
 
Abstract—We have developed a novel framework that can be

applied for the analysis of signal transduction networks, both to
facilitate reconstruction of the network structure and
quantitatively characterize the interaction between network
components.  This approach, termed activation ratio analysis,
involves the ratio between active and inactive forms of signaling
intermediates at steady state.  The activation ratio of an
intermediate is shown to depend linearly upon the concentration
of the activating enzyme.  The slope of the line is defined as the
activation factor, and is determined by the kinetic parameters of
activation and inactivation. When activation ratios for simple
signaling systems are considered, a set of rules develop that can
be used to transform a set of experimental data to a proposed
model network structure, with activation factors yielding a
measure of activation potential between intermediates.

Index Terms—signal transduction, network analysis,
phosphorylation cascades, protein kinase.

I. INTRODUCTION

HE molecular processes by which information is passed
from the exterior of a cell, across the membrane, and into

the cytosol are termed signal transduction.  These processes
allow cells to interact with each other and with their
environments and are critical to the proper function of both
unicellular eukaryotes and cells in a multicellular organism.
Signal transduction pathways are involved in the transfer of
information, often through intermediates cycling between two
or more states.  The “information” is contained within the
relative amounts of these states and how they influence the
states of other intermediates.  These states typically result
from covalent modification, localization, or complexation of
proteins. These cycles then connect together to form pathways
and networks.

While significant efforts have led to understanding the
mechanism of individual signaling pathways, in general little
has been done to examine the more global response of larger
signaling networks, which can show a considerable degree of
complexity[1, 2].  Moreover, many experimental studies have
focused on qualitative descriptions of pathway activation in
response to a particular stimulus.  However, it is becoming
increasingly clear that a more quantitative examination of
signaling is required to properly characterize how a stimulus

affects the cell.  This level of characterization will allow
researchers to more precisely describe the effects of varying
stimuli between sets of experimental conditions or in different
cell types, such as normal versus diseased states.  A
quantitative study of a signal transduction network, however,
would require both a large set of measurements of the
signaling intermediates and an analytical framework with
which to process the data in a meaningful way.

Previous work in the analysis of signaling pathways and
networks has focused upon the thorough analysis of very
simple systems, construction of detailed mechanistic
molecular models, or extension of metabolic control analysis
(MCA) theories that were originally developed for study of
metabolic networks.  Several groups have performed both
steady-state and dynamic studies of isolated cycles and
pathways[3-7].  In most cases, for simplification it was
assumed that concentrations of enzyme-substrate complexes
could be considered negligible in the analysis.   Unfortunately,
this assumption is most likely invalid, considering the fact that
in many signaling systems the substrates as well as enzymes
are proteins with similar cellular concentrations[8].   Even
with these simplifying assumptions, extremely complicated
equations arose between concentrations of intermediates in
even these simple systems, and the analysis is not readily
extended to interconnected networks.  Thus far, these
approaches have not been applied to experimental data beyond
examination of a single isolated cycle[9-12].  Kinetic
modeling, while conceptually more intuitive, requires the
estimation or experimental determination of a large number of
kinetic parameters and total concentrations of the
intermediates to accurately describe a particular system of
interest.  Nevertheless, kinetic modeling has been used with
success to reproduce qualitatively the expected behavior of
several signaling arrangements and to investigate mechanistic
requirements and limitations[1, 13-22].  An important
concern, however, is the fact that in kinetic models the values
of parameters can be varied significantly without influencing
the fit to experimental data, suggesting that the models may
not be completely describing the experimental system[14, 19,
20].  MCA was developed to quantify the effects of changes in
the enzyme activities or enzyme, metabolite, or other
regulatory molecules upon the steady-state flux of mass
through metabolic networks[23, 24].  These concepts have
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been extended towards the regulation of pathways where mass
is generally not transferred between intermediates, as is seen
frequently in signal transduction[12, 25-32].  Unfortunately,
the resulting analysis is mathematically quite involved, and it
is difficult to conceive how these methods might be applied to
a set of experimental data, or how even to design an
experiment to obtain data for the analysis.  One particular
limitation of MCA methods is the need for an observable flux;
in signaling systems this would correspond to the ability to
measure at steady state the rate of interchange for a cycle of
interest.  While MCA has proved successful in the
examination of metabolic networks, to date it has not been
applied to the investigation of signal transduction.

