
Optimizing Strategic Safety Stock Placement in
Two-Layer Supply Chains

Ekaterina Lesnaia
Operations Research Center

Massachusetts Institute of Technology
Cambridge, MA 02139
Email: lesnaia@mit.edu

Abstract— In this paper, we minimize the holding cost of the
safety stock in the supply chain subject to linear constraints
on the service times between the nodes of the network. In the
problem, the objective function is concave as we assume the
demand to be bounded by a concave function. The optimal
solutions of the problem belong to the set of extreme points of the
polyhedron, specified by the constraints of the problem. We first
characterize the extreme points for the two-layer networks and
then provide bounds to use in a branch and bound algorithm.

Index Terms— Base-Stock Policy; Dynamic Programming Ap-
plication; Multi-Stage Supply-Chain Application; Safety Stock
Optimization; Branch and Bound Algorithm.

I. I NTRODUCTION

Two major issues have to be addressed in the supply chain
of a manufacturing firm. On one hand inventory across the
chain has to be reduced to provide services cheaply and
utilize fewer assets. On the other hand customers expect better
services which includes on-time deliveries. A problem to be
solved here is where in the chain to hold safety stocks to
minimize inventory cost and to provide high level service to
end customers.

The problem with similar assumptions was stated in the
paper [1]. In particular, the key assumptions are

• we can model the supply chain as a network,
• each stage operates with a periodic-review base-stock

policy,
• demand is bounded,
• there is guaranteed service time between every stage and

its customer.

The assumption of bounded demand made it possible to for-
mulate the problem as deterministic optimization. An efficient
algorithm for a tree structure of the network was developed in
the paper.

The purpose of current research is to develop a framework
for modelling and solving the problem of placing safety stocks
in the supply chain presented by a two-layer network. By two-
layer network we mean a graph with two subsets of nodes.
One of the subsets we call a subset of supply nodes. The
other subset is a subset of demand nodes. Arcs are only
possible from the supply nodes to the demand nodes. The
objective here is first to describe potentially optimal points
in general structure networks and to use the description to
specify potentially optimal solutions in a two-layer network.

Using this description, we provide an algorithm of solving the
problem of placing safety stocks in the two-layer network.

The algorithm we develop in the paper is a branch and
bound algorithm. We prove that we need to search an optimal
solution only in a finite set of the solutions. Using this fact
we specify the branching tree for the problem. For the lower
bounds we modify the algorithm, described in [1], to fit into
branch and bound framework. We show, how the knowledge
of the potential points can help us improve the algorithm to
be polynomial.To establish upper bounds we introduce a new
algorithm.

II. A SSUMPTIONS AND FORMULATION

A. Assumptions

In this section we introduce basic assumptions of the model.
The assumptions were originally presented in [1], therefore we
will not justify them here.

• Multi-stage network. We can model a supply chain as
a network. Each node or stage in the network can be
seen as a processing function in the supply chain. The
nodes are potential locations for holding a safety-stock
inventory of the item processed at the node.
Let N be the number of nodes andA be the set of arcs
in the graph representing the chain.

• Production lead-times. We assume that each nodej
has deterministic production lead-timeTj . Lead-time is
the total time of production, given that all necessary
components are available.
Here we also introduce maximum replenishment time for
a nodej:

Mj = Tj + max
i
{Mi|i : (ij) ∈ A}.

• Base-stock replenishment policy.All stages operate
with periodic-review base-stock policy with a common
review period.

• Demand process.We assume that external demand oc-
curs only in the demand nodes, that is in the nodes with
zero outdegree. We denote the set of demand nodes as
D. For each demand nodej demanddj(t) comes from
a stationary process with average demand per periodµj .
Any other nodei /∈ D has only internal demand from
its successors. We can calculate the demand in nodei at

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4381394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


time t by summing the orders placed by its immediate
successors:

di(t) =
∑

(i,j)∈A
θijdj(t),

where a scalarθij is associated with each node, repre-
senting the number of units of upstream componenti
required per downstream unitj. From this relationship,
we find the average demand rate for the nodei to be

µi =
∑

(ij)∈A
θijµj .

The most important assumption of the model is that
demand is bounded. In particular, for each nodej there
exists a functionDj(F ) for F = 1, 2, . . . , Mj , such that

1) for any periodt andF = 1, 2, . . . , Mj

Dj(F ) ≥ dj(t−F +1)+dj(t−F +2)+. . .+dj(t);

2) Dj(0) = 0
3) the function is concave and increasing;
4) Dj(F )− Fµj is increasing forF = 1, . . . ,Mj .

