
 

 Abstract— Decisions on capacity are often treated separately 
from those of production and inventory.  In most situations, ca-
pacity issues are longer-term, so capacity-related decisions are 
considered strategic and thus not part of supply planning.  This 
research focuses on optimal supply planning with emphasis on 
variable capacity to meet uncertain demand.  It also defines 
three levels of capacity change: operating hours, labor availabil-
ity and production hardware availability.  The work presented 
here deals with the fundamental decisions to determine capac-
ity, production, and inventory to meet customer demand while 
optimizing revenue and costs over a planning horizon (typically 
the life of the product).  With the Lagrangian technique for con-
strained optimization, it can be shown that the optimal supply 
capacity has upper and lower bounds.  The optimal feedback 
policy prescribes increasing the supply capacity when at the 
beginning of the planning interval it is below the lower bound.  
Similarly, the supply capacity should be decreased to the upper 
bound when it is above the upper bound.  This paper will present 
arguments for characterizing forecast evolution and informa-
tion sharing in the supply chain to obtain a predictor-corrector 
approach to supply chain control. 
 

Index Terms— capacity planning, supply chain, inventory con-
trol, optimal control, extended enterprise. 

 

I. INTRODUCTION 

HE primary goal of this research is to set supply capacity 
optimally by adjusting capacity variables consisting of 

plant and equipment, operating duration, and workforce level 
within each planning interval.  However, this paper only pre-
sents the optimal gross capacity adjustment.   

Demand lead time is the time end consumers expect to wait 
before fulfilling their demand for products.  End consumers will 
want to fill their needs instantaneously for some products, but 
are willing to wait for others.  By contrast, supply lead time 
depends on the operating production capacity, production lot 
size, production cycle time, plant layout, raw material inven-
tory, finished goods inventory and transportation from one-
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node to another in the supply chain.  This research focuses on 
optimal adjustment of operating production capacity to meet 
uncertain product demand so as to meet an expected demand 
lead time at the least cost. 

Supplying products to the end consumers requires a net-
work of independently run companies.  The supply network 
may have a number of companies (the supply base) producing 
parts that go into the product that a manufacturer produces 
and that the distribution channels take to the end consumers 
for consumption or use (Fig. 1).  Each supply node in the sup-
ply network has its supply lead time; therefore, the likelihood 
that the integrated supply lead time will exceed the demand 
lead time is high. 
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Fig. 1.  A simplified structure of a supply network consists of the supply 
base, the manufacturer, and the distribution channels. 

When the demand lead time is shorter than its supply coun-
terpart is, it is customary to meet demand from on-hand inven-
tory.  Customer demand is inherently uncertain; therefore, a 
high level of on-hand inventory or safety stock may be re-
quired to hedge against demand uncertainty.  The costs of 
having insufficient supply to meet demand include lost reve-
nues and profits as well as other “hidden” costs such as exp e-
diting, loss of reputation that may result in loss of future sales, 
etc.  The following cases1 demonstrate the importance of simu l-
taneous optimal planning of capacity, production, and inven-
tory: 
1. Cisco: Shortages of memory and optical components para-

lyzed one path of production and hurt earnings.  However, 
Cisco had to write down US$2.25 billion in inventory when 
it was too late to turn off its supply chain from piling up 
inventory! 

2. The Sony Corporation: Sony shipped only half of the 
planned PlayStation 2 shipment during the U.S. launch 
due to a shortage of graphic chips. 

 
1  Unless indicated otherwise, the cases are described in detail by 

Lakenan et al. [20]. 
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3. Apple Computer: Apple filled only half of its orders in late 
1999 due to shortage of G4 chips. 

4. Koninklijke Phillips Electronics NV: Shortage of flash 
memory chips almost disrupted production of 18 million 
telephone units in 2000. 

5. Palm: Analysts predicted Palm's revenues could have been 
10 to 40 percent higher had Palm not experienced a short-
age of liquid crystal displays. 

