
 
 

  
Abstract—This paper  presents the layout optimization of 

passive constrained layer  damping (PCLD) treatment for  
vibration control of cylindr ical shells under  a broadband force 
excitation. The equations governing the vibration responses are 
der ived using the energy approach and assumed-mode method. 
These equations provided relationship between the integrated 
displacement response over  the whole structural volume, i.e. the 
structural volume displacement (SVD), of a cylindr ical shell to 
structural parameters of base structure and multiple PCLD 
patches, Genetic algor ithms (GAs) based penalty function method 
is employed to find the optimal layout of rectangular  PCLD 
patches with minimize the maximum displacement response of 
PCLD-treated cylindr ical shells. Optimization solutions of PCLD 
patches’  locations and shape are obtained under the constraint of 
total amount of PCLD in terms of percentage added weight to the 
base structure.  Examination of the optimal layouts reveals that 
the patches tend to increase their  coverage in the axial direction 
and distr ibute over  the whole sur face of the cylindr ical shell for  
optimal control of the structural volume displacement. 
 

Index Terms—Vibration analysis, nonlinear optimization, 
cylindr ical shells, constrained layer  damping. 
 

I. INTRODUCTION 

onstrained layer damping (CLD) treatment has been 
regarded as an effective way to suppress vibrations of 
and sound radiation from various structures. Literature 

survey shows that the pioneer work in the study of CLD 
treatment could be traced back to 1950’s when DiTaranto [1] 
and Mead and Markus [2] developed the theoretical models 
respectively for the axial and bending vibrations of sandwich 
beams with viscoelastic core. After that, many researchers 
have reported different formulations and techniques in this 
field, e.g., Douglas and Yang [3], and Rao [4], Yan and 
Dowell [5], and Rao and He [6]. The problem of computing 
damped natural frequencies and loss factors is explicitly 
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solved [7,8] for both beams and plates when simply support 
end conditions are assumed. Analytical-numerical procedures 
are proposed to solve the problem when different boundary 
conditions are assumed [9]. The finite element procedure has 
also been adopted on the basis of design consideration 
[10~12]. 

Most of these early works dealt with full coverage CLD 
treatments that are evidently not practical in application. In 
partially covered viscoelastically damped sandwich beams or 
plates with constrained type of treatment, only a portion of the 
base structure is covered with CLD. Nokes and Nelson [13] 
were among the earliest investigators to provide the solution to 
the problem of a partially covered sandwich beam. And a more 
thorough analytical study was carried out by Lall et al. Who 
solved, by using Rayleigh-Ritz approach, the eigenvalue 
problem for a beam [14] and for a plate [15] with a single 
damping patch. Kung & Singh [16] presented a refined method 
for analyzing the modal damping of beams with multiple 
constrained-layer viscoelastic patches.  

In addition to all above-described works on PCLD 
treatments for vibration suppression of beams and plates, the 
study of vibration and damping in shells with added damping 
treatment has also been of interest to many researchers. Pan 
[17] studied the axisymmetrical vibration of a finite length 
cylindrical shell with a viscoelastic core. Jones & Salerno [18] 
investigated the effect of damping on the forced 
axisymmetrical vibration of cylindrical shells with a 
viscoelastic core. Alam & Asnani [19] carried out the vibration 
and damping analysis of a general multilayered cylindrical 
shell consisting of an arbitrary number of elastic and 
viscoelastic layers with simply supported end conditions. 
Ramesh & Ganesan [20] used a finite element method to solve 
for a cylinder-absorber system with thin axial strips which 
bonded to the cylinder with a thin viscoelastic layer. Liu et al 
[21] presented a finite element method for vibration control 
simulation of laminated composite structures with integrated 
piezoelectronics. Hu and Huang [22] developed a generic 
theory for the CLD treated shell with full coverage. Recently, 
Chen and Huang investigated the damping effects of CLD 
treatment of strip type along longitudinal direction [23] and 
along circumference [24], respectively, on the forced response 
of a cylindrical shell. A thin shell theory in conjunction with 
the Donnell-Mushtari-Vlasov assumptions is employed to 
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yield their mathematical model. Employing the assumed-mode 
method, the discretized equations of motion in terms of shell 
transverse modal coordinates are derived. Their parametric 
studies showed that thicker or stiffer CL warrants better 
damping, and thicker VEM does not always give better 
damping than thinner ones when CL exceeds a certain 
thickness. 