Our objective therefore was to develop a novel analytical
approach for the examination of signal transduction networks,
with the specific understanding of limitations of experimental
methods and lack of in vivo kinetic data.  Of primary concern
was that the framework could be readily applied for the
structural analysis of a signaling network yet would still
contain quantitative descriptions for the interactions between
intermediates.  This approach is also useful in experimental
design, since it can be used to indicate the types, quantity, and
quality of data that will be necessary.  The framework should
yield simple relationships for simple forms of interactions, and
change appropriately when more complicated interactions are
considered, thus enabling the detection of these complicated
interactions.  We show that the activation ratio, defined as the
ratio between active and inactive forms of an interconverting
intermediate, can be used for the reconstruction of signaling
networks and quantification of interactions.  The activation
ratio of a particular intermediate can be considered a function
of the activation of other intermediates in the network, and the
form of the mathematical relationship depends upon the nature
of the interaction between the components.

II. METHODS

Kinetic models were used as simulators of simple signaling
arrangements and model networks as have been described
previously[1, 19, 20, 22, 33].  Initial estimates of parameter
values, including total concentrations of species, were taken
from previous models in literature and then varied 1000-fold
to explore the patterns of behavior for each network
arrangement[1, 14, 19, 20, 22].  Concentrations of non-protein
reactants (such as Mg2+, ATP, and water) were assumed to
remain constant.  Enzyme-catalyzed reactions were assumed
to follow simple Michaelis-Menten kinetics, and parameters
were varied to explore different degrees of saturation for the
converting enzymes.   Models were developed as a set of
coupled ordinary differential equations in MATLAB
(Mathworks, Inc) and integrated until steady state using the
ode15s algorithm with numerical differentiation.  Steady-state
concentrations of active and inactive fractions of components
at various input stimulus levels were used as “data” in the
analytical approach presented here.  Details on the

construction of signaling models and parameter values will be
provided upon request.

Fig. 1. Examples of signaling cycle arrangements.  A) single cycle, B) linear
cascade, C) converging pathways, D) diverging pathways.

III. RESULTS

A. Isolated interconverting cycle

The behavior of an interconverting cycle in isolation was
examined first, to indicate an appropriate analytical approach.
In this basic signaling unit, a single intermediate converts
between two states A and A* by the action of enzymes E1 and
E2, as shown in Fig. 1A. In protein kinase cascades, E1 and E2

are a kinase and phosphatase, respectively, and A and A*

represent the nonphosphorylated and phosphorylated forms of
the intermediate A.  Assuming Michaelis-Menten kinetics for
the cycle shown in Fig. 1A the reactions are:
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Here [E1·A] and [E2·A
*] represent the enzyme-substrate

complexes, while E1 and E2 are the free concentrations of
enzymes, and ai, di, and ki are the association, dissociation,
and catalytic rate constants for reaction i.  There are a total of
six species in this system, and their time-dependent behavior
can be described by the following rate equations:
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These species are further coupled by conservation
equations:
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If the time-dependent concentrations of three of the species,
(for example A, [E1·A], and [E2·A

*]), along with the total
concentrations for each component (AT, E1T, E2T) can be
measured, then (1)-(9) can be used to estimate the values of
the parameters of the system, namely the rate constants a, d,
and k for both reactions.  It is these rate constants that are the
quantitative measure of interaction between the components
A, E1, and E2 in this simple system. This is a difficult task for
even an isolated in vitro system, and totally infeasible for a
signaling intermediate within a cell.  In protein kinase
cascades it may be possible to determine the identity and
concentration of kinase E1, but often the phosphatase E2 is
undefined and assumed to be one of several nonspecific
enzymes.  Thus, it may be unrealistic to consider E2 or [E2·A

*]
as measurable quantities, and it becomes impossible to solve
these equations.  Furthermore, estimation of the individual
rate constants may not be informative, particularly if the
behavior of a network of intermediates is being investigated.

