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Abstract— The solution of a single optimization problem of-
ten requires computationally-demanding evaluations; this is
especially true in optimal design of engineering components
and systems described by partial differential equations. We
present a technique for the rapid and reliable optimization of
systems characterized by linear-functional outputs of partial
differential equations with affine parameter dependence. The
critical ingredients of the method are: (i) reduced-basis tech-
niques for dimension reduction in computational requirements;
(ii) an “off-line/on-line” computational decomposition for the
rapid calculation of outputs of interest and respective sensitiv-
ities in the limit of many queries; (iii) a posteriori error bounds
for rigorous uncertainty and feasibility control; (iv) Interior
Point Methods (IPMs) for efficient solution of the optimiza-
tion problem; and (v) a trust-region Sequential Quadratic Pro-
gramming (SQP) interpretation of IPMs for treatment of pos-
sibly non-convex costs and constraints.

I. Introduction

Optimization of engineering components often requires
computationally demanding evaluations, especially when
considering systems described by partial differential equa-
tions (PDEs). Standard application of typical modeling
methodologies — Finite Element Methods, for example —
in the context of optimization often results in computational
storage and time demands that exceed current resources.
Typical problems, however, rarely require the entire solution
field for optimal design. Instead, a comparatively small col-
lection of design parameters and output functionals are often
found as costs or constraints that govern the behavior of the
system in question. That is, only a relatively small design
space is required to affect a relatively small output space. We
consider here a subset of such parametrized problems that
exhibit a relatively low order “affine” parameter dependence
which, we later show, allows for a particularly attractive com-
putational decomposition. These problems are presented and
described in Section II.

To exploit this low-order parametric dependence we intro-
duce the first component of the proposed method: reduced-
basis approximations for the calculation of outputs of inter-
est and their first- and second-order parameter sensitivities

(i.e. gradients and Hessians). Though field variables lie in
high dimensional “state” spaces, they vary parametrically
in much lower-dimensional manifolds. Reduced-basis tech-
niques guarantee rapid convergence by optimally approximat-
ing the state-space solution on this much lower-dimensional
set. In order to exploit the problem structure and maximize
the gains afforded by the reduced-basis framework, we intro-
duce an off-line/on-line computational decomposition, which
allows for fast, “real-time” calculation of variables and sensi-
tivities in the limit of many queries — precisely the case of
interest in the optimization context.

Without accounting for errors introduced by approxima-
tion it is possible that a feasible reduced-basis solution pa-
rameter set renders the problem infeasible in the “true” so-
lution. It thus becomes critical to accurately quantify errors
introduced by the reduced-order approximation so as to rig-
orously guarantee feasibility — often synonymous with either
“reliability” or safety in the engineering context. The third
component of the proposed method, a posteriori error estima-
tion, provides real-time error bounds and has been developed
(see [4], [5], [6], [7], [8]) to satisfy our feasibility demand with-
out being overly conservative: the bounds are rigorous and
sharp. We present an overview of the reduced-basis method,
off-line/on-line computational procedures, and our error es-
timation approach in Section III.

The fourth ingredient of our approach, Interior-Point
Methods (IPMs), addresses the actual optimization of the sys-
tem. The systems under consideration are governed by ellip-
tic PDEs, which tend to have continuous, differentiable solu-
tions: IPMs adapt well to these types of problems, and much
recent research activity has made these methods very at-
tractive. In developing our IPMs formulation, however, care
must be taken to preserve the significant computational sav-
ings and “uncertainty management” provided by our reduced-
basis approach. We describe our IPMs approach in Section
IV.

The final ingredient of the proposed method is a trust-
region Sequential Quadratic Programming interpretation of
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the IPMs formulation: this is essential in ensuring that a
(local) optimum, rather than simply a stationary point, is
obtained. Though the functional dependence of the outputs
of interest is linear with respect to field variables, the outputs
(cost objectives, constraints) can be nonlinear with respect to
the parameters (design variables). Furthermore, engineering
problems are typically nonconvex; in this case it can be shown
that direct application of IPMs (as originally developed for
linear problems) to nonlinear programs will often result in
slow convergence and, more importantly, solutions that are
stationary but not optimal. In Section IV-C we present a
method that avoids these pitfalls.

Finally, in Section V, we illustrate our method: we consider
the optimal design of a three-dimensional thermal fin charac-
terized by an (elliptic) affinely-parametrized partial differen-
tial equation that yields nonconvex input-output dependen-
cies.

II. Problem Statement – Abstract Formulation

We denote as the “forward problem” the calculation of
input-output relationships governed by partial differential
equations. That is, given a set of design parameters, we wish
to find the value of outputs of interest.

A. Forward Problem

Consider a suitably regular domain Ω ⊂ IRd, d = 1, 2, or 3,
with boundary ∂Ω, and associated function spaces H1

0 (Ω) ⊂
Y ⊂ H1(Ω), where H1(Ω) = {v ∈ L2(Ω) | ∇v ∈ (L2(Ω))d},
L2(Ω) is the space of square integrable functions over Ω, and
H1

0 = {v ∈ H1(Ω) | v|∂Ω = 0}. The inner product and norm
associated with Y are given by ( ·, · )Y and ‖ · ‖Y = ( · , · )1/2,
respectively. Also define a parameter set D ∈ IRP , a typical
point of which will be denoted x.

We assume that we require the evaluation of (K +M) out-
puts associated with a so-called “forward” problem; we will
later see that K such outputs will be assigned to cost objec-
tives and M to constraints, and acknowledge that this def-
inition may be redundant (outputs may simultaneously be
included as costs and constraints) for convenience. The ab-
stract formulation of the forward problem is as follows: for
any x ∈ D, find the jth output sj(x) ∈ IR given by

sj(x) = cj(x) + `j(u(x)), (1)

where cj is a nonlinear function of x, `j : Y → IR is a lin-
ear functional, and u(x) ∈ Y satisfies the partial differential
equation (in weak form)

a(u(x), v;x) = f(v), ∀ v ∈ Y. (2)

Note that sj is affine in u but nonlinear in x. We as-
sume here that the bilinear form a( · , · ;x) is symmetric,
a(w, v;x) = a(v, w;x),∀ w, v ∈ Y ; continuous, a(w, v;x) ≤
γ(x)‖w‖Y ‖v‖Y ≤ γ0‖w‖Y ‖v‖Y ,∀ x ∈ D; and coercive, 0 <

α0 ≤ α(x) = infw∈Y
a(w,w;x)
‖w‖2Y

,∀ x ∈ D; and that the linear

functionals f(v) and `j(v) are bounded for all v ∈ Y . We
consider here only the compliant output `j(v) = f(v) (other
outputs that are not related to u may still exist), and note
that f(v) has been defined independently of x. We have re-
quired symmetry of a, compliance, and the independence of
f and ` on x to simplify the exposition, and note that our
framework easily allows these assumptions to be relaxed (see
[6], [7], [8]).

