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Abstract—In this paper, we minimize the holding cost of the Using this description, we provide an algorithm of solving the
safety stock in the supply chain subject to linear constraints problem of placing safety stocks in the two-layer network.
on the service times between the nodes of the network. In the The algorithm we develop in the paper is a branch and

problem, the objective function is concave as we assume the . -
demand to be bounded by a concave function. The optimal bound algorithm. We prove that we need to search an optimal

solutions of the problem belong to the set of extreme points of the Solution only in a finite set of the solutions. Using this fact
polyhedron, specified by the constraints of the problem. We first we specify the branching tree for the problem. For the lower

characterize the extreme points for the two-layer networks and
then provide bounds to use in a branch and bound algorithm.

Index Terms— Base-Stock Policy; Dynamic Programming Ap-
plication; Multi-Stage Supply-Chain Application; Safety Stock

bounds we modify the algorithm, described in [1], to fit into

branch and bound framework. We show, how the knowledge
of the potential points can help us improve the algorithm to
be polynomial.To establish upper bounds we introduce a new

Optimization; Branch and Bound Algorithm.

I. INTRODUCTION

algorithm.

Il. ASSUMPTIONS AND FORMULATION

Two major issues have to be addressed in the supply Chﬁ\i,nAssumptions

of a manufacturing firm. On one hand inventory across the
chain has to be reduced to provide services cheaply an

dn this section we introduce basic assumptions of the model.

utilize fewer assets. On the other hand customers expect belff @ssumptions were originally presented in [1], therefore we

services which includes on-time deliveries. A problem to
solved here is where in the chain to hold safety stocks toe
minimize inventory cost and to provide high level service to
end customers.

The problem with similar assumptions was stated in the
paper [1]. In particular, the key assumptions are

« we can model the supply chain as a network,

o each stage operates with a periodic-review base-stock
policy, ¢

« demand is bounded,

« there is guaranteed service time between every stage and
its customer.

The assumption of bounded demand made it possible to for-
mulate the problem as deterministic optimization. An efficient
algorithm for a tree structure of the network was developed in
the paper.

The purpose of current research is to develop a frameworke
for modelling and solving the problem of placing safety stocks
in the supply chain presented by a two-layer network. By two-
layer network we mean a graph with two subsets of nodes..
One of the subsets we call a subset of supply nodes. The
other subset is a subset of demand nodes. Arcs are only
possible from the supply nodes to the demand nodes. The
objective here is first to describe potentially optimal points
in general structure networks and to use the description to
specify potentially optimal solutions in a two-layer network.

puill not justify them here.

Multi-stage network. We can model a supply chain as
a network. Each node or stage in the network can be
seen as a processing function in the supply chain. The
nodes are potential locations for holding a safety-stock
inventory of the item processed at the node.

Let N be the number of nodes arid be the set of arcs

in the graph representing the chain.

Production lead-times. We assume that each node
has deterministic production lead-tin%g. Lead-time is
the total time of production, given that all necessary
components are available.

Here we also introduce maximum replenishment time for
a nodej:

Base-stock replenishment policy.All stages operate
with periodic-review base-stock policy with a common
review period.

Demand processWe assume that external demand oc-
curs only in the demand nodes, that is in the nodes with
zero outdegree. We denote the set of demand nodes as
D. For each demand nodedemandd;(t) comes from

a stationary process with average demand per perjod
Any other nodei ¢ D has only internal demand from

its successors. We can calculate the demand in nede
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time ¢ by summing the orders placed by its immediateninimize total safety stock in the chain.

Successors:
minimize 3277, hi{D;(F) — Fyp;}
dl(t): Z eijdj(t)7 s.t. Fj:SIj—‘rTj—Sj, jzl,,N
(i,4)EA F; >0, j=1,...,N
. . . < M; j =
where a scalap;; is associated with each node, repre- ? zg?’ % ,)1’6' A”N
senting the number of units of upstream compongent SZ« - h .Z’EJD
required per downstream unjt From this relationship, 3 =% J
we find the average demand rate for the node be 9520, J=L. N
SI; >0, j=1,...,N,
pi = Z Oijhi- where h; denotes the per-unit holding cost for inventory at

(ij)eA stagej.