These theoretical works and parametric studies on PCLD 
treatments for vibration and noise suppression really assist 
design decision. However, studies based on the optimization 
are very few, particularly, in the optimum design of partial 
PCLD treatment of cylindrical shell, there has been no existing 
literature to the author's best knowledge. Marcelin et al [25] 
considered both partial covering and optimization with design 
variables being the dimensions and the locations of all the 
viscoelastic layers. Special beam finite elements were used to 
represent the behavior of the sandwich parts of the beam. Both 
theory and experiment [26] show that for stiff viscoelastic 
layers the loss factor is greater for partial coverage than for 
full coverage. Chen & Huang [27] presented a study on 
optimal placement of PCLD treatment for vibration 
suppression of plates. In their optimization, the structural 
damping plays the main performance index and the 
frequencies’  shift and CLD thickness play as penalty functions. 
Topographical and complex optimal solution techniques were 
employed in searching for the optimal value of CLD treatment. 

The study presented in this paper attempts to arrive at an 
optimum design of partial PCLD treatment of cylindrical shell 
by finding an optimal layout of multiple rectangular PCLD 
patches of fixed thickness and material properties to minimize 
the forced vibration response under a broadband transverse 
excitation. The equations relating the integrated displacement 
response over the whole structural volume, i.e., the structural 
volume displacement (SVD), of a cylindrical shell to structural 
parameters of base structure and multiple PCLD patches are 
derived using energy based approach and assumed-mode 
method. Genetic algorithms (GAs) based penalty function 
method [28,29] is employed to find the optimal layout of 
rectangular PCLD patches with aim to minimize the SVD of 
PCLD-treated cylindrical shell. Optimization solutions of 
PCLD patches’  locations and shapes are obtained under the 
constraint of total amount of PCLD in terms of the percentage 
of the added weight to the base structure. Effects of the total 
number of added weight due to PCLD treatment are also 
studied, towards maximum vibration attenuation using 
minimum amount of PCLD patches.  

II. ANALYTICAL MODEL OF CYLINDER WITH 
MULTIPLE PCLD PATCHES 

A. Kinematic Relation 

A cylinder treated with multiple PCLD patches is modeled 
as a composite cylindrical shell consisting of 3 layers, namely 
the base, constraining and viscoelastic layers, each referred to 
by using the subscripts/superscripts s, c and v respectively.  A 
general configuration for a simply-supported cylinder treated 

with a PCLD patch p is shown in Fig. 1, with labeled design 
parameters and design variables.  The layers have different 
thickness denoted by hi, where i = s, c or v.  Similarly, Yi is the 
elastic modulus of the ith layer.  Then, the mathematical model 
for the cylinder is derived based on classical procedure 
[22,23]. Under the Donnell-Mushtari-Vlasov assumptions 
[30], the stress-strain relationship in cylindrical shell and in 
constraining layer are described by 
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Fig. 1. A simply supported cylinder with one partial PCLD 
patch 

 
As the cylinder is approximated by a thin shell, the 

displacements in x and θ directions are assumed to vary 
linearly through the shell thickness, and the displacement in 
the transverse direction is independent of z.  Thus, the strain-
displacement relations is given by 
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For the viscoelastic layer, the stress relation is given by [23] 
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and its strain-displacement relation is given by 
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The deformation pattern of three layers in axial direction is 
shown in Fig. 2. Taking into consideration the Love 



 
 

simplifications, the assumption of no-slip condition between 

layers and z
i
z uu = , where i = s, c, v, yields 
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Fig. 2. The deformation pattern of the layers in x direction 

for cylindrical shell with PCLD treatment 
 

B. Energy Expressions 

The kinetic energies of the layers with neglected in-plane 
inertia are 
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where p = 1, 2,… , np and np is the number of PCLD patches.  
The strain energies are 
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Assuming an external transverse load of f (x, t) applied on 

the cylinder surface, the work done by this force can be 
expressed as 
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C. Equation of Motion 

The dynamic response of the PCLD treated cylinder excited 
by the external transverse load can be calculated by 
substituting the kinetic and strain energies into Lagrange’s 
equation [30] 
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where qi represents the ith generalized coordinate and Qi is the 
ith generalized force, T and U are respectively the kinetic and 
strain energy of the whole system expressed by 
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For a cylinder, the displacements can be approximated by 
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Here W, Ui and Vi (i=s, c) are the assumed displacement 
shapes and ζ, ηi and ξI are the generalized coordinates of the 
plate response in cylinder radial, axial and circumferential 
directions respectively.  
 