We also make certain assumptions on the nature of the
parametric dependence of a. We require that, for some finite
(preferably small) integer Q, a(w, v;x) be expressible as

a(w, v;x) =
Q∑

q=1

σq(x) aq(w, v), (3)

∀ w, v ∈ Y, ∀ x ∈ D, for appropriately chosen functions σq :
D → IR, and associated x-independent bilinear forms aq :
Y ×Y → IR, q = 1, . . . , Q. We note that we pose our problem
on a fixed reference domain Ω (i.e., Ω does not depend on x)
to ensure that the parametric dependence on geometry enters
through a( · , · ;x) and ultimately through σq(x).

B. Optimization Problem

Having presented the mathematical model of the forward
problem, one can solve the required equations to arrive
at the outputs of interest given a certain configuration x.
We are interested here in solving an optimization problem;
that is: find the optimal configuration x∗ such that a given
cost/performance measure is minimized. Our goal is to solve
such problems that involve arbitrary, nonlinear (in x) cost
and constraint functions governed by partial differential equa-
tions of the type described in the previous section.

We define the cost functional as

J(x) =
K∑

j=1

ωjsj(x) (4)

where ωj represent prescribed positive weights and sj(x) rep-
resent functionals of the type defined in (1). Cost functionals
may in fact take more general forms, though we will consider
the above for simplicity. Note that J(x) can be nonlinear in
x. We allow the following constraint types: parameter con-
straints, ximin ≤ xi ≤ ximax for i = 1, . . . , P ; and outputs
constraints, sjmin ≤ sj(x) ≤ sjmax for j = 1, . . . ,M. In sum-
mary, we address the following optimization problem:

find x∗ = arg min
x∈D

J(x)

subject to

{
smin ≤ s(x) ≤ smax,

xmin ≤ x ≤ xmax,

where x ∈ D and s(x) ∈ IRM represent vectors of size P and
M , respectively.



III. Reduced-Basis Methods for Forward Problem

The reduced-basis method is critical in allowing for the
real-time nature of the proposed approach. We present here
a brief exposition, and direct the reader to [8] and [9] for a
more complete survey.

A. General Formulation

Given the parameter set D we randomly choose N points
xn ∈ D, n = 1, . . . , N , the collection of which we denote
as SN = {x1, . . . , xN}. We then introduce a Lagrangian
reduced-basis approximation space WN = span{u(xn), n =
1, . . . , N}, where u(xn) is the solution of the forward prob-
lem: a(u(xn), v;xn) = f(v), ∀ v ∈ Y. The reduced-basis
approximation of the jth output is determined as follows: for
any x ∈ D, first find uN (x) ∈WN such that

a(uN (x), v;x) = f(v), ∀ v ∈WN , (5)

then approximate sj(x) by sNj(x) = `j(uN (x)).
Problem (5) is of much lower dimension than (2). In partic-

ular, while the former problem is infinite-dimensional (or very
high-dimensional for accurate finite element approximations)
the latter is of dimension N . Furthermore, it has been shown
in [8] that for some problems the reduced-basis approxima-
tion converges exponentially fast in N , which suggests that
the method can be highly accurate for relatively small N .
Section III-B will present a method for estimating the error
introduced by a given basis selection; detailed computational
requirements and implications will be presented in Section
III-C.

Before proceeding we note that the optimization procedure
will require, in addition to approximations of sj(x), higher
order information such as ∇xsj(x) and ∇2

xxsj(x) — we also
use the notation s′j(x) and s′′j (x) here to indicate, respectively,
gradients and Hessians of sj(x) with respect to x. It can be
shown that these quantities can be approximated within the
reduced-basis context as

s′Nj(x) = c′j(x) + `(u′N (x)),

s′′Nj(x) = c′′j (x) + `(u′′N (x)),

where uN (x) is determined as above. The calculation of
u′N (x) ∈ (WN )P , u′′N (x) ∈ (WN )P×P , and remaining quan-
tities is addressed in Section III-C, where we will show how
the special structure of the problem can be exploited.

B. A Posteriori Error Bounds

The reduced-basis method introduces errors which can ren-
der the solution infeasible. Before we address the optimiza-
tion framework, we provide here a method for determining
rigorous a posteriori bounds for the errors in the predicted
output — which, in essence, will guarantee that the reduced
feasible set is contained in the true feasible set.

More specifically, we develop output estimates s̄Nj(x) and
related bound gaps ∆Nj(x) which provide upper and lower

bounds for the jth output, s±Nj(x) = s̄Nj(x) ±∆Nj(x), such
that s−Nj(x) ≤ sNj(x) ≤ s+

Nj(x). We require that the bounds
be sharp, so as not to mislead the design process (and yield
suboptimal solutions), and that they not be significantly more
computationally demanding than predictions of sNj . We only
present the method here and refer to [8] for proofs and details.

We begin by assuming that we have a function ĝ(x) :
D → IR+ and a continuous, coercive, symmetric (and x-
independent) bilinear form â : Y × Y → IR such that
α̂0 ‖v‖2Y ≤ ĝ(x) â(v, v) ≤ a(v, v;x), ∀ v ∈ Y, ∀ x ∈ D, for
some α̂0 > 0. References [8] provide easily computable sug-
gestions for ĝ and â. We then find ê(x) ∈ Y such that

ĝ(x) â(ê(x), v) = R(v;uN (x);x), ∀ v ∈ Y,

where R(v;w;x) ≡ f(v)− a(w, v;x), ∀ v ∈ Y , is the residual.
Finally,

s̄Nj(x) = sNj(x) +
ĝ(x)

2
â(ê(x), ê(x)),

∆Nj(x) =
ĝ(x)

2
â(ê(x), ê(x)).