_ ) _ This is a problem of minimizing a concave function over
The most important assumption of the model is thgf holyhedron, which in general is NP-hard (see [2] and [3]).

demand is bounded. In particular, for each ngdiere i js not proved whether probler® is or is not NP-hard.
exists a functionD; (F) for F'=1,2, ..., M;, such that Therefore, in what follows we will show some characteristics
1) for any periodt and F' = 1,2,..., M; of the potentially optimal solutions and establish bounds on

the optimal cost.
D;(F)>dj(t—F+1)+d;(t—F+2)+...+d;(t);
I1l. N ECESSARY CONDITIONS

2) D;j(0)=0 . . . . L
3) the function is concave and increasing: In this section we describe solutions, satisfying necessary

4) D;(F) — Fy; is increasing forF = 1,..., M. optimality conditions. First, we show that optimal points can
’ ’ T be found among solutions of special structure.

. Guaranteed service times.We assume that node . Let S be the set of supply nodes, i.e., the nodes with zero
provides 100% service and promises a guaranteed Servé%‘?degree

time S; for each nodej. That means that demand(t)

arrived at timet must be filled at+.5;. Note, we assume Lemma 1. There always exists an optimal solution to the
that for any non demand nogdend any downstream nodeproblem, such that all the inbound service times of the supply
i: (j,4) € A the guaranteed service time pfs the same. nodes are 0:

Also, we impose bounds on the service times for the SI; =0,j€8

demand nodes, i.e5; < s;,j € D, wheres; < T, is - oy oo remaining inbound service times are equal to a

a given input representing the maximum service time for . Co }
. maximal service time of the upstream nodes:
demand node.

« Inbound service times.Let SI; be inbound service time SI; =max{S; : (i,7) € A},j ¢S.
for nodej. Inbound service time is the time for noge !
to get all of its supplies from nodes (i, j) € A and to Proof:
commence production. Let us first consider a supply nogec S. SinceM; = T3,

we haveSI; +1; — §; < M; = Tj. Therefore,SI; < S;.
Consider a new solution:

B. Formulation SI; =0

. . S =8;—SI;.

SupposeB; is the base stock level for a nodeand I; (t) is T?]e solution is feasible and

inventory inj at timet. Then the finished inventory at stage

j at the end of period is Fj=8I;+T; - S;=SI; +T; — S; = Fj,
I;(t) = By — d;(t — SI, — Tj,t — S;) which implies that the cost of the new solution is the same
J - J J J VRl ’

as that of the original solution. Therefore, for any feasible

where d;(a,b) denotes the demand at stag@ver the time Solution to the problem there exists a solution wiid; =
0,7 € S and with the same cost.

interval (a, b]. X .

To provide 100% service lev} () > 0. Therefore, we set  NOW: consider a nodg ¢ S. Suppose
B; = D;(SI; +T; — S;). Hence, expected inventory at stage (S1,...,SNn,SI4,...,51y)
jis

is an optimal solution. Let

5]':SI]'_.ma‘X S; > 0.
which represents safety stock held at stage i(1.7) €A
Now, we formulate the problen of finding optimal We define a new solution
guaranteed outbound service timgS;,j = 1,...,N} and SI; = SI; - dj,
inbound service times(Sl;,j = 1,...,N} in order to S} =S; —min{d;,S;}.

D;(S1; + Tj — S;) = (SI; + Tj — Sy,



Supposej; < S;. Then the new solution is feasible and From the general case we know that for any demand riode

Fl=SI'+T;— 8, = F}. . 5 =sj;
J it 4 J J e SI; = max ;.
i:(i,7) €A
TKnowing this, we can consider the objective function as a
function of guaranteed service timés;,: € S}. Remember,

that SI; = 0,Vi € S.

