Integrated Simulation and Design Synthesis
David Wallace, Elaine Yang, Nicola Senin

MIT room 3-455

77 Massachusetts Avenue
Cambridge, MA, 02139
drwallac@mit.edu

Abstract

The potential benefits of mathematically predicting and analyzing the integrated behavior
of product concepts throughout the design synthesis cycle are widely recognized. Better
up-front integrated design will not only reduce development time and cost, but also will
yield higher quality products with improved performance. Many academic researchers
and companies have attempted to develop integrated simulation environments, and it has
been observed consistently that significant difficulties arise because of the large scale,
complexity, rate-of-change, heterogeneity, and proprietary barriers associated with
product design synthesis. However, the focus of most integration efforts has been on
enabling technology, while the process of how integrated systems are constructed has not
been questioned.

The literature acknowledges that it is very difficult to represent and structure emergent
processes using explicit system definition techniques like those that have been almost
universally adopted. The belief that design synthesis is an emergent system definition
process drives the search for a different approach to building integrated design
simulations. Inspired by a vision of the World-Wide Web as an emergent information-
network building environment, a World-Wide Simulation Web concept is proposed for
defining an emergent, integrated, simulation-building environment. Participants should
be able to make interfaces to local sub-system simulations parametrically operable and
accessible over the Internet. Furthermore, any participant should be able to make
relationships between parameters in different simulation interfaces or to create additional
models that bridge interfaces to different simulations distributed over the Internet.

The DOME (Distributed Object-based Modeling Environment) project has developed a
software infrastructure for the purpose of refining and testing emergent simulation
definition concepts. A federating solving mechanism has been developed that allows
local solvers to respond in a manner that is consistent with the overall system structure
even though there is no centralized coordination of the simulation. Results from several
pilot studies support the belief that an emergent, decentralized approach to building
integrated simulations can resolve many of the difficulties associated with integrated
system simulation.

Motivation

The potential benefits of mathematically predicting and analyzing the integrated behavior
of product concepts throughout the design synthesis cycle are widely recognized.
Integrated simulations allow a multitude of what-if scenarios and iterations to be explored
inexpensively and quickly.

It is estimated that 30% or more of a design engineer’s time is spent in meetings to gather
or exchange information about interrelated aspects of a product (Christian et al., 1996).
Researchers at Ford Motor Company estimate they spend hundreds of million dollars per
year on integration rework (Sferro, 2001). In contrast, studies at Ford (Abrahamson et al.,
2000) and at Polaroid (Abrahamson et al., 1999) show that design assessments requiring
weeks or months in a traditional design environment can be understood in seconds using
integrated simulations, and a LG Electronics pilot study suggests that they will reduce
overall concept-to-first prototype development time of air conditioners by 50 percent
(Pahng, 2000).

In addition to reducing development time and cost, up-front integrated design will yield
higher quality products with better performance. If the implications of changes can be
better understood through integrated simulations, designers might be liberated to try more
innovative solutions without the fear of unforeseen consequences.

Since the many potential benefits of integrated simulation are generally accepted, there
have been many efforts to develop integrated modeling environments in both academia
(e.g., Wong and Sriram, 1993; Toye and Cutkosky, 1994; Wellman, 1994; Molina and
Al-Ashaab, 1995; Bliznakov and Shah, 1996; Case and Lu, 1996; Cutkosky and
Engelmore, 1996; Dabke and Cox, 1998; Kim and Kim, 1998; Wu et al., 2001) and in
industry (e.g., Engineous Software, 2001; Fiper, 2001; Phoenix Integration, 2001; RDCS,
2001; Slate, 2001). The different systems employ a wide variety of architectures, data
models and communication technologies, but all rely on some form of a consolidated
explicit description of the complete integrated system model.

Figure 1 summarizes the different categories of modeling tools that are used during the
product design cycle. The vertical axis is divided into physical or analytical models, and
the horizontal axis ranges from focused domain-specific models to comprehensive or
integrated models. Overlaid upon these axes are examples of models typically used in
design practice. The specific examples are from an electric scooter development project
in which one of the authors participated.

sketch models and

integrated physical
mockups B

“ models

physical>

focused complete
domain models and integrated simulation

simulations

“not generally feasible”
Ulrich and Eppinger, 2000

analytical

-«

Figure 1 Types of models used in product design and development (based upon Ulrich
and Eppinger, 2000).

Within the focused/analytical quadrant of Figure 1 numerous simulation tools, ranging
from spreadsheets to CAD models and sophisticated CAE analyses, have been applied to
product design successfully. However, the comprehensive/analytical quadrant in which
integrated simulation resides is deemed not generally feasible (Ulrich and Eppinger,
2000) even though there have been many efforts to develop integrated simulation
environments. Given the widespread existence of focused analytical tools, the problem
appears to reside in transforming individual analytical models and simulations into an
integrated whole.

Cooper and Kaplan note that numerous integration efforts within firms over the past
several years have had limited success due to the difficulty of creating an explicit model
for a very large system involving many suppliers, a rapidly changing product, and an
evolving organizational environment (Cooper and Kaplan, 1998). Similarly, other
researchers have noted that significant barriers to building integrated product design
simulations arise because of the scale, complexity, rate-of-change, heterogeneity, and
proprietary barriers associated with comprehensive product design synthesis (Cutkosky,
et al., 1994). In fact, since the system-level interactions between participants and tools
are often rigidly codified and difficult to change, integrated systems can have negative
effects by freezing the system-level design of a product (Wellman, 1994).

Hypothesis

An alternative hypothesis about why large integration efforts have had limited success is
that the difficulty in building integrated simulations for use during design synthesis arises
because the methods used for structuring and building integrated simulations do not
support the nature of design activities and the product evolution process. There is a

mismatch between the nature of large-scale design synthesis activities and current
integrated simulation model building techniques.

Figure 2 is a stylized schematic of the widely adopted system engineering ‘V’ process for
architecting systems. The ‘V’ approach and other similar methods patterned after IDEF
(Integration DEFinition for Function Modeling) are widely used in industry for
structuring integrated design simulation environments.

Figure 2 Schematic representation of a system engineering ‘V’.

Starting from the top left of the V, the system is first fully defined or scoped through a
top-down, cascading decomposition of subsystem requirements. Then, individual
subsystems are constructed, individually tested, and integrated by working back up the V.
When one reaches the top right of the V, the system is complete and ready for
deployment or use.