We may then evaluate our bounds as s±Nj(x) = s̄Nj(x) ±
∆Nj(x).

C. Computational Procedure

In practice, the u(xn), n = 1, . . . , N , is replaced by finite
element approximations on a sufficiently fine “truth mesh”.
For simplicity, assume the finite element approximation re-
quires N � N degrees-of-freedom. Since equation (1) is de-
fined in terms of u(x), we are required to solve problem (2)
in order to evaluate sj(x): this calculation scales as O(N ?),
for ? some exponent grater than unity. Gradient and Hes-
sian formations require O(PN ?) and O(P 2N ?) operations,
respectively. This “exact” strategy is inefficient since IPMs
only require approximate evaluations for most iterates.

We can exploit reduced-basis and the structure of the prob-
lems considered here to build what we term “off-line” and
“on-line” stages that will allow for significant computational
savings. The central motivation is that we plan to perform
N “expensive” (O(N ?)-type) calculations before beginning
the optimization procedure. Then, using these results as an
off-line database, we perform the entire optimization proce-
dure in WN , where the problem scales with a power of N
rather than a power of N . Assuming we are able to incor-
porate rigorous error estimation (without significant increase
in computational cost), we can expect to arrive at rigorously
feasible solutions that can be arbitrarily accurate in the sense
of proximity to true optimality.

Since the problems in question require the solution of a
PDE, we expect the calculation of outputs associated with
u(x) to be far more expensive than those that have only an
explicit dependence on x. Therefore, let us consider in this
section outputs sNj associated with u: in our case, the sin-
gle compliant output (as we have mentioned, problems that



include a number of affine noncompliant outputs can be con-
sidered by simple extensions to the presented framework).
We begin by expressing the field variable approximation as
uN (x) =

∑N
i=1 uNi(x)ζi = uN (x)T ζ, where uN (x) ∈ IRN .

Then, a Galerkin projection of (5) in WN yields

AN (x) uN (x) = FN (6)

and compliant output evaluation sNj(x) = FT
N uN (x). Here

AN (x) ∈ IRN×N is the SPD matrix with entries ANi,j(x) ≡
a(ζj , ζi;x), 1 ≤ i, j ≤ N , and FN (x) ∈ IRN is the
“load” (and “output”) vector with entries FNi ≡ f(ζi),
i = 1, . . . , N . Invoking (3) we have ANi,j(x) = a(ζj , ζi;x) =∑Q

q=1 σq(x) aq(ζj , ζi), or

AN (x) =
Q∑

q=1

σq(x)Aq
N ,

where Aq
Ni,j = aq(ζj , ζi), i ≤ i, j ≤ N , 1 ≤ q ≤ Q. The

off-line/on-line decomposition is now clear. In the off-line
stage, we compute u(xn) and form Aq

N and F q
N : this requires

N (expensive) “a” finite element solutions and O(QN2 + N)
finite-element vector inner products. In the on–line stage,
for any given new x, we form AN from (III-C), solve (6) for
uN (x), and finally evaluate sN (x) = FT

N uN (x), which re-
quires O(QN2 + N) +O( 2

3N3) operations and O(QN2 + N)
storage. We point out that it is possible to make signifi-
cant gains on these requirements at the expense of additional
bookkeeping.

We evaluate s′j(x) and s′′j (x) by

s′Nj(x) = FN (x)T u′N (x) and s′′Nj(x) = FN (x)T u′′N (x),

where uN (x) is determined as above, u′N (x) ∈ (IRN )P and
u′′N (x) ∈ (IRN )P×P satisfy, respectively, AN (x)u′N (x) =
−A′N (x)uN (x), and AN (x)u′′N (x) = −A′′N (x)uN (x) −
2A′N (x)u′N (x), with A′N (x) ∈ (IRN×N )P and A′′N (x) ∈
(IRN×N )P×P defined by A′N (x) =

∑Q
q=1 σq ′(x) Aq

N and
A′′N (x) =

∑Q
q=1 σq ′′(x)Aq

N . Note that we are only required to
invert AN (x) as before. It is also evident that the above cal-
culations require no additional data for the off-line database.
Computational costs for output gradients and Hessians will
therefore increase by factors of P and P 2, respectively, with
no significant additional storage requirements. We note that
the quantities above have been fully specified: this is due
to the fact that we have expressions for σq(x) and that it is
implicitly assumed that σq ′(x) and σq ′′(x) are easily calcula-
ble. In our implementation we have derived these quantities
by applying automatic differentiation, though less attractive
alternatives exist (analytical expressions, finite-differences).

The crucial point we make is that the marginal cost of
evaluating sN (x), s′N (x), and s′′N (x) for any given (iterate) x
during the optimization procedure is very small: because N
is very small, typically O(10) thanks to the good convergence

properties of WN , and because (6) can be very rapidly assem-
bled and inverted due to the off-line/on-line decomposition.
For the problems discussed in this paper, the resulting com-
putational savings relative to standard (well-designed) finite-
element approaches are significant — at least O(10) but often
O(1000) or more.

Finally, we address to the computational approach by
which we can efficiently compute ∆N (x), ∆′

N (x), and ∆′′
N (x)

in the on-line stage of our procedure. We again exploit the
affine parameter dependence, and refer the reader to [10] for
motivation of the method. We can express ê(x) from the
previous section as

ê(x) =
1

ĝ(x)

ẑ0 +
Q∑

q=1

N∑
j=1

σq(x)uN j(x)ẑq
j

 , (7)

where ẑ0 ∈ Y satisfies â(ẑ0, v) = `(v), ∀ v ∈ Y, and
ẑq
j ∈ Y, j = 1, . . . , N , q = 1, . . . , Q, satisfies â(ẑq

j , v) =
−aq(ζj , v), ∀ v ∈ Y. Inserting (7) into our expression for
the bound gap, ∆N (x) = 1/2 ĝ(x)â(ê(x), ê(x)), we obtain

∆N (x) =
1

2ĝ(x)

(
c0 + 2

Q∑
q=1

N∑
j=1

σq(x)uN j(x)Λq
j +

Q∑
q=1

Q∑
q′=1

N∑
j=1

N∑
j′=1

σq(x)σq′
(x)uN j(x)uN j′(x)Γqq′

jj′

)

where c0 = â(ẑ0, ẑ0), Λq
j = â(ẑ0, ẑ

q
j ), and Γqq′

jj′ = â(ẑq
j , ẑq′

j′). In
addition, we have

∆′
N (x) =

1
ĝ(x)