This implies that the new solution has the same optimal cos
and satisfies the lemma.
Leté; > S;. Then the new solution is feasible, but
Fj=SL+ T~ 8= 5L +Tj = 5 — (& = 5;) < Fj. Lemma 3. If j is a supply node in a two-layer network, there
Since the inventory at stagedecreases a#); decreases, the are three possibilities for the optimal service tinfig:
cost of the new solution is strictly less than the cost of thel) S; = 0;
optimal solution. Therefore); is always no greater thag;, 2) S; =1y
which proves the lemma. 3) S; =1y, for T, < Tj.

O Moreover,S; = Ty, Ty, < T; only if Sy, = Tj.

By lemma 1, there might be multiple optimal solutions, ~ Proof:

at least one of which has the properties, described in the-€t us order the nodes such that supply nodes get numbers
lemma. In what follows. we will look for the solution with from 1 tom in the order of their outbound service times, i.e.,

this property. S <8 <... < S

Lemma 2. Let ;7 be a demand node. In an optimal s:olution,l_et these outbound service times be optimal.

S — g Suppose for some supply nodleve know thatS; < SI;
J J- .
for all demand nodeg : (i,j) € A. The only other condition
Proof: on S; is S; < T;. Since the inventory function of stage
The lemma follows from decreases a$; increases and; is optimal, it can not happen
that T; > SI,. Indeed, ifT; > SI,, then we can increase
hi{D;(SI; +T; = S;) = (SI; + T; — Sj)ps =l v

the value ofS; up to SI; without violating any constraints.
being decreasing inS; and S; < s;. Note, thats; < 7}, This decreases the objective function value, which contradicts
therefore no matter what the value 81, is, SI;+T;—s; > 0. the optimality ofS,,...,S,,. Hence,T; < SI;. By similar
Hence,S; = s; is always feasible. argument,S; = T; in an optimal solution.
O Suppose nows; = SI; = ¢ > 0. Consider the connected

The two lemmas, provide characterization of optimal Soll%:r_f);?ponen()a (disregarding the directions of the arcs), such

tions for the problem. It is optimal to have service times for the™

demand nodes to be equal to the maximum guaranteed servict * Cas )

times. It is also optimal for an optimal inbound service time * for anyj € Ca (1D, SI; = 4;

for any non supply node to be equal to the maximum outbound® for @nysj € Ca(18, 5; = a.

service time of its upstream nodes. Letc; = max(j: j € Co()S) andez = min(j : j € CaS).
The results are rather intuitive. Postponing delivery of a The total inventory function of the nodes frath can be

product to the end customers till the latest possible momegftnsidered as a function af We note, that since = S, j €

gives greater flexibility in the earlier stages of the chain, arfd: (1S, we haver < T}, j € C,(S. The function is concave,

therefore more opportunities to minimize the total cost of tHaerefore, it reaches its minimum in the end points of the

safety stock. The intuition behind the result of the first lemmiaterval [Sc, 1, min(7}, j € Co (1S, Sc,+1)]. Let

might be as follows. In order to avoid unnecessary inventory, . .

the inbound service time of a node should be no greater than k= argmin(T; : j € Ca ﬂS)'

the largest guaranteed service time of its suppliers. If the minimum of the function is i., _; then we had
In the next section we will concentrate on the networkse includec, — 1 into C,. The same is true if, > S., 1.

consisting of supply and demand nodes only. We will see homerefore,a = min(7},j € C.NS).

the previous analysis can be applied to identify an optimal Suppose now, that = S;. The we again defin€,. This

solution. time the total inventory function o€, is concave ina and
defined on[0, min(7; : j € C,(S). Therefore, the optimal
V. TWO-LAYER NETWORKS a must be 0 omin(T; : j € C,[)S), which completes the

A. Necessary conditions proof of the lemma. .

In this section we consider a special case of supply chain
networks, that have only two subsets of nodes. The first layer )
is the set of supply nodes and the second is the set of dem&nhdhlgorithm
nodes. Arcs are only possible between the layers with each aré¢n this section we describe a branch and bound algorithm
going from a supply node to a demand node. Let the number the problem. The algorithm uses lower and upper bounds
of supply nodes ben and the number of demand nodesibe developed in the later sections of the paper.