Instead of considering the dynamic behavior of this system,
we consider the relationship between intermediates at steady
state.  In this case (1)-(6) are equal to zero, and (3)-(4) can
then be rearranged to yield:
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Where Km1 and Km2 are the Michaelis constants for
enzymes E1 and E2, respectively.  Also, at steady state the two
net reaction rates must be equal:
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Substituting (10)-(11) into (12) and rearranging:
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From (13), it is apparent that the ratio A*/A, defined as the
activation ratio ARA, is linearly proportional to the
concentration of activating enzyme E1.  The unknown kinetic
parameters for the enzymes, as well as (most likely
unmeasurable) E2, are collected together in the activation

factor α1
A.  The activation factor represents the sensitivity of

the activation ratio for A (ARA) with respect to E1, and is
therefore a quantitative measure of the potential for E1 to
activate A.  As k1 increases or Km1 decreases, E1 becomes a
more powerful activator of A, and α1

A increases.  Similarly, as
k2 increases or Km2 decreases, E2 is a more powerful
inactivator, and therefore E1 is a weaker activator of A.
Fig 2.  Results for an individual cycle of Fig. 1A, A) Fraction of A activated

(A*/AT) for the simple cycle, B) Activation ratios (ARA) plotted against free
activating enzyme E1. Parameter values, all curves: k1 = 10, k2 = 10, Km2 = 1,
E2T = 1, AT = 10; Km1 = 20 (diamonds), 10 (squares), 4 (triangles), 2 (x s), 1
(stars), 0.4 (circles), 0.2 (+ s).

Simulation results for the individual cycle are shown in Fig.
2.  Michaelis-Menten kinetics were assumed, and a1 was
varied so as to vary Km1 100-fold without affecting k1.  The
fraction of A in the active form, A*/AT, is shown in Fig. 2A,
while ARA is plotted in Fig. 2B.  The curves change in shape
in Fig. 2A, and do not have a simple form that can be fitted
easily against E1.  When the data is plotted as activation ratios
in Fig. 2B, a set of lines appears and α1

A can be calculated
easily as the slope.  Note that α1

A is not necessarily constant,
because the concentration of free E2 is not necessarily constant
and may be indirectly influenced by E1.  This is determined by
the concentration and degree of saturation of enzyme E2, and
will be discussed in further detail below.  Nevertheless, α1

A

does approach a limiting value and the curves in Fig. 2B are
well approximated by straight lines.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

Activating Enzyme E1

F
ra

ct
io

n
 A

ct
iv

e 
(A

*/
A

to
t)

0

5

10

15

20

0 1 2 3 4 5

Activating Enzyme E1

A
ct

iv
at

io
n

 R
at

io
 (

A
R

A
)

A.

B.



In the relatively simple case of an isolated cycle, use of
activation ratios yields a simple linear relationship between an
activating enzyme E1 and its target A.  The power of this
approach becomes more apparent as complicated signaling
systems are considered.  This is because (13) continues to be
valid when the cycle is no longer isolated, but rather
embedded within a signaling network.  Of particular interest
are the cases of converging and diverging pathways and linear
cascades, as the behavior of these two model systems can be
combined to examine the effects of multiple inputs on a set of
interconnected intermediates, in the absence of feedback.  As
will be shown below, activation ratios for a particular
component within a network show different functionalities
upon other components of the network, depending on how it is
connected to these other intermediates.  Thus, calculation of
activation ratios can be used as a way to explore the structure
of a signaling network.