This is an explicit, procedural process for defining and building systems. The method
assumes that the definition of the overall system and control of its execution is
consolidated. The system is usable when it is deployed in a complete form and as a result
the architecture of the system is fixed. Designers can set the values of parameters but not
change the ‘plumbing’ of the integrated system simulation.

The authors have observed that explicit procedural system definition methods can be
readily applied to design or simulation synthesis problems that are addressed by a single
individual or small number of individuals, but for larger products, even ones that are
quite stable and mature, organizations struggle to define and order their functional system
model explicitly. Furthermore, the resulting system definition often seems to have little
relevance to the activities and interactions of designers creating the product. For example,
even though Ford Motor Company has a structured system requirements-oriented product
development process, over 70% of system knowledge has not been captured explicitly.

These uncaptured aspects of the product system reside as fragments within the minds of
the domain experts (Dong, 1999).

Observations of design practice in industry and personal experience suggest that design
processes involve rapid synthesize/test/evaluate cycles. This may occur in a bottom up,
top down, or middle out fashion. During these cycles many discoveries are made, and the
design or system undergoes many fluid transformations. For example, David Laws
describes a case in California where, through an organic discovery process, an initial
design problem to developing an alternative fuel bus system was transformed into a
maintenance program design problem (Laws, 2000). Finally, many participants interact
and make local decisions during the design synthesis process, and the collective result
defines a complex whole.

These observations about the design synthesis process are all consistent with the
properties of emergent systems (Wang, 2000). Most complex systems occurring in nature
or involving human behavior are emergent in nature. The economy is often cited as an
example of an emergent system. Both over-managed and under-managed product
development processes result in lengthy design lead time and high development cost
(Ahmadi and Wang, 1999). Effective organizations can arise through an emergent
process within appropriate environments where individuals can understand the
implications of their actions on overarching goals (Hameri and Nihtila, 1997; Coleman,
1999).

It is also recognized that managing the development of emergent systems through strict,
explicit, consolidated approaches is very inefficient (Truex et al., 1999). Thus, if the
process of designing complex products is an emergent human activity, this may explain
the difficulties that have been encountered in the past when building integrated design
simulations to support synthesis.

Therefore, the goal of this paper is to describe a new integrated simulation building
technology that will allow integrated system simulations to emerge throughout the design
activity. It is proposed that the traditional difficulties associated with scale, complexity,
rate of change, heterogeneity, and proprietary information can be resolved through an
emergent simulation synthesis process that, without consolidated control, can maintain
parametric consistency between the distributed simulation models.

Technology Inspiration

There are numerous examples of natural emergent systems, but computer-based
structures that develop in an emergent fashion are of particular relevance to this work.
The World-Wide Web (WWW), which is a technological embodiment of the hypertext
concept originally proposed by Vannevar Bush (Bush, 1945), is an excellent example of
such a system.

The WWW has revolutionized the process for building complex networks of information.
Any individual with Internet access can easily discover the materials of others and

conveniently add content (i.e., create web pages). These properties of the WWW allow
participants to interact freely with the ideas of many other participants.

Furthermore, individual participants can perform system synthesis building upon the
work of others by creating links between pages. This ad-hoc, decentralized definition of
relationships allows for fluid and continuous transformation of the WWW topology. As a
result of these characteristics, the WWW enables an emergent process for building
information networks.

An Analogous Concept: A World-Wide Simulation Web
A World-Wide Simulation Web (WWSW) with characteristics similar to the WWW may
allow large integrated simulations to form in an emergent fashion.

In a WWSW, any participant will be able to define and publish parametrically operable
interfaces to their sub-system simulations on the Internet—similar to how html pages are
published in the WWW.

In a WWSW, any participant will be able to define mathematical links, or relationships,
between parameters in different simulation interfaces to create additional models that
bridge the interface parameters of other simulations. Participants will define these
relationships in a declarative fashion that does not require an understanding of the global
structure of the integrated simulation or the sequence in which relationships should be
executed. The emergent network would be responsible for solving the decentralized
relationships and maintaining the mathematical consistency of inter-related simulations.

Enabling individuals to locally declare relationships between simulation interface
parameters available via the Internet will result in distributed integrated simulations that
emerge and evolve rapidly. If the WWSW embeds appropriate decentralized solving
mechanisms, difficulties associated with large scale, complexity, and rate of change when
using explicit system definition processes may be resolved.

Synthesis in a WWSW: An Application Example

The DOME (Distributed Object-based Modeling Environment) project is an ongoing
effort to develop and test a software infrastructure for the WWSW concept. Just as the
original hypertext concept evolved to its current WWW embodiment through several
generations of implementation, the DOME project is now in the early stages of its third
generation implementation. The first-generation implementation was developed in 1996
and emphasized computation, decision support, and optimization (Pahng et al, 1998),
whereas the second-generation implementation focused on simulation marketplace
concepts using CORBA as a distributed communication protocol (Abrahamson et al.,
2000; Senin et al., 2000).

The new third-generation implementation used for the example in this section focuses on
combining http protocol-based simulation service marketplace concepts with the efficient
solving of emergent integrated simulations. The process of building an emergent system
simulation—which is a key element of the WWSW concept—is illustrated through a

simple scenario that draws upon elements from a second-generation DOME pilot study
with Ford Motor Company that was conducted using the second-generation DOME
implementation (Abrahamson et al., 2000).

Figure 3 illustrates the scope of the full door glass drop study conducted at Ford. Models
in three different internal organizations and two external suppliers were integrated to
form an integrated glass-drop sub-system simulation. The integrated simulation involved
21 models in different 3" party applications and the coordination of some 1500 shared
design parameters.

sheet metal Seal supplier 1

integration
design
costing
analysis

door cost

Seal supplier 2

design
costing
analysis

strategy
certification
pplier selectig

Figure 3 Scope of the Ford glass-drop study.

One simulation model from the glass-drop application is a spreadsheet developed by a
Ford glass-velocity engineer. The spreadsheet is used to predict stall force and velocity
characteristics of a door’s window glass. A second model is a geometric representation
used by a CAD designer to maintain the glass-drop geometric configuration. These
models are shown in Figures 4a and b.

X |-DEAS Master Series bA: _ Simulation

Tools Dats Window Help
BT o AR E AN BEB[> - D)

Create Interface | Edk Interface | Show ‘

7 |
5 e e P e o e o S [e e

.....

