functional decomposition and the use of heuristics depend on the user’s point of view. Our
goal is to overcome these weaknesses by introducing a more systematic method for grouping
functions into modules.

Another weakness of the existing methods is that they use nominal or ordinal scales instead of
more rigorous ratio scales. Sosa et al. [16] use ordinal scale (-2,-1,0,1,2) in component DSMs,
Ericsson [2] in MFD, and Stake [11] and Blackenfelt [12] in their combined MFD/DSM
approach. Dahmus [5] as well as Zamirowski and Otto [7] suggest the use of Pugh’s concept
selection that is also based on ordinal scales. Kmenta and Ishii [17] discuss the problem of
performing arithmetic operations on ordinal measures. Stated simply, it produces inconsistent
results. Otto and Wood [18] discuss more broadly the strengths and weakness of these
different type measures. Kurshid and Sahai [19] present a rigorous treatment of these
measures. Ratio scales are most useful because the point zero has meaning, and mathematical
operations such as multiplying and dividing have meaning, e.g., meters/second.

In this paper, we address the weakness of all the above. We use a more flexible flow method
[20] for identifying possible modules in a function structure and our algorithm can be put into
a computer. In addition we develop a genuine metric space with a distance function that is
based on the flow characteristics and we will use a ratio scale.

This algorithm is designed especially for the flow method [20] but it could possibly be used
also in conjunction with other modularization methods. The flow method is based on the
heuristics introduced by Stone et al. [14] and further developed for product families by
Zamirowski and Otto [7]. The difference is that in flow method the focus is on the flows
instead of the functions in a function structure. Functions can even be ignored since often the
end result (outputs) and the requirements needed to achieve it (inputs) are all that matter. The
flow method was designed to identify commonalties between different products. It is more
flexible than the function focused heuristics and can therefore be used also in case of joint
development of a common module for even very different products. It is also applicable in
product family platforming.

The problem we address in this study is how to group functions in a functional
decomposition, such as a function structure, to form a module commonalty hierarchy that can
be used to define common modules across products. The following section will introduce the
grouping algorithm. We will then go on to show an example of this method applied to four
products. We will end the article with our conclusions and suggestions for further study.

 3

2 Algorithm

This is a five-step algorithm to calculate the “distance”, which will be defined, between any
two modules and group modules into a hierarchical dendrogram [21] that will help decide
what function groups are similar enough to be replaced by a common module. Pedersen [22]
has also used clustering and dendrograms to create product families, but his approach is based
on existing products and is not applicable at product architecture face.

We start by creating function structures for each product that is considered to be either part of
the same product family platform or developed partially with a partner. We will then look for
similar outputs in each function structure, e.g. for rotary motion or gas and thermal energy.
We will then start grouping functions before, or close, to the function with the similar outputs
and draw black boxes with the outputs and all the inputs that the grouped functions bring to
the bundle. Each product should have a couple of alternative black boxes to have more to
chose from. We can repeat the procedure for other similar outputs that are found in the
function structures. Since many flows, such and torque and rotation speed, depend on one
another, they should be combined into a single input or output to avoid redundancy. We will
use power as the input and output flow for all power related flows e.g. instead of two flows
torque and angular velocity, we use a single flow torque∗velocity. Similar strategy is used in
[23] with bond graphs. We are now ready to start the algorithm it self.

Step 1: Enumerate all the components, i.e. black boxes.
Enumerate all the black boxes to form a seti [mi]

 i.e. m1,m2,m3,…,mn

Step 2: Characterize all the black boxes.

Characterize all the black boxes by their inputs and outputs. For example for module mα:

Figure 1 Input /output characterization for module mα.

The input set consists of five inputs as follows:

xα
1 electrical power voltage*current in watts

xα
2 translational power force*velocity in watts

xα
3 rotational power torque*angular velocity in watts

xα
4 information bandwidth in bits

xα
5 translation stroke distance in mm, m, etc.

yα
1, yα

2, yα
3, yα

4, and yα
5 are defined in a similar matter. One should notice, that the set of

inputs and outputs can be expanded and reduced as needed. We use five in this exemplary
case without loss of generality.