• Guaranteed service times.We assume that nodej
provides 100% service and promises a guaranteed service
time Sj for each nodej. That means that demanddj(t)
arrived at timet must be filled att+Sj . Note, we assume
that for any non demand nodej and any downstream node
i : (j, i) ∈ A the guaranteed service time ofj is the same.
Also, we impose bounds on the service times for the
demand nodes, i.e.,Sj ≤ sj , j ∈ D, wheresj < Tj is
a given input representing the maximum service time for
demand nodej.

• Inbound service times.Let SIj be inbound service time
for nodej. Inbound service time is the time for nodej
to get all of its supplies from nodesi : (i, j) ∈ A and to
commence production.

B. Formulation

SupposeBj is the base stock level for a nodej andIj(t) is
inventory in j at time t. Then the finished inventory at stage
j at the end of periodt is

Ij(t) = Bj − dj(t− SIj − Tj , t− Sj),

wheredj(a, b) denotes the demand at stagej over the time
interval (a, b].

To provide 100% service levelIj(t) ≥ 0. Therefore, we set
Bj = Dj(SIj + Tj − Sj). Hence, expected inventory at stage
j is

Dj(SIj + Tj − Sj)− (SIj + Tj − Sj)µj ,

which represents safety stock held at stagej.
Now, we formulate the problemP of finding optimal

guaranteed outbound service times{Sj , j = 1, . . . , N} and
inbound service times{SIj , j = 1, . . . , N} in order to

minimize total safety stock in the chain.

minimize
∑N

j=1 hj{Dj(Fj)− Fjµj}
s.t. Fj = SIj + Tj − Sj , j = 1, . . . , N

Fj ≥ 0, j = 1, . . . , N
Fj ≤ Mj , j = 1, . . . , N
Si ≤ SIj , (i, j) ∈ A
Sj ≤ sj , j ∈ D
Sj ≥ 0, j = 1, . . . , N
SIj ≥ 0, j = 1, . . . , N,

where hj denotes the per-unit holding cost for inventory at
stagej.

This is a problem of minimizing a concave function over
a polyhedron, which in general is NP-hard (see [2] and [3]).
It is not proved whether problemP is or is not NP-hard.
Therefore, in what follows we will show some characteristics
of the potentially optimal solutions and establish bounds on
the optimal cost.

III. N ECESSARY CONDITIONS

In this section we describe solutions, satisfying necessary
optimality conditions. First, we show that optimal points can
be found among solutions of special structure.

Let S be the set of supply nodes, i.e., the nodes with zero
outdegree.

Lemma 1. There always exists an optimal solution to the
problem, such that all the inbound service times of the supply
nodes are 0:

SIj = 0, j ∈ S
and the remaining inbound service times are equal to a
maximal service time of the upstream nodes:

SIj = max
i
{Si : (i, j) ∈ A}, j /∈ S.

Proof:
Let us first consider a supply nodej ∈ S. SinceMj = Tj ,

we haveSIj + Tj − Sj ≤ Mj = Tj . Therefore,SIj ≤ Sj .
Consider a new solution:

SI ′j = 0
S′j = Sj − SIj .
The solution is feasible and

F ′j = SI ′j + Tj − S′j = SIj + Tj − Sj = Fj ,

which implies that the cost of the new solution is the same
as that of the original solution. Therefore, for any feasible
solution to the problem there exists a solution withSIj =
0, j ∈ S and with the same cost.

Now, consider a nodej /∈ S. Suppose

(S1, . . . , SN , SI1, . . . , SIN )

is an optimal solution. Let

δj = SIj − max
i:(i,j)∈A

Si > 0.

We define a new solution
SI ′j = SIj − δj ,
S′j = Sj −min{δj , Sj}.



Supposeδj ≤ Sj . Then the new solution is feasible and

F ′j = SI ′j + Tj − S′j = Fj .

This implies that the new solution has the same optimal cost
and satisfies the lemma.

Let δj > Sj . Then the new solution is feasible, but

Fj = SI ′j + Tj − S′j = SIj + Tj − Sj − (δj − Sj) < Fj .

Since the inventory at stagej decreases asFj decreases, the
cost of the new solution is strictly less than the cost of the
optimal solution. Therefore,δj is always no greater thanSj ,
which proves the lemma.

