
 

  
Abstract— Cycle-to-cycle control is a method for using 

feedback to improve product quality for processes that are 
inaccessible within a single processing cycle. This limitation stems 
from the impossibility or the prohibitively high cost of placing 
sensors and actuators that could facilitate control during, or 
within, the process cycle. Our previous work introduced cycle to 
cycle control for single input-single output systems, [1], and here 
it is extended to multiple input-multiple output systems. Gain 
selection, stability, and process noise amplification results are 
developed and compared with those obtained by previous 
researchers, showing good agreement.  The limitation of 
imperfect knowledge of the plant model is then imposed. This is 
consistent with manufacturing environments where the cost and 
number of tests to determine a valid process model is desired to be 
minimal. The implications of this limitation are modes of response 
that are hidden from the controller. Their effects on system 
performance and stability are discussed. 
 

Index Terms—Multivariable Control, Cycle to Cycle, Discrete 
Event. 
 

I. INTRODUCTION 
YCLE-TO-CYCLE (CtC) control for manufacturing 
processes has been proposed as a means of improving the 

statistical performance of unit processes. The name denotes 
that process measurements and subsequent control adjustments 
are only made between processing cycles.  The prior work at 
MIT [2, 3, 4] was limited to single input-single output (SISO) 
processes, and did show great potential for process 
improvement.  This paper considers the extension of CtC 
control to multiple input-multiple output (MIMO) systems.  

Cycle-to-cycle control is a method for improving the 
performance of manufacturing processes that are inaccessible 
to measurements or control during the manufacturing cycle. 
This limitation stems from the impossibility, or the 
prohibitively high cost, of placing sensors and actuators that 
could result in in-process control. Examples of such processes 
are sheet metal forming and chemo-mechanical polishing 
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(CMP) where proper measurements during a cycle are very 
difficult. 

Cycle-to-cycle control has been shown to be similar to run-
by-run (RbR) control which uses an exponentially weighted 
moving average (EWMA) controller [3, 4].  However, cycle-
to-cycle control has been developed from a linear discrete time 
control theory point of view. This different starting point 
allows one to make many strong statements about the stability 
and performance of systems under consideration while using 
predictive tools such as the discrete-time root locus diagram 
[5]. 

Figure 1 shows a generic discrete time multiple input-
multiple output control block diagram. Note that the controller 
has been separated into two parts: the controller dynamics 
matrix Gc and the static controller gain matrix Kc.  

 
Figure 1 Generic multiple input-multiple output control system block 
diagram. 

 
When applied to the simplest MIMO system (a 2x2 system) 

that still holds the properties of more complex systems (nxn 
systems), the elements take the following form: 
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where I is the identity matrix, z is the unit delay operator such 
that 
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and Gp is the plant model matrix with a one-cycle delay.  This 
delay model results directly from the cycle to cycle assumption 
and the controller dynamics term Gc is an extension of the 
work of Hardt and Siu [3] who showed that this is the optimal 
controller form for SISO CtC.  
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II. BACKGROUND 
The extension of single input-single output post-process 

feedback systems to multiple input-multiple output systems has 
been undertaken in the past [6, 7, 8, 9]. Key conclusions 
relating to the application of MIMO CtC control and control 
system analysis are reviewed below. 

A. Controller Gain Selection 
This development is separate but similar to the transfer 

function approach presented in Kosut et al. [6]. 
For most manufacturing processes, minimum settling time is 

highly desirable.  For a discrete system, this can be represented 
by one-time step settling.  This becomes the design goal for 
CtC control systems. Thus, a closed-loop transfer function, or 
the input-output relationship of the closed-loop system, should 
take the following form: 
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The closed-loop transfer function for the block diagram 
shown in Figure 1 may be written as: 
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where the scalar “dynamic” delay elements have been factored 
out as: 
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 In order for the equality to hold, i.e. to achieve the desired 
closed-loop transfer function, the following must be true: 
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Thus, given an invertible plant gain matrix Gp, the controller 
gain matrix needed to achieve one time-step settling is simply 
its inverse. An important observation resulting from this result 
is that this controller gain matrix will decouple a coupled 
process. 

The same solution for the controller gain matrix is reached 
by Kosut et al. [6] and Edgar et al. [7]. 

B. Closed-Loop Stability 
The stability limits of this system can be investigated by the 

use of the discrete-time root-locus [5]. The discrete-time root-
locus relies on the z-plane representation of the stable region 
of a system. The stable region of the infinite z-plane consists of 
the interior of a unit circle centered at the origin. This region, 
along with constant damping and frequency, lines is shown in 
Figure 2. The center of the circle denotes one time-step 
settling. The outer boundary of the circle denotes infinite-time 
settling and defines the border between a stable and an 
unstable system. Thus, the relative stability of a system may be 
quantified as the distance away from this instability boundary. 

