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Abstract— Mathematical program with equilibrium con-
straints (MPEC) has extensive applications in practical ar-
eas such as traffic control, engineering design, and economic
modeling. Some generalized stationary points of MPEC are
studied to better describe the limiting points produced by in-
terior point methods for MPEC. A primal-dual interior point
method is then proposed, which solves a sequence of relaxed
barrier problems derived from MPEC. Global convergence re-
sults are deduced without assuming strict complementarity or
linear independence constraint qualification. Under very gen-
eral assumptions, the algorithm can always find some point
with strong or weak stationarity. In particular, it is shown
that every limiting point of the generated sequence is a piece-
wise stationary point of MPEC if the penalty parameter of the
merit function is bounded. Otherwise, a certain point with
weak stationarity can be obtained. Preliminary numerical re-
sults are satisfactory, which include a case analyzed by Leyffer
for which the penalty interior point algorithm failed to find a
stationary solution.

Index Terms— Equilibrium constraints, global convergence,
interior point methods, strict complementarity, variational in-
equality problems

I. INTRODUCTION

Consider the mathematical program with equilibrium
constraints (MPEC):

min f(x, y) (1)
s.t. c(x, y) ≤ 0, (2)

y ∈ S(x), (3)

where S(x) is the solution set of a parametric variational
inequality problem (PVI):

y ∈ S(x) ⇐⇒
{
g(x, y) ≤ 0,
F (x, y)�(z − y) ≥ 0, ∀z : g(x, z) ≤ 0,

(4)
f : �n+m → �, c : �n+m → �p, g : �n+m → ��, and
F : �n+m → �m. Throughout the paper, we suppose
functions f , c and F are twice continuously differentiable
and function g is triply continuously differentiable. We
note that if � = m and g(x, y) = −y, then the PVI is re-
duced to a parametric nonlinear complementarity problem

Manuscript received October 28, 2002. This work was supported in
part by Singapore-MIT Alliance and Grant RP314000-026/028/042-
112 of National University of Singapore.

Xinwei Liu is with Singapore-MIT Alliance, National University of
Singapore, Republic of Singapore (e-mail: smaliuxw@nus.edu.sg).

Jie Sun is with the School of Business and Singapore-MIT Alliance,
National University of Singapore, Republic of Singapore (phone:
6874-6448; fax: 6779-2621; e-mail: bizsunj@nus.edu.sg).

and in this case MPEC is specifically called the mathemat-
ical program with complementarity constraints (MPCC).

MPEC includes the bilevel programming problem (e.g.,
[9], [34]) as its special case and has extensive applica-
tions in practical areas such as traffic control, engineer-
ing design, and economic modeling, see [2], [18], [25], [26].
Since there are variational inequalities in the constraints of
the problem, the feasible region may be nonconvex, non-
smooth, disconnected, and non-closed even if all involved
functions have very good analytical properties (see [25]).
As such, MPEC is known to be a class of very difficult
optimization problems and can not be solved directly by
the methods for standard nonlinear programming [4], [6],
[7].

There have been many papers dealing with MPEC in
recent years. Some of them considered the existence and
stationarity of the solution of MPEC, for example [12],
[17], [19], [25], [27], [29], [33], while some other papers
proposed algorithms for MPEC, see [8], [11], [13], [14],
[20], [25], [26], [28], [30], [32]. Upon the success of inte-
rior point methods for linear programming, the interior
point approach has been extended to solve nonlinear pro-
gramming (NLP) problems and MPEC. The penalty inte-
rior point algorithm (PIPA) developed by Luo, Pang and
Ralph [25] is the first interior point method for MPEC. Its
global convergence requires the linear independence con-
straint qualification for MPEC (MPEC-LICQ) and strict
complementarity. However, it was found very recently by
Leyffer [21] that some conditions required by PIPA for con-
vergence may collapse at some iterates. As a result, PIPA
may fail to find a stationary point for a very simple MPCC.
More recently, Benson, Shanno and Vanderbei [5] applied
an interior-point method for NLP to MPEC, the possible
difficulties in convergence were identified and some heuris-
tics for implementation were suggested to overcome those
difficulties.

In this paper we present a new interior point method
for MPEC. The method, together with its convergence
theory, is an extension of a method [22], [24] developed
by the authors for inequality-constrained NLP. Our orig-
inal motivation for that method was to overcome some
convergence difficulties arising in applying interior point
methods to NLP. In the context of MPEC, we first study
the relations between MPEC and its NLP relaxation. For
any given relaxation parameter θ > 0, the method solves
a corresponding barrier problem by an inner loop algo-
rithm. The barrier parameter is a fixed fraction of θ, so
it is decreased simultaneously with θ at every outer loop



iteration. The convergence properties of our method are
as follows.

1) Global convergence results are derived without re-
quiring the MPEC-LICQ and the strict complemen-
tarity conditions.

2) Under very general conditions, the algorithm can al-
ways find some point with strong or weak station-
arity. In particular, it is shown that every limiting
point of the generated sequence is a piecewise sta-
tionary point of the MPEC (which is also the B-
stationary point if MPEC-LICQ holds at the point),
provided that the penalty parameter of the merit
function is bounded. Otherwise, one of the limit-
ing points could be a singular stationary point, an
infeasible stationary point, or a weak piecewise sta-
tionary point (All of the related definitions will be
given later).

3) The numerical results are satisfactory, which include
the solution of the example given by Leyffer [21] and
an example for which the MPEC-LICQ does not hold
at the optimal point.

The solution of the relaxed barrier problem plays an im-
portant role in our method. The search direction is com-
puted in two-steps. First an auxiliary step is computed
through a minimization problem. Then the auxiliary step
is used in a modified primal-dual Newton equation to cal-
culate the search direction. In addition, the barrier func-
tion with �2-penalty is selected as the merit function where
the penalty parameter is adjusted adaptively. Different
steplengths for the primal and dual updates are used while
some special cares are taken to avoid that the slack vari-
ables are reduced too fast.

