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Abstract— We determined the Landauer ballistic conductance
of pristine nanotubes at finite temperature via a novel scheme
that combines ab-initio molecular dynamics, maximally-localized
Wannier functions, and a tight-binding formulation of electronic
transport in nanostructures. Large-scale ab-initio molecular
dynamics simulations are used to obtain efficiently accurate
trajectories in phase space. The extended Bloch orbitals for
states along these trajectories are converted into maximally-
localized orbitals, providing an exact mapping of the ground-state
electronic structure onto a short-ranged Hamiltonian. Green’s
functions, self-energies, and ballistic conductance can then be
obtained for any given configuration, and averaged over the
appropriate statistical ensemble.

Index Terms— Carbon nanotubes and nanostructures, Lan-
dauer conductance, first-principles, Wannier functions.

I. INTRODUCTION

IRST-PRINCIPLES simulation techniques are very natu-

ral tools to probe the properties of matter at the nanoscale,
since they derive macroscopic properties from a detailed
and fundamental quantum mechanical description of all the
electrons interacting with the atomic nuclei. In doing so, they
combine their fundamental quantum-mechanical predictive
power with atomic resolution in length and time. We use here
extensively these techniques in order to develop a microscopic
understanding of the transport properties of nanosized object
(carbon nanotubes), and to provide testing and guidance for
their design and functionalization toward target applications.
Three fundamental steps are needed to determine the trans-
port characteristics of a nanostructure. Maximally-localized
Wannier functions: The first-principles molecular dynamics
algorithm evolves "on-the-fly” the electronic structure of the
system, in both the occupied and the unoccupied subspace.
Since we are studying extended or semi-infinite systems (the
leads), and due to the use of periodic boundary conditions,
the orbitals are in their Bloch extended form. The Bloch
representation is not useful to calculate the conductance (see
below), but using the Marzari-Vanderbilt maximally-localized
Wannier functions approach [1] [2] we can determine the
optimal unitary rotations at every point in the Brillouin zone
that transform the extended orbitals into localized Wannier
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functions, preserving the same identical Hilbert space (i.e.
we are performing a unitary transformation on the orbitals
that localizes them as much as possible). Real-space Hamilto-
nian: In addition, the Hamiltonian matrix based on extended
Bloch orbitals is converted to the real-space Hamiltonian
with maximally-localized Wannier functions basis. Quantum
conductance: The Landauer conductance is then calculated
from the Green’s functions of the conductor and its coupling
to the leads (via the self- energies). Namely, the conductance
G of the full system is given by G = 2¢? /hTr (L .GcT rGe),
where G is the Green’s function of the conductor, and I';, g
are the coupling functions that describe the interaction between
the conductor and the leads. These can be calculated from the
retarded and advanced self-energies, using the formalism of
principal layers and the surface Green’s function matching the-
ory briefly outlined below, and exploiting the decomposition
into localized orbitals obtained from the maximally-localized
representation (see Refs. [3] and [4]). The Green’s function is
also obtained straightforwardly in a localized orbital scheme
from the Hamiltonian and overlap matrices.

These steps are carried out in detail using as paradigmatic
cases (8,0) semiconducting and (5,5) metallic single-wall
carbon nanotubes (or SWCNT). Several experimental findings
reported ballistic transport for carbon nanotubes even at room
temperature and at micrometer length scales [5][6]. Also, their
different electrical properties and functionalization avenues
with organic and biological molecules promise a wide variety
of applications in nanoelectronics [7][8][9].

In our electronic structure calculations we use Car-Parrinello
molecular dynamics based on ultrasoft pseudopotentials[10],
density-functional theory in the PBE-GGA approximation, and
we use a planewave basis set with a wavefunction cutoff of
30 Ry and a charge density cutoff of 240 Ry. Our supercells
contain 96 atoms for the (8,0) SWCNT, corresponding to three
layers of the conventional unit cell for the (8,0) SWCNT, and
100 atoms for the (5,5) SWCNT, corresponding to five layers
of the conventional unit cell. Such supercell sizes are large
enough to allow for I'-sampling only in the Brillouin zone,
and to have negligible overlap with the maximally-localized
Wannier functions belonging to the second next supercell (see
Section 111 for details).
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Il. MAXIMALLY-LOCALIZED WANNIER FUNCTIONS
A. General Formalism