B. Linear Cascade

A common arrangement of signaling intermediates is a
linear cascade, where the activated form of one intermediate is
an enzyme that catalyzes the activation of the succeeding
intermediate, as shown in Fig. 1B.  Following a similar
analysis for each cycle in the cascade as done previously for
the isolated cycle, using expressions of the form of (10)-(13),
the activation ratios for the intermediates are:
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Not surprisingly, the action of each step upon the next is the
same as if the cycle were isolated, as seen above.  However,
when considering an indirect effect, for example E1 upon
ARB, the results take a quite different form.  If for simplicity
enzyme-substrate complexes can be considered negligible,
then A* + A ≈ AT and B* + B ≈ BT, and it can be shown that:
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The sensitivity of the overall cascade is a product of the
sensitivities at each individual level (multistep sensitivity), as
has been described previously[4, 6, 8, 34].  However, the
expression for the activation ratios changes in form, from
linear to hyperbolic, depending on which upstream enzyme is
being considered.  For example, although ARB is linear with
respect to A*, it is hyperbolic with respect to E1.  ARC is
hyperbolic with respect both to A* and E1, but linear with
respect to B*.  This radical change in form can be readily

visualized graphically.  We can thus use this approach to
suggest if a step is missing between two intermediates of
interest.  Note, however, it is not possible to distinguish
between one or more missing steps.  In this example, it is
possible to know that C is indirectly downstream of E1 and A,
but not by how many steps.  By establishing direct links
between E1 to A, A to B, and then B to C, however, the
cascade structure can be realized.

The expressions in (17)-(18) arise from the assumption that
enzyme-substrate complexes can be neglected in the
conservation relationships for A and B.  Nevertheless, the
patterns for activation ratios still hold even if these are
assumptions are relaxed.  Thus, the plots for activation ratios
will continue to be linear for direct effects and hyperbolic in
shape for indirect effects.

Plots of activation ratios for the model cascade of Fig. 1B
are shown in Fig. 3A-C.  Each step in the pathway is
saturated, with AT, BT, and CT all equal to 10 and Km values in
the range of 0.50-4.   Thus enzyme-substrate complexes will
not be negligible compared to the free species in this case.  In
Fig. 3A the activation ratios for each intermediate are plotted
against E1.  As expected, the curve for ARA is linear while the
curves for ARB and ARC are hyperbolic.  Similarly, in Figure
3B the plots of ARB against A* and ARC against B* are linear,
while ARC against A* is hyperbolic.  The activation ratio plots
differ dramatically in pattern depending on whether the
activating enzyme used for the abscissa is directly or
indirectly activating the intermediate plotted on the ordinate.

We have thus far seen that plots of activation ratios of
intermediates will be linear or hyperbolic when plotted against
intermediates directly and indirectly upstream, respectively.
What if we now look at downstream intermediates?  In other
words, what do the plots of activation ratios of intermediates
against their direct and indirect targets look like?  Again for
simplicity, if enzyme-substrate complexes are neglected, then
the following results can be obtained:
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The activation ratios ARA and ARB in (19)-(20) take the
form of an inverse hyperbola (technically, the upper left
quadrant of a hyperbolic section).  Thus, the activation ratio
for an inverted response has a quite distinct functionality from
either type of forward response.  It should be further noted
that the forms of (19)-(20) are the same.  Therefore it is
impossible to distinguish between a direct and indirect
inverted response; it can only be said that the presumed target
and activator are actually in reverse order.  This can be seen in
Fig. 3C, where ARA and ARB are plotted against B* and C*.
In all cases an inverse hyperbola is seen.  As above, (19)-(20)



explicitly hold only when enzyme-substrate complexes are
negligible, but the forms of the equation will still be valid if
this assumption is relaxed, as demonstrated in Fig. 3C.

Fig. 3.  Activation ratios for the linear cascade of Fig. 1B.  A) Activation
ratios for cascade intermediates plotted against E1, B) ARB (closed squares)
and ARC (closed triangles) against A*, or ARC against B* (open triangles), C)
ARA against B* (open diamonds) or C* (closed diamonds) and ARB against
C* (closed squares).