. Bt | \b

[0 i o
¥ [V DOME_10), FBDDK1

acly

» Eeeekll
i

Figure 4a Stall force and velocity spreadsheet. Figure 4b CAD representation of the
glass-drop.

In the first step of building an integrated simulation, model owners build and deploy
parametric interfaces to their simulations so that other participants can interact with their
simulations over the Internet.

Figure 5 illustrates this process as executed by the glass-velocity engineer. Using a
DOME building environment for wrapping third party applications, the glass-velocity
engineer has created DOME parameter objects named pillar_height, glass_radius,
stall_force, average_velocity, and maximum_velocity.

name: |Glass_Welocity_Stall_Spreadsheet

cantent:

application: | Excel hd

file: name: |C:'Iprnjects'l.glassfﬁ\nalysis.xls |

wersion: |office 2000, windows HT/Z000 W |

(@) runin foreground 00 run in background

i) spawwn instances () multi-task single process

parameters; | add | | remaoyve |
name | wvawe | wnit | dependency |cell reference| excel unit |
@ pillar_height 300.0 mm independent Sheetl:E3 inch
fj glass_radius 1200.0 mm independent Sheetl E4 inch
8 stall_force 40.0 N pillar_height, glass_radius Sheet2:B2 Ibf
8 average_velocity 0.2 mis pillar_height, glass_radius Sheet2:C8 fi's
8 maximum_velocity 0.22 mis pillar_height, glass_radius Sheet2:D8 fii's

‘ —Ldefinition Linterface Lcu:unstrairrts Ldu:u:umentation Ldeplu:uy |

=i

name: |pillar_height |

content:
properties: ‘ add H remaoye |
Narme | Praperty | Expression |
max value val=600
min value val=240

definition | interface | constraints Ldocumerrtation|

Figure 5 Defining a DOME wrapper model for the stall force and velocity spreadsheet
simulation.

In Figure 5 the glass-velocity engineer has defined unit and value constraints on the
DOME parameters. For example, the engineer wants to limit pillar_height values to range
between 250 and 600 mm. DOME parameters can assume the form of several data types
(e.g., real number, integer, vector, matrix, boolean, string, list, table, or file), but in this
case the DOME parameters are real number objects because they are mapped to numeric
cells within the spreadsheet. The glass-velocity engineer has also specified default values
for the DOME parameters. The default values are used to initialize the underlying
spreadsheet simulation and to provide placeholder values in case the spreadsheet
simulation is not operable. The internal units assumed by the glass-velocity engineer
when building the spreadsheet simulation are also specified so that DOME can convert
parameter values, if necessary, before sending values to the spreadsheet.

Finally, the glass-velocity engineer provides a causal map that described how the DOME
parameters are related to each other through the spreadsheet simulation model. In this
case, pillar_height and glass_radius are independent parameters, while stall_force,
average_velocity, and maximum_velocity are dependent upon both pillar_height and

glass_radius. The glass-velocity engineer can define the causal mapping manually, or
could use a tool that systematically executes the simulation to infer causal relationships.

Once the glass-velocity engineer has defined the contents of the DOME wrapper model,
the next step is to define interfaces to the DOME model. An interface determines what
subset of model parameters will be exposed to subscribers of the simulation. It is possible
to define many interfaces to the same model so that different subscribers will have access
to different parameter sets. In this example (Figure 6) a single interface called
Glass_Velocity has been defined, and the engineer has added the DOME parameters
pillar_height, glass_radius, average_velocity, and maximum_velocity.

TISIE: |G|ass_\fe|uu:inr_5tall_8preadsheet |

cortent: 5
interfaces: interface name: |Glass_Velocity |
Gl Elad interface component: | parameters v
parameters: | e H LEMONE ‘
Name | wvalue | unit |
fi pillar_height 300.0 mm
3 glass_radius 1200.0 mm
8 average_velocity 0.2 mis
8 maximum_velocity 0.22 mfs
4[] D
acd | delete |
CopYy

defintion | interface Lconstrairrts Ldu:u:umentatinn Ldeplu:uy |

Figure 6 Creating a parametric interface to the DOME wrapper model.

Next, the glass-velocity engineer can deploy the DOME model and its interface onto a
DOME server. This step is analogous to deploying a html file onto a web server, with the
exception that one can also define access privileges for each interface and, if desired,
define collaborative groups that can share information from the same running instance of
the simulation.

Figure 7 shows the Glass_Velocity interface deployed on DomeServerl within the
workspace glass_drop. Thus, any client with Internet access and appropriate permissions
can enter the Glass_Velocity interface and remotely drive what-if scenarios using the
interface parameters. Within the client user interface DOME automatically organizes
parameters into input and output contexts based upon the causal structure of the
underlying simulation.

10

If a client changes an input parameter in the DOME model interface, DOME propagates
the change to the spreadsheet and retrieves new values for the output parameters. The
back-end connection to the third party application is generated by the DOME wrapper
automatically, so the underlying instructions to provide this functionality are completely
transparent to simulation builders and deployers.

=k
Marme | Yalue | Aftribute
= @ dlass_drap
- !? Glass_MWelocity_Stall_Spreadsheet
= '. Glass_Welocity
= £ INPUTS
& nillar_height 3000 mm
ﬁ dlass_radius 1200.0 mim
= &) OUTPUTS
f;i average_velocity nz mis
ffi maximum_velocity nzz s

Figure 7 Deployed Glass_Velocity interface to the engineer’s spreadsheet.

Similarly, Figures 8a and b show the CAD designer’s simplified Glass_Dimensions
interface (wrapping an I-deas CAD model) and a third engineer’s Opening_Time
interface (wrapping a Matlab simulation). The process for defining and deploying the

additional wrapper model interfaces is similar to the spreadsheet example.

< @8 cap_Geometry
- ‘. Glass_Dimensions
+ £ INPUTS
& pillar_height 04 m
~ £ ouTPUTS

B glass_radius 10000 mm

~ @8 MATLAB_Opening_Tirme
< @ opening_Time
< £ NPUTS
B pillar_height
ﬁ average_velocity
= A OUTPUTS

ﬁ opening_time

101 x] =loi xq
Mamme | walue | attribute Name [walue [Attribute
- '@ alass_drop -7 @ glass_drop

1.0 m
0.4 s
2:5 S

Figure 8a Glass_Dimensions interface.