Step 3: Screen the black boxes for potential groupings.
Our goal is to find out how similar two modules are e.g. what is their distance from one
another. To define the distance between two modules (mα and mβ), we will start from the
distance between inputs and outputs. We say that the distance between inputs xα

i and xβ
i is

sαβ
i, where

mα
xα

1
xα

2
xα

5

yα
1

yα
2

yα
5

 4

),max(
)(

11

11
1 βα

βα
αβ

xx
xxs −

= , …,
),max(

)(

55

55
5 βα

βα
αβ

xx
xxs −

= (1)

The distance tαβ
i between outputs yα

i and yβ
ι is defined as follows

),max(
)(

11

11
1 βα

βα
αβ

yy
yyt −

= , …,
),max(

)(

55

55
5 βα

βα
αβ

yy
yyt −

= (2)

From the equation (1) we clearly see that if xα
i = xβ

i then sαβ
i=0. In general sαβ

i can be less or
greater than or equal to zero for i=1,2,3…5. The same applies for outputs in equation (2).

Step 4: Calculate the distance metric among black boxes.

We define pseudo-distance between mα and mβ by

))(...)()()(...)()((2
5

2
2

2
1

2
5

2
2

2
1

αβαβαβαβαβαβαβ tttsssm +++++++= (3)

In addition, we define that sαα
I=0. Now, mαβ≥0 always, and distance matrix M

Note that matrix M is symmetric and that it satisfies all the conditions for an Euclidean metric
i.e. it is non-negative, idempotent, reflexive, and the triangle inequality applies.

Step 5: Build the dendrogram.
Build the dendrogram by starting with the two modules that have the smallest distance.
Connect these modules at their distance value (see Figure below). Take then the next module
pair that has neither one of the modules already in the dendrogram and connect them to each
other at their distance value. Continue by adding a module at a time that has the shortest
distance to either one of the module groups already on the dendrogram and connect it at its
distance value to the module group that is closest to it. Continue until the two module groups
are connected to one another and all modules are in the dendrogram.

Figure 2 Exemplary dendrogram.

m4m3 m2m1

D
is

ta
nc

e

matrix [M]

m1 m2 m3 m4

m1 0 1,52 2,15 2,19
m2 1,52 0 2,40 2,43
m3 2,15 2,40 0 0,78
m4 1,19 2,43 0,78 0

 5

3 Example

We will now show in more detail how to use this algorithm. We will apply it on four
products: an intraoral camera, an electronic pipette, a pencil sharpener, and a fruit and veggie
peeler. These products are very different and produced by different companies but we want to
show that our method, in fact, finds reasonable commonalties between the products. Our goal
is not to platform these products but just show with a simple but challenging example how our
idea works. Partial function structures around the identified common outputs are shown in
Figure 3.

Figure 3 Exemplary products, veggie peeler and pencil sharpener from [18].

Step 1. We chose to form just one black box for the two simplest products, the intraoral
camera and the pencil sharpener, and three alternative black boxes for the electronic pipette
and two for the fruit and veggie peeler. The black boxes and their enumeration are show in
Figure 4.

Black box m1 is simply the function “convert electricity into translation” in the intraoral
camera’s function structure. Black box m2a entails the function chain “convert electricity to
rotation – change rotation – transmit rotation – indicate position – convert rotation to
translation” from the electronic pipette’s function structure. Black box m2b is the same chain
without the last two functions “indicate position - convert rotation to translation” and black
box m2c is same as m2a less the last function “convert rotation to translation”. Black box m3
entails the pencil sharpener’s function chain “import electricity – actuate electricity – convert
electricity to rotation – change rotational energy”. Black box m4a represents the function chain