D. Solutions of Displacement Response 

In the case of simply supported ends, the mode shape 
functions are as follows 
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Using above shape functions and substituting equations (6~8) 
into Lagrange’s equation (9) yield the equation of motion of 
the cylinder in the form 

[ ]{ } [ ]{ } { }FqKqM =+&&                      (13) 

where [ ] [ ]cvs MMMM ++= , the mass matrix, and 

[ ] [ ]cvs KKKK ++= , the stiffness matrix of the PCLD-

treated cylinder. Vector { } [ ]TTcTcTsTsT qqqqqq ξηξηζ ,,,,=  is a 

column vector containing the modal coefficients and { F}  is the 
vector of generalized force, of which the first m×n elements 
can be written as 
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All other are zeros since only a transverse load applied on 
the cylinder surface. Further assuming this transverse load is a 
unit time-harmonic point force at the location x*, θ*, the (i,j)th 
modal force is 

tj
ij

tj
ijsij eFexWrF ωωθ 0

** ),( =−=                 (15) 

where ω is the circlar frequency of the transverse force. Under 
the excitation of this time-harmonic force, the system equation 
can be written as 

[ ]{ } { }00
2 FqKM =+−ω                    (16) 

Solving this system equation yields the solution of generalized 
displacement at circular frequency, ω. Multiplying them by the 
assumed modes for the structure, the physical displacement 
response at any location, (θ, x), of the cylinder can be 
calculated.  

III. PCLD LAYOUT OPTIMIZATION 

A. Objective Function 

A general nonlinear optimization problem can be defined as 
follows [31]. 

Find an n-vector of design variables to minimize an 
objective function 

( ) ( )nxxxfxf ,,, 21 Λρ =                      (16) 

subjected to the equality and inequality constraints 

( ) ptojxh j 10 ==ρ
                 (17) 

( ) qtoixgi 10 =≤ρ
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and simple bounds on the design variables 
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Since our objective is to reduce the vibration response of the 
cylinder, the out-of-plane displacement complex amplitude is 
the quality of interest. Obviously, this quality is location-
dependent. A structural volume displacement (SVD) is 
therefore defined as the objective function to be minimized as 
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where ( )xw ,θ  is the module of out-of-plane displacement 

complex amplitude at cylinder surface location (θ, x). This 
SVD is a function of the layout of the PCLD patches and the 
total amount of PCLD material used. Obviously, minimizing 
the SVD would lead to significant reductions of the vibrational 
energy of whole cylinder. 

Furthermore, as the SVD depends upon the frequency, an 
integral criterion over an appropriate frequency is required for 
the case of broadband excitation. A solution that meets 
technical interest is 
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Here ωmin and ωmax and respectively the minimum and 
maximum frequencies of interest. In the optimization that 
follows, these two parameters are set 0Hz and 3kHz  

B. Variables and Constraints 

Assuming that only rectangular patches are used, the layout 
of one PCLD patch can be completely defined by four design 
variables, namely the axial location, angular location, axial 
length and angular length, as shown in Fig. 3. For the 
convenience of fabrication, it is also assumed that sizes of all 
patches are same. Meanwhile, all the PCLD patches are kept 
same thickness and Young’s modulus for constraining layer 
and viscoelastic layer, respectively. In this circumstance, the 
number of variables of optimization for the problem, i.e., the 
design parameters to be optimized, are 4×np provided that np 
patches are used for the treatment. 

In real-life vibration control design, the added weight to the 
base structure owing to CLD treatment is always restricted to a 
small amount of percentage of the structure. Thus, in the 
layout optimization, the total amount of PCLD material is 
fixed in each computation run. The problem is then 
constrained to ensure physical feasibility in which the patches 
are bounded within the surface of the cylinder and do not 
overlap each other.  