Figure 8b Opening_Time interface.

Interfaces to a variety of heterogeneous simulations are now remotely accessible and
operable over the Internet, which is one essential component of the WWSW concept. A
second critical element of the WWSW concept is to provide each individual participant
with the ability to define system interactions locally, just as individuals can choose to
create html pages with links to other pages in the WWW.

In order to illustrate emergent system synthesis in the WWSW, let us assume that the
opening-time engineer is interested in studying the effect of changes in pillar height. The

11

opening-time engineer will do this by creating a new DOME model that subscribes to
interface parameters of deployed DOME models.

In Figure 9 the opening-time engineer has started to build a DOME model called
PillarVelocityBridgeModel. The opening-time engineer has searched the deployed
DOME interfaces of his collaborators’ simulations, and subscribed to the parameters that
are needed for this study —the pillar_heights from the Glass_Dimensions,
Glass_Velocity, and Opening_Time simulation interfaces, and the average_velocities
from the Glass_Velocity and Opening_Time interfaces.

Eé;f’,%PiIIar'd'elul:iI:rBridgeMudel). oy] |

TIEmE; |F'iIIaNEI|:|cit'5-'EIri|:|gEMDdEI || message log |

RETE Yalue Attribute Mapping
= A) SUBSCRIPTIONS

- ' Glass_Dimensions
= &) INPUTS
&9 pillar_height 0.4 fm
F w Glass_velocity
+ A INPUTS
&9 pillar_height 300.0 i
= £ OUTPUTS
ﬁ average_velocity 0.2 mfs
- w Opening_Time
< A INPUTS
&9 pillar_height 1.0 fm
fi average velocity 0.4 s

—Ldefin'rtiu:un Lint'erfac:e Ldu:u:umeritation |

| test || SAVE || reset |

Figure 9 The opening-time engineer building an integrated pillar study simulation using
parameter services from the interfaces of other simulations.

The process of making subscriptions involves logging into deployed model interfaces,
highlighting the desired interface parameters, and then choosing subscribe from a menu
option. However, transparent to the user, the subscribed parameters are mapped through a
XML-based, bi-directional, distributed communication link.

In Figure 10 the opening-time engineer has added mathematical relationships to the
DOME model. DOME is a simulation model-building environment, and thus it is
possible to add any number of parameters and relationships (either directly or through
subscriptions to other models). It is important to provide this capability within the
WWSW synthesis environment since interface parameters from different simulations are
not likely to be fully consistent, and there may be missing pieces that need to be added
within the integration environment.

12

AT x

PiGE: |p\HaLD\mensionsf\felociW |

content:
flavor: | impici -
parameters: add remove
MName Value \ Attribute \ Dependency
@ pillar_Glass_Dimensions ~ 382.0 mm depends on pillar_Glass_Velocity
. z . illar_Glass_Velocil 382.0 mm depends on pillar_Glass_Dimensions
EggPlllarUelncltyBrldgeMndel @ i - y P piflar -

name: |FillarvelocityBridgemodel

body:
pillar_Glass_Dimensions - pillar_Glass_Welocity=0

Mame
= A RELATIONS
e t:' pillar_Dirnensions_Velocity
fi pillar_sGlass_Dimensions 3820 mm
& pillar_Glass_Velocity 3820 mm
3 z!-.' pillar_Dimensions_Time
2 !I-J velacity_Velocity_Time
- @ SUBSCRIFTIONS
- ﬂ.GIass_Dimensiuns
+ £ INPUTS
B pillar_height 0.4 m
> '. Glass_Velocity
[', Opening_Time
—Ldefinition Linterface Ldoc:umentation |

—Ldefmitinn Lintanace Lcnnstraints Ldncumamatmn |

‘ test || Save H reset |

Figure 10 Mathematical relationships are added to PillarVelocityBridgeModel.

Three relationship objects have been added and the graphical interface for the one named
pillar_Dimensions_Velocity has been expanded. The body of the relationship is:

pillar_Glass_Dimensions — pillar_ Glass_Velocity = 0 equation (1)
The body of the second relationship, pillar_Dimensions_Time is:
pillar_Glass_Dimensions — pillar_Opening_Time =0 equation (2)
The body of the third relationship velocity_Velocity_Time is:

velocity_Opening_Time = velocity_Glass_Velocity equation (3)
It should be noted that equations (1) and (2) do not have fixed causality-—their
input/output structure will change depending upon which parameter initiates a pillar
height change. In contrast, the input-output mapping of equation (3) is fixed.

In order to make the relationship definition process as simple as possible, relationship
objects check their definitions for dimension consistency and also perform unit
conversions as needed.

In Figure 11 the opening-time engineer has completed the model by mapping parameters

from the subscribed remote simulations to appropriate parameters in the relationship
interfaces.

13

E‘g%PiIIarHeIucityBridgeMudel —1O] x|

MAMmE: |F'iIIaNeInciWElridgeMudeﬂ || MmEssage |og |

Mame | Yalue | Attribute Mapping
= £) RELATIONS

A t! pillar_Dimensions_Welocity

ﬁ pillar_Glass_Dimensions 3820 mim Glass_Dimensions_pillar_height
ﬁ pillar_Glass_Velocity 3820 mm Glass_Welocity_pillar_height

= :I' pillar_Dimensions_Time
ﬁ pillar_Glass_Dimensions 3az2.0 mim Glass_Dimensions_pillar_height
ﬁ pillar_Cpening_Time 382.0 mm Cpening_Time_pillar_height

- irl welocity_Velocity_Time
ﬁ velocity_Glass_Welocity 013 mis Glass_Velocity_average_velocity
fi velocity_Cpening_Time 0.13 mis Qpening_Time_average_velocity

= £} SUBSCRIPTIONS
- '. Glass_Dimensions
= £ INPUTS
l? pillar_height 0.382 m pillar_Glass_Dimensions
[' Glass Melocity
[' Opening_Time

—Ldefiniticun Linterfau:e Ldncumerrtatiu:un |

‘ test H Save || reset |

Figure 11 The completed PillarVelocityBridgeModel with remote parameters mapped to
relationship parameters.