The paper is organized as follows. In Section II, we de-
fine some weak stationary points of MPEC that will be
used in the subsequent sections. In Section III, we de-
scribe a relaxation scheme that paves a way of solving
MPEC by interior point methods. It is shown that, under
certain conditions, the KKT points of the relaxed prob-
lems converge to a B-stationary point of the MPEC as
the relaxation parameter tends to zero. In Section IV, we
present a modified primal-dual interior point method and
derive convergence results for the relaxed barrier problem.
In Section V, we describe our algorithm for MPEC and
give its global convergence results. In Section VI, we re-
port our preliminary numerical results on a set of problems
in the literature. We also present examples, in which the
algorithm converges to weak stationary points.

Some notations ought to be clarified. All vectors are
column vectors except that for simplicity we write (x, y)
to stand for the column vector [x� y�]�. A vector with
supscript k is related to the k-th iterate; its subscript j
means its j-th component. All matrices related to iterate
k are indexed by subscript k. The norm ‖·‖ represents the
Euclidean norm. ∇gi(x, y) = (∇xgi(x, y),∇ygi(x, y)), i =
1, ..., �, and ∇g(x, y) = [∇g1(x, y) · · · ∇g�(x, y)],
∇gJ (x, y) = [∇gj(x, y)|j ∈ J ], where J is an index
set. For functions involve x, y and other vectors such as
H(x, y, λ) used below, we use the notations ∇H(x, y, λ) =

(∇xH(x, y, λ),∇yH(x, y, λ)) and ∇EH(x, y, λ) =
(∇xH(x, y, λ),∇yH(x, y, λ),∇λH(x, y, λ)) (“E” for
“entire”). For any vector v, diag (v) stands for the
diagonal matrix whose diagonal is the vector v.

We often have to deal with different index sets. Here is a
partial list of them, in which λj is the multiplier associated
with gj.

C0(x, y) = {j ∈ {1, · · · , p}|cj(x, y) = 0}
G0(x, y) = {j ∈ {1, · · · , �}|gj(x, y) = 0}
G0(λ) = {j ∈ {1, · · · , �}|λj = 0}

G00(x, y, λ) = {j ∈ {1, · · · , �}|gj(x, y) = 0, λj = 0}
G0+(x, y, λ) = {j ∈ {1, · · · , �}|gj(x, y) = 0, λj > 0}

Finally, we denote the feasible set of the MPEC by F and
by strict complementarity we mean that G00(x, y, λ) = ∅.

II. GENERALIZED STATIONARY PROPERTIES

We make the following blanket assumption throughout
this paper.

Assumption II.1:
(1) For every (x, y) ∈ F , the vectors {∇ygj(x, y)| j ∈

G0(x, y)} are linearly independent.
(2) For all x ∈ {x ∈ �n|c(x, y) ≤ 0 for some y ∈ �m}

and j = 1, · · · , �, gj(x, ·) is convex.
It should be noted that Assumption II.1 always holds in

the important special case of MPCC. Under Assumption
II.1, y ∈ S(x) if and only if there is a unique λ ∈ �� such
that {

F (x, y) +
∑�

j=1 λj∇ygj(x, y) = 0,
λ ≥ 0, g(x, y) ≤ 0, λ ◦ g(x, y) = 0

(5)

where ◦ denotes the Hadamard product. In general we
designate the set of λ that satisfies (5) as M(x, y). It is
easy to show that if Assumption II.1 holds and if (x, y) is
bounded, then λ is also bounded and problem (1)-(3) is
equivalent to

min f(x, y) (6)
s.t. c(x, y) ≤ 0, (7)

H(x, y, λ) = 0, (8)
λ ≥ 0, g(x, y) ≤ 0, λ ◦ g(x, y) = 0, (9)

where H(x, y, λ) = F (x, y)+
∑�

j=1 λj∇ygj(x, y). However,
Assumption II.1 does not imply the strict complementar-
ity.

The following definition is well known.
Definition II.2: A point (x, y) ∈ F is a B-stationary

point of MPEC if

∇xf(x, y)�dx + ∇yf(x, y)�dy ≥ 0, (10)

for all (dx, dy) ∈ T (x, y;F), where T (x, y;F) is the tan-
gent cone of F at (x, y).

It is generally difficult to give an explicit expression
of T (x, y;F). Instead, the piecewise stationary point of
MPEC, defined below, is often used in algorithmic design.



Definition II.3: A point (x, y) ∈ F is a piecewise sta-
tionary point of MPEC, if for λ ∈ M(x, y), and for each
index set J ⊆ G00(x, y, λ), there exist multipliers ζ ∈ �p,
η ∈ �� and π ∈ �m such that

∇f + ∇cζ + ∇gη + ∇Hπ = 0, (11)
ζ�c = 0, ζ ≥ 0, (12)
π�∇ygj ≥ 0, for j ∈ J , (13)
π�∇ygj = 0, for j ∈ G0+, (14)
ηj ≥ 0, for j ∈ G00\J , (15)
ηj = 0, for j /∈ G0, (16)

where we omit the variables (x, y) and (x, y, λ) for simplic-
ity.

Definition II.4: For any (x, y) ∈ F and λ ∈M(x, y), the
MPEC-LICQ holds at (x, y) if(

∇H ∇cC0 ∇gG0 0
∇λH 0 0 [ej , j ∈ G0(λ)]

)
(17)

has full column rank, where ej is the j-th coordinate vec-
tor.

Then we have the next result.
Proposition II.5: If MPEC-LICQ holds at (x∗, y∗) ∈ F ,

then (x∗, y∗) is a B-stationary point of MPEC if and only
if it is a piecewise stationary point of MPEC.

This proposition can be derived in a similar way to the
derivation of Theorem 3.3.4 in [25], where the result has
been proved under a more general setting. Similar results
are reported in [29], [31].

To describe convergence results of our algorithm, we
need various stationary properties in weaker sense.