Electronic structure calculations are often carried out using
periodic boundary conditions, this is the most natural choice
to study perfect crystals and to minimize finite size-effects in
the study of several non-periodic systems (e.g. surfaces, impu-
rities, or the lead-conductor-lead geometries considered here).
The one-particle effective Hamiltonian A then commutes with
the lattice-translation operator Tr, allowing one to choose as
common eigenstates the Bloch orbitals |, ):

Uk (T) ek (1)

where u,,i(r) has the periodicity of the Hamiltonian. There is
an arbitrary phase ¢, (k), periodic in reciprocal space, that
is not assigned by the Schrodinger equation and that we
have written out explicitly. We obtain a (non-unique) Wannier
representation using any unitary transformation of the form
(nk|Rn) = e¥n(l) kR .

v ion (k) —ik-R
Here V is the real-space primitive cell volume. It is easily
shown that the |Rn) form an orthonormal set, and that
two Wannier functions | Rn ) and |R'n ) transform into each
other with a translation of a lattice vector R — R/[11]. The
arbitrariness that is present in ¢, (k) [or ¢, (k)] propagates
to the resulting Wannier functions, making the Wannier rep-
resentation non-unique. Since the electronic energy functional
in an insulator is also invariant with respect to a unitary trans-
formation of its n occupied Bloch orbitals, there is additional
freedom associated with the choice of a full unitary matrix
(and not just a diagonal one) transforming the orbitals between
themselves at every wavevector k. Thus, the most general
operation that transforms the Bloch orbitals into Wannier
functions is given by

|R":27r/Z

The Wannier functions w,(r — R) = |Rn), for non-
pathological choices of phases, are “localized”: for a R; far
away from R, w,(R; — R) is a combination of terms like
S5y umk(0)e™ ®:i=R) dk which are small due to the rapidly
varying character of the exponential factor [11].
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B. I'-point Formalism

For isolated systems and insulating crystals, it is appropriate
to use only the wavefunctions at the I'-point of BZ to construct
maximally-localized Wannier functions - provided the unit cell
is large enough. In this case, Eq.(3) is reduced to a simple
unitary transformation.

lwn) = Z Unn | ¥m ) 4)
We define the overlap matrices
Mj; = (wile”" S " wy), (5)

(where G; are the reciprocal lattice vectors of the unit cell,
and w; the I' point wavefunctions), a functional .S can be

constructed:
N Ng
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(N is the number of bands, N¢ is the number of the G, vectors
required to preserve the natural symmetry, and W, is the
weight corresponding to the specific vector G;). This quantity
is closely related to the spread of the Wannier functions, which
measures their delocalization:
N Ng
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where L is the supercell dimension. Instead of minimizing
the spread we can maximize the functional S; the Wannier
function center of the i-th occupied band r; is then computed
using:

(6)
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Fig.1 shows Wannier functions of semiconducting and metal-

lic SWCNTs. For (8,00 SWCNT, we are able to convert

delocalized valence band Bloch orbitals to a set of o and

bonding = type Wannier functions.

The case of conduction bands needs to be dealt with more
care, since these are usually an entangled subspace that can’t
be separated from the higher bands not considered in the cal-
culation. However, we can obtain Wannier-like well-localized
orbitals applying the disentanglement procedure developed by
Souza et al.[2]. The spread of Wannier functions can usually
be decomposed into two components[1].

Q:QI""Q ©)

Qg is gauge-invariant in a semiconductor or an insulator, and
thus the unitary transformations in Eq.(4) only affect (and
minimizes) €. A subspace with optimal ”smoothness” can be
disentangled from the conduction band structure by selecting
the linear combination of orbitals that has maximal inter-
orbital overlap [2]; this is equivalent to maximizing € in the
case of a metal. Once the optimally-connected subspace has
been extracted, the localization procedure follows the same
steps as for an isolated band calculation.

In case of the (8,0) SWCNT, 48 identical anti-bonding 7*
Wannier-like functions can be easily disentangled from the
conduction band using the procedure we alluded to above. For
truly metallic system, even the occupied space is entangled
with the unoccupied space, requiring a global disentangling
procedure. For our (5,5) SWCNT with 100 carbon atoms, we
start with 300 Bloch orbitals and then construct a connected
subspace of 250 orbitals; the localization procedure that fol-
lows results in 150 sp? orbitals and 100 p, orbitals, as shown
in Fig.1
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Fig. 1. Upper panel : charge density of bonding = (right) and anti-bonding
7* (left) Wannier functions in the (8,0) SWCNT. Lower panel : charge density
of sp? and p, Wannier functions in the (5,5) SWCNT.