(
Q∑

q=1

N∑
j=1

[
σq ′(x)uNj(x) + σq(x)u′Nj

]
Λq

j

+
1
2

Q∑
q=1

Q∑
q′=1

N∑
j=1

N∑
j′=1

[
σq(x)′σq′

(x)uNj(x)uNj′(x) +

σq(x)σq′ ′
(x)uNj(x)uNj′(x) + σq(x)σq′

(x)u′Nj(x)uNj′(x)

+ σq(x)σq′
(x)uNj(x)u′Nj′(x)

]
Γqq′

jj′

)
− ĝ′(x)

ĝ(x)
∆N ,

and a similar expression for ∆′′(x) which we do not include
here for brevity. Quantities for s+

N , s+
N

′
, s+

N

′′
, s−N , s−N

′
, and

s−N
′′
, follow immediately from the previous definitions.

We again exploit an off-line/on-line decomposition in calcu-
lating the error bounds. In the off–line stage we compute ẑ0

and ẑq
j , j = 1, . . . , N , q = 1, . . . , Q, and then form c0,Λ

q
j , and

Γqq′

jj′ : this requires QN +1 (expensive) “â” finite element solu-
tions, and O(Q2N2) finite-element-vector inner products. In
the on–line stage, for any given new x, we evaluate ∆N : this
requires O(Q2N2) operations and O(Q2N2) storage (for c0,
Λq

j , and Γqq′

jj′ ). As for the computation of sN (x), the marginal
cost for the computation of s±N (x) for any given new x is quite



small — in particular, it is independent of the dimension of
the truth finite element approximation space. We note that
once the database has been formed, all of the above informa-
tion is available as by-products of the on-line computation
(uN , σq, and their derivatives) for the zeroth order quantities.
As a result, we again observe an increase in computational
cost of a factor of P and P 2 for the gradients and Hessians,
and no additional storage requirements.

We summarize the two principal strengths of our reduced-
basis approach to optimization problems: off-line/on-line de-
composition that allows for fast iterate computation that is
independent of the degrees of freedom of the original problem;
and error-bound calculations that allow for fast, quantifiable
estimates that can be used to adjust for required levels of
accuracy.

IV. Interior Point Methods and Optimization

A. Optimization with Uncertainty Control

The reduced-basis method allows us to exploit a rigor-
ous and accurate approximation framework and, most impor-
tantly, provides a way to sharply estimate introduced errors.
For meaningful optimization, error estimates and associated
quantities must also be included in the optimization state-
ment. Therefore, before describing the methods employed
in optimizing the problem, we restate the problem so that
errors due to approximation can be appropriately and rig-
orously accounted for. In essence, we no longer define the
problem in terms of outputs of interest sj but rather sub-
stitute these quantities by their respective lower and upper
bounds s−Nj and s+

Nj : sjmin ≤ s−Nj(x) ≤ sj(x) ≤ s+
Nj(x) ≤

sjmax for j = 1, . . . ,M. Or, in terms of s̄Nj and ∆Nj :
s̄Nj(x) − ∆Nj(x) ≥ sjmin, and s̄Nj(x) + ∆Nj(x) ≤ sjmax.
For the cost, we simply define

JN (x) =
K∑

j=1

ωj s̄Nj(x)

(another alternative is to use s+
Nj for conservatively high cost

estimates). Finally we restate the problem with slack vari-
ables p ∈ IRM , w ∈ IRM , t ∈ IRP , g ∈ IRP as:

find x∗ = arg min
x∈D

JN (x)

subject to



s+
Nj(x)− sjmax + p = 0,

sjmin − s−Nj(x) + w = 0,

x− xmax + t = 0,

xmin − x + g = 0,

p, w, t, g ≥ 0.

The advantage of the above formulation is that it is easy
to define a point that is feasible in the inequality constraints.
Such a point is unlikely to satisfy the equality constraints but,
we will show, this is not necessary for solving the system by
Interior Point Methods (IPMs). We note that the above is not

in the industry-standard mps format because we have found
that difficulties result in the positive definiteness of the SQP
approximation for the so-called primal-dual formulation.

B. IPM Subproblem

We first define the strictly-feasible inequality constraint
region F = {(x, p, w, t, g) ∈ (IRP × IRM× IRM× IRP ×
IRP ) | p, w, t, g > 0} and denote any γ ∈ F as an “interior
point”. Next we define a barrier function Jµ

N : F → IR,

Jµ
N (γ) = JN (x)

− µ

 M∑
j=1

(log pj + log wj) +
P∑

i=1

(log ti + log gi)

 ,

and state the “barrier subproblem”

find (γµ) = arg min
γ∈F

Jµ
N (γ)

subject to


s+

Nj(x)− sjmax + p = 0,
sjmin − s−Nj(x) + w = 0,

x− xmax + t = 0,

xmin − x + g = 0,

with related Lagrangian Lµ
N (γ; q, y, s, z) = Jµ

N (γ) +
λpT (s+

Nj(x)−sjmax +p)+λwT (sjmin−s−Nj(x)+w)+λtT (x−
xmax + t) + λgT (xmin − x + g), where (λp, λw, λt, λg) ∈
(IRM× IRM× IRP× IRP ) are Lagrange multipliers.

It can be shown that if F is a compact set, then
limµ→0 xµ = x̂, where x̂ is some point in the set of station-
ary points of JN (x); that is, points that satisfy the related
KKT conditions. This is the central argument that motivates
IPMs, which produce a decreasing sequence {µ}k of barrier
parameters, and solve (at least approximately) the barrier
sub-problem for each µk. We call the process of generating
solutions for a barrier iterate k the “homotopy” level.

The typical implementation of IPMs takes the above sub-
problem as a point of departure. These methods work well for
many linear and some convex problems because stationarity
is necessary and sufficient for optimality in these cases. For
nonconvex problems, however, the above is not sufficient: in
addition we require that ∇2

xxJN (x∗) be symmetric positive
definite in the null-space of gradients of active constraints —
a property which is not guaranteed by the above IPMs for-
mulation. Since we are concerned with engineering problems
that are typically nonconvex, the above formulation will often
produce stationary points which are not necessarily optimal.