Definition II.6:
(1) A point (x, y) ∈ F is called a weak piecewise sta-

tionary point of MPEC if there exist ζ ∈ �p, η ∈ ��, and
π ∈ �m such that (11)-(12), (14), and (16) hold.

(2) A point (x, y) ∈ F is called a singular stationary
point of MPEC if the MPEC-LICQ does not hold at (x, y).

(3) A point (x, y) is called an infeasible stationary point
of MPEC if (x, y) /∈ F , and for some λ ∈ �� and some
scalar θ > 0, (x, y, λ) is a stationary point of the problem

min(x,y,λ) {‖c+‖2+‖H‖2+‖g+‖2+‖λ−‖2+‖(λ◦g+θe)−‖2},
(18)

that is, (x, y, λ) satisfies the following equations

∇c c+ + ∇H H + ∇g g+ + ∇g Λ(λ ◦ g + θe)− = 0,(19)
∇yg

�H + λ− + diag (g)(λ ◦ g + θe)− = 0,(20)

where Λ = diag (λ), H = H(x, y, λ), c+ = max{c(x, y), 0},
g+ = max{g(x, y), 0}, λ− = min{λ, 0}, e = (1, · · · , 1) and
(λ ◦ g + θe)− = min{λ ◦ g(x, y) + θe, 0}.

The optimal value of (18) is an �2 measure of the total
infeasibility of problem (6)-(9). If (x, y, λ) is a feasible
point, then for any θ ≥ 0, this measure is zero.

In general, a weak piecewise stationary point may not
be a piecewise stationary point since (13) or (15) may not
hold. However, it is easy to see that, under strict com-
plementarity, the two concepts are identical since (13) and
(15) are vacuous.

III. A RELAXATION SCHEME FOR MPEC
Suppose θ > 0 is a parameter. By θ-relaxation of MPEC

we mean the following nonlinear program (NLP(θ))

min f(x, y) (21)
s.t. c(x, y) ≤ 0, (22)

H(x, y, λ) = 0, (23)
λ ≥ 0, g(x, y) ≤ 0, −λ ◦ g(x, y) ≤ θe, (24)

where the complementarity constraints in the reformulated
MPEC (6)-(9) are relaxed by inequalities.

It is obvious that if θ = 0 then (21)-(24) reduces to (6)-
(9). The following result shows the relationship between
the MPEC-LICQ and the LICQ for the θ-relaxation in the
usual sense of nonlinear programming (LICQ for NLP(θ)
for short).

Proposition III.1: For (x∗, y∗) ∈ F and λ∗ ∈M(x∗, y∗),
if the MPEC-LICQ holds at (x∗, y∗), then there exists a
neighborhood N of (x∗, y∗, λ∗) so that for every sufficiently
small θ > 0, the LICQ for NLP(θ) holds for every feasible
point (x̄, ȳ, λ̄) ∈ N .

To simplify the notation, we set

G̃(x, y, λ) = (c(x, y), g(x, y), −λ) and
Gθ(x, y, λ) = (G̃(x, y, λ), −λ ◦ g(x, y) − θe). (25)

Then

∇Gθ(x, y, λ) = [∇c(x, y) ∇g(x, y) 0 − [∇g(x, y)]λ] ,(26)
∇λGθ(x, y, λ) = [0 0 − I − diag (g(x, y))] , (27)

where I is the � × � identity matrix. The constraints of
NLP(θ) can be written as Gθ(x, y, λ) ≤ 0, H(x, y, λ) = 0.
The Lagrange function of program (21)-(24) is

Lθ(x, y, λ, u, v) = f(x, y) + u�Gθ(x, y, λ) + v�H(x, y, λ),
(28)

where u ∈ �p+3�
+ and v ∈ �m are the multipliers.

Let ū = (u1, · · · , up), û = (up+1, · · · , up+�) and ũ =
(up+2�+1, · · · , up+3�). Now we show that any KKT point of
NLP(θ) converges to a piecewise stationary point of MPEC
if the primal and dual variables are bounded.

Proposition III.2: Suppose that (x̄, ȳ, λ̄) is a KKT point
of NLP(θ), (ū, û, ũ, v) is the corresponding multiplier vec-
tor associated with constraint (c, g,−λ ◦ g − θe,H). If
the sequence {(x̄, ȳ, λ̄, ū, û, ũ, v)} is uniformly bounded as
θ → 0 and (x∗, y∗, λ∗, ū∗, û∗, ũ∗,v∗) is one of its limiting
points, then (x∗, y∗) is a piecewise stationary point of the
MPEC (1)-(3).

Before presenting our next result, we need the following
definition:

Definition III.3: A sequence {(x̄, ȳ, λ̄)} is asymptoti-
cally weakly nondegenerate, if (x̄, ȳ, λ̄) → (x∗, y∗, λ∗) as
θ → 0, and there is a θ̄ > 0 such that for θ ∈ (0, θ̄)
and all i ∈ G00(x∗, y∗, λ∗) ∩ Iθ, there exist constants
ς1 ≥ ς2 > 0 such that ς1 ≥ |gi(x̄, ȳ)/λ̄i| ≥ ς2, where
Iθ = {i | −λ̄igi(x̄, ȳ) = θ}.

This definition is of similar nature to that given by
Fukushima and Pang [13], which requires that λ̄i and



gi(x̄, ȳ) tend to zero in the same order. It is noted that if
the strict complementarity holds at (x∗, y∗), then the as-
ymptotically weakly nondegenerate condition holds since
G00(x∗, y∗, λ∗) = ∅, but not vice versa.

We have the following sufficient conditions for the dual
boundedness required by Proposition III.2.

Proposition III.4: Suppose that {(x̄, ȳ, λ̄)} is bounded
as θ → 0, Θ is an infinite set of θs in a sufficiently small
neighborhood of zero such that (x̄, ȳ, λ̄) → (x∗, y∗, λ∗) as
θ ∈ Θ and θ → 0. Then {(ū, ũ, û, v) | θ ∈ Θ} is bounded if
the second order necessary optimality condition of NLP(θ)
holds at (x̄, ȳ, λ̄) for θ ∈ Θ, (x̄, ȳ, λ̄) | θ ∈ Θ is asymptot-
ically weakly nondegenerate, and the MPEC-LICQ holds
at (x∗, y∗, λ∗).