In summary, comparing (15), (17), and (19) it is possible to
see that the activation ratio for an intermediate (here, ARB)
will be linear, hyperbolic, or inverse hyperbolic when plotted
against its direct activator (A*), indirect upstream activator
(E1), or downstream target (C*), respectively.  Activation
ratios can therefore be a powerful tool to arrange
intermediates in a cascade based on simultaneous
measurements of activation for each component.

C. Converging Pathways

In converging pathways, two separate enzymes act
independently to activate an intermediate, as shown in Fig.
1C.  One example is the activation of Pbs2p by either
Ssk2p/22p isoforms or Ste11p in the yeast high osmolarity
(HOG) pathway[35].  In this case, either enzyme E1 or E2 can
bind and activate A, although they cannot both bind A
simultaneously.  The activation of A therefore becomes a
combination of the effects from the two enzymes, and the
expression for the activation ratio becomes:
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From (21) we see that the activation ratio for an
intermediate of converging pathways is a linear combination
of terms arising from (and only dependent upon) each
activator.  The effects of the two activating enzymes are thus
completely separated.   Moreover, the expression for each
enzyme in (21) is the same as if E1 and E2 were acting upon
unrelated substrates.   Thus each enzyme is unaffected by the
presence of the other.  This must be the case since it is
conceptually possible to separate one enzyme into two
identical pools, and we would expect that the total effect of
the two pools would be indistinguishable from the original
state.

Since the enzyme effects are separated in (21), it is possible
to calculate the activation ratio for each enzyme by varying
them independently.  By keeping E2 constant at any value and
varying E1, it is possible to calculate α1

A; α2
A can be similarly

determined by keeping E1 constant.  These two can be
compared to indicate the relative strength of the two branches
on the activation of A.  Varying both simultaneously will lead
to an additive effect that can be predicted using the parameters
calculated for each enzyme in isolation, or calculated using a
multiple analysis of variance (MANOVA).  Also, the presence
of a second activating enzyme can be predicted since a plot of
ARA against E1, for example, will not pass through the origin.
Graphically, the activation ratio plots of an intermediate at a
convergence point will appear as a set of parallel lines when
plotted against either enzyme.

For an intermediate at a convergence point, (21) shows that
the activation ratio is a linear combination of the effects from
the direct activators E1 and E2.  Furthermore, the expression
for each term is the same as if there were no second activator.
What if either E1 or E2 (or both) are not direct activators of A?
In that case the term for the indirect activator changes from
linear to hyperbolic in form, just as was seen in (17)-(18) for a
linear cascade.  Instead of a set of parallel lines, plots of
activation ratios for the common target will appear as a set of
hyperbolic curves when plotted against the indirect activator.
It is still possible to determine that there are two activators for
the intermediate, but the plots cannot be used to calculate
activation ratios for the two direct activators independently.
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D. Diverging Pathways

A final simple signaling system to study is the case of
branching pathways as shown in Fig. 1D, where one enzyme
E1 activates two different targets A and B.  Since there is no
direct interaction between A and B we would not expect one
to influence the activation of the other.  We can see that this is
indeed the case.
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Once again, the expression for the activation ratio of each
intermediate is the same as if they were isolated, and the
activation factors α1

A and α1
B determined only from

parameters arising from the interaction between E1 and A and
B, respectively.   The only interaction between A and B arises
from sharing the activating enzyme E1.  If A and B were
actually different pools of the same enzyme then we would
rightly expect that (22)-(23) have the same form, and the same
value for α1

A and α1
B.  Once again by neglecting enzyme-

substrate complexes, it can also be shown that:
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Therefore for branching pathways, we expect that plots of
activation ratios for each branch would be linear with respect
to their common activator, just as if there were no other
branch present.  But plots of activation ratios for the two
branch intermediates against each other will be inversely
hyperbolic, as if each were upstream of the other. This is a
quite distinct result from the case of a linear cascade seen
above.  In the linear cascade only one plot would be inversely
hyperbolic, and the other would be linear or hyperbolic.