import
electricity

separate solid

change
rotation

guide
rotation

distribute
rotation

convert elect.
to rotation

regulate
electricity

actuate
electricity

import
electricity

transmit
rotational

energy

change
rotational

energy

convert elect.
to rotation

actuate
electricity

separate solidrotate solidguide
rotation

change
friction

guide
translation

convert
rotation to
translation

pencil sharpener

fruit/veggie peeler

E EE

EE

rot rot rot

pencil sharp pencil,
shavings

human
force

reaction force

EE rot
rot

rot

rotrot trans

rot peel,
peeled food

food

convert
electricity to
translation

translation

E

convert
rotation to
translation

indicate
position

transmit
rotation

change
rotation

convert elect.
to rotation

E rotrotrotrot trans

info to
run the
motor position

pipette

intraoral camera

info to run
the drive

measure
image

resolution

image

 6

“import electricity – actuate electricity – regulate electricity – convert electricity to rotation”
in the fruit/veggie peeler’s function structure. Black box m4b is the same function chain plus
“– guide rotation – change rotation – convert rotation to translation”.

Figure 4 Exemplary black boxes.

Step 2. We will use the same black box characterization as shown above. The values used in
this calculation are imaginary but reasonable for the types of products in question.

Table 1 Module inputs and outputs.

Step 3-4. We calculated the distance between each module except between alternative
modules from a same product and placed the distances in matrix M. Note that the shaded cells
stand for distance between alternative modules in a same product and are thus meaningless
and left blank.

2c
3y2b

3y

2c
4y

3
3y

4a
3y

4b
2y 4 b

5y

2b
1x

1
2y 1

5y

2a
1x

2a
4x

3
1x

4a
1x 4b

1x

2c
1x

2c
4x

2b
4x

2a
2y 2a

5y

2a
4y

1
1x

1
4x

m3
E rot

m4a
E rot

m4b
E transl

m1
transl

E

info to run
the drive

m2b
E rot

info to run
the motor

m2c
E rot

info to run
the motor

positionm2a
E transl

info to run
the motor position

pencil sharpener

fruit/veggie peeler

pipette

intraoral camera

module 1 inputs module 1 outputs
x1

1 x2
1 x3

1 x4
1 x5

1 y1
1 y2

1 y3
1 y4

1 y5
1

5 1 5 15
module 2a inputs module 2a outputs

x1
2 x2

2 x3
2 x4

2 x5
2 y1

2 y2
2 y3

2 y4
2 y5

2

5 1 5 2 10
module 2b inputs module 2b outputs

x1
2 x2

2 x3
2 x4

2 x5
2 y1

2 y2
2 y3

2 y4
2 y5

2

5 1 10
module 2c inputs module 2c outputs

x1
2 x2

2 x3
2 x4

2 x5
2 y1

2 y2
2 y3

2 y4
2 y5

2

5 1 10 2
module 3 inputs module 3 outputs

x1
3 x2

3 x3
3 x4

3 x5
3 y1

3 y2
3 y3

3 y4
3 y5

3

5 15
module 4a inputs module 4a outputs

x1
4 x2

4 x3
4 x4

4 x5
4 y1

4 y2
4 y3

4 y4
4 y5

4

10 20
module 4b inputs module 4b outputs

x1
4 x2

4 x3
4 x4

4 x5
4 y1

4 y2
4 y3

4 y4
4 y5

4

10 5 12

 7

Figure 5 Distance matrix M.

Step 5. We build the dendrogram.

Figure 6 Dendrogram.

The dendrogram grouped the black boxes according to the type of output force. The three
modules on the left represent linear motors and the four on the right rotary motors. This is
intuitively a smart way of categorizing the exemplary black boxes. Black box m2c clearly
stands out as a module that barely belongs to either category: linear or rotary motors. Closer
examination of the module reveals that m2 black boxes are the only rotary motors that have
information as input and output, which explains the difference. Two modules, on the other
hand, strike as very close to one another in the dendrogram: m4a and m3. These two modules
represent black boxes that have exact same flows, only the values differ slightly.

Redesigning a common module so that it fits to the original products requires design changes.
If we decided to replace the drives in intraoral camera, electronic pipette, and fruit/veggie
peeler with a single module i.e. replace modules m2a, m1 and m4b with a single module that
has all the required inputs as shown below, some design changes are needed.