IV. THE RELAXED BARRIER PROBLEM
We note that applying interior point approach to prob-

lem (6)-(9) directly will result in a conflict. Thus, we apply
the interior point approach to the θ-relaxation of MPEC,
which leads us to the following θ-relaxed log-barrier prob-
lem, henceforth referred as the relaxed barrier problem:

min f(x, y) −
p∑

i=1

µ ln z̄i −
�∑

j=1

µ ln ẑj

−
�∑

j=1

µ ln λ̂j −
�∑

j=1

µ ln z̃j (29)

s.t. c(x, y) + z̄ = 0, (30)
H(x, y, λ) = 0, (31)
g(x, y) + ẑ = 0, (32)

−λ+ λ̂ = 0, (33)
−λ ◦ g(x, y) + z̃ = θe. (34)

By using (25), (29)-(34) can simply be written as

min f(s) −
q∑

i=1

µ ln zi (35)

s.t. Gθ(s) + z = 0, (36)
H(s) = 0, (37)

where s = (x, y, λ) ∈ �n+m+� is the variable vector,
z = (z̄, ẑ, λ̂, z̃) is the slack vector, f(s) = f(x, y), Gθ(s) =
Gθ(x, y, λ), H(s) = H(x, y, λ) and q = p+ 3�.

In the following two subsections, we describe a primal-
dual algorithm for solving problem (35)-(37) for fixed µ
and derive global convergence results of the algorithm.
The algorithm for MPEC is then presented in Section V,
which takes the algorithm in this section as the inner loop
and decreases µ in the outer loop.

A. THE ALGORITHM FOR PROBLEM (35)-(37)
Define the merit function with �2 penalty

φ(s, z; ρ) = f(s)−
q∑

i=1

µ ln zi +ρ‖(Gθ(s)+z,H(s))‖, (38)

where ρ > 0 is the penalty parameter, the norm ‖ · ‖ is the
Euclidian norm.

At the current iterate (sk, zk), suppose that uk ∈ �q
+

and vk ∈ �m are the approximate multipliers corre-
sponding to constraints (36) and (37), respectively. Let
Zk = diag (zk), Uk = diag (uk), ∇Gk

θ = ∇Gθ(sk), ∇Hk =
∇H(sk) and ∇fk = ∇f(sk). Let Bk be a positive definite
approximation to the Lagrangian Hessian

∇2L(sk, uk, vk) = ∇2fk +
q∑

i=1

uk
i ∇2(Gθ)k

i +
m∑

j=1

vk
j ∇2Hk

j .

Suppose that (d̂k
s , d̂

k
z) is an approximate solution of pro-

gram

min ψk(ds, dz) = 1
2 (d�s Bkds + d�z Z

−1
k Ukdz) + ρk‖(Gk

θ+

zk + ∇Gk
θ

�
ds + dz , H

k + ∇Hk�ds)‖ (39)

such that some prescribed conditions (see the next sub-
section) hold. Then we compute the search direction
(dk

s , d
k
z , d

k
u, d

k
v) by solving the modified primal-dual system

of equations

Bkds + ∇Gk
θdu + ∇Hkdv =

−(∇fk+ ∇Gk
θ u

k + ∇Hkvk), (40)
Ukdz + Zkdu = −(ZkUke− µe), (41)

∇Gk
θ

�
ds + dz = ∇Gk

θ

�
d̂k

s + d̂k
z , (42)

∇Hk�ds = ∇Hk�d̂k
s . (43)

Note that the right-hand-sides of (42) and (43) are dif-
ferent from the traditional interior point approach. For
motivation of this modification the reader is referred to
[23], [24].

We are now ready to state our algorithm for the relaxed
barrier problem with fixed θ and µ.

Algorithm IV.1: (The algorithm for problem (35)-(37))
Step 1 Given (s0, z0, u0, v0) ∈ �n+m+�×�q

++×�q
++×

�m, B0 ∈ �(n+m+�)×(n+m+�) and scalars ρ0 > 0, ν ∈
(0, 1), ξ ∈ (0, 1), 0 < β1 < 1 < β2, σ0 ∈ (0, 1

2 ). Let
k := 0;

Step 2 Calculate the primal search direction (dk
s , d

k
z)

and the dual direction (dk
u, d

k
v) by the primal-dual sys-

tem of equations (40)-(43), where (d̂k
s , d̂

k
z) is derived

by approximately minimizing (39);
Step 3 Let

πk(dk; ρk) = ∇f�
k d

k
s − µe�Z−1

k dk
z − ρkδ(dk

s , d
k
z),

where dk = (dk
s , d

k
z) and

δ(dk
s , d

k
z) = ‖(Gk

θ + zk, Hk)‖ − ‖(Gk
θ + zk

+∇Gk
θ

�
dk

s + dk
z , H

k + ∇Hk�dk
s)‖.

If

πk(dk; ρk) ≤ −1
2
dk

s

�
Bkd

k
s − 1

2
dk

z

�
Z−1

k Ukd
k
z , (44)



let ρk+1 = ρk; Otherwise, we replace ρk by a larger
ρk+1 (for example ρk+1 ≥ 2ρk) such that (44) holds;

Step 4 Compute α̂k ∈ (0, 1] such that zk+α̂kd
k
z ≥ ξzk,

and select firstly σ ∈ (0, 1] and then γk ∈ [0, 1] as large
as possible such that

φ(sk + σα̂kd
k
s , z

k + σα̂kd
k
z ; ρk+1) − φ(sk, zk; ρk+1)

≤ σ0σα̂kπk(dk; ρk+1), (45)

β1µe ≤ (Uk + γkD
k
u)max{zk + σα̂kd

k
z ,

−Gθ(sk + σα̂kd
k
s)} ≤ β2µe, (46)

where Dk
u = diag (dk

u). Let αk = σα̂k. The new
primal iterate is generated by

sk+1 = sk + αkd
k
s , (47)

zk+1 = max{zk + αkd
k
z ,−Gk+1

θ }, (48)

and the new dual iterate is generated by

uk+1 = uk + γkd
k
u, v

k+1 = vk + dk
v ; (49)

Step 5 If the stopping criterion holds, stop; else calcu-
late values ∇Gk+1

θ , ∇Hk+1, ∇fk+1, Gk+1
θ and Hk+1,

update the approximate Hessian Bk by Bk+1, let
k := k + 1 and go to Step 2.