E. Summary:  Rules for network study

Collecting these results together, it is possible to develop an
algorithm for the combined analysis of a signaling network,
using measurements of active and inactive amounts of the
intermediates (EI

* and EI).  From these measurements it is
possible to calculate activation ratios for each species (ARI)
and plot them against the amounts of other active
intermediates, EJ

*.  Several possibilities exist:
1) If the plot is linear, then EJ directly activates EI (EI is

immediately downstream of EJ).  The slope of the line is αJ
I.

A nonzero intercept suggests the possibility of another
activator for EI.

2) If the plot is hyperbolic, then EJ indirectly activates EI.
One or more steps exist between EJ and EI.  The cascade must
be determined using direct results for other intermediates
between EJ and EI.

3) If the plot is inverse hyperbolic, then either a) EI is
actually upstream of EJ by one or more steps or b) EI and EJ

are on the same level of different branches from an unknown
third intermediate.  These two possibilities can be
distinguished by considering plots of ARJ against EI

* as well
as ARI and ARJ against other intermediates EK

*.
If there exist multiple inputs to the system, then these

studies can be performed for each input individually, as well
as two or more together.  For intermediates at convergence
points, sets of curves are expected when two inputs are both
varied.  As described above, sets of lines are expected for
plots of ARI against a direct activator EJ, while sets of
hyperbolic curves are expected for an indirect activator.

Observations regarding the shapes of curves can be
determined visually, and often it will be advantageous to
examine the activation ratio plots for each intermediate to gain
confidence in the method and results.  Nevertheless, it is
possible to automate this algorithm, by performing both linear
and nonlinear regression (using hyperbolic and inverse
hyperbolic models) for each pair of intermediates.  The model
with the best least-squares error is likely to best approximate
the data.  In either case, the quality and quantity of the data
can have a strong influence on the accuracy of analysis
results.  With few data points, that have high error and/or poor
coverage of the range of variation for activation of the
intermediates, it will be extremely difficult to determine with
confidence the shape of a curve, in particular to distinguish
between a line and hyperbola (direct vs. indirect activation).
Thus, it will most likely be possible to develop a potential
network but with few direct effects determined, and sequence
determined mostly by where inverse hyperbolas can be
visualized.

F. Importance of measuring free vs. total concentrations

The method of activation ratios can be quite powerful for
the reconstruction of signaling networks, as illustrated using
the model network above.  There is an important
consideration, however, which is that the analysis depends on
the measurement of free (unbound) intermediates.  In other
words, it is critical to resolve between signaling intermediates
in their free active and inactive forms (A* and A) from when
they are bound to other intermediates, including enzyme-
substrate complexes (e.g. [E1·A], [E2·A

*], [A*·B], etc).  As an
example, consider the isolated cycle of Fig. 1A.  In this
system there exist six species: A*, A, (free active and
inactive); E1, E2, (free enzyme 1 and 2); and [E1·A], [E2·A

*]
(enzyme-substrate complexes).  At steady state (10)-(13) hold,
and the activation ratio (defined as the ratio of free active to
free inactive, A*/A) is linearly dependent upon E1.

If we are unable to resolve the free species from complexes,
then we may only be able to measure “total” active and
inactive A (AT

* and AT, respectively), and total concentrations
of enzymes E1T and E2T.  These total concentrations are related
to the components of the system in the following way:

[ ]AEAA 1T ⋅+= (29)
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[ ]AEEE 11T1 ⋅+= (31)



[ ]*
22T2 AEEE ⋅+= (32)

Since we probably do not know Km1 and Km2, we cannot
use (10)-(11) to help calculate the free species from
measurements of the totals AT, AT

*, E1T, E2T and (29)-(32).
Thus, we will be unable to calculate or estimate the true
activation ratio ARA based on “total” activation
measurements.    If instead of free species, the total active AT

*

and total inactive AT concentrations are used, the results are
no longer as useful for network reconstruction.  This is
because:
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In (33) the ratio of “total active” AT* to “total inactive” AT

is no longer linear with respect to free E1, or even to total E1T,
but rather hyperbolic with respect to both E1 and E1T.  Thus a
direct effect, when examined using total active and inactive
species, takes the same form as an indirect effect using only
free species.