We know that the objective function can be presented asFollowing paper [1], we introduce the functions to use in
a function of outbound service times for the supply noddke algorithm.
only. By lemma 3, the outbound service times can take only
finite number of values in an optimal solution. Therefore, the
most natural branching step is to take variableand try all ¢ (9, ST) = hu{ Dy (ST + Ty = ) = (ST + Ty, — S)pur }

possible values for it. However, we can simplify the branching o e
tree using lemma 3. In particular, we know tigt= T}, < T} Z flS(SD) + Z 9;(S17(5)).

only if S, = T}. Therefore, we can eliminate the branch with (k) e Ar, i<k (k.)€ Az <k
Sj =T < ,Tj if Sy 7& T. where
Taking advantage of lemma 3, we can present the branching fx(S) = min{ex (S, ST)},
tree as follows. First, we order the supply nodes in the order s1
of increasing lead-times: for max(0,S — Ty) < ST < My, — Ty, and ST integer;
Ty ..., T SH(ST) = argmin{f;(S) : 0 < S < min(SI, M;), S integer;
At the first level of branching we le$; =0 or S; = T3. At gr(SI) = Hlsin{ck(& SI)},

the ith level of branching we le§; = {0, 71, ...,T;}, making

sure thatS; = Ty < T; only if S, = T}, earlier in the branch. for 0 < § < ST + T} and S integer; If nodek is a demand
Now, we can search the tree using depth first search mde,S < sg;

breadth first search. The algorithm obviously gives an optimal ) ,

solution [4]. SI7(S) =argmin{g;(ST) : S < ST < M; —T;, ST integet.
In the worst case, the algorithm is no better than the tpe algorithm evaluateg, (S) for S = 0, ..., M if p(k)

complete enumeration of all possible solutions. Nevertheless, yownstream ofkt. And it evaluatesgy (SI) for SI =

the implementation of the algorithm gives good results due O Mj, — Ty, if p(k) is upstream ofc.

the bounds we use. The branching tree stays relatively smal|, section 111 we proved that for any demand nogeS; =

which makes the algorithm run relatively fast for the problemsss and for any supply node SI; = 0 in an optimal solution.

with the number of supply nodes up to 100. Since for a supply nodg p(i) is always downstream af the

algorithm evaluates
C. Lower Bounds

To construct a lower bound on the optimal solution, we relax
some constraints qf the problem In particu!ar_, we remove a SI integed = ¢;(S,0)
number of constraints of the for$} < SI;, (4, 7) € A, which
is the same as removing corresponding arcg) from the taking into account thad/; = T; for supply nodek.
arc setA. Our goal here is to remove so many arcs from the For a demand nodg, p(j) is always upstream. Therefore,
graph, that the resulting graph becomes a spanning tree. te algorithm always evaluates
define the set of arcs of the spanning treeAas ) )
For the spanning tree we can apply the algorithm described 9;(ST) = HSHIH{CJ'(S’ S1),5 € [0,min(s;, ST+ Tj)],
in [1] to obtain an optimal solution and therefore a lower )
bound on the optimal cost gP. Since here we develop an S integen = ci(s;, SI).

algorithm for two-layer networks, we adjust the algorithm |, section IV-A we proved that optimal outbound service
from [1] to an algorithm for the spanning trees, obtained froffines of the supply nodes, and therefore inbound service times

fi(S) = Héiln{ci(S, SI),SI € [max(0,5 —T;), M; — T;],

the two-layer networks. , _of the demand nodes, belong to the $6}  J{Ti,i € D}.
We first renumber the nodes of the tree, using the fOHOW'r]Qoreover, ifi,k € D, thenS; = T} only if T, > T},. Hence,
procedure: we only need to evaluatg, (S) for lead times of some demand
1) Start with all nodes in the unlabeled sét, nodesS = 0,71, ...,T;, and g, (SI) for ST =0,Ty,...,Tj,

2) Setk :=1. such thatl; = M, — T.