In practical implementations of the algorithm we may
use some more flexible update for generating the dual it-
erate. Since Algorithm IV.1 is only taken as an inner loop
of our algorithm for MPEC, we will give the stopping cri-
terion in the algorithm for MPEC.

B. CONVERGENCE OF ALGORITHM IV.1
Suppose that an infinite sequence {(sk, zk, uk, vk)} is

produced by Algorithm IV.1. We need the following gen-
eral assumptions.

Assumption IV.2:
(1) {sk} is bounded, that is, there is an open and

bounded set Ω ⊂ �n+m+� such that sk ∈ Ω for all nonneg-
ative integers k.

(2) There exist constants ν1 ≥ ν2 > 0 such that
ν2‖d‖2 ≤ d�Bkd ≤ ν1‖d‖2 for all d ∈ �n+m+�.

(3) ∇H(sk) has full column rank for all k ≥ 0.
The following results can be derived similarly to Lemma
3.2, Proposition 3.3, Lemma 3.5 in [23] and Lemma 4.2 in
[22].

Lemma IV.3: Under Assumption IV.2, we have
(1) {zk} is bounded;
(2) {uk} is componentwise bounded away from zero.
Furthermore, if {ρk} is bounded, then
(3) {zk} is componentwise bounded away from zero;
(4) {uk} is bounded;
(5) if {(dk

s , d
k
z , d

k
u)} is bounded, then there exists α∗ ∈

(0, 1] such that αk ≥ α∗ for all k ≥ 0.
Lemma IV.4: Under Assumption IV.2, if (d̂k

s , d̂
k
z) solves

problem (39) exactly, then (d̂k
s , d̂

k
z) satisfies the following

conditions.

(1) (∇Gk
θ(Gk

θ + zk) + ∇HkHk, Zk(Gk
θ + zk)) → 0 as

(d̂k
s , d̂

k
z) → 0.

(2) It holds that ψk(d̂k
s , d̂

k
z) ≤ ψk(0, 0), and there exist

constants ρ̂ > 0 and ς > 0 so that ∀ ρk ≥ ρ̂,

ψk(d̂k
s , d̂

k
z) − ψk(0, 0)

≤ −ςρk‖(∇Gk
θ(Gk

θ + zk) + ∇HkHk, Zk(Gk
θ + zk))‖2.

(3) There exist ν ∈ (0, 1), ρ̂ > 0 and � > 0 so
that ∀ ρk ≥ ρ̂, ‖(d̂k

s , Z
−1
k d̂k

z)‖ ≤ �‖(Gk
θ + zk, Hk)‖ and

ψk(d̂k
s , d̂

k
z) ≤ νψk(0, 0) if one of the following conditions

holds:
(i) {zk} is componentwise bounded away from zero;
(ii) the vectors ∇Hk

j , j = 1, · · · ,m, ∇(Gθ)k
i , i ∈ Gk

0 =
{i | zk

i = 0, i = 1, · · · , q} are linearly independent.
(4) For all k, (d̂k

s , Z
−1
k d̂k

z)/
√
ρk are uniformly bounded.

Remark. In practical implementations, we do not need the
exact solution of problem (39). The approximate solutions
which satisfy (1) – (4) can be computed very easily. We
omit the details here and refer the interested reader to [22].

Lemma IV.5: Under Assumption IV.2, if {ρk} is
bounded, then {(dk

s , d
k
z , d

k
u)} and {vk} are bounded.

The following result shows that the algorithm converges
to the KKT point of program (35)-(37) if {ρk} is bounded.

Lemma IV.6: Under Assumption IV.2, if ρk is bounded,
then

lim
k→∞

‖(dk
s , d

k
z)‖ = 0, (50)

lim
k→∞

‖(Gk+1
θ + zk+1, Hk+1)‖ = 0, (51)

lim
k→∞

‖Zk+1Uk+1e− µe‖ = 0, (52)

lim
k→∞

‖∇fk+1 + ∇Gk+1
θ uk+1 + ∇Hk+1vk+1‖ = 0. (53)

Moreover, γk = 1 for all sufficiently large k.
The following lemma addresses the case where {ρk} is un-
bounded.

Lemma IV.7: Under Assumption IV.2, if ρk is un-
bounded, then

(1) {zk} is not componentwise bounded away from zero
and there exists a convergent subsequence with k ∈ K
such that (sk, zk) → (s∗, z∗) as k ∈ K and k → ∞ with
∇G∗

θi, i ∈ G∗
0 , ∇H∗

j , j = 1, · · · ,m being linearly depen-
dent, where G∗

0 = {i | z∗i = 0};
(2) there is a subsequence {(sk, zk) | k ∈ K} such that

lim
k∈K,k→∞

∥∥∥∥
(

∇Gk
θ ∇Hk

Zk 0

) (
Gk

θ + zk

Hk

)∥∥∥∥ = 0. (54)

We summarize the results in the following theorem.
Theorem IV.8: Under Assumption IV.2, suppose

{(sk, zk)} is an infinite sequence generated by Algorithm
IV.1, {ρk} is the penalty parameter sequence. Then we
have one of the following results:
(1) The sequence {ρk} is bounded. Then for every limiting
point (s∗, z∗), there exists (u∗, v∗) so that

‖(G∗
θ + z∗, H∗)‖ = 0, Z∗U∗e = µe, (55)
∇f∗ + ∇G∗

θu
∗ + ∇H∗v∗ = 0, (56)



namely, (s∗, z∗) is a KKT point of (35)-(37).
(2) The sequence {ρk} is unbounded and there is a limiting
point (s∗, z∗) which either satisfies that ‖((G∗

θ)+, H
∗)‖ = 0

and that ∇H∗
j (j = 1, · · · ,m), ∇G∗

θi(i ∈ I = {i ∈
{1, · · · , q} : G∗

θi = 0}) are linearly dependent, or satisfies
that ‖((G∗

θ)+, H
∗)‖ �= 0 and that

∇G∗
θ(G

∗
θ)+ + ∇H∗H∗ = 0. (57)

V. THE ALGORITHM FOR MPEC AND ITS
GLOBAL CONVERGENCE

Based on the algorithm and analysis in last sections, we
now present our algorithm for MPEC and give its global
convergence results.