6. Boeing Commercial Airplane: When Boeing tried to in-
crease its production rate to maintain market share, part 
shortages caused a US$1.6 billion pretax charge in the 
third quarter of 1997 to cover penalty payments to airlines 
for late deliveries, overtime, and other unexpected produc-
tion-related expenses accumulated since the beginning of 
that year as reported by Biddle [1] and Cole [2] in the Wall 
Street Journal. 

Although the ultimate goal is to perform simultaneous ca-
pacity, production, and inventory planning for the supply 
chain, the work described here focuses on the optimal capacity 
adjustment problem at a single node within the supply chain.  
In practice, capacity adjustments occur at three levels: plant 
and equipment, operating time, and workforce level.  The 
analysis in this paper includes optimal gross capacity adjust-
ment, formulation of the optimal level of operating hours, labor 
availability, and production hardware availability to achieve 
that capacity. 

 

II. RESEARCH REVIEW: SIMULTANEOUS CAPACITY, 
PRODUCTION AND INVENTORY PLANNING 

The literature containing work on simultaneous planning of 
production, capacity and inventory has the following focal 
points:  

• Single-enterprise aggregate and capacity planning 
• Single-time period coordinated planning 
• Supplier capacity reservation game 
• Capacity subcontracting problem 

In single-enterprise aggregate and capacity planning, 
Bradley and Arntzen [3] optimize the return on operating as-
sets in simultaneous planning of capacity, production sched-
ule, and inventory.  Bean et al. [4] use a deterministically 
equivalent demand process to solve for an optimal capacity 
growth plan that meets the growing demand for capacity over 
an infinite horizon.  Burnetas and Gilbert [5] present a news-
vendor-like optimal procurement policy to procure capacity in 
advance of the selling season, before the price of capacity be-
comes very expensive.  Bard et al. [6] optimize capacity expan-
sion at semiconductor manufacturing facilities by using a 
nonlinear integer program to determine the number of tools at a 
workstation.  Khmelnitsky and Kogan [7] present an optimal 
control approach to a continuous-time aggregate production 
planning problem on one hierarchical level with production, 
overtime, and capacity expansion rates as decision variables 
on one hierarchical level.  Angelus and Porteus [8] report an 
optimal capacity band that prescribes positive adjustment to 

capacity if the supply level is below the lower bound and nega-
tive adjustment if above the upper bound for a triangular- de-
mand curve during the product life.  Bradley and Glynn [9] de-
velop an approximate solution to the GI/M/1 model for manag-
ing capacity and inventory jointly by using Brownian motion 
process.  Rajagopalan and Swaminathan [10] present an analy-
sis that solves for the optimal time and amount of capacity 
adjustment, the optimal production quantities, and the optimal 
lot sizes for a firm producing several products, using a Lagran-
gian relaxation procedure to calculate the lower bound and two 
heuristics based on both the Lagrangian and the dynamic pro-
gramming approach.  Holt et al. [11] present a technique to 
optimally set the aggregate production rate and the size of the 
work force of a paint factory using quadratic cost functions.  
Holt et al. [12] present the mathematical derivation of the opti-
mal linear decision rule based on quadratic cost functions for 
regular payroll; hiring and layoff; overtime; and inventory, 
backorder, and machine setup costs. 

In single-period coordinated planning, Zimmer [13] presents 
an optimal coordination mechanism in a decentralized supply 
chain facing uncertain availability of capacity to achieve the 
performance of a centralized supply chain.  Van Mieghem and 
Rudi [14] present a news vendor formulation of the stochastic 
capacity investment and inventory procurement problem. 

In the supplier capacity reservation game, Erhun et al. [15] 
describe the role of capacity spot markets as compared to that 
of advance capacity reservation in reducing double marginali-
zation in coordinated-decentralized supply chain management.  
Van Mieghem [16] employs a game theoretic model of con-
tracts for analyzing the effect of state-dependent contracts in 
eliminating decentralization costs and in coordinating capacity 
investment decisions.   