By lemma 1, there might be multiple optimal solutions,
at least one of which has the properties, described in the
lemma. In what follows, we will look for the solution with
this property.

Lemma 2. Let j be a demand node. In an optimal solution,

Sj = sj .

Proof:
The lemma follows from

hj{Dj(SIj + Tj − Sj)− (SIj + Tj − Sj)µj}
being decreasing inSj and Sj ≤ sj . Note, thatsj < Tj ,
therefore no matter what the value ofSIj is, SIj+Tj−sj > 0.
Hence,Sj = sj is always feasible.

The two lemmas, provide characterization of optimal solu-
tions for the problem. It is optimal to have service times for the
demand nodes to be equal to the maximum guaranteed service
times. It is also optimal for an optimal inbound service time
for any non supply node to be equal to the maximum outbound
service time of its upstream nodes.

The results are rather intuitive. Postponing delivery of a
product to the end customers till the latest possible moment
gives greater flexibility in the earlier stages of the chain, and
therefore more opportunities to minimize the total cost of the
safety stock. The intuition behind the result of the first lemma
might be as follows. In order to avoid unnecessary inventory,
the inbound service time of a node should be no greater than
the largest guaranteed service time of its suppliers.

In the next section we will concentrate on the networks,
consisting of supply and demand nodes only. We will see how
the previous analysis can be applied to identify an optimal
solution.

IV. T WO-LAYER NETWORKS

A. Necessary conditions

In this section we consider a special case of supply chain
networks, that have only two subsets of nodes. The first layer
is the set of supply nodes and the second is the set of demand
nodes. Arcs are only possible between the layers with each arc
going from a supply node to a demand node. Let the number
of supply nodes bem and the number of demand nodes bel.

From the general case we know that for any demand nodej:

• Sj = sj ;
• SIj = max

i:(i,j)∈A
Si.

Knowing this, we can consider the objective function as a
function of guaranteed service times{Si, i ∈ S}. Remember,
that SIi = 0,∀i ∈ S.

Lemma 3. If j is a supply node in a two-layer network, there
are three possibilities for the optimal service timeSj :

1) Sj = 0;
2) Sj = Tj ;
3) Sj = Tk for Tk < Tj .

Moreover,Sj = Tk, Tk < Tj only if Sk = Tk.
Proof:

Let us order the nodes such that supply nodes get numbers
from 1 tom in the order of their outbound service times, i.e.,

S1 ≤ S2 ≤ . . . ≤ Sm.

Let these outbound service times be optimal.
Suppose for some supply nodei we know thatSi < SIj

for all demand nodesj : (i, j) ∈ A. The only other condition
on Si is Si ≤ Ti. Since the inventory function of stagej
decreases asSi increases andSi is optimal, it can not happen
that Ti ≥ SIj . Indeed, ifTi ≥ SIj , then we can increase
the value ofSi up to SIj without violating any constraints.
This decreases the objective function value, which contradicts
the optimality ofS1, . . . , Sm. Hence,Ti < SIj . By similar
argument,Si = Ti in an optimal solution.

Suppose nowSi = SIj = a > 0. Consider the connected
componentCa (disregarding the directions of the arcs), such
that

• i ∈ Ca;
• for any j ∈ Ca

⋂
D, SIj = a;

• for any j ∈ Ca

⋂
S, Sj = a.

Let c1 = max(j : j ∈ Ca

⋂
S) andc2 = min(j : j ∈ Ca

⋂
S).

The total inventory function of the nodes fromCa can be
considered as a function ofa. We note, that sincea = Sj , j ∈
Ca

⋂
S, we havea ≤ Tj , j ∈ Ca

⋂
S. The function is concave,

therefore, it reaches its minimum in the end points of the
interval [Sc1−1, min(Tj , j ∈ Ca

⋂
S, Sc2+1)]. Let

k = arg min(Tj : j ∈ Ca

⋂
S).

If the minimum of the function is inSc1−1 then we had
to includec1 − 1 into Ca. The same is true ifTk > Sc2+1.
Therefore,a = min(Tj , j ∈ Ca

⋂
S).

Suppose now, thata = S1. The we again defineCa. This
time the total inventory function onCa is concave ina and
defined on[0, min(Tj : j ∈ Ca

⋂
S). Therefore, the optimal

a must be 0 ormin(Tj : j ∈ Ca

⋂
S), which completes the

proof of the lemma.

B. Algorithm

In this section we describe a branch and bound algorithm
for the problem. The algorithm uses lower and upper bounds
developed in the later sections of the paper.