Below we propose a procedure to find solutions that sat-
isfy all requirements for optimality for the nonconvex class
of problems we are addressing. It is worthwhile to note that
even these points are only guaranteed to be local optima.
Presently, we will assume that local optima are satisfactory
for our purposes, and note that improvements in the method
can help produce solutions that approach the global optimum
(a multi-start procedure, for example).



C. IPMs and SQP with Trust Regions

A class of approaches, mostly based on line search tech-
niques, has been proposed for nonconvex problems (see [2],
[3], [11], [12] for examples). Many of these produce descent
directions for specific merit functions that reflect a modified
statement of the KKT system based on matrix factorization.
Arbitrary choice must be made in determining appropriate
merit functions and factorization schemes, and to date there
has been only limited experience in applying these methods.

We have chosen instead to adopt a Sequential Quadratic
Programming (SQP) approach, based on [1], to address the
issue of nonconvexity. The geometric interpretation of this
approach is more intuitive and the implementation of trust
regions allows us to intelligently define the step sizes to be
taken throughout the algorithm. We are also able to relax the
problem further by separately allowing convergence of feasi-
bility (“normal” to constraints) and optimality (“tangential”
to constraints) components.

First we define

min
(dx,dp,dw,dt,dg)

Qsqp(dx, dp, dw, dt, dg)

s. t.



Aq(xk)T dx + dp + s+
Nj(xk)− sjmax + pk = rq,

−Ay(xk)T dx + dw + sjmin − s−Nj(xk) + wk = ry,

dx + dt + xk − xmax + tk = rs,

−dx + dg + xmin − xk + gk = rz,

(dx, dp, dw, dt, dg) ∈ Tk,

as the SQP approximation to the barrier subprob-
lem, where Qsqp(dx, dp, dw, dt, dg) = ∇xJN (xk)T dx +
1
2 dT

x∇2
xxL

µ
N (ξk)dx − µeT (P−1

k + W−1
k + T−1

k + G−1
k ) +

1
2 (dp, dw, dt, dg)T Σk(dp, dw, dt, dg), ξk = (γk;λk), γk =
(xk, pk, wk, tk, gk), λk = (λp, λw, λt, λg),

Aq(x) = s̄′Nj(x) + ∆′
Nj(x),

Ay(x) = s̄′Nj(x)−∆′
Nj(x),

and Tk is a trust region to be defined below, and, for ex-
ample, Pk represents a diagonal matrix whose diagonal is
pk. We have chosen to use ∇2

xxL
µ
N in the definition of Qsqp

since this choice is most compatible with the iterative in-
terpretation of the barrier KKT conditions. We then define
Σk ∈ IR2(M+P )×2(M+P ) as a diagonal positive definite matrix
that approximates the remainder (non-x elements) of the Hes-
sian of the Lagrangian. We implement here a “primal-dual”
form of the method:

Σk =


P−1

k Λp
k

W−1
k Λw

k

T−1
k Λt

k

G−1
k Λg

k

 . (8)

This differs from the typical primal-dual interpretation of
IPMs, which owe their name to iterations that include dual
variables (i.e. Lagrange multipliers). Here, the method’s

name stems from the fact that dual variables λk are stated
as part of the problem in the matrix Σk, though we have
not yet addressed how to approximate them. Since there are
different alternatives to approximate λk, we categorize this
issue at the implementation level, and address it in Section
IV-D.2. We simply note here that it will be advantageous
to define λk in a way that guarantees positive definiteness of
Σk.

The SQP constraints best represent a linear approximation
of the original problem constraints when (rg, ry, rs, rz) = 0.
This may not be possible, however, if the SQP solution is
to lie in Tk. The question of how to determine these quan-
tities must therefore be addressed. We decompose the step
d = (dx, dp, dw, dt, dg) into “normal” and “tangential” com-
ponents dn = (dn

x, dn
p, dn

w, dn
t , dn

g) and dt = (dt
x, dt

p, d
t
w, dt

t, d
t
g),

where d = dn + dt. The terminology originates from the fact
that dn is a step direction that minimizes the norm of the
residuals given the trust region constraints. Finding dn can
be stated as the optimization problem:

min
dn


‖Aq(xk)T dn

x + dn
p + s+

Nj(xk)− sjmax + pk‖22
+‖ −Ay(xk)T dn

x + dn
w + sjmin − s−Nj(xk) + wk‖22

+‖dn
x + dn

t + xk − xmax + tk‖22
+‖ − dn

x + dn
g + xmin − xk + gk‖22

subject to (dn
x, dn

p, dn
w, dn

t , dn
g) ∈ T n

k ,

where T n
k ⊂ Tk. Once dn has been found, we can define

rg = Aq(xk)T dn
x + dn

p + s+
Nj(xk)− sjmax + pk,

ry = −Ay(xk)T dn
x + dn

w + sjmin − s−Nj(xk) + wk,

rs = dn
x + dn

t + xk − xmax + tk,

rz = −dn
x + dn

g + xmin − xk + gk.

which guarantees the existence of total steps in the trust re-
gion. We can therefore find d that optimizes the remainder
of the now fully-defined SQP subproblem.

For future reference we define the SQP constraint gradient
matrix

Ã =


Aq P 0 0 0
−Ay 0 W 0 0

I 0 0 T 0
−I 0 0 0 G

 , (9)

and note that the “normal” step dn must lie in the range
space of Ã whereas the “tangential” step dt lies in its right
null space when using the above residuals.

D. Computational Procedure

D.1 Initial Guess

In order to start any algorithm, it is necessary to deter-
mine an inequality-feasible initial guess ξ0 ∈ F . Our re-
statement allows us to easily determine this as follows: x0 =
(xmin + xmax)/2, p0 = max{ θ0, |s+

Nj(x0) − sjmax| }, w0 =



max{ θ0, |sjmin−s−Nj(x0)| }, t0 = max{ θ0, |x0−xmax| }, g0 =
max{ θ0, |xmin − x0| }, λp

0 = µP−1
0 e, λw

0 = µW−1
0 e, λt

0 =
µG−1

0 e, λg
0 = µT−1

0 e, where θ0 is some positive number (we
take θ0 = 1). The above is motivated by the KKT conditions
while the chosen value of θ0 is representative of those found
in the literature (see [11]).