C. Optimization Strategy 

Several optimization algorithms/methods are available to 
solve the problem defined by expressions (16)~(19). Most 
algorithms are designed so far to find a local optimum. One 
example is the sequential quadratic programming, SQP, 
algorithm which has shown to be robust and efficient for most 
optimization problems [31]. However, many optimization 
problems have several local optima and it is often of interest to 
find the best optimum in the whole feasible design domain, 
i.e., the global optimum. Since no mathematical conditions for 
global optimality exist, a global optimum is usually more 
difficult and time-consuming to find than a local optimum. 
Some methods have, nevertheless, been developed to find an 
approximation of the global optimum without scanning the 
whole feasible design domain. The genetic algorithm, or 
shortly GA, is such a method that is developed to search for 
the approximation of global optimum. The GA has been used 
previously by a lot of researchers to solve various nonlinear 
optimization problems [28,29]. Here the GA based penalty 
function method is also employed for the PCLD layout 
optimization. 

 

Fig. 3. The four variables to be optimized: axial location, 
angular location, axial length and angular length 



 
 

With above definition of the bonds on the design variables, 
the optimization problem leads to a large design domain. Thus, 
direct application of genetic algorithms may not yield good 
results. In order to obtain a solution closest to global optimum, 
the design space have to be further constrained. Therefore, 
three different approaches are used to restrict the number of 
design variables. In the first approach, the surface of the 
cylinder is divided into three segments along axial direction 
such that the patches are evenly distributed in each segment.  
The approach 2 is similar to approach 1 except that the 
cylinder is divided into two segments. In approach 3, there is 
no cylinder dividing, but the axial length and angular length of 
each PCLD patch are fixed. So the axial location and the 
angular location constitute two design variables of each PCLD 
patch. 

IV. RESULTS AND DISCUSSION 

The geometric and material properties of the cylinder to be 
controlled are shown in Table 1.  The length and radius of the 
cylinder are respectively 0.35 m and 0.1 m. The loss factor of 
viscoelastic material, ηv, and also its shear modulus, Gv, are 
assumed invariant with frequency. For comparison purpose, a 
small structural damping is introduced in the form of a 
complex Elastic Modulus for the base shell and the 
constraining layers: 

)1(
~ ηiEE +=  

where η is the structural loss factor.  A η value of 0.0001 is 
used. With this setup, genetic algorithms is applied to the 
optimization problem for each of the approaches outlined.  For 
each set of parameters, defined by the total amount of PCLD 
material, the number of patches and the approach used, 5 runs 
are executed to arrive at the layout with the lowest SVD of the 
cylinder. 
 
Table 1 Material properties used in analysis of cylindrical shell 

PROPERTIES SHELL 
 

CL  
(PZT-5H) 

VE 
MATERIAL 

Elastic Modulus, 

E
~

(GPa) 

70(1 + 
0.0001i) 

49(1 + 
0.0001i) − 

Density,  
ρ (kg/m3) 

2.71 × 103 7.50 × 103 1.00 × 103 

Thickness, 
 h (m) 

0.002 0.0002 0.0002 

Shear Modulus,  
G (MPa) − − 

0.896(1 + 
0.5i) 

A unit harmonic transverse force is applied at the middle 
cylinder, i.e, θ*=0 and x*=L/2, and the excitation frequency is 
from 0 to 3.5kHz. Before performing the optimization, the 
analytical model and associated solution procedure are 
validated by comparing the natural frequencies of bare 
cylinder with the theoretical predictions given in [27]. For 
cylinder with PCLD treatment, the frequency response at the 
force location is compared to results obtained a multiple 
physics finite element code. The cylinder with single PCLD 
patch treatment is considered. Good agreements between the 
values are observed for both cases. 

A. Comparison of Three Approaches 

For each of above-described optimization approaches, the 
optimal layouts is obtained for a fixed number of patches and a 
fixed total amount of PCLD material equivalent to an added 
weight of 2.4%. It is shown that approach 1 is the best 
approach since the optimal layouts obtained consistently give 
the largest reduction in SVD.  With approach 3, although it 
gives an optimal layout with largest reduction in SVD using 
the least number of patches, regularity in the reduction 
achieved cannot be easily achieved.  As for approach 2, the 
reduction achieved is consistently lower than approach 3 and 
approach 1.  This result thus indicates that a well-behaved 
problem must be suitably constrained to reduce the possible 
design space. But the constraints imposed must not preclude 
the actual optimal solution. The layouts obtained using 
approach 1 are shown in Fig. 4 for the cases of 3, 6, 9 and 12 
patches for PCLD treatment.  

Nevertheless, three approaches show similar trends in the 
results in which the structural volume displacement decreases 
with diminishing reduction when the number of patches 
increases. Beyond a certain number of patches, further 
reduction of SVD becomes negligible.  The fact that the trend 
is not dependent on the approach used implies that this is an 
intrinsic property of the system.   