We know that the objective function can be presented as
a function of outbound service times for the supply nodes
only. By lemma 3, the outbound service times can take only
finite number of values in an optimal solution. Therefore, the
most natural branching step is to take variableSj and try all
possible values for it. However, we can simplify the branching
tree using lemma 3. In particular, we know thatSj = Tk < Tj

only if Sk = Tk. Therefore, we can eliminate the branch with
Sj = Tk < Tj if Sk 6= Tk.

Taking advantage of lemma 3, we can present the branching
tree as follows. First, we order the supply nodes in the order
of increasing lead-times:

T1 . . . , Tm.

At the first level of branching we letS1 = 0 or S1 = T1. At
the ith level of branching we letSi = {0, T1, . . . , Ti}, making
sure thatSi = Tk < Ti only if Sk = Tk earlier in the branch.

Now, we can search the tree using depth first search or
breadth first search. The algorithm obviously gives an optimal
solution [4].

In the worst case, the algorithm is no better than the
complete enumeration of all possible solutions. Nevertheless,
the implementation of the algorithm gives good results due to
the bounds we use. The branching tree stays relatively small
which makes the algorithm run relatively fast for the problems
with the number of supply nodes up to 100.

C. Lower Bounds

To construct a lower bound on the optimal solution, we relax
some constraints of the problemP. In particular, we remove a
number of constraints of the formSi ≤ SIj , (i, j) ∈ A, which
is the same as removing corresponding arcs(i, j) from the
arc setA. Our goal here is to remove so many arcs from the
graph, that the resulting graph becomes a spanning tree. We
define the set of arcs of the spanning tree asAT .

For the spanning tree we can apply the algorithm described
in [1] to obtain an optimal solution and therefore a lower
bound on the optimal cost ofP. Since here we develop an
algorithm for two-layer networks, we adjust the algorithm
from [1] to an algorithm for the spanning trees, obtained from
the two-layer networks.

We first renumber the nodes of the tree, using the following
procedure:

1) Start with all nodes in the unlabeled set,U .
2) Setk := 1.
3) Find a nodei ∈ U such that nodei is adjacent to at

most one other node inU . That is, the degree of node
i is 0 or 1 in the subgraph with node setU and arc set
AT defined onU .

4) Remove nodei from setU and insert into the labeled
setL; label nodei with index k.

5) Stop if U is empty; otherwise setk := k +1 and repeat
steps 3-4.

We will use the notationp(k) for the node of the network,
connected to nodek such thatp(k) > k. Note, that for each
node k < N , there exists only onep(k) according to the
described procedure.

Following paper [1], we introduce the functions to use in
the algorithm.

ck(S, SI) = hk{Dk(SI + Tk − S)− (SI + Tk − S)µk}

+
∑

(i,k)∈AT ,i<k

fi(S∗i (SI)) +
∑

(k,j)∈AT ,j<k

gj(SI∗j (S)),

where
fk(S) = min

SI
{ck(S, SI)},

for max(0, S − Tk) ≤ SI ≤ Mk − Tk andSI integer;

S∗i (SI) = arg min{fi(S) : 0 ≤ S ≤ min(SI, Mi), S integer};
gk(SI) = min

S
{ck(S, SI)},

for 0 ≤ S ≤ SI + Tk and S integer; If nodek is a demand
node,S ≤ sk;

SI∗i (S) = arg min{gi(SI) : S ≤ SI ≤ Mi−Ti, SI integer}.
The algorithm evaluatesfk(S) for S = 0, . . . , Mk if p(k)

is downstream ofk. And it evaluatesgk(SI) for SI =
0, . . . ,Mk − Tk if p(k) is upstream ofk.

In section III we proved that for any demand nodej, Sj =
sj and for any supply nodei, SIi = 0 in an optimal solution.
Since for a supply nodei, p(i) is always downstream ofi, the
algorithm evaluates

fi(S) = min
SI
{ci(S, SI), SI ∈ [max(0, S − Ti),Mi − Ti],

SI integer} = ci(S, 0)

taking into account thatMi = Ti for supply nodek.
For a demand nodej, p(j) is always upstream. Therefore,

the algorithm always evaluates

gj(SI) = min
SI
{cj(S, SI), S ∈ [0, min(sj , SI + Tj)],

S integer} = ci(sj , SI).