D.2 Lagrange Multiplier Approximation

The first unknowns we must address are the Lagrange mul-
tipliers λk of the barrier subproblem. It can be shown that
as µk → 0, λk approaches the Lagrange multipliers of the
original problem, which are nonnegative. Due to the struc-
ture of Σk, defined in terms of λk and slack variables (which
are always positive for feasibility), negative approximations
of λk will result in potentially non-SPD Hessians of the SQP
subproblem. Though this is not necessarily forbidden due to
the presence of trust regions, it can nonetheless be counter-
productive and degrade convergence.

Following typical SQP procedure, the authors in [1] deter-
mine values of λk by least squares approximation to the KKT
system of the barrier subproblem. Though this will yield a
reasonable approximation to these variables, it is often the
case that negative values will result. In that paper, the au-
thors revert to the primal formulation for negative Lagrange
multipliers to guarantee the SPD property of Σk. Here we
take a different approach, and revert instead to a traditional
primal-dual iterative interpretation for negative values of λk.
We feel this is a better compromise since it allows us to stay
within the primal-dual framework. In summary: we approxi-
mate λk by least squares:

λls
k = (ÃT Ã)−1ÃT

[
−∇xJN

µeλ

]
, (10)

where eλ = (1, . . . , 1) ∈ IR2(M+P ), then we define λk:

λi
k =

{
λls

k
i, if λls

k
i > 0,

λi
k−1 + αλ∆λi

k, if λls
k

i ≤ 0,
(11)

for i = 1, . . . , 2(M + P ), where ∆λk is determined by a pre-
dictor/corrector estimation of traditional primal-dual step di-
rections, and

0.995
αλ

= max
i

{
1, −∆λk

i

λk
i

}
. (12)

Equations (11) and (12) ensure the positivity of iterates λk,
which in turn ensure the positive definetness of Σk. Note that
since we are inverting diagonal matrices in the above, we add
a negligible computational cost, but guarantees SPD Σk and
maintain the primal-dual interpretation.

D.3 Definitions of Trust Regions

Trust region constraints, (dx, dp, dw, dt, dg) ∈ Tk and
(dn

x, dn
p, dn

w, dn
t , dn

g) ∈ T n
k , play a critical role in the algorithm

since they provide a mechanism that guarantees that the SQP
subproblem is a good approximation to the barrier subprob-
lem. There is flexibility in choosing these regions: one may
choose, for example, a ball of radius ∆T around the current
iterate.

It is important, however, to choose an appropriate norm
in which to measure these trust constraints. Here we scale
the problem with respect to slack variables and arrive at,
respectively,

‖ (dx, P−1dp,W
−1dw, T−1dt, G

−1dg) ‖2 ≤ ∆T ,

P−1dp,W
−1dw, T−1dt, G

−1dg ≥ −τ,

and

‖ (dn
x, P−1dn

p,W−1dn
w, T−1dn

t , G−1dn
g) ‖2 ≤ ζ∆T ,

P−1dn
p,W−1dn

w, T−1dn
t , G−1dn

g ≥ −τ/2,

where ζ ∈ (0, 1) and τ ∈ (0, 1) guarantee that T n
k is a strict

subset of Tk (we choose ζ = 0.8 and τ = 0.995). Justification
for scaling is as follows. Active inequality constraints will
necessarily produce slack variables that approach zero near
the solution. If the trust region is not scaled appropriately,
these variables will impede progress by severely shrinking the
set of allowable trust region candidates. The scaling above
adequately prevents this situation.

D.4 Calculation of Normal and Tangential Components

Step 1: Calculate a Newton step dn and a steepest descent
direction dd for the normal subproblem.

Step 2: Calculate dn by linearly combining dn and dd (for
instance, by the dogleg method, see [1]) such that we adhere
to all trust region constraints and achieve a reduction in the
normal cost.

Step 3: Calculate d by solving the remaining problem in
terms of dt and defining residuals (rg, ry, rs, rz) as described
above. Note that for zero dt we immediately adhere to the
constraints of the SQP subproblem. Therefore, we choose to
use Projected Conjugate Gradients (PCG) with initial guess
dt
0 = 0 and orthogonally projected iterates to the null space

of Ã by way of operator

P = I − Ã(ÃT Ã)−1ÃT (13)

(note that PÃ = 0). We note that since we are by definition
operating in the null space of Ã, a negative Hessian-norm of a
tangential iterate necessarily indicates a direction of negative
curvature that will improve the SQP cost and lead to the
interior of F . If this is detected we assign this direction to dt

and quit the PCG procedure.
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D.5 Merit Functions, Predicted and Actual Reductions, and
Trust Region Adjustments

Different merit functions can be used to gauge the progress
of most IPMs formulations. Here we choose

Ψ(γ; ν) = Jµ
N (γ) + ν

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


s+
Nj(x)− sjmax + p

sjmin − s−Nj(x) + w

x− xmax + t
xmin − x + g


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

where ν > 0 is a penalty parameter — not to be confused
with µ. We use Ψ to determine whether the calculated step
d will sufficiently improve the approximate solution. There
are different ways of approaching this criteria; many IPMs
formulations simply attempt to achieve gradient-related sta-
tus so that a minimization rule, such as Armijo, can be ap-
plied. Here we begin by defining the predicted merit func-
tion reduction for a step d, pred (d) = −∇γΨ(γk; ν)T d ≈
Ψ(γk; ν)−Ψ(γk+d; ν), and a predicted reduction in the resid-
ual functions (normal to the constraints) as a result of dn,
vpred(dn). We require that ν be large enough to ensure a pre-
dicted decrease in Ψ that is positive and proportional to the
decrease in the direction normal to constraints. This can be
achieved by choosing ν ≥ max {0, pred (d)/ (ρvpred (dn))}
for a factor ρ ∈ (0, 1) (chosen here to be 0.3).

Given this ν, and that pred (d) ≥ 0, a step d is deemed
acceptable if the actual merit reduction, ared(d) = Ψ(γk; ν)−
Ψ(γl + d;µ), is positive and at least a small fraction η (we
take η = 10−8) of the predicted step:

γred =
ared (d)
pred (d)

≥ η. (14)

If the above criterion is not met we conclude that our trust
region is too large for an accurate SQP approximation: we
reject the step and reduce the trust region ∆T by a factor in
(0.1, 0.3). Otherwise, we can use γred as a measure of accu-
racy of the SQP approximation, and adjust ∆T accordingly:

∆T =


max{ 7‖d‖,∆T } if γred > 0.9;
max{ 2‖d‖,∆T } if 0.3 ≤ γred ≤ 0.9;
∆T if η ≤ γred < 0.3.