Results for the linear cascade are even more complicated,
since AT

* will now be the sum of free A* and that complexed
both to the inactivase EIA and to the target B:
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The ratios in (34)-(35) are hyperbolic with respect to the
upstream activator, and the concentrations of targets (B, C)
also appear.  It has therefore become impossible to isolate a
cycle within a cascade, or to calculate the effects of the
activator alone.  It can be shown that the ratio BT

*/BT is still
hyperbolic with respect to E1, just as for the activation ratio
ARB calculated from free B* and B.  Therefore, for both direct
and indirect effects, a ratio of total active to total inactive
concentrations for a species will take the same form.  It has
become impossible to distinguish between direct and indirect
effects, or to calculate an activation ratio to characterize the
direct interaction.

This effect is also serious in the case of converging
pathways as in Fig.1C.  In this case (21) becomes:
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The ratio of total active to total inactive is now hyperbolic
with respect to both inputs, and each term in the sum contains
both inputs, so the effects of the two inputs are no longer
separated into different terms.

IV. DISCUSSION

Signal transduction networks can show considerable
complexity, not only in the number of intermediates or
interactions between these components, but also in the
quantitative variability in the degree of engagement of
different pathways.  In the study of signaling two questions
become important:

1) Which pathways are activated in response to a particular
stimulus?

2) How much are these pathways activated?
The first question is qualitative in nature, but can be

considered quantitative since there must be some minimum
“threshold” activation for the pathway to be considered active.
The answer to this question is the structure of the signaling
network.  The second question is entirely quantitative, asking
for numbers to describe the interaction between signaling
components.  These numbers can then be compared when
either the stimulus or the network is perturbed (for example
using inhibitors); these comparisons can yield additional
information about the structure, flexibility, and regulation
within the network.

Previous attempts at analysis of signaling networks have
generally fallen into one of two categories: dynamic
(mechanistic) models or Metabolic Control Analysis (MCA)
extensions.  Dynamic models, which include logical and
stochastic as well as deterministic models, are often based
upon a specifically determined structure and assumed
mechanism for each interaction.  Total concentrations of
species, as well as parameters for the interactions (such as kcat

and Km values for enzymes) must be measured, estimated, or
assumed, typically using data taken from in vitro experiments
and therefore questionable in accuracy in vivo.  MCA methods
also depend upon a pre-existing assumed network structure.
However, parameters of the analysis, such as control
coefficients and elasticities, are estimated from in vivo data.
The major drawback of MCA is that it depends upon the
measurement of fluxes, i.e. reaction rates, as well as
measurements of the intermediates[25, 27].  In metabolic
pathways, these fluxes can be estimated at steady state using
mass balancing and also by combination of mass spectrometry
or NMR measurements with stable-isotope labeled substrates.
In signaling pathways, however, these fluxes may not be
actually measurable, since intermediates tend to cycle between
different states, so there is no “throughput” flux that is
externally observable.  It may be that for this reason MCA has
not been applied extensively to signaling data, in spite of
excellent efforts to develop the theory.

We therefore sought to develop a method for examination
of signaling networks that could be applied to a more realistic
data set, and is able to answer the two questions posed above.
In particular, our method can be applied to the reconstruction
of the network structure, without prior assumption, and
simultaneous quantitative characterization of direct effects via
calculation of activation factors.  If a prior network structure
is available, the method can be used to validate the model and



then to assign parameter values (activation factors) to the
interactions. The quality of the network reconstruction, and
confidence in the proposed structure depends upon the quality
and quantity of data available for analysis.