In section IV-A we proved that optimal outbound service
times of the supply nodes, and therefore inbound service times
of the demand nodes, belong to the set{0}⋃{Ti, i ∈ D}.
Moreover, if i, k ∈ D, thenSi = Tk only if Ti ≥ Tk. Hence,
we only need to evaluatefk(S) for lead times of some demand
nodesS = 0, T1, . . . , Ti, andgk(SI) for SI = 0, T1, . . . , Tj ,
such thatTj = Mk − Tk.

In the contexts of the branch and bound algorithm we
described earlier, we need to obtain a lower bound when we
know a part of the solution. In particular, suppose we know
outbound service times of a subsetS′ ⊆ S of supply nodes for
the original problem. Then for any demand nodej, such that
(i, j) ∈ A, i ∈ S′, we can bound the inbound service times
from below:

SIj ≥ max
i∈S′

Si = sij .

Now we can simply removeS′ from the node set together
with the singletonsD′ ∈ D from the demand nodes, that
might appear after removingS′. For the demand nodes from



the removed setD′ it is optimal to putSI∗j = sij , j ∈ D′,
since the function

hj{Dj(SIj + Tj − sj)− (SIj + Tj − sj)µj}
is increasing inSIj . For the remaining network we can obtain
a lower bound by removing some arcs to make a spanning tree
and running a modified algorithm for the spanning tree. Note,
that sij = 0, j ∈ D if it is not connected to any removed
supply nodei ∈ S′. For generality, we will still denote the set
of demand nodes asD and the set of supply nodes asS.

Now, we state the algorithm for a spanning tree, adjusted
for the two-layer networks. We use the algorithm as a part of
the branch and bound algorithm to obtain a lower bound on a
branch.

Two-Layer Spanning Tree Algorithm

1. For k =: 1 to N

2. If k is a supply node, evaluate
fk(S) = ck(S, 0) for
S ∈ {0}⋃{Ti, Ti ≤ Tk, i ∈ S}.

3. If k is a demand node, evaluate
gk(SI) = ck(sk, SI) for
SI ∈ {sik}

⋃{Ti, sik ≤ Ti ≤ max(sik,Mk −
Tk), i ∈ S}.

2. If N ∈ S
z∗ = minS fN (S);

3. If N ∈ D
z∗ = minSI gN (SI).

This algorithm finds the optimal objective valuez∗ of the
relaxed problem, and therefore it obtains a lower bound on the
branch, analyzed by the branch and bound algorithm. We can
find the service times by the backtracking procedure.

We note that the running time of the algorithm does not
depend on the size ofMj , j = 1, . . . , m, as it does in [1].
We evaluate a functionfk(S) or gk(SI) for each nodek in
no more thanm points, which makes the algorithm run in
polynomial time.

D. Upper Bounds

Any feasible solution of the problem can be an upper bound.
For example, the lower bound solution we obtained in the
previous subsection can be changed so that it becomes feasible.
The lower bound is characterized by the set of outbound
service times of the supply nodes. The set of inbound service
times of the demand nodes, that correspond to the spanning
tree solution, is feasible for the spanning tree we have chosen,
but it might be infeasible, if we consider the set of all arcs
A. In order to make the solution feasible, we let the inbound
service times for a demand node to be equal to the maximum
outbound service times of the of its upstream supply nodes,
considering constraints on all arcs inA . The solution we get
is an upper bound on the optimal solution and we will call it
the fixed solution.

The gap between the bound and the optimal cost can be
very large. How large the gap is, can depend on the number
of constraints on the arcs inA \AT violated by the spanning
tree solution, and the structure of the cost function.

Here, we provide a simple algorithm to tighten the upper
bound given by a feasible solution to problemP. We will
search for the best solution among the solutions that have the
same order of the outbound service times as the upper bound
solution.

Suppose we know a priori the order of the outbound service
times in an optimal solution, i.e.:

S1 ≤ S2 ≤ . . . ≤ Sm.

Note, we may reorder the supply nodes. We call the problem
the ordered problem. Then we can solve the problem optimally
by the following dynamic program.

I) Define subsets of demand nodes.
1. Let L = {1, . . . , l}
2. For i := m to 1

Ri = {j : (i, j) ∈ A, j ∈ L};
L = L \Ri.