In the capacity subcontracting problem, Buzacott and 
Chaouch [17] argue that optimal capacity expansion, to meet 
growing demand with periods of stochastically disrupted 
growth, can be achieved by either building up or outsourcing.  
Tan and Gershwin [18]) perform profit maximization using sub-
contractors with a different cost structure when customer order 
is backlog-dependent.  Atamturk and Hochbaum [19] analyze 
the tradeoffs between acquiring capacity, subcontracting, de-
termining production lot size, and holding inventory to meet 
non-stationary demand.  

 

III. CAPACITY-PRODUCTION-INVENTORY PLANNING 

Gross capacity-production-and-inventory planning involves 
setting the appropriate level of supply capacity throughout the 
planning horizon2.  While the primary goal of the research is to 
set supply capacity optimally by adjusting capacity variables 
consisting of plant and equipment, operating duration, and 

 
2 A planning horizon typically spans the life of the product that 

ranges from a few quarters to a few years.  It is also commonly divided 
into several planning intervals.  



 

workforce level within each planning interval, this paper only 
presents the optimal gross capacity adjustment3. 

The analysis starts with a derivation of optimal capacity ad-
justment for a two-period planning problem.  In a two-period 
planning problem, the cost function consists of the sum of the 
costs of operating capacity, production (including material), 
holding inventory, and suffering from insufficient supply.  The 
loss function takes into account revenues generated in both 
periods as well as the salvage value of remaining inventory at 
the end of the second (last) interval by subtracting the revenue 
terms from the cost function above.  The optimal capacity ad-
justments must yield the minimum loss function expressed 
mathematically as  
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Note that demand jξ  is a random variable with a probability 

density function ( )j jfξ ξ .  It is assumed to be independently 

distributed, i.e., demand in a planning interval is not correlated 
or independent from that in the following planning interval. 

The system dynamics describe the inventory dynamics re-
sulting from filling demand and replenishing as well as the ca-
pacity dynamics caused by adjustments.  The inventory and 
capacity dynamics is  

 
3 Capacity is the maximum number of units that can be produced dur-

ing each planning interval or period.  
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In (2), the inventory position can be negative, but the back-
log must always be positive.  A positive backlog signifies wait-
ing customer orders when supply is insufficient.  In other 
words, the model presented in (2) allows unfilled demand in an 
interval to be backlogged for fulfillment in the following inter-
val.  The expression for the above constraint on backlog is, 
therefore, 

1 0jb + ≥  (3) 

The production, always positive, never exceeds the available 
capacity.  The capacity adjustment is also assumed available 
for use in the same period as that in which it is ordered.  The 
above assumptions and constraints are expressed as  
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Applying Bellman’s optimality principle to rewrite the mini-
mum loss function (1) yields 
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Note 2 2 2( , )z i v∗  is the minimum cost-to-go function defined as: 
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Applying the Lagrangian technique to solve for the optimal 
controls yields 
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Note that 2γ ∗  is the cumulative probability that demand will be 



 

less than the optimal supply level  

2 2 2 2S i v v∗ ∗= + + ∆  (10) 

The optimal controls above determine an optimal supply 
level in the second period that is dual valued, i.e., one corre-
sponding to a positive adjustment (addition) of capacity 2( )S ∗ +  

and the other to a negative adjustment (reduction) of capacity 

2( )S ∗ −  as shown on Fig. 2.  The region determines the action to 

take at the beginning of Period 2, i.e., if the supply at the be-
ginning of Period 2 is less than the lower bound 2( )S ∗ + , then it 

is optimal to increase the supply capacity up to the level of the 
optimal supply lower bound.  Similarly, if the supply at the be-
ginning of Period 2 is higher than the upper bound 2( )S ∗ − , it is 

optimal to reduce the supply capacity to the level of the opti-
mal supply upper bound. 
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For a positive capacity adjustment in the last period, the fol-
lowing conditions must hold: 