3) Find a nodei € U such that node is adjacent to at | the contexts of the branch and bound algorithm we
most one other node ify. That is, the degree of nodedescribed earlier, we need to obtain a lower bound when we
i is 0 or 1 in the subgraph with node détand arc set know a part of the solution. In particular, suppose we know

Ar defined onU. _ _ outbound service times of a sub§tC S of supply nodes for
4) Remove node from setU and insert into the labeled the original problem. Then for any demand nogesuch that
setL; label nodei with index k. (i,j) € A,i € S', we can bound the inbound service times
5) Stop if U is empty; otherwise sét := k+ 1 and repeat from below:
steps 3-4. SI; > max S; = sij.
€S’

We will use the notationp(k) for the node of the network,
connected to nodé such thatp(k) > k. Note, that for each Now we can simply remov&’ from the node set together
node k < N, there exists only one(k) according to the with the singletonsD’ € D from the demand nodes, that
described procedure. might appear after removin§'. For the demand nodes from



the removed sebD’ it is optimal to putSI; = sij,j € D, Here, we provide a simple algorithm to tighten the upper

since the function bound given by a feasible solution to problefh We will
search for the best solution among the solutions that have the
hi{D;(S1; + Tj = 55) = (ST + Tj = s) 115} same order of the outbound service times as the upper bound

is increasing inS1;. For the remaining network we can obtajrsolution. o _

a lower bound by removing some arcs to make a spanning treeUPPOS€ we know a priori the F)rder of the outbound service
and running a modified algorithm for the spanning tree. NotiMes in an optimal solution, i.e.:

that si; = 0,7 € D if it is not connected to any removed S <8 <...<8,,.

supply nodei € S'. For generality, we will still denote the set
of demand nodes a8 and the set of supply nodes 8s Note, we may reorder the supply nodes. We call the problem

Now, we state the algorithm for a spanning tree, adjusté'&e ordered problem. Then we can solve the problem optimally
for the two-layer networks. We use the algorithm as a part BY the fo!lowmg dynamic program.
the branch and bound algorithm to obtain a lower bound on al) Define subsets of demand nodes.

branch. 1. LetL={1,...,1}
Two-Layer Spanning Tree Algorithm 2. Fori:=mtol
1. Fork=:1to N Ri={j:(i,j) € A,j € L}
2. If k is a supply node, evaluate ) L=1L \_R"' )
£1(S) = cx(S,0) for II) Find the optimal solution of the ordered problem.
S e {0} U{T;, T; < Ty,i €S}. 1. Fork:=1tom
3. If k is a demand node, evaluate 2. Ifk=1
gr(SI) = ci(sg, SI) for J1(S1) = hi{D:1(T1 — S1) — (T1 — S1)m } +
SI € {sig} U{Ti, sir < T; < max(sig, My — Yier, Mi{Di(S1 + T — si) — (51 + Ti —
Tk),i € S} si)uv;}, S € [O,Tl].
2.f NeS 3. fu(Sk) = haADp(Ty — Sk) — (T — Sk)pux } +
z* = ming fn(95); ZieRk hi{ Di(Sk+Ti—si)—(Sk+T;—si) i} +
3. NeD ming{ fr-1(5),S < min(Tp_1, Sk}, Sk €
z* = mingy gy (ST). [0, Tk ].

This algorithm finds the optimal objective valug of the 2. Minimize fm(Sm), Sm € [0,T] to obtain the
relaxed problem, and therefore it obtains a lower bound on the optimal objective function value.
branch, analyzed by the branch and bound algorithm. We canfhe solution obtained is optimal by the principle of opti-
find the service times by the backtracking procedure. mality for dynamic programming.