II) Find the optimal solution of the ordered problem.
1. For k := 1 to m

2. If k = 1
f1(S1) = h1{D1(T1 − S1) − (T1 − S1)µ1} +∑

i∈R1
hi{Di(S1 + Ti − si) − (S1 + Ti −

si)µi}, S1 ∈ [0, T1].
3. fk(Sk) = hk{Dk(Tk − Sk)− (Tk − Sk)µk}+∑

i∈Rk
hi{Di(Sk+Ti−si)−(Sk+Ti−si)µi}+

minS{fk−1(S), S ≤ min(Tk−1, Sk}, Sk ∈
[0, Tk].

2. Minimize fm(Sm), Sm ∈ [0, Tm] to obtain the
optimal objective function value.

The solution obtained is optimal by the principle of opti-
mality for dynamic programming.

The algorithm gives an optimal solution to the problemP
if we have the right order of the outbound service times for
the supply nodes. It is still unclear how to get the order and
further research can be done in this direction. Nevertheless,
for the purpose of establishing an upper bound, any order of
the service times can be used.

Suppose now, we know outbound service times of a subset
S′ ⊆ S as we did in the previous subsection for the purpose of
developing upper bounds for the branch and bound algorithm.
We definesij , j ∈ S the same way as before. We can again
removeS′ andD′ from the set of nodes and run the algorithm
to find an upper bound using functions:
• ∀i ∈ Rk, k = 1, . . . , m

vi(Sk) =





hi{Di(Sk + Ti − si)− (Sk + Ti − si)µi}
if Sk ≥ sii
hi{Di(sii + Ti − si)− (sii + Ti − si)µi}
if Sk < sii

• f1(S1) = h1{D1(T1−S1)−(T1−S1)µ1}+
∑

i∈R1
vi(S1)

• k = 2, . . . , m
fk(Sk) = hk{D1(Tk − Sk) − (Tk − Sk)µk} +∑

i∈Rk
vi(Sk)

+minS{fk−1(S), s < min(Tk−1, Sk)}
The modified function are used in the branch and bounds

algorithm, when the ordered problem is solved to obtain an
upper bound for a branch. Since we do not know the optimal
order of the inbound service times for the supply nodes, we



suggest to use the order of the fixed solution. The solution
we get from the algorithm will certainly be no worse that the
fixed solution, since the latter has the same order used in the
algorithm.

V. CONCLUSION

While the problem of optimizing safety stocks in general
network is complicated, we were able to provide characteri-
zation of the potential optimal solutions to some extend. In
particular, we saw that it is optimal to set outbound service
times for the demand nodes to be equal to the maximum
guaranteed service times. It is also optimal to have inbound
service times of a non supply node to be equal to the maximum
outbound service time of its upstream suppliers. We proved
that we can always assume inbound service times of the supply
nodes to be 0.

Using the results and analyzing the constraint polyhedron
for the two-layer networks, we concluded that in this case of
a supply chain, the optimal cost is a function of the outbound
service times for the supply nodes. We also concluded that
the optimal outbound service time of a supply node should be
equal to 0 or to the lead-times of supply nodes, which are no
greater than the lead-time of the node.

Using the structure of the optimal solution, we saw how
to do branching in the branch and bound algorithm. To
bound the solutions we used the algorithm from [1], which
we modified to adjust to the purposes of the branching and
simplified according to the structure of an optimal solution. We
introduced a new algorithm for an upper bound for a branch.

For the further research, it is interesting to explore how to
order the outbound service times for the supply nodes to get
better upper bounds.

It is also interesting to find a way to tighten the lower
bounds. For example, a subgradient method can be applied
for a Lagrangian relaxation of the problem. For each set of
the Lagrange multipliers an algorithm similar to the spanning
tree algorithm might be developed.

More computational test and theoretical analysis might be
done in order to evaluate the performance of the algorithm.

Finally, we are interested in extending the technique of
solving the problem of optimizing the safety stock in a general
supply chain.

REFERENCES

[1] Graves, S., and Willems, S. 2000.Optimizing Strategic Stock Placement
in Supply Chains,Manufacturing & Service Operations Management
2000, Vol.2 No.1, Winter 2000, pp. 68-83.

[2] Chung, S.-J. 1989.NP-completness of the linear complementarity prob-
lem. Journal of Optimization Theory and Applications, 60:393-399.

[3] Mangasarian, O.L., 1997.Minimum-Support Solutions of Polyhedral
Concave Programs. Technical report 97-05.

[4] Korte, B., Vygen, J. 2002.Combinatorial Optimization: Theory and
Algorithms (Algorithms and Combinatorics, 21), Springer Verlag; 2nd
edition.