A traditional approach is that we solve the relaxed bar-
rier problem by letting µ ↓ 0 for each fixed θ. The process
is then repeated as θ ↓ 0. For examples we can see [8],
[30].

Unlike the traditional approach, our algorithm takes a
shortcut to reduce µ and θ simultaneously. In particular,
the barrier parameter µ is selected to be a fraction of θ
(so θ is a multiple of µ). Thus, the barrier problem (35)-
(37) is slightly different from its traditional counterpart in
that the barrier parameter appears both in the constraints
and in the objective function. All the convergence results
in the last section would be still valid, however, since all
those results were independent of how µ is specified.

Algorithm V.1: (The algorithm for the MPEC)
Step 1 Given the initial point (x0, y0, λ0, z0, u0, v0)
with (x0, y0, λ0) ∈ �n+m+�, z0 ∈ �p+3�

++ , u0 ∈ �p+3�
++

and v0 ∈ �m, the initial barrier parameter µ0 > 0
and penalty parameter ρ0 > 0, scalar σ, constants
τ > 0, ζ > 0, κ ∈ (0, 1), the stopping tolerances ε > 0,
ε1 > ε2 > 0. Let θ0 = τµ0, (x0, y0, λ0, z0, u0, v0) =
(x0, y0, λ0, z0, u0, v0), j := 0;

Step 2 With using (xj , yj , λj , zj , uj, vj) as the starting
point, solve the barrier problem (35)-(37) by Algo-
rithm IV.1. The Algorithm IV.1 is terminated when
the iterate (xkj , ykj , λkj , zkj , ukj , vkj ) satisfies one of
the following groups of conditions:

(i)




‖(Gkj

θj
+ zkj , Hkj )‖ < ζµj ,

‖ZkjUkje− µje‖ < ζµj ,∥∥∥∥∥∥∥




∇xfkj + ∇xG
kj

θj
ukj + ∇xH

kjvkj

∇yfkj + ∇yG
kj

θj
ukj + ∇yH

kjvkj

∇λG
kj

θj
ukj + ∇λH

kjvkj




∥∥∥∥∥∥∥
< ζµj ;

(58)

(ii)




‖((Gkj

0 )+, Hkj )‖ ≥ ε1,

‖(∇EG
kj

θj
(Gkj

θj
+ zkj ) + ∇EH

kjHkj ,

Zkj (G
kj

θj
+ zkj))‖ < ε2;

(59)

(iii)




‖((Gkj

0 )+, Hkj )‖ < ε2,

det(
[
∇E(G̃kj )Ĩj

∇EH
kj

]�
[
∇E(G̃kj )Ĩj

∇EH
kj

]
) < ε2,

(60)

where Zkj = diag (zkj ) and Ukj = diag (ukj ), Gkj

0 is
the value of Gkj

θ when θ = 0, det(·) is the determi-
nant, G̃kj = (ckj , gkj ,−λkj ), Ĩj = {i||(G̃kj )i| ≤ ε2},
∇E(G̃kj )Ĩj

is the submatrix of ∇E(G̃kj ) consisting of
all columns indexed by i ∈ Ĩj .
Set

(xj+1, yj+1, λj+1) = (xkj , ykj , λkj ), (61)
(zj+1, uj+1, vj+1) = (zkj , ukj , vkj ) (62)

and

ρj+1 = max{ρkj , ‖(uj+1, vj+1)‖ + σ}. (63)

If Algorithm IV.1 terminates at (59) or (60), stop;
If Algorithm IV.1 terminates at (58), go to the next
step.

Step 3 If µj < ε, stop; Else calculate an
approximate solution of (39) and then derive
(dkj

x , d
kj
y , d

kj

λ , d
kj
z , d

kj
u , d

kj
v ) by solving equations (40)-

(43). Let

(xj+1, yj+1, λj+1) =


(xkj + d
kj
x , ykj + d

kj
y , λkj + d

kj

λ ),
if zkj + d

kj
z ≥ 0.2ξzkj

(xkj , ykj , λkj ), otherwise,
(64)

(zj+1, uj+1, vj+1) =


(zkj + d
kj
z , ukj + d

kj
u , vkj + d

kj
v ),

if zkj + d
kj
z ≥ 0.2ξzkj

(zkj , ukj , vkj ), otherwise,
(65)

µj+1 = κµj, θj = τµj , j := j + 1 and go to Step 2.
Different from the algorithm for general nonlinear pro-

gramming in [22], we update the penalty parameter ρj by
the information on multipliers, see (63), where we do not
need scalar σ to be positive.

It has been noted [15], [16] that the starting point for the
new outer iteration should be selected carefully so that the
unit steplength is accepted as the barrier is small. Based
on our numerical experience, we take some strategy similar
to [16] in Step 3 of the algorithm, which seems to have
improved the performance.

The stopping conditions (58), (59) and (60) are based
on the results of last section. Recall that these results re-
quire an assumption that ∇EHj(xk, yk, λk), j = 1, · · · ,m
are linearly independent, which is guaranteed if F (xk, ·) is
strongly monotone and gj(xk, ·), j = 1, · · · , � are convex
for all k ≥ 0. We have the following convergence results
for the algorithm.