Figure 7 a common module to replace modules m2a, m1 and m4b

m1 m4am3m 2a m2cm2bm4b

.5

1.0

1.5

transl

E

info to run
the drive

position

matrix [M]

m1 m2a m2b m2c m3 m4a m4b

m1 0 1,05 1,73 2,00 2,00 2,06
m2a 0 2,24 2,29
m2b 0 1,05 1,22
m2c 0 1,45 1,58
m3 0 0,56
m4a 0
m4b 0

1,14
1,51
2,06
2,29
1,80SYMMETRIC

 8

The electronic pipette has the most complex drive and all the flows of the common module, so
only the flow values, information content and amount, voltage, translation speed, stroke
length, and accuracy etc., need be adjusted for both the module and the pipette’s module
interface. The other two designs need to accommodate flows that they would not otherwise
need in addition to adjusting the flow values. The intraoral camera does require position
information, but if a common module is chosen to be used and the position information will
be there, the intraoral camera needs to be redesigned to accommodate the new flow or even to
take use of the new information provided. The fruit/veggie peeler’s original drive was simpler
than the new module. Thus there is a tradeoff between over functionality and the benefits
from a common module. Another choice, suggested by the dendrogram, is to leave the most
complex module, that of the electronic pipette, out of the common module and standardize the
two simpler modules. The cost of over functionality and redesign effort is proportional to the
distance in the dendrogram. A critical distance, over which commonalizing costs override the
benefits, can be calculated for each specific case to help decide what modules to replace by a
common module. Concentrating on flows and clustering possible module candidates in a
dendrogram highlights differences and commonalties and is a good tool in making a decision
how much to commonalize, and what to include and exclude from a common module

4 Discussion

We have shown how a five-step algorithm can be used to group functions in a function
structure to form a hierarchy for platform module selection. We focused on flows instead of
functions in the function structure, which makes the method more independent of
decomposition decisions and enables the use of ratio scales. The core of our approach is
predicated on the notion of modules being “close” by virtue of a “distance” function in a
function flow system structure. For a distance function, it is necessary to have more
information than ordinal rankings or interval scales can provide, because we need to create a
metric among modules where zero has meaning. We applied the algorithm on a simple
example but we see no problem of applying it also on complex systems since the flow method
and our algorithm can be programmed on a computer.

Our algorithm treats all flows equal; in real life they will exhibit much more variety. Fixson
suggests that interfaces have different intensities. He also points out that different connections
have different degrees of reversibility and this should affect the complexity of the interactions
of the module to the rest of the system. [24] Work is underway to define the intensities.

We used real products as examples, but we used hypothetical input and output values. The
case itself is imaginary i.e. the products are not being considered for a real platform and we
can thus not test how our platform suggestions would work in real product platforms. Future
research is needed to be able to decide what distance value is still acceptable compared to the
benefits of common platform. For example, should one group only m1 and m4b into one
module, or rather all three: m1, m4b, and m2a?

The advantages of this algorithm are: it applies to modularization among simple as well as
complex systems; it addresses the synthesis issue by a method that creates a hierarchy of
modules, it does not rely on qualitative ordinal measures; it does not rely on non-repeatable
heuristics, and it can be implemented and executed in a computer guaranteeing repeatability.

References
[1] Baldwin C.Y. and Clark K.B. “Design rules. Volume 1. the power of modularity”, The

MIT Press, Cambridge, Massachusetts, 2000.

 9

[2] Ericsson A. and Erixon G., “Controlling design variants: modular product platforms”,
ASME press, New York, 1999.

[3] Roemer T.A., Ahmadi R., and Wang R.H., “Time-cost trade-offs in overlapped product
development”, Operations Research, Vol 48, No. 6, 2000, pp.858-865.

[4] Camuffo A., “Rolling out a “World Car”: globalization, outsourcing and modularity in
the auto industry”, Working Paper, International Motor Vehicle Program, Massachusetts
Institute of Technology, 2001.