I1l. REAL-SPACE HAMILTONIAN

A. Unitary transformations of the Hamiltonian

Any solid (or surface) can be viewed as an infinite (or semi-
infinite in the case of surfaces) stack of “principal layers”
interacting only with their neighboring layers. [12]. Within
this approach, the infinite-dimensional real-space Hamiltonian
can be divided into the finite-sized Hamiltonian matrices. In
case of a bulk system (i.e. infinite and periodic) the only
independent components are Hyg and Hyy, where the former
represents the interaction between orbitals located in the same
principal layer and the latter the interaction between orbitals in
one principal layer and the next. In our formulation, the real-
space basis orbitals are provided by the maximally-localized
Wannier functions and the supercell corresponds to one single
principal layer.

We want to elaborate here on a technical issue arising from
the use of I'-point sampling. If a unit cell has a length L,
and its Brillouin zone is sampled with N k-points along
that same direction, the real-space Bloch orbitals will display
N x L periodicity. For N reasonably large, the periodic images
of the localized Wannier orbitals will be located far apart,
and thus the interaction with a ghost periodic image will be
negligible[13]. However, the restriction to I'-point sampling
means that even localized orbitals are repeated periodically

Fig. 2. Schematic description of our real-space integration technique: The
"real” Wannier functions 1 and 2 are marked in dark gray, and their periodic
translation in light gray. @ is an effective overlap region defi ned by [z —
L/2,z; + L/2] inside Oth cell. Only the middle part, where the @ region of
1 2 overlap contributes to Hoo,12.

from supercell to supercell - thus, we need to avoid spurious
overlap terms in our Hamiltonian. The nth cell for each
Wannier function is chosen as [z; — L/2+nL,z;+ L/2+nL)],
where z; is the z-coordinate of Wannier function center from
Eq.(8) and the system is infinite along z-axis. We reorganize
the Hamiltonian matrix by neglecting any interaction between
Wannier functions |w;,) and |w; ) apart by more than two
times of the unit cell length L.

o

> (wiolHlwjn)

(wiolH|w; 1) + (wio Hlwj,o) + (wiol Hlwj1)
= Hig,; + Hoo,ij + Hou,ij
= Hyy; + Hooj + Hovig

(wi|H|wj) = (10)

In practice, a matrix element Hg,; is determined with an
integration on a real space grid. Let’s take as an example the
calculation of Hoo 12 and Hoy; 12 for the Wannier Functions 1
and 2 pictured in Fig. 2. Hop 12 Will have zero value, since
there is negligible overlap between |w; o) and w2 ). However,
(wy|H|w,) is appreciable because of the interaction between
wa0) and wy 1). By assumption, Hyg 15 is set to zero. The
decomposition of (w; |Fl|w2) into two components, Hoo, 12 and
Ho1,12, is done as follows: The integrated value in real-space
on those grids belonging to the "true” overlap region of both
Wannier functions (highlighted in gray in Fig. 2, adds on to
Hop,12, while the rest adds on to Hyp,12. As an example, we
plot Hyy and Hp; in Fig.3, on a logarithmic scale. It can be
clearly seen that the interaction term decreases exponentially
as the distance between Wannier functions increases.

B. Band Structure

Orthonormal Bloch orbitals for any arbitrary k point can
be obtained by Fourier interpolations of the Wannier func-
tions. This is done in complete analogy to a tight-binding
formulation - but in our case the basis set provided by the
Wannier functions results in an exact mapping of the ground-
state electronic structure:

) = = Y Ru-R) @)
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Fig. 3. Hopp and Hp; as a function of distance between o type Wannier
functions of (8,0) SWCNT
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Fig. 4. Comparison of band structures calculates from maximally-localized
Wannier orbitals in a supercell calculation, and a full diagonalization of the
Hamiltonian, for a (5,5) SWCNT

conversely, the Hamiltonian matrix is:

<¢§(|HW§(> = Hoo,i; + ¢ R Hopi; + e_Zk'RH(J)ruj , (12)
where we have exploited the short-rangedness of our orbitals.
Fig. 4 shows the band structure of a (5,5) SWCNT, with
the solid lines calculated diagonalizing the above Hamiltonian
matrix at any given k point, and the circles from a full band-
structure calculation using a publicly-available electronic-
structure code (PWSCF [14]). The Brillouin zone of the
supercell calculation corresponds to one fifth of that in the
conventional unit cell. The excellent agreement between two
methods proves that our approach exactly maps the reciprocal-
space Hamiltonian matrix into an real-space one without any
accuracy loss.