What types of measurements are necessary for this
approach?  It must be possible to estimate the concentrations
of signaling intermediates in their various states, particularly
the “free active” and “free inactive” as described previously.
Since signaling intermediates generally seem to be in low
abundance in cells, the method must be sensitive to low
sample concentrations and selective for the component and
state of interest.  We believe that this capability for sensitive
protein quantitation is possible using mass spectrometry (MS)
as have been described recently, since MS can resolve
between phosphorylated and nonphosphorylated peptides[36,
37].  By mixing the test sample with a stable isotope labeled
reference sample, the relative peak area ratios can be used as a
measure of protein concentration.  Sample preparation will be
key, since a large number of proteins applied to the MS may
cause difficulty in selection of the proper peak.  From a
protein lysate, individual signaling intermediates can be
purified somewhat using electrophoresis, chromatography, or
immunoprecipitation.   Note that it is important to know which
intermediates are of interest, since those can be specifically
purified and then quantified.

For each protein of interest in the network, both the free
active and free active should be measured at several
concentrations of the input stimulus.   Using the analysis
described above, these measurements can be used to calculate
activation ratios for each intermediate and then compared
against active amounts of other components.  Utilization of
multiple inputs to the system can be used to elucidate common
pathways, as seen in the example network described above.
Assuming that the range of values that each intermediate takes
is sufficient to describe a hyperbola, line, or inverse
hyperbola, the activation ratio plots can be used to reconstruct
the network structure, and the slopes of any lines
(corresponding to direct interactions) can be calculated using
linear regression analysis to yield activation factors.
Additional regression results, such as the confidence intervals
for the parameters and correlation coefficient, can be used as a
measure of the confidence in the parameter values.

The analysis described here was developed assuming steady
state in the signaling system.  This simplification greatly
facilitates the overall analysis development, since
concentrations of enzyme-substrate complexes can be written
in terms of free species (e.g. E1 and A), as in (10)-(11), and
individual kinetic parameters (kcat and Km) can be collected
together as shown in (13).  In the absence of a steady-state
system, such as cells growing in a chemostat, this assumption
will not be precisely valid.  The transient nature of signaling
pathways has been well documented; rather than achieving a
steady state often components will peak in activation and relax
more slowly[38].  Nevertheless, the method may still be
applicable if a pseudo-steady state assumption can be made.
A pseudo-steady state approximation is often made in

examination of enzyme systems, and is based on the
assumption that the rate of formation of enzyme-substrate
complexes is faster than the rate of decomposition.   It may be
possible to apply this pseudo-steady state assumption to the
signaling system at each time point over the more global
dynamics of the system.  Further work in this area is
warranted, to investigate the applicability of activation ratios
to dynamic signaling systems.

V. CONCLUSION

We have developed a novel method for examination of
signaling pathways based simply on understanding the nature
of the interconverting cycles that are prominent in these
pathways.  We have shown that by considering the ratio of
active to inactive forms of the intermediate, it is possible to
write expressions that compress unknown kinetic parameters
together.  This approach yields a linear relationship between
the activation ratio and the concentration of the enzyme that
drives the activating reaction.  The expressions stay simple
when more complicated systems, such as converging
pathways, linear cascades, and interconnected networks, are
considered.

This method has several advantages to previously
developed techniques.  First, the form that plots of activation
ratios take when considered against other intermediates
changes depending upon the nature of the interaction between
the target and activator.  Activation can be distinguished as
being a direct or indirect effect.  By application of a simple
algorithm, it is possible to reconstruct a network from
measurements of activation ratios for the intermediates.
Second, the simple relationships between activation ratios and
concentrations of activating enzymes allow easy calculation of
factors that are representative of the strength of activation and
can be compared between different sets of conditions.  These
factors can be calculated using simple linear regression tools.
Standard methods for statistical analysis can be applied to give
confidence in the calculation, such as the use of a correlation
coefficient to estimate the accuracy of a linear model and error
analysis to estimate the precision of the calculated slope.

It becomes apparent that the quantity and type of
measurements of signaling intermediates both significantly
influence the analysis that is possible for these systems, and
therefore the utility of these measurements.  By measuring
changes in the inactive as well as active form of each
intermediate, activation ratios can be calculated and used to
reconstruct the network and quantify the interactions between
intermediates.
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