Following a similar process, the glass-velocity engineer creates a DOME model
subscribing to the radius parameters in the Glass_Dimensions and Glass_Velocity
interfaces. Within this model a relationship is been defined so that:

radius_ Glass_Velocity = radius_Glass_Dimensions equation (4)

If the glass-velocity engineer attempts to create additional relationships between
pillar_heights, diagnostic information would be provided indicating that the system is
over constrained.

The integration activities of the glass-velocity and opening-time engineers have created
the integrated simulation shown in Figure 12. The opening-time and glass-velocity
engineers were able to integrate the pieces of the overall simulation that they understood
without having to consider the global simulation structure.

14

E’ibomeServerZ

MName
- @ glass_drop
= ? CAD_Geometry
< @ ciass_Dimensions
< £ INPUTS
& pitlar_height
®

= £ ouTPUTS

@ 01355 _radius

|
(=S

| wvalue | Attribute

0382 m

11560 mm

® = anned)-- -8l

10X
MName | Walug | Unit MName
- ’@ glass_drop - @ glass_drop
- ? MATLAB_Opening_Time = ? Glass_Velocity_Stall_Spreadsheet
< @, Opening_Time < @ olass_velociy
< £ NPUTS < £ INPUTS
&9 pillar_height 0,382 m @ @ nilar_height 382.0 FriF
@ average_velocity 013 mis . ﬁ glass_radius 1158.0 mm
= £ ouTPUTS + £ ouTPUTS
ﬁ opening_time 3.2 s “ average_velocity 013 mis
ﬁ maximum_velocity 018 mis
=Iox| =Inix)
T TEme [vele | S Manping . wERE 0 | wawe | Al Mapping

= £ RELATIONS
A d k{-J radius_Dimensions_Velocity
@radlus_G\ass_D\mensmms 1158.0 mm
@ radius_class_velacity 1158.0 ranm
A4 @ SUBSCRIPTIONS
- ', Glass_Dimensions
= £ ouTPUTS

a glass_radius 1158.0 mm
- '.,GIass_Velch
- £ INFUTE
@ glass_radius 1158.0 mm

Glags_Dimensions_glass_radius
Glass_Velotity_glass_radius

radius_Glass_Dimensions

radius_Glass_Yelocity .

= £ RELATIONS
- f‘l pillar_Dimensions_Velocity
@ pillar_Glass_Dimensions 3820 mrm
@ pillar_Glass_Yelocity 3820 mm
A d kI'J pillar_Cimensions_Time

ﬁ pillar_Glass_Dimensions 382.0 mm

@ pillar_Opening_Time 382.0 mm
= s velociy_velocity_Time

@ velociy_olass_Velocity 013 s

ﬁve\ocim_ouemng_ﬂme 013 mis

A4 @ SUBECRIPTIONS
- '/, Glass_Dimensions

- INPUTS
pillar_height 0382 m

v @ Glass_velocity

< £ NPUTS
pillar_height 382.0 mm
< £) auTPUTE
w average_velocity 013 mis
- ', Opening_Tirme
< £ NPUTS
* pillar_height 03682 m
ﬁ average_velocity 013 mis

Glass_Dimensions_pillar_height
Glass_Velocity_pillar_height

Glass_Dimensions_pillar_height
Cpening_Time_pillar_height

Glass_Velotity_average_velocity
Opening_Time_average_velocity

pillar_Glass_Dimensions

pillar_Glass_Yelocity

velocity_Glass_Velocity

pillar_Cpening_Time
velocity_Opening_Time

Figure 12 Structure of the integrated system involving five simulations located on three

different DOME servers.

Even though the system definition is distributed and there is no centralized control, the
simulation network can solve itself in an appropriate manner. For example, if a change in
the pillar parameter is made within the Glass_Dimensions interface, the causal structure
of pillar relationships in the PillarVelocityBridgeModel model is fixed on DomeServer1
and enforced until the effect of the pillar change is fully propagated. The pillar relations
(equations (1) and (2)) are executed and then the CAD_Geoemetry simulation on
DomeServer?2 runs to obtain a new radius from its underlying I-deas CAD model. Once
the new radius is obtained, the RadiusBridgeModel simulation on DomeServer3
computes its relationship (equation (4)) and then the Glass_Velocity_Stall_Spreadsheet
simulation executes its underlying spreadsheet model. The velocity_Velocity_Time

15

relationship (equation (3)) in model PillarVelocityBridgeModel is then executed, and
finally the MATLAB_Opening_Time simulation computes the glass opening _time.

In order to achieve this highly coordinated interaction between the simulations without
explicit centralized control, the servers must work together to correctly solve the overall
system simulation.

Federated Parametric Solving in an Emergent Simulation Network

There are many aspects that need to be addressed to provide a useful integrated
simulation environment for design synthesis (Abrahamson, 1999). One key component of
the WWSW is a forum for publishing and subscribing to parametric simulation services.
This functionality can now be implemented using a number of different protocols and
technologies (e.g., XML, SOAP, XML-RPC, J2EE, IMS, CORBA, JINI, eSpeak, or .Net,
(Fontana, 2001)). However, a second key aspect of the WWSW, allowing individuals to
declare local mathematical relationships between parameters while the distributed
network takes responsibility for correctly propagating change and maintaining
mathematical consistency, is also needed to enable emergent integrated-simulation
synthesis.

In this section an approach developed in the DOME project for federated parametric
solving of distributed simulations interacting through algebraic relationships is described.
Figure 13 shows a scenario involving three different simulations with interfaces on
different servers. Boxes depict algebraic relationships, and nodes represent parameters or
a self-contained set of models collapsed into a super-node. Interface nodes on the
boundary of a simulation are accessible for subscription by other simulations, but the
parameters and relationships within each simulation are not exposed to other simulations
because of proprietary issues.

Model 1 Model 2 Model 3

Figure 13 Scenario involving simulations on three different servers.

Graph-theoretic approaches already exist for evaluating and solving algebraic constraint
relationship networks, detecting over-and-under constrained systems, and identifying
redundant and conflicting constraints (Serrano and Gossard, 1992). More recently, Park
and Cutkosky have developed graph formalisms and solving techniques for dependencies

16

in collaborative simulation networks (Park and Cutkosky, 1999). Additionally, Ueberle
has applied a variety of techniques for solving relationship cycles specifically in the
context of the DOME project (Ueberle, 2000).