Theorem V.2: At termination, there are two possible re-
sults of Algorithm V.1.

(1) For some µj , Algorithm V.1 does not proceed to Step
3, it terminates at an inner loop. Then the termination
point is an approximate singular stationary point of MPEC
if it is approximately feasible to the MPEC, otherwise it
is an approximate infeasible stationary point.



(2) For each µj , Algorithm V.1 proceeds to Step 3, the
algorithm terminates at an outer loop. Then it terminates
at an approximate piecewise stationary point or an ap-
proximate weak piecewise stationary point of MPEC.

The following theorem further explains the case (2) of
Theorem V.2, which does not require a proof.

Theorem V.3: Assume that Algorithm V.1 proceeds to
Step 3 for each µj , ε = 0 and an infinite sequence
{(xj , yj , λj)} is generated, moreover, {(xj , yj , λj)} is uni-
formly bounded. The sequence {ρj} is the penalty para-
meter sequence.

(1) If {ρj} is bounded, then every limiting point of
{(xj , yj)} is a piecewise stationary point of MPEC (1)-
(3). Moreover, if the MPEC-LICQ holds at this limiting
point, then it is a B-stationary point of the MPEC.

(2) If {ρj} is unbounded, then every limiting point of
{(xj , yj)} is a weak piecewise stationary point of MPEC
which may not be a piecewise stationary point of MPEC.

VI. NUMERICAL RESULTS
Algorithm V.1 has been programmed in MATLAB 6.1

and implemented on a COMPAQ personal computer with
a Pentium-III CPU and WINDOWS98 operating system.
The computation of (d̂k

x, d̂
k
y) in Algorithm IV.1 is similar

to Algorithm 6.1 in [22], where we select ν = 0.98.
The initial parameters in Algorithm IV.1 are selected

as µ0 = 0.1, ρ0 = 1, σ0 = 0.1, β1 = 0.01 and β2 = 10,
ξ = 0.005. B0 = I is the identity matrix. For Algorithm
V.1, we select σ = −10, τ = 2, κ = 0.01, ζ = 100 and
ε = 10−6, ε1 = 10ε and ε2 = 10−5ε.

The approximate Hessian Bk is updated to Bk+1 by the
well-known damped BFGS update procedure.

We first applied our algorithms to the set of test prob-
lems listed in the Appendix of [8]. All of them have been
solved by [8]. Some of them were also used respectively by
some other works [1], [3], [27], [28], [32] to test their new
algorithms developed for MPEC.

For test problem 7, we let w = max{0, x1 + x2 + y1 −
2y2 − 40}, then

f(x, y) = 2x1 + 2x2 − 3y1 − 3y2 +Rw2 − 60, (66)

and w ≥ 0, w ≥ x1 + x2 + y1 − 2y2 − 40.
The initial x0s are given by [8], but there is no informa-

tion on selecting y0 and λ0. We set all components of y0

and λ0 as the same as the first component of x0, that is,

y0 = x0
1em, λ

0 = x0
1e� (67)

where em and e� are respectively m-dimensional
and �-dimensional vectors of ones. Let ω =
max{1,−0.5 min(G0

i | i = 1, · · · ,m)}, the initial slack vari-
ables and the dual variables are given by

z0 = ωe(p+3�), u
0 = (µ0/ω)e(p+3�), v

0 = 0. (68)

The numerical results are reported in Tables 1, 2 and 3,
in which we label the problem as the same in [8], for exam-
ple, 1(a) represents the test problem 1 with the starting

Table 1. Solutions and optimal values

Prob x∗ f∗ ρ∗

1(a) 4.06041 3.207700 1
(b) 4.06041 3.207700 1

2(a) 5.15360 3.449404 1
(b) 5.15360 3.449404 1

3(a) 2.38942 4.604254 2
(b) 2.38942 4.604254 2

4(a) 1.37313 6.592684 2
(b) 1.37313 6.592684 2

5(a) (0.50050,0.50050) -0.999999 1
6(a) 93.33333 -3266.666667 61.5225
7(a) (25.00125,30.00000) 4.999375 21.6345
8(1) 55.55129 -343.345260 191.9106
8(2) 42.53825 -203.155072 169.0610
8(3) 24.14506 -68.135650 212.2190
8(4) 12.37270 -19.154065 243.1791
8(5) 4.75356 -3.161181 253.8217
8(6) 50.00000 -346.893197 92.7425
8(7) 39.79144 -224.037202 74.3444
8(8) 24.25713 -80.785972 52.6498
8(9) 13.01965 -22.837119 41.3739

8(10) 6.00234 -5.349137 28.0686
9(a) (5.00000,9.00000) 4.220791e-14 1
9(b) (9.00416,5.99582) 3.127349e-10 1
9(c) (9.89722,5.10278) 3.382036e-15 2
9(d) (9.95627,5.04373) 9.460931e-15 2
9(e) (5.00000,9.00000) 3.201918e-14 1

10(a) (7.52468,3.78702, -6600.000000 310.9728
11.47532,17.21298)

11(a) (0.00045,2.00000) -12.678711 2

point (a) whereas 8(2) is the test problem 8 with the sec-
ond group of data.

In Table 1, we give the solutions and the optimal values
obtained by our algorithm. Referring to Table 1 in [8],
we notice that we have obtained the approximate optimal
solutions for all test problems since they have the same
optimal objective function values as given in [8]. However,
the optimal solution are different for some test problems
such as Problems 9 and 10. This difference is partially
caused by the selection of the initial y0 since the piece-
wise stationary point for some test problems may not be
unique. For problems 9(b), 9(c), and 9(d), if we select
(y0, λ0) = −2x0

1em+�, then x∗ = (5.00000, 9.00000) and
the optimal objective values are 1.974146e-14, 9.151050e-
17 and 2.495853e-14, respectively. If y0 = 0, λ0 = 5e�,
then we have x∗ = (7.00001, 3.00001, 11.99999, 17.99999)
for problem 10. We also report the optimal penalty para-
meters ρ∗ in Table 1, which indicate the penalty parame-
ters are bounded for all test problems.