The stability of a system is determined by the location of the 
roots of its characteristic equation: 
( ) 01 * =+− cP KGIz  (7) 

 For the special case where a decoupled system is achieved, 
but is not equal to the identity matrix because of a scaling 
factor, α: 

IKG cP α=*  (8) 
equation (7) may be employed to determine the stability limits 
of α: 

20 << α  (9) 
This result is the same as obtained in Hardt and Siu [3] and 
Sachs et al.  [10]. 

Employing equation (7) once again, it is possible to 
determine the stability of a system using any controller gain 
matrix, not necessarily a scaled inverse of the plant matrix.  
The characteristic equation of the system may be written in a 
familiar form: 

0=− AsI  (10) 
where: 

cP KGIA *−≡  (11) 
Since the eigenvalues of A are also the poles of the closed 

loop system, the stability criteria is realized in another form: 
1)( <Aeig  (12) 

This is the same result as presented in Kosut et al. [6]. 

 
Figure 2 z-plane stable region with constant damping and frequency lines [5]. 

C. Process Noise Amplification 
The use of closed-loop feedback changes the noise 

transmission properties of a system. An open-loop process is 
typically subject to random variations, which can be modeled 
here as a random output disturbance. When subject to CtC 
control this inherent process noise can be either attenuated or 
amplified depending on the degree of correlation of the noise 
process.   Siu [2] and Hardt and Siu [3] have shown that the 
amount of noise amplification from CtC can be accurately 
predicted for single input-single output systems.  This variance 
ratio σCtC
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for normal, identically distributed, independent (i.e. 

uncorrelated) (NIDI) noise is: 
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where K is the loop gain and n is the number of samples used 



 

to compute the variance ratio. 
Box and Luceno, [8], also present a method for determining 

the amount of noise amplification at the output given an 
EWMA controller smoothing constant θ : 

G−= 1θ  (14) 
where G is the loop gain. Under the assumption that the 
disturbance can be represented by an integrated moving 
average (IMA) time series model with a smoothing constant 
θο (i.e. a non-stationary parameter λο=1− θο [8]) the result is: 
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Although these results seem different, they are actually the 
same when taken to their appropriate limits. In order to 
correspond with a NIDI disturbance, equation (15) must have 
λο=0. Also, since equation (15) is for an infinite series, 
equation (13) must have 

∞→n  (16) 
Noting the fact that, as stated in [8], 0<G<2, and that G is 

equivalent to K, then: 
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Substituting this equation into the previous results, one 
obtains the variance amplification for an infinite-number-of-
measurements NIDI noise process: 

( ) ( )K
K

G
G

in

out

−
+=

−
+=

2
1

2
1

2

2

σ
σ

 (18) 

Because of the decoupling nature of the ideal controller 
matrix presented in the previous section, these results obtained 
for single input-single output systems may be applied directly 
to multiple input-multiple output systems, i.e. a decoupled nxn 
MIMO system is equivalent to n independent SISO systems. 

III. PROCESS MODEL 
As introduced in Rzepniewski and Hardt, [1], and repeated 

in equation (1), the plant model Gp is a gain and delay 
combination. Even given the simple structure of the required 
model, appropriate approximations need to be made to 
determine models for large numbers of coupled inputs and 
outputs. Linear models for single input-single output (SISO) 
systems are simple to get with only a few tests. Linear models 
for multiple input-multiple output systems require secondary 
assumptions and approximations to establish a good model 
with only a few tests. A system with n2 inputs and n2 outputs 
requires n4 coefficients to satisfy the matrix form of the CtC 
model: 
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Even with the realization that each test gives a potential of 
n2 data points, n2 tests are still required to fill the gain matrix; 
for a modest size system with 144 inputs, 144 tests would be 
required to determine the gain matrix. Thus, for systems with 
non-trivial dimensionality, the number of tests required to 

independently identify each entry of the gain matrix is not 
suitable for manufacturing environments. 

Because of the large number of tests required to establish 
the gain matrix for systems with high numbers of inputs and 
outputs, approximations need to be made. Rzepniewski and 
Hardt, [1], introduce a Gaussian model approximation to 
describe the influence that an input has on the neighboring 
outputs. This model is shown to adequately describe a class of 
processes where the influence of the inputs on the outputs is 
diffusive in nature. Examples of such processes include 
chemo-mechanical polishing (CMP), heating, and discrete-die 
sheet metal forming. 