In this section we focus on federated solving coordination between different servers that
allows each individual server to solve their local graph efficiently within the context of
the larger system without requiring its full details. The discussion assumes that within
each server all information needed to solve the local relationship network is available and
the network has been reduced to an acyclic directed graph. The directed graphs
maintained by local solvers for the example scenario are shown in Figure 14. Edges are
used to depict relationships.

Model 1 Model 2 Model 3

a
OB
sy (R 0
o,
L &

Figure 14 Corresponding graph structures that are solved by each individual server.

Figure 15 illustrates an integration scenario where the three simulations have been
connected through interface subscriptions and relationships. The bi-directional
subscription mappings are made through independent modeling actions on servers from
models 2 and 3.

Model 1 Model 2 Model 3

subscription by model 2

subscription by model 3

subscription by model 3

Figure 15 Simulations connected through subscriptions.

17

The illustration in Figure 15 assumes that servers do not reveal any information about
internal causality during the subscription process—only interface parameters are visible
to other simulation servers. Thus, for example, the solver on server 1 maintains the graph
representation shown in Figure 14 only and is not aware that Q and P are correlated.
Consequently, if parameter A changes in server 2, the simulation on server 1 will execute
twice (once when Q changes and once when P changes). Likewise, the relationship
mapping Z to C on server 3 will receive two values for Z.

Although this blind messaging approach fully protects the proprietary internal structure
of the simulations on each server, it leads to the unnecessary execution of many
relationships. This inefficiency can become overwhelming and correlated changes
processed sequentially may place simulations into infeasible intermediate states.
Additionally, it is not possible for the simulation network to diagnose cycles or constraint
inconsistencies.

In order to overcome these problems, most integration tools provide an environment for
defining a controlling meta-model or workflow model that sequences the execution of the
individual relationships or distributed simulations. These overarching system models are
created using explicit, procedural system definition approaches and thus limit the
application of integration tools in large, evolving systems that involve heterogeneous
simulations and proprietary models.

The solvers on each server must share some information if they are to correctly respond
internally to external changes, but in order to achieve emergence this information should
be obtained in a manner that allows individuals to declare parametric interactions
between simulations without writing explicit models and procedures to solve the overall
system.

Each simulation server generates and provides a causal map in its interface that relates
inputs to outputs. As shown in Figure 16, only the mappings between inputs and outputs
are exposed in the interface. The internal structure of the simulation remains concealed.
These interface I/O causal maps can be generated automatically for simulations built
directly within the DOME environment, and statistical tools have been developed (Kim,
2001) to infer I/O causal mappings for DOME interfaces to black-box simulations.

18

Model 1 Model 3

Zu

Figure 16 Causal maps between inputs and outputs published in simulation interfaces.

In Figure 17 the builder of model 2 has subscribed to Q from the interface of model 1 and
then defined a relationship causing A to drive Q. During the subscription and relationship
definition process the two simulation servers also exchange causal information and
update their interface causal mappings. Initially, model server 1 passes its I/0 causal
mapping to subscribing model 2 and model 2 adds this information to its own interface.
Later, when the builder of model 2 relates A to Q, this new information is added to the
model 2 I/O causal mapping and then propagated back to the subscribed model 1. Local
solvers are responsible only for executing the black elements in the I/O causal mapping.

Model 1 Model 2 Model 3

subscription by model 2

Figure 17 Interface causal maps are exchanged as part of the subscription process. Model
2 has subscribed to Q in model 1 and related it to A.

Next, the builder of model 2 subscribes to D from model 3 and defines a relationship to
drive D with B (Figure 18). Model 3 passes the I/O causal mapping for D to model 2, and
model 2 updates its own interface causal map. When D is related to B, the model 2 server
updates its I/O causal map to incorporate the new relationship with D and then passes this
information to its subscribed models (both model 1 and model 3). If models 1 or 3 were
subscribing to parameters in other models, they would likewise propagate the updated
information.

19

Model 1 Model 2 Model 3

subscription by model 2

subscription
by model 2

Figure 18 Model 2 subscribes to D in model 3 and relates D to B.

Finally, in Figure 19 the builder of model 3 has subscribed to both P and Z from model 1,
and related P to D and Z to C. Following the pattern of the previous examples, model 3
updates its I/O casual map and then passes the new information to its subscribed models
1 and 2. Model 2 will then passes its updated I/O causal map to its own subscribed
models 1 and 3. Both models 1 and 3 compare the new information propagated by model
2 with their own maps, and since there is no new information they do not propagate any
changes to their subscribed models.

Model 1 Model 2 Model 3

subscription by model 2

subscription
by model 2

subscription by model 3

Figure 19 Model 3 subscribes to model 1, relating P to D, and Z to C.

Like the blind messaging example in Figure 15, each model server is responsible for
solving its internal graph structure and executing its internal relationships. However,
unlike the example of Figure 15, each simulation server has sufficient information to
understand correlations between parameter changes originated by external sources, which
enables relationships to be executed in an efficient manner. For example, if Q is changed
through the subscription of model 2, the model 1 solver has sufficient information to
determine that it should not execute the relationship that calculates R until P also
changes.

20

The process of automatically propagating I/O causal maps allows the independent solvers
associated with each model server to coordinate and operate in a federated manner. This
allows a system model to emerge as model builders actively subscribe to parameters in
simulation interfaces and declare relationships without considering how interactions are
solved in response to parametric changes in the integrated system. The federated solving
architecture ensures that computational efficiency is not sacrificed and the ability to
detect degenerate causal structures is not lost in the emergent simulation synthesis
environment.

DOME Pilot Applications

Many of the practical challenges associated with integrated design simulation are not
apparent in small, contrived problems so several pilot applications have been conducted
with industry sponsors throughout the development of the WWSW concept. Several pilot
applications are summarized in Appendix A.

Although the pilot studies have shown clear benefits through the ability to rapidly
evaluate complex what-if scenarios, it is difficult to prove the hypothesis that difficulty in
building integrated simulations during design synthesis arises because the traditional
explicit system definition and integration processes do not match design synthesis
activities. However, literature on integrated design simulation attests to the difficulty of
applying explicit, procedural, system-definition techniques.

It is also difficult to prove that an emergent simulation integration process with federated
solving, as enabled by a WWSW DOME infrastructure, will reduce integration barriers.
However, experiences in pilot applications support this belief.