We note that the running time of the algorithm does not The algorithm gives an optimal solution to the problém
depend on the size aif;,j = 1,...,m, as it does in [1]. if we have the right order of the outbound service times for
We evaluate a functiorf;,(S) or g, (SI) for each node: in  the supply nodes. It is still unclear how to get the order and
no more thanm points, which makes the algorithm run infurther research can be done in this direction. Nevertheless,
polynomial time. for the purpose of establishing an upper bound, any order of

the service times can be used.
Suppose now, we know outbound service times of a subset
D. Upper Bounds S’ C S as we did in the previous subsection for the purpose of

Any feasible solution of the problem can be an upper boundeveloping upper bounds for the branch and bound algorithm.
For example, the lower bound solution we obtained in th&e definesi;,j € S the same way as before. We can again
previous subsection can be changed so that it becomes feasiiglmoveS’ andD’ from the set of nodes and run the algorithm
The lower bound is characterized by the set of outbound find an upper bound using functions:

service times of the supply nodes. The set of inbound service, Vi c R, k=1,...,m

times of the demand nodes, that correspond to the spanning hi{D;(Sk + T; — si) — (Sk +T; — s;) i }

tree solution, is feasible for the spanning tree we have chosen, g.) — if S > si;

but it might be infeasible, if we consider the set of all arcs vi(Sk) = hi{D;(si; + T; — s;) — (si; + T; — s;) i}

A. In order to make the solution feasible, we let the inbound if Sk < siy

service times for a demand node to be equal to the maximume f1(S1) = hi{D1(T1—S1)—(T1—=S1)p1 }+ g, vi(S1)
outbound service times of the of its upstream supply nodese £=2,...,m

considering constraints on all arcs An. The solution we get fe(Sk) = mdDi(Th — Sk) — (T — Sk)ur} +
is an upper bound on the optimal solution and we will call it > _;cp, vi(Sk)

the fixed solution. + ming{ fr—1(S), s < min(Tx_1,Sk)}

The gap between the bound and the optimal cost can bélrhe modified function are used in the branch and bounds
very large. How large the gap is, can depend on the numizdgorithm, when the ordered problem is solved to obtain an
of constraints on the arcs ifi \ A violated by the spanning upper bound for a branch. Since we do not know the optimal
tree solution, and the structure of the cost function. order of the inbound service times for the supply nodes, we



suggest to use the order of the fixed solution. The solution
we get from the algorithm will certainly be no worse that the
fixed solution, since the latter has the same order used in the
algorithm.

V. CONCLUSION

While the problem of optimizing safety stocks in general
network is complicated, we were able to provide characteri-
zation of the potential optimal solutions to some extend. In
particular, we saw that it is optimal to set outbound service
times for the demand nodes to be equal to the maximum
guaranteed service times. It is also optimal to have inbound
service times of a non supply node to be equal to the maximum
outbound service time of its upstream suppliers. We proved
that we can always assume inbound service times of the supply
nodes to be 0.

Using the results and analyzing the constraint polyhedron
for the two-layer networks, we concluded that in this case of
a supply chain, the optimal cost is a function of the outbound
service times for the supply nodes. We also concluded that
the optimal outbound service time of a supply node should be
equal to 0 or to the lead-times of supply nodes, which are no
greater than the lead-time of the node.

Using the structure of the optimal solution, we saw how
to do branching in the branch and bound algorithm. To
bound the solutions we used the algorithm from [1], which
we modified to adjust to the purposes of the branching and
simplified according to the structure of an optimal solution. We
introduced a new algorithm for an upper bound for a branch.

For the further research, it is interesting to explore how to
order the outbound service times for the supply nodes to get
better upper bounds.

It is also interesting to find a way to tighten the lower
bounds. For example, a subgradient method can be applied
for a Lagrangian relaxation of the problem. For each set of
the Lagrange multipliers an algorithm similar to the spanning
tree algorithm might be developed.

More computational test and theoretical analysis might be
done in order to evaluate the performance of the algorithm.

Finally, we are interested in extending the technique of
solving the problem of optimizing the safety stock in a general
supply chain.
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