 
 

 

Fig. 4. PCLD patches layout obtained using 3, 6, 9 and 12 
patches using approach 1 

B. Attributes of Optimal Layout 

Optimal layouts with 12 patches obtained using three 
approaches are examined to determine the attributes of an 
optimal layout.  As shown in Fig. 5, in the layout obtained 
using approach 1 which gives the largest reduction, the patches 
tend to increase coverage in the axial direction rather than the 
angular direction. On the other hand, in approach 2 in which 
the patches cannot maximize its coverage in axial direction 
due to the constraints imposed, lower reduction in SVD is 
observed.  In addition, approach 3, in which the patches' 
positions are not constrained, also arrived at similar layout 
obtained using approach 1. This shows that maximization of 
coverage in the axial direction is an attribute of an optimal 
layout since it is independent of the approach used.  



 
 

Furthermore, in all three layouts shown in Fig. 5, the patches 
tend to distribute over the whole surface of the cylinder. This 
is thus another attribute of an optimal layout. 

 

Fig. 5. Comparison of optimal layout for configuration using 
12 patches  

 

Fig. 6. PCLD patches layout approximated by the spatially 
distributed cosine shaped layout 

 

Fig. 7. Frequency response of the layouts obtained using (i) 
approximation of the spatially distributed cosine shaped layout 

and (ii) approach 1 

Based on the above observations, a general layout shown in 
Fig. 6 is proposed for a configuration with 12 patches.  It 
resembles the spatially distributed cosine shaped sensor layout 
developed in [32]. The reduction of SVD obtained based on 
this general layout is 20.0 dB.  This reduction is 2.4 dB more 

than reduction resulting from the best layout obtained based on 
approach 1. Frequency responses of the two layouts  (Fig. 7) 
demonstrated similar response. 

C. Effects of the Patches' Shape 

To determine the influence of the patches' shape on the SVD 
reduction achieved and since only rectangular patches are 
used, a dimensionless parameter, ratio of axial length to 
angular length, is defined to characterize the shape.  The 
results, as shown in Fig. 8, indicate that the reduction of the 
SVD decreases when the ratio is decreased.  This is consistent 
with the previous observation where we found that in an 
optimal layout, the patches tend to increase coverage in the 
axial direction rather than the angular direction.  Thus, patches 
with large ratio of axial length to the angular length should be 
used in the layout design. 

 
Fig. 8. Variation of SVD with the ratio of axial length to 

angular length of the patches 
 

D. Effects of Total Amount of PCLD Used 

 

Fig. 9. Effects of increasing the total amount of PCLD patches 
used 

The result is shown in Fig. 9 where the percentage shown is 
the percentage of added weight to the base cylinder. It can be 
seen that the degree of vibration attenuation achieved increases 
as the total amount of PCLD materials used. The optimal 
numbers of patches are indicated by the dashed line in the 

  Approach 1          Approach 2         Approach 3 

Approach 2 Approach 1 



 
 

figure. The results imply that greater structural volume 
displacement reduction can be achieved when the PCLD 
patches are spread out over the whole surface of the cylinder. 
It also indicates that for all the cases, there is an optimal patch 
size of which any further reduction will lead to greater 
difficulty in obtaining a better optimal solution.   

 

V. CONCLUSION 

The optimization of the layout of PCLD patches for 
structural volume displacement (SVD) reduction of a simply-
supported cylinder excited by a broadband transverse fore is 
presented in this paper. An analytical model is developed 
using the energy method to relate the SVD of cylinder and 
geometric and physical parameters of both the base cylindrical 
shell and all PCLD patches for the treatment. GA-based 
penalty function method is employed to optimize PCLD 
patches’  locations and shapes with the aim of minimizing the 
structural displacement response under given constraint of 
total amount of PCLD used. The optimal analyses indicate that 
for a fixed number of patches and amount of PCLD material, 
there are two attributes of an optimal layout. First, the patches 
tend to increase their coverage in the axial direction; and 
second, the patches tend to distribute over the whole surface of 
the cylinder. Other optimal analysis findings include that 
rectangular patches with large ratio of axial length to angular 
length produce better damping effects, and the degree of 
vibration attenuation of the cylinder with PCLD treatment 
significantly increases with the increase of the total amount of 
PCLD materials.  
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