[5] Dahmus J.B., Gonzales-Zugasti J.P., and Otto K.N. “Modular product architecture”,
Proceedings of DETC 00, ASME Design Engineering Technical Conferences,
Baltimore Maryland, 2000.

[6] Meyer M.H. and Lehnerd A.P., “The power of product platforms” The Free Press, New
York, 1997.

[7] Zamirowski E.J. and Otto K.N., “Identifying product family architecture modularity
using function and variety heuristics”, 11th International Conference on Design Theory
and Methodology, ASME, Las Vegas, 1999.

[8] Gupta S. and Krishnan V., “Integrated component and supplier selection for a product
family”, Production and Operations Management, 8 (2), 1999, pp.163-181.

[9] Krishnan V. and Gupta S., “Appropriateness and impact of platform-based product
development”, Management Science, Vol. 47, No. 1, 2001. pp.52-68.

[10] Pimmler T.U. and Eppinger S.D., “Integration analysis of product decompositions”,
ASME Design Theory and Methodology Conference, Minneapolis, 1994.

[11] Stake R.B., “On conceptual development of modular products”, Doctoral Thesis.
Division of Assembly Systems, Dept. of Production Engineering, Royal Institute of
Technology, Stockholm. 2000.

[12] Blackenfelt M., “Modularisation by matrices – a method for the consideration of
strategic and functional aspects”, Proceedings of the 5th WDK Workshop on Product
Structuring, Tampere, Finland, 2000.

[13] Kota S., Sethuraman K., and Miller R., “A metric for evaluating design commonality in
product families”, Journal of Mechanical Design, Vol. 122, 2000, pp.403 – 410.

[14] Stone R.B., Wood K.L., and Crawford R.H., “A heuristic method for Identifying
Modules for Product Architecture”, Design Studies, Vol 21, Issue 1, 2000, pp.5-31.

[15] Pahl G. and Beitz W., “Engineering design”, Springer-Verlag, London, 2nd ed., 1999.

[16] Sosa M.E., Eppinger S.D., and Rowles C.M., “Understanding the effects of product
architecture on technical communication in product development organizations”, MIT
Sloan School of Management Working Paper 4130, 2000.

[17] Kmenta S. and Kosuke I., “Scenario-based FMEA: a life cycle cost perspective”,
Proceeding of DETC 00. ASME Design Engineering Technical Conferences, Baltimore
Maryland, 2000.

[18] Otto K. and Wood K., “Product design: techniques in reverse engineering and new
product development”, Prentice Hall, Upper Saddle River, New Jersey, 2001.

 10

[19] Khurshid A. and Hardeo S., “Scales of measurements: an introduction and a selected
bibliography”, Quality and Quantity, 27, 1993, pp.303-324.

[20] Hölttä K., “Identifying common modules for collaborative R&D”, Presented at POM
2002 Meeting on Production and Operations Management, San Francisco, 2002.

[21] Mantegna R.N. and Stanley H.E., “An introduction to econo physics: correlations and
complexity in finance”, Cambridge University Press, Cambridge, UK. 2000.

[22] Pedersen K., “Designing platform families: an evolutionary approach to developing
engineering systems”, Doctoral Thesis, Georgia University of Technology, 1999.

[23] Karnopp D. and Rosenberg R., “System dynamics: a unified approach”, John Wiley &
sons. 1975.

[24] Fixson S., “Methodology development: analyzing product architecture implications on
supply chain cost dynamics”, Presented at the 5th Conference on Technology, Policy,
and Innovation “Critical Infrastructures”, Delft, 2001.

Corresponding author:
Katja Hölttä
Visiting Scholar
Massachusetts Institute of Technology Helsinki University of Technology
Center for Innovation in Product Development Department of Machine Design
Cambridge, Massachusetts 02142, U.S.A. P.O.Box 4100
 02015 HUT
 Finland
 Tel: Int +358 9 451 5072
 Fax: Int +358 9 451 3549
 E-mail: Katja.Holtta@hut.fi