2 2 2 2 2u vk r p c k+
∆ ≤ + − −  (12a) 

2 2 2 2u vs h c k≤ + +  (12b) 

Similarly, for a negative capacity adjustment, the conditions are 

2 2 2 2 2u vk s h c k−
∆ ≤ − + + +  (13a) 

2 2 2 2u vr c k p≥ + −  (13b) 

Note that conditions (12b) and (13b) are satisfied automatically 
because they are also operating conditions, which require that 
salvage be less than procurement and holding costs and price 
be larger than costs, respectively. 

Substituting the optimal controls (9) into (6) and solving for 
the optimal controls in Period 1 yield  

1 1 1

1
1 1 1 1 1

1 2 1 1 2 1 2 2 2
1

1 1 1

1 1 2 2

1 1 1

( )

( ) ( ) ( ) ( )

( ) ( )

u u v v

u v v

v F i v

r r p c c k k v
r p h

v v

r p h

ξ γ

ϕ
γ

ϕ ϕ

∗ ∗

∗ − ∗

∗
∆∗

∗ ∗
∆ ∆

= + ∆

∆ = − −

′− + − − − − + ∆
=

+ +

′ ′∆ − ∆
−

+ +

 (14) 

Where 1γ ∗  is the cumulative probability that demand will be 

less than the optimal supply level  

1 1 1 1S i v v∗ ∗= + + ∆  (15) 

The optimal controls in Period 1 above show similar proper-
ties to those of the optimal controls in Period 2, i.e., there exist 
upper and lower bounds of optimal supply capacity 1( )S ∗ +  and 

1( )S ∗ − , respectively, such that  
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and  
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If the operating and production costs are constants, it can 
be shown that  
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Fig. 2.  Regions of optimal capacity adjustment in the second (last) pe-
riod. 

The recursive form of the Bellman’s principles of optimality 
and that of the optimal controls in Period 1 suggest extension 
of the solution for the multi-period problem.  The optimal con-
trols for a multi-period problem are outlined below: 
1. Optimal controls for the last period are: 
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The feedback control law for this period is  
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2. Optimal controls for the earlier periods 1, , 1j T= −…  are: 
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The feedback control law is  
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If, on the other hand, the cost of capacity adjustment is 4  
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The objective function (1) is now  
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It can be shown that the optimal supply levels jS j∗ ∀  (10 and 

(15) clearly minimize (21) as well if capacity adjustments have 
been decided (see also Bramel and Simchi-Levi [21], pp. 180–
181).  With the capacity adjustment cost (20), it can be shown 
that the optimal capacity band defined in (19) will have an 
outer band (Fig. 3) such that the lower value of the outer-band 
limits determines the critical supply value ( )jS ∗ +  below which it 

will be optimal to increase the supply level to ( )jS ∗ + .  Similarly, 

the upper value of the outer-band limits determines the critical 
supply value ( )jS ∗ −  above which it will be optimal to reduce 

the supply level to ( )jS ∗ − .  The above critical supply values 

determining the outer band satisfy  
/ / /[( ) ] [( ) ]j j jz S K z S∗ + − + − ∗ + −= +  (22) 

The above formulation (19) depends on knowledge of de-
mand uncertainties, characterized by the cumulative probability 
distribution of demand in each period.  In practice, the uncer-
tainty is greater the further away a period is from the beginning 
of the planning horizon.  Therefore, it is critical to have infor-
mation sharing in the supply chain that helps characterize de-
mand and throughout on the planning horizon.  Consequently, 
this research will investigate the effect of forecast evolution in 
characterization of demand uncertainty (Graves et al. [22]).  For 
details  on information sharing in supply chain, see Katz et al. 
[23], Barlas and Aksogan [24], and Street [25], who present 
 