Publishing and integrating 21 heterogeneous distributed simulations for the Ford
Moveable Glass System (glass drop) pilot required less than one person-month using an
emergent synthesis approach (Abrahamson et al, 2000). The integrated simulation
required the distributed coordination of some 1500 design parameters. Although there is
not a benchmark for building the same system using a traditional definition approach, the
authors have observed several similar or smaller size integrated simulation environments
that required on the order of person years to construct. A 1999 torpedo design pilot with
the US Navy integrating legacy FORTRAN simulations, Matlab models, and CAD
geometry models required only 12 hours of integration effort, whereas previous
integration efforts of similar scale required several person months (Harrigan, 2000).
Similarly, in the 2001 Boeing pilot, preliminary integration of pre-existing Mathematica,
Excel and Matlab simulations for predicting the properties of carbon fiber lamina and
laminates required only four hours.

Conclusions

The potential benefits of mathematically predicting and analyzing the integrated behavior
of product concepts throughout the design synthesis cycle include reducing development
time, reducing cost, and improving quality.

21

Many academic researchers and companies have attempted to develop integrated
simulation environments, and it has been consistently observed that significant
difficulties arise because of the large scale, complexity, rate-of-change, heterogeneity,
and proprietary barriers associated with product design synthesis. Integration efforts have
had limited success.

The majority of existing integration environments revolve around technologies, such as
distributed communication protocols, integrated data model representations, and
ontologies. However, the systems do not question the status quo of defining and
coordinating integrated simulations using explicit procedural modeling techniques.

We propose that design synthesis is an emergent system definition process. Since it is
very inefficient to represent and structure emergent processes using explicit procedural
modeling techniques, a new method for emergent integrated simulation synthesis is
suggested. The struggles experienced within many companies to represent product
function using a system engineering V may not be attributable to a lack of cooperation on
the part of designers and engineers.

Inspired by a vision of the WWW as an emergent information-network building
environment, a World-Wide Simulation Web concept is proposed as a model for an
emergent, integrated simulation environment. Participants are enabled to make interfaces
to their sub-system simulations parametrically operable and accessible over the Internet.
Participants can also make connections between parameters in different simulation
interfaces and create additional models that bridge interfaces. Each participant defines
local relationships between interface parameters in a declarative fashion without having
to determine the procedural order in which relationships need to execute for the overall
integrated system to operate correctly.

The DOME project has developed a software infrastructure for the purpose of refining
and testing emergent integrated simulation concepts. A federating solving mechanism has
been developed so that local solvers can respond to external changes in a manner that is
consistent with the overall system structure, even though there is no centralized
coordination of the overall system. The same mechanism can also be used to
automatically inform individuals about the structure of the emerging system. Several pilot
studies have been conducted, and results support the belief that a decentralized emergent
process for building integrated simulations resolves many of the traditional integration
difficulties.

Although the traditional system definition methods work well for clearly resolved
consolidated problems, the need for engineering emergent systems is growing as
society’s expectations of products and technology grows. Currently, it is difficult to
predict the integrated behavior of an automobile, but even so, there is an increasing
demand that designers foresee infrastructure, urban environment, societal and
sustainability implications in relationship to design decisions. Clearly it will not be
feasible to address the details of such ambiguous integrated design problems using
explicit system definition techniques.

22

Acknowledgements

The authors would like to acknowledge the contributions of the numerous graduate
students that have contributed to the development of the WWSW concept, and in
particular Francis Pahng, Shaun Abrahamson, Nick Borland, and Steven Kraines for their
fundamental contributions.

References

Abrahamson, Shaun; David R. Wallace, Nicola Senin, and Nick Borland, "Integrated
Engineering, Geometric, and Customer Modeling: LCD Projector Design Case Study",
Proceedings of the ASME DT Conferences, Las Vegas, NV, DETC/DFM-9084,
September 1999.

Abrahamson, Shaun; David R. Wallace, Nicola Senin, and Peter Sferro, “Integrated
Design in a Service Marketplace”, Computer-aided Design, 32, pp. 97-107, 2000.

Ahmadi, R.; and R. Wang, “Managing Development Risk in Product Design Processes”,
Operations Research, 47, pp. 235-246, 1999.

Bliznakov, P. I.; and J. J. Shah, "Integration Infrastructure to Support Concurrence and
Collaboration in Engineering Design", 1996 ASME Design Engineering Technical
Conferences, Irvine, Ca, 1996.

Bush, Vannevar; "As we may think", The Atlantic Monthly, 176, pp. 101-108, 1945.

Case, M. P.; and S. C.-Y. Lu, “Discourse model for collaborative design”, Computer-
Aided Design, 28, pp. 333-345, 1996.

Christian, Andrew D.; Kamala J. Grasso, and Warren P. Seering, “Validation studies of
an information-flow model of design”, Proceedings of the 1996 ASME Design
Engineering Technical Conferences, August, 1996.

Cooper, Robin; and Robert S. Kaplan, “The promise —and peril —of integrated cost
systems”’, Harvard Business Review, pp. 109-119, July-August, 1998

Cutkosky, M. R.; and R. Engelmore ef al., “PACT: An Experiment in Integrating
Concurrent Engineering Systems”, IEEE Computer, pp. 28-37, 1996.

Cutkosky, M. R.; G. R. Olsen, J. M. Tenenbaum, and T. R. Gruber, “Collaborative
Engineering Based on Knowledge Sharing Agreements”, Proceedings of the 1994
Database Symposium, 1994.

Dabke, P.; and A. Cox, “NetBuilder: an environment for integrating tools and people”,
Computer-Aided Design, 30, pp. 465-472, 1998.

23

Dong, Qi; Representing Information Flow and Knowledge Management in Product
Design Using the Design Structure Matrix, M.S. Thesis, Massachusetts Institute of
Technology, 1999.

Engineous Software; http://www.engineous.com/engineous.html, 2001.
Fiper; http://www.fiperproject.com/fiper/fiperindex.html, 2001.

Fontana, John; "Web Service: Where Middleware and XML Converge”, Network World,
http://www.nwfusion.com/buzz2001/webserv/, September, 2001.

Hameri, A.; and J. Nihtila, “Distributed New Product Development Project Based on
Internet and World-Wide Web: A Case Study”, Journal of Product Innovation
Management, 14, pp. 77-87, 1997.

Harrigan, Peter; Personal Communication, US Navy Undersea Warfare Group,
HarriganPA@Npt. NUWC.Navy.Mil, 2000.