The detriment of choosing a nondifferentiable merit func-
tion Ψ becomes apparent here since ν may not be defined at
the solution (where constraints are exactly satisfied). How-
ever, this is not a significant problem in practice since we
never allow µk to reach its limit point and expect to approach
the constraints close to orthogonally from the interior of F .
We plan to experiment in the future with differentiable merit
functions (based, for instance, on the ‖ · ‖22 metric).

D.6 Barrier Parameter Update

We now address the strategy of updating µ at the homo-
topy level. We have already stated the need to develop a

decreasing sequence {µ}k for convergence of IPMs. It can be
shown from KKT conditions that any exact solution of the
barrier subproblem satisfies µe = Pλp = Wλw = Gλg = Tλt

Therefore, a good estimate for a non-exact, non-converged
solution of the barrier subproblem (that is, the solution to an
SQP subproblem) would be µ̃k ≈ (pT λp + wT λw + gT λg +
tT λt) / (2(M + P )). To assure that we decrease µk we set

µk ← αµµ̃k (15)

at the homotopy level, where αµ can typically be some aggres-
sively small fraction (for example, αµ = 0.1), and we typically
take a single SQP step per µk. In practice we have found it
more useful to take advantage of available information that
reflects the degree of progress to dynamically determine this
value. For example:

αµ =
(

1/αλ − 1
1/αλ + 10

)2

, (16)

where αλ is determined as before. “Good” steps provide
αλ ≈ 0.995 and aggressively small αµ, whereas “poor” steps
provide small αλ that result in conservative decreases (αµ

close to 1).

D.7 General Algorithm

The following is a high-level summary of the algorithm:

Determine initial interior point ξ0 = (γ0, λ0).
Determine initial barrier parameter µ0.

Loop in k to solve barrier subproblem µk for ξk:
1. Approximate Lagrange multipliers λk.
2. Define trust region Tk.
3. Find normal step to SQP approximation dn

k.
4. Find tangential step to SQP approximation dt

k.
5. Set dk = dn

k + dt
k.

6. If step meets merit function criteria:
a. Set γk+1 = γk + dk.
b. Maintain/increase trust region diameter ∆T .
c. Set µk+1 = αµkµk for some αµk ∈ (0, 1).

Else: decrease trust region diameter ∆T .
End loop.

Traditional IPMs adjust the merit function barrier param-
eter to guarantee that a given Newton iteration produces a
descent direction. The effect is to move towards stationarity,
but information about curvature of the original problem is
lost, and directions that decrease the merit function (rather
than the objective cost) dominate the algorithm. For non-
convex problems, the tendency is to move to non-optimal
stationary points.

The power in the algorithm proposed above is in the use
of trust regions in the SQP context and their relationship to
the merit function. The trust regions impose a constraint
that guarantees the accuracy of the SQP subproblem. At
each iteration, feasibility is improved by decreasing the merit
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function orthogonally to the constraints, while optimality is
improved by decreasing the merit function tangentially. If,
however, negative curvature is detected in a direction that
lies in the tangential subspace, it must be true that the cost
can be improved in that direction, regardless of the normal
component. By taking this combined step, we have thus al-
lowed for reduction of both merit function and objective cost.

V. Illustration: A Three Dimensional Fin

To illustrate our method, we consider a three-dimensional
thermal fin designed to effectively remove heat from a sur-
face. The fin, shown in Figure 1, consists of a vertical central
“post” and four horizontal “subfins”; its function is to con-
duct heat from a prescribed uniform flux “source” at the root,
Γroot, through the large-surface-area subfins to surrounding
fluid.

The fin is characterized by a two-component parameter
vector, or “input,” x = (x1, x2), where x1 = Bi (Biot number)
and x2 = t (thickness of subfins normalized with respect to
fin depth); x may take on any value in a specified design
space D ⊂ IR2. We consider the nondimensional problem,
and normalize all lengths with respect to the depth (taken to
be unity). The root is square, the hight is 4 times the depth,
and the length of subfins is L = 2.1.

We consider several outputs of interest. The first is the
output Troot ∈ IR, the average temperature of the fin root
normalized with respect to the prescribed heat flux (unity)
at that surface. This output relates directly to the cooling
efficiency of the fin — lower values of Troot imply better per-
formance. More importantly, if Troot exceeds a maximum
value, the fin may fail due to thermal stresses, melting, or
yielding. We consider the volume of the fin

V = 4 + 8Lt

another important metric. For a given density, the weight of
the fin will be reflected by this quantity. It is thus reason-
able to design a fin which minimizes this output. Finally, we
consider Bi itself as an output of interest, since it reflects the
power requirements of the design. In order to optimize the
design, we must be able to rapidly evaluate Troot(x), V (x),
and Bi for a large number of parameter values x ∈ D.

A. Problem Statement

The steady–state temperature distribution within the fin,
u( · ), (i.e. the forward problem) is governed by the elliptic
partial differential equation

−k ∇2u = 0,

where∇2 is the Laplacian operator and k is the material ther-
mal conductivity. We introduce a Neumann flux boundary
condition at the fin root

−(∇u · n̂) = −1 on Γroot,

to model the heat source, and a Robin boundary condition

−k(∇u · n̂) = Bi u on Γi
ext, i = 0, . . . ,4,

to model convective heat losses. Here Γi
ext is the part of

the boundary of Ωi exposed to the fluid; that is, ∪4
i=0Γ

i
ext =

∂Ω \ Γroot.
Solutions of the above system of equations yield the tem-

perature distribution u( · ;x) for any feasible choice of the
design parameter-vector x. The outputs of interest are: the
average root temperature (a compliant output), the fin vol-
ume, and the Biot number. They can be expressed, respec-
tively, as

Troot(x) = `root(u(x)) =
∫

Γroot

u(x),

V (x) = 4 + 8Lx2, and Bi(x) = x1.
Suppose our design calls for minimizing a combination of

material volume (reflected by V (x)) and power (reflected
by Bi(x)), weighted by a ratio of 1:85. Suppose further
that a maximum temperature constraint is Tmax = 0.85,
at which point the material fails. Since we expect Troot to
be the highest temperature (averaged over an area) on the
fin, and since this value must be positive, we require that
0 ≤ Troot ≤ 0.85. We also impose constraints on the param-
eters x ∈ [0.1, 0.9]× [0.2, 0.4]. The optimization problem can
therefore be stated as:

find x∗ = arg min
x∈IR2

{ V (x) + 85 Bi(x) }

subject to


0 ≤ T−root(x) (≤) T+

root(x) ≤ 0.85,

0.1 ≤ x1 ≤ 0.9,

0.2 ≤ x2 ≤ 0.4.