IV. PERFORMANCE LIMITATIONS 
As noted previously, knowledge of the plant gain matrix 

allows the design of a perfect decoupling controller matrix. 
However, the only way a perfect controller matrix can be 
designed for a physical system is through perfect knowledge of 
the physical plant via the gain matrix Gp. As explained in the 
previous section, this is not practical. Thus, the theoretical 
performance predictions developed thus far, which are based 
on knowledge of the ideal plant, need to reflect this limitation. 

A. Eigenvalue Location 
The first effect of using a non-ideal plant matrix is a change 

in the eigenvalue locations. As introduced in equations (7) and 
(10), the eigenvalues of a system are the roots of the 
characteristic equation and determine the homogenous 
response of a system. Because the origin of the z-plane 
indicates one time-step settling, it is desirable to have all 
eigenvalues located there. Note that this is the result obtained 
when using a controller matrix that is the inverse of the plant 
matrix. Unless the product of the plant and gain matrices 
results in the identity matrix, the eigenvalues of the system will 
not be at the origin. 

To investigate the effects of imperfect plant knowledge, a 
5,000 count Monte Carlo simulation was implemented for a 
process gain matrix with weak coupling (small off-diagonal 
terms): 
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The controller gains are selected by the inverse method 
assuming the above process matrix. Following the calculation 
of the controller matrix, the process matrix is perturbed by 
independently adding normally distributed perturbations, zero 
mean and 0.01 variance, to each of the matrix entries: 
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where 22211211 ∆≠∆≠∆≠∆ . Note that one standard 
deviation represents from 10 to 100 percent of the matrix 
entries. 



 

 
Figure 3 Eigenvalue location on the z-plane. 

 
Figure 3 shows the location of the system eigenvalues in the 

complex z-plane. It is apparent that the poles largely remain on 
the real axis. The settling time may be calculated using the 
definition of the z-transform and the well accepted 
approximation for settling to within 2 percent of the input: 

σ
4=st  (22) 

where σ is the real-axis coordinate in the s-plane [5]. The 
homogenous response settling time, in terms of cycles, then 
becomes: 

 ( )r
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where r is the distance from the origin of the z-plane. A review 
of Figure 3 shows that over 90% of simulated poles lie within 
a three cycle radius of r=0.26. 

B. Transmission Zeros 
The second effect of imperfect plant knowledge is the 

appearance of transmission zeros, or modes of operation which 
are hidden from the controller. The zeros affect the forced 
response of a system. To investigate the origin of transmission 
zeros, one must look at the closed-loop transfer function: 
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For a 2x2 system with eigenvalues located at the origin, the 
above equation may be expanded to: 
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 (25) 
To achieve the desired transfer function of equation (3), the 

coefficients of the diagonal (z-1) terms and the determinant of 
the controller and plant matrices must equal 1. The coefficients 
of the off-diagonal terms must also equal 0. These 
requirements cannot be satisfied with imperfect knowledge of 
the plant matrix. The implication of this is that certain system 
modes will not be controllable and the system will have 

undesirable forced response properties. 

 
Figure 4 System zeros shown according to their location within the closed-
loop transfer function matrix. 
 

The system of equations (20) and (21) is used to examine 
the movement of these closed-loop zeros. Figure 4 shows the 
results obtained from 5,000 simulations. Note that the zeros 
are shown according to their location in the closed-loop 
transfer matrix. Note that this separation of the homogenous 
and forced response is a property unique to MIMO systems. 
SISO system response is fully determined by the locations of 
the poles. 

C. Simulation example 
The influence of the movement of the system zeros is best 

explained by example. A candidate MIMO process matrix is 
chosen: 
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Since the characteristic equation contains only two 
coefficients that determine the pole locations and the candidate 
2x2 system has four controller gains to be determined, there 
exists and infinite set of solutions that yield the desired 
eigenvalue locations. To simplify analysis, a diagonal 
controller matrix form is chosen and the eigenvalues are set to 
zero. Note that this is not necessarily the same as having 
imperfect knowledge of the plant. This simplification is done 
only to emphasize the effects of transmission zeros. 

 The calculation of a diagonal controller with eigenvalues 
located at the origin results in two solutions which are 
presented in Table 1. The closed-loop transfer function matrix 
is included, thus showing the system zeros. Note that the form 
of the response is determined by both the location of the zero 
and a magnitude scaling. 
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Table 1 Controller gains and transfer function matrices for simulation 
example. 

 
Figure 5 and Figure 6 show the ideal and non-ideal 

responses of the candidate system, respectively. Note that an 
inverse-of-the-plant controller matrix is used to calculate 
Figure 5 and the second of the two solutions in Table 1 is used 
in Figure 6. Also note that the simulated environment is noise-
free. 

The effect of transmission zeros on the forced response of 
the system is clearly visible in Figure 6. The change in inputs 
(forcing) causes the appearance of a hidden mode which 
causes a large deviation from the input. This mode quickly 
disappears once the input is held steady (no forcing) and only 
the homogenous response remains. As predicted, the 
homogenous response shows one time-step settling.  