Kim, C., and Y. Kim, "Internet-based Concurrent Engineering: An Interactive 3D System
with Markup", ASME 18th Computers in Engineering Conference, 1998.

Kim, Jaehyun; Causality and Sensitivity Analysis in Distributed Simulation, Doctoral
Thesis, Massachusetts Institute of Technology, 2001.

Laws, David; Lawrence Susskind, Jonna Anderson, Ginette Chapman, Emily Rubenstein,
and Jaisel Vagadama, Public Entrepreneurship: Constitutive Roles and Relationships in
Sustainable Technology Development, Draft Manuscript, Environmental Technology and
Public Policy Program, 2000.

Molina, A.; and A. H. Al-Ashaab et al., “A review of computer aided simultaneous
engineering systems”, Research in Engineering Design, 7, pp. 38-63, 1995.

NIST, IDEFO Standard for Function Modeling, FIPS Publication 183,
http://www.idef.com/idef0.html, 1993.

Pahng, Francis; Personal Communication, Zionex, Inc., francis_pahng@zionex.com,
2000.

Pahng, Francis; Nicola Senin, and David R. Wallace, “Distributed object-based modeling
and evaluation of design problems”, Computer-aided Design, 30, pp. 411-423, 1998.

Park, Hisup; and Mark R. Cutkosky, “Framework for Modeling Dependencies in
Collaborative Engineering Processes”, Research in Engineering Design, 11, pp 84-102,
1999.

Pheonix Integration; http://www.phoenix-int.com/, 2001.

24

RDCS:; http://www.mscsoftware.com/services/ies/solutions/index.cfm, 2001.

Senin, Nicola; David R. Wallace, and Nicolas Borland, “Distributed Object-based
Modeling in Design Simulation Marketplace”, accepted for publication, ASME Journal
of Mechanical Design, 2000.

Serrano, David; and David Gossard, “Tools and Techniques for Conceptual Design”,
Artificial Intelligence in Engineering Design, 1, pp. 71-116, 1992.

Sferro, Peter; Personal Communication, Advanced Manufacturing Technology
Development, Ford Motor Company, psferro@ford.com, 2001.

Slate; http://www.sdrc.com/slate/index.shtml, 2001.

Toye, G.; and M. R. Cutkosky et al., “SHARE: a methodology and environment for
collaborative product development”, International Journal of Intelligent & Cooperative
Information Systems, 3, pp.129-153, 1994.

Truex, D. P.; R. Baskerville, and H. Klein, “Growing Systems in Emergent
Organizations”, Communications of the ACM, 42, pp. 117-123, 1999.

Coleman, H. J.; “What Enables Self-Organizing Behavior in Businesses”, Emergence, 1,
pp. 33-48, 1999.

Ueberle, Mark; Computational Strategies for Managing Circular Dependencies in
Integrated Product Design Models, Diplomarbeit, University of Stuttgart, Institut fur
Flugmechanik und Flugregelung, 2000.

Ulrich, Karl T.; Steven D. Eppinger, Product Design and Development, 2" Edition, Mc-
Graw-Hill, 2000.

Wang, Priscilla; Emergent Product Development Process Structures, M.S. Thesis,
Massachusetts Institute of Technology, 2000.

Wellman, Michael; "A Computational Market Model for Distributed Configuration
Design", 12th National Conference on Artificial Intelligence, Menlo Park, CA, AAAI
Press, 1994.

Wong, A.; and D. Sriram, “SHARED: an information model for cooperative product
development”, Research in Engineering Design, 5, pp. 21-39, 1993.

Wu, Teresa; Jennifer Blackhurst, and Peter 0’Grady, “Integrated Enterprise Concurrent
Engineering; A Framework and Implementation”, Internet Lab Technical Report
TR2001-8, http://www.iil.ecn.uiowa.edu/internetlab/TechnicalReports/TR2001-08.PDF,
2001.

25

Appendix A

Summary of major DOME pilot studies conducted for testing and validation during the
development of the WWSW concept.

Date Pilot Focus and/or Application Participant Advancement
1997 Electromagnetic Shielding Design United * Testing of local object model
Technologies simulation components and
and MIT solving
CADlab
1998 Co-generative Electric Power Plant Swiss Federal | e Preliminary test of a distributed
Design Institute of object model simulation
District Heating Plant Design Technology
and MIT
CADlab
1998 Distributed Service Integration CADlab * Testing of simulation service
* Battery Powered Drill Design (internal) publish and subscribe concepts
1998 Heterogeneous Third Party Simulation CADlab * Testing of DOME wrapper
Integration model concepts, parametric
* Environmentally-conscious Design of integration of CAD models,
Beverage Containers LCA simulations, and
spreadsheets
1998 Integrated Engineering and Customer Polaroid and *[Hirst test of all major elements
Modeling CADlab of the WWSW concept on an
* LCD Projector Design industrial problem
* Estimated reduction of
integrated analysis of product
variants from one month to
under a minute
1998 New Concept Development within Polaroid and » Test application of concept to a
DOME CADIlab completely new design under
* "Watson Project" development rather than
evolutionary design of existing
products
1999 Optimization Incorporating Legacy Navy * First test of web browser-based
Code Undersea second-generation
* Torpedo Design Warfare and implementation
CADIlab * Verification of emergent

system definition process

26

Appendix A continued.

Date Pilot Focus and/or Application Participant Advancement
1999 Integrated simulation across a supply Ford and MIT | e Validation of WWSW
chain, in-field deployment and testing CADlab emergent simulation definition
* Ford Moveable Glass System (MGS) concept for a complex system
involving 5 organizations, 21
simulations, and 1500
parameters between simulations
* First time integrated
simulations conducted across
Ford supply chain and firewall
*Supplier interaction time
reduced from 2 week to 5
seconds
1999- Application to Diverse Ambiguously Alliance for * Application independent from
—scoped Technology Systems Global CADIlab
» Tokyo Greenhouse Gas Half Project Sustainability
1999-2000 Product Platform Architecture LG Electronics | * Application independent from
Air Conditioner Design CADlab
2000- Application to Eco-Systems University of * Application independent from
Seagrass Eco-Engineering for Carbon Tokyo CADlab
Sequestration
2001- Application to Geometric Assemblies Ford and MIT | ¢ Parametric assemblies
CADIlab involving distributed

components modeled in different
CAD systems

* Patent pending on assembly
modeling technique

27