4 Cost functions of the form ( ) ( )K cϕ δ∆ = ∆ + ∆  are commonly used 

to model setup cost that results in lower unit cost for higher number of 
units deployed or produced.  In this situation, it can be used to model the 
setup cost of adding production lines or hardware and the cost of adding 
people in the form of setup and training, respectively. 

work in sharing demand data; Dobson and Pinker [26], who 
study the sharing of state-dependent lead time information as 
compared with that of lead time information based on general 
probability distribution; and Swaminathan et al. [27] , who pre-
sent work on sharing the capacity information.  However, the 
research effort on forecast information sharing and forecast 
evolution is beyond the scope of this paper (see Budiman [28] 
for details). 
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Fig. 3.  Upper and lower values of the outer-band limits resulting from 
taking into account the setup cost in the cost of adjusting capacity. 

 

IV. CAPACITY ADJUSTMENT MODEL 

The previously derived optimal capacity adjustment pre-
scribes only the aggregate adjustment to capacity with an im-
plicit assumption of immediate availability of the adjustment.  
Implementation of the above prescription requires a similar 
prescription for capacity adjusting knobs such as plant and 
equipment, operating time, and workforce.  The optimal ad-
justments to capacity adjusting knobs should take into ac-
count the delay between the decision time and the time the 
adjustments are operational. 

In a production interval, the quantity of goods produced 
depends primarily on the available time for production and on 
the production cycle time.  In turn, the available time for pro-
duction depends on the availability of production hardware, 
the availability of labor, and the operating time.  The produc-
tion cycle time depends on the setup time, batch size, and unit 
production time.  The mathematical expression for the produc-
tion quantity in a production interval is 5  

maxmin[ , , ( ) (1 )]j Rj H j l j W W
j

S j

t t w w
v

T q

θ α

τ

′ ′ ′ ′ ′+
=

+

l l
 (23) 

 
5 Prime indicates the value  of the respective variable at the beginning 

of the period after including the effective adjustments; unprimed vari-
ables represent the value prior to making any adjustments.  
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It can be shown that if  
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Then the labor-hardware-time relationship with capacity (23) 
can be rewritten as  
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:Normal work time per period for the workforceWθ  

Subject to  
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Rj Rj H

Wj W

t t tδ

α α

+ ≤

′ ≤
 (26) 

The aforementioned capacity model is generic because it 
takes into account the delay in adjusting capacity.  This paper, 
however, presents discussion on how the above capacity 
model can be included in an optimal capacity planning exercise 
presented in Section III with the assumption that adding ca-
pacity is instantaneous, i.e.,  

j j j

j j j

Rj Rj Rj

w w w

t t t

δ

δ

δ

′ = +

′ = +

′ = +

l l l
 (27) 

Substituting (27) into (25) to calculate the effect of adjusting 
the capacity levers on the production capacity yields  

(1 )

( )

j j j j j

j Rj Rj j j Rj j
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 (28) 

To account for the delay requires only rewriting of the 
change in the capacity variables in (27) with the appropriately 
delayed change in the capacity variables in (24); or (28) can be 
rewritten as  
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( ) ( ) ( ) ( )
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V. SUMMARY AND CONCLUSION 

The optimal capacity adjustment is of the form of an outer-
bounded capacity band.  The optimal capacity formulation is in 
feedback form in that the capacity adjustment in each period 
depends on the states: inventory and capacity at the begin-
ning of the period.  It is also in feed-forward  form because it 
takes into account the demand uncertainties in the following 
periods.  The work presented here distinguishes three major 
variables affecting the production capacity: plant and equip-
ment, workforce, and operating time.  The formulation shows 
the importance of understanding demand uncertainties 
throughout the planning horizon, thus underlining the impor-
tance of information sharing throughout and forecast evolu-
tion in the supply chain. 
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