Thus, the appearance of transmission zeros is undesirable 
for systems that require continuous adjustments (forcing). 
 

 
Figure 5 Ideal system response obtained through perfect plant knowledge. 
 

 
Figure 6 Influence of transmission zeros on the closed-loop response of a 
system.  

V. MIMO PROCESS NOISE AMPLIFICATION 
In light of the effects of transmission zeros, the process 

noise amplification predictions are investigated using 
simulation. The nominal plant matrix of equation (20) is used: 
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Once again, the controller matrix is designed by taking the 

plant inverse. If the nominal process matrix is used in the 
simulation this will yield a fully decoupled system. To display 
non-trivial, coupled results, the plant matrix is perturbed 
without readjusting the controller gain matrix, according to: 
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The perturbations are zero mean with a standard deviation 
of 0.1. The perturbed plant matrix is then used in a simulation 
of 5,000 cycles subject to additive noise at the process output, 
as shown in Figure 1. Analytical results are computed using 
equations (13) and (15) for correlated and non-correlated 
noise, respectively. These analytical formulas are termed SISO 
results since they rely on the decoupling of the MIMO system 
into many SISO systems through the controller gain matrix. 

Figure 7 shows the results obtained from 1,000 realizations 
of the perturbed MIMO plant matrix. It can be seen  that the 
MIMO case closely follows the predicted SISO response for a 
unity loop gain. Also, the variance amplification ratio appears 
to be lower than predicted for gains above one. 

 
Figure 7 Uncorrelated (NIDI) process noise amplification results. 

 
Tests are also carried out to determine the noise-

amplification effects of correlated, non-NIDI, noise. To 
achieve correlation, the NIDI noise is passed through a 
correlating filter of the form: 
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where P=0.8 for the presented case. Figure 8 shows simulation 
results from 1,000 iterations of the perturbed process matrix. 
Once again, the appearance of transmission zeros causes a 
small deviation from theoretical predictions. In addition, the 
variance amplification ratio is lower than predicted by theory. 



 

 
Figure 8 Correlated (non-NIDI) process noise amplification results. 

VI. PLANT MISIDENTIFICATION 
In section III a limitation on the ability to properly identify a 

plant gain matrix was imposed. This limitation influences the 
controller’s ability to take the ideal control action and thus 
causes a slower settling time. These effects are studied through 
simulation in this section.  

Once again, the plant matrix of equation (20) is used. The 
controller is based on this ideal matrix, by taking its inverse, 
and is not adjusted as the plant matrix is perturbed. A process 
is considered settled when the output has reached within 2 
percent of the input. 

First, the case of pre-process plant misidentification is 
examined. Note that the process gain is assumed to stay 
constant until settling is achieved, however this ideal gain is 
not known fully when the controller is designed.  Figure 9 
shows the percent of processes that settled within two cycles as 
a function of the standard deviation of the perturbations. Each 
data point on the formed line represents 5,000 independent 
trials. One can observe that up to approximately 0.09 standard 
deviations there is little penalty for plant misidentification. 
This shows that the system is robust to pre-process plant 
misidentification. 

 
Figure 9 Percentage of systems settling in 2 cycles or less as a function of 
misidentification level. 

 
The case of between-cycles plant misidentification is 

examined. This may occur when a new workpiece is 

introduced for each control cycle. Note that the process gain is 
assumed to vary after each cycle until settling is achieved. 
Figure 10 shows the percent of processes that settled within 
two time steps as a function of the standard deviation of the 
perturbations. Once again, each data point on the formed line 
represents 5,000 independent trials. One can observe that there 
are more severe penalties for misidentifying the gain matrix 
during the process. The curve had a downward slope from the 
very lowest level of noise and it is higher than the slope 
observed in Figure 10. One can see that a standard deviation of 
0.08 in plant misidentification now causes only 43 percent of 
the processes to settle within two time steps. 

 
Figure 10 Percentage of systems settling in 2 cycles or less as a function of 
misidentification level. 

VII. CONCLUSION 
This paper provides an extension of the Cycle to Cycle 

control concept to a general multivariable case.  It has been 
shown that the properties of zero mean error and bounded 
variance amplification that were seen for the SISO case can 
also be achieved for the MIMO case.  A design procedure is 
presented to achieve this ideal result.  However, the MIMO 
control case is more sensitive to modeling errors, which are 
inherent in practical manufacturing applications. The 
knowledge of these effects, presented here as undesirable 
transmission zeros and slower than desired settling times, is 
critical in designing a universal, robust MIMO cycle to cycle 
control scheme.  
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