IV. QUANTUM CONDUCTANCE

Our final goal is to calculate the quantum conductance fol-
lowing the procedure outlined in Introduction. Here, we apply
the quantum conductance formalism of Nardelli [3], which
is applicable to any general Hamiltonian described within a
localized orbital basis. We consider a system composed of a
conductor C' connected to two semi-infinite leads, R and L.
The conductance through a region of interacting electrons is
related to the scattering properties of the region itself via the
Landauer formula [15]:

2

G(B) = 21(B)
where 7 is the transmission function and G is the conductance.
7T is the probability that an electron injected at one end of the
conductor will transmit to the other end. This transmission
function can be expressed in terms of the Green’s functions
of the conductors and the coupling of the conductor to the
leads [16], [17]:

(13)

T = Ti(TLGLTRGE), (14)
where G{Cr"“} are the retarded and advanced Green’s functions
of the conductor, and I'y z; are functions that describe the
coupling of the conductor to the leads. To compute the Green’s
function of the conductor we start from the equation for the
Green’s function of the whole system:
(e—H)G =1 (15)
where € = E+in with n arbitrarily small and I is the identity
matrix.
In the hypothesis of leads and conductors being of the
same material (bulk conductivity), expression for the Green’s
function of infinite system is:

Gy, Grc Grcr
Gecr Ge  Ger = (16)
Grre Grce Gr
(e—Hy)  Ho 0 !
Hg, (e — Hoo) Hy, ,
0 H{, (e — HR)
We can write the bulk Green’s function as:
G(E) = (e — Hyp — Hn T — HI, T)". (17)

where T and T are the transfer matrices, which are defined
such that Gip = TGo and Goo = TGio. The transfer
matrices are calculated following the iterative procedure by
Lopez-Sancho et al.[18]. In particular, the last two terms
in Eq.(17), Hng and Hy T imply the coupling between
the conductor with the semi-infinite left and right side of
bulk material. The knowledge of the bulk Green’s function
G also gives direct informations on the electronic spectrum
via the spectral density of bulk electronic states: N(E) =
—(1/m)Im(TrG(E)).
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Fig. 5. Quantum conductance and density of states for a (8,0) SWCNT
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Fig. 6. Quantum conductance and density of states for a (5,5) SWCNT

A. Results for ideal SWCNT

We show in Figs. 5 and 6 our results for the density of
states and conductance for the two nanotubes examined.

In particular, the metallic nanotube, notwithstanding its 2
eV pseudo-gap at I, shows a band structure (Fig. 4) and a
guantum conductance (Fig. 6) typical of a metallic system, and
which manifest itself as two eigen-channels around the Fermi
energy and a finite density of states. These characteristics
would have not been apparent without the eigen-states inter-
polation between HOMO and LUMO at I" via the localized
Wannier functions.

B. Finite temperature effect

To investigate the effects of a finite temperature, we ex-
tracted twelve snapshots of our (5,5) metallic nanotube during
a Car-Parrinello molecular dynamics simulation at 300K.
Since the electronic structure of metallic nanotubes is sus-
ceptible to structural perturbations[19][20], finite temperature
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Fig. 7. Average quantum conductance of a (5,5) SWCNT at 300 K

vibrations could significantly affect the quantum conductance.
We observe a consistent opening of mini-gaps around the
Fermi energy.

V. CONCLUSION

In conclusion, we have developed a very efficient scheme to
calculate the quantum transport of nanostructures directly from
first-principles molecular dynamics simulations. As a bench-
mark system, ideal semiconducting and metallic SWCNT
have been studied, showing perfect agreement for the band
structure and the density-of-states with those calculated with
traditional approaches on small supercells. Our method is
generally applicable to large-scale simulations, and thus will
prove invaluable in assessing the quantum conductance of
realistic systems.
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