The statement above is deceptively simple and we will see in
the following section that traditional IPMs formulations will
not yield acceptable results.



k µk xµ
1 xµ

2 γpd Ψ
0 10 0.5 0.3 0.3398 53.371
1 1.309× 10−1 0.12 0.2956 0.3625 53.412
3 1.418× 10−2 0.2608 0.2946 0.6742 56.830
5 4.259× 10−1 0.2934 0.3371 0.0002 40.094
7 3.064× 10−2 0.2889 0.3583 0.2481 40.549
10 2.347× 10−5 0.3117 0.2432 0.9419 34.457
12 6.491× 10−10 0.3124 0.2402 0.95 34.405

TABLE I

Barrier iterations for pd IPMs formulation. Total

calculation time = 1.0 sec.

B. Computational Results

Before presenting results of our SQP IPMs formulation, we
solve the above problem with reduced-basis techniques in a
traditional primal-dual IPMs formulation. We call these “pd
results” (see [2], [3], [11] for primal-dual IPMs formulations).

First, we note that to accurately carry out the above cal-
culation we must first build a reduced-basis space WN that
appropriately represents the domain in question. We choose
here D = [0, 1]×[0.1, 0.5], for example, so that the constraints
on x lie in D. It should be noted that even if there were no
upper or lower bounds imposed on x in the original problem,
these would have to be appropriately introduced since the
reduced-basis approximation can only be trusted for points
in D. For the following calculations, we choose N = 40 ran-
dom points in D.

Table I shows the results of the calculation. A single New-
ton step is taken per homotopy level, and the merit function
is similarly defined to before (with the notable exception that
ν is chosen to guarantee gradient related Ψ given the Newton
step d, i.e. ∇γΨT d < 0). The quantity γpd represents the size
of the Newton step that is taken to guarantee feasibility, and
iterations are stopped when the KKT conditions are satisfied.
For a fair comparison with our approach, µk was determined
from expressions (15) and (16).

We see from the table that x̂ = (0.3124, 0.2402), and thus
neither of the parameter inequality constraints is active. At
the solution point T−root(x̂) = 0.84953 and T+

root(x̂) = 0.85,
so we observe that the upper temperature constraint is ac-
tive. More importantly, we note that by including the er-
ror estimation (and respective derivatives) in the problem
statement and solution, we have achieved rigorous feasibil-
ity for the true result. That is: we know that the true
value of Troot(x̂) lies in [0.84953; 0.85], and is thus feasible,
Tmin ≤ T−root(x̂) ≤ Troot(x̂) ≤ T+

root(x̂) = Tmax, but this did
not hinder the convergence of the approximate solution or
the significant computational savings of reduced-basis (the
entire “on-line” computation of this PDE optimization prob-
lem takes 1.0 seconds on a 1.60GHz laptop).

Unfortunately, this solution is not optimal. Though the

k µk xµ
1 xµ

2 γred Ψ
0 10 0.5245 0.3209 0.9760 143.82
1 1.448× 10−4 0.2311 0.3048 0.6732 28.656
3 3.113× 10−6 0.2054 0.3151 1.4362 26.526
5 4.205× 10−7(∗) 0.2803 0.3882 0.9207 34.038
7 5.758× 10−8 0.2779 0.3986 1.4111 34.000
10 1.106× 10−9 0.2776 0.3999 1.5512 33.989
12 9.023× 10−11 0.2775 0.4000 1.5741 33.987

TABLE II

Barrier iterations for SQP IPMs formulation. Total

calculation time = 1.7 sec. (∗) = detected non-positive

definite tangential Hessian.

Bi t T−root T+
root V JN

pd 0.312 0.240 0.8495 0.85 7.844 34.41
SQP 0.278 0.400 0.8490 0.85 10.40 33.99

TABLE III

Comparison of results at pd and SQP solutions.

point satisfies the KKT conditions, this is only a necessary
condition for optimality for the current nonconvex problem.
We can check the optimality of the solution by considering
the Hessian of the cost in the null-space of the active con-
straints. Here we can simply check the following: consider
an arbitrarily small δx that will adhere to (approximately
active) feasibility

T+(x̂) + T+′(x̂)T
δx = Tmax

(by staying in the null-space of T+′(x̂)), and consider the cost
difference

JN (x̂ + δx)− J(x̂).

Here we have T+′(x̂) = (−1.0758,−0.2009)T , with null-space
δx = (−0.1835, 0.9830). The upper-bound for the tempera-
ture at the point (x̂ + 10−5δx) is T+(x̂ + 10−5δx) = 0.8499
(and therefore the true temperature is certainly feasible). But
JN (x̂+10−5δx)−JN (x̂) = −5.5560× 10−7 < 0: the solution
x̂ cannot be optimal.

Table II presents the results obtained from the SQP frame-
work. Note that there was a modest increase in computa-
tional time to 1.7 seconds on the same machine, mainly due
to the extra amount of bookkeeping required (since this is in-
dependent of the size of the PDE system, we expect a lesser
increase for larger problems). The results are based on single
SQP step for each homotopy level, analogously to the previ-
ous pd calculations. We note that the general behavior of the
method is similar, but at iteration 5 we detect a non-positive
definite tangential Hessian. At this critical point we are able
to move away from stationary but non-optimal points, and
the final result can be shown to be optimal.



We finally point out Table III for a comparison of the re-
sults. We see that, as expected, the SQP approach produces a
lower cost at its solution than the pd approach. It is interest-
ing to note, however, that the optimum fin has a significantly
higher volume — offset by the lower Biot number in the cost.
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