In Table 2, we report the residuals of first-order condi-
tions, constraint violations and complementarity, where
RD= ‖∇f∗ + ∇G∗u∗ + ∇H∗v∗‖, RP= ‖(G̃∗

+, H
∗)‖ (G̃

is defined by (25)), RC= z∗�u∗ and CC= ‖λ∗ ◦ g∗‖∞.
These data are not reported in [8]. We include them for
future reference. The results in this table show that our
algorithm obtained the approximate piecewise stationary
points for all test problems including the problems without
strict complementarity (for example Problem 1).



Table 2. Residuals on KKT conditions

Prob RD RP RC CC
1(a) 1.1842e-08 1.9222e-15 1.4000e-06 1.0814e-07
(b) 1.1726e-08 1.4856e-15 1.4000e-06 1.0814e-07

2(a) 4.0583e-06 3.7734e-13 1.4000e-06 1.0833e-07
(b) 3.8850e-06 3.5449e-13 1.4000e-06 1.0833e-07

3(a) 1.0552e-08 4.4187e-13 1.4000e-06 1.3204e-07
(b) 1.0624e-08 4.3863e-13 1.4000e-06 1.3204e-07

4(a) 1.1526e-09 7.3360e-12 1.4000e-06 1.6278e-07
(b) 1.4187e-09 6.5811e-12 1.4000e-06 1.6278e-07

5(a) 5.3756e-06 9.1420e-12 2.8191e-06 1.0063e-10
6(a) 1.9169e-07 0 5.0122e-07 6.2420e-08
7(a) 2.1770e-10 4.4848e-15 2.3964e-06 1.0416e-05
8(1) 6.0741e-07 2.1306e-14 2.4995e-06 1.0609e-07
8(2) 8.5715e-07 2.2295e-14 2.3634e-06 1.0421e-07
8(3) 1.1506e-08 2.2489e-15 2.6000e-06 1.0200e-07
8(4) 1.8626e-06 3.0479e-14 2.5939e-06 1.0093e-07
8(5) 2.5793e-06 5.8598e-14 2.6001e-06 1.0034e-07
8(6) 2.0148e-08 6.5607e-15 2.6000e-06 1.9226e-07
8(7) 5.3644e-07 3.4212e-11 2.6000e-06 1.9489e-07
8(8) 2.5263e-08 1.0001e-12 2.6000e-06 1.8815e-07
8(9) 5.7067e-06 3.9319e-11 2.6000e-06 1.9320e-07

8(10) 5.0826e-09 1.1041e-12 2.6000e-06 1.5840e-07
9(a) 8.4927e-06 3.0847e-15 1.0000e-06 1.0036e-05
9(b) 3.1536e-06 3.8350e-16 9.9999e-07 1.0000e-07
9(c) 5.8698e-07 2.4825e-15 1.0000e-06 1.0000e-07
9(d) 1.2207e-06 2.2205e-16 1.0000e-06 1.0000e-07
9(e) 8.3768e-06 2.7974e-15 1.0000e-06 1.0000e-07

10(a) 1.3571e-06 9.6152e-16 4.5000e-06 1.0000e-07
11(a) 3.6467e-06 4.0813e-07 1.5085e-06 1.4404e-07

We give the numbers of function evaluation (FN), gra-
dient evaluation (GR), the number of all inner iterations
(IT) in Table 3. The function evaluation includes the eval-
uation of the objective function and the constraint func-
tions. Similarly, the gradient evaluation also include the
evaluation of the gradients of the objective function and
the constraint functions. It should be noticed that calcu-
lations in Step 3 of Algorithm V.1 does not increase the
number of evaluations of functions and gradients if the
new iterate is not admitted since these values are known
after Step 2. Otherwise, the numbers of iterations (IT)
and function and gradient evaluations (FN and GR) are
increased by 1. There are some differences from the cal-
culations in [8], which calculate the numbers by summing
up the evaluations of each component of the vector ex-
cept the linear functions. For the approach in this paper
we do not differentiate the linear and nonlinear functions.
The function and gradient evaluations are mainly on func-
tions f(x, y), c(x, y), H(x, y, λ) and g(x, y) since values on
λ ◦ g(x, y) can be derived straightly. Since the barrier pa-
rameter is decreased by a factor 0.01, the number of outer
iterations is 4 for all test problems.

In order to test the robustness of our algorithm, we re-
solve these problems by using the traditional primal-dual
system of equations in the inner loop. The numerical re-
sults are similar for almost all problems except problem
7, for which the traditional algorithm failed to obtain the
solution since for µ = 0.1, αk → 0, and the algorithm ter-
minates at the point x∗ = (33.43867, 50.00911) after 185

Table 3. Some more results

Prob IT FN GR Prob IT FN GR

1(a) 19 20 20 1(b) 25 26 26
2(a) 23 24 24 2(b) 26 28 27
3(a) 20 21 21 3(b) 24 25 25
4(a) 21 24 22 4(b) 25 30 26
5(a) 10 11 11 6(a) 22 30 23
7(a) 56 72 57 8(1) 22 23 23
8(2) 24 25 25 8(3) 27 28 28
8(4) 24 25 25 8(5) 24 26 25
8(6) 26 27 27 8(7) 29 30 30
8(8) 22 23 23 8(9) 25 28 26

8(10) 21 22 22 9(a) 20 21 21
9(b) 23 25 24 9(c) 17 18 18
9(d) 18 20 19 9(e) 17 19 18

10(a) 37 38 38 11(a) 26 35 27

iterations, ρ∗ = 2.1629e+07, FN= 1161, GR= 185. This
result shows that Algorithm IV.1 is probably more robust
than the traditional interior method.

We then apply our algorithm to three special examples.
The first example is presented by Leyffer in [21] to show a
failure of PIPA.

min x+ y (69)
s.t. x ∈ [−1, 1], (70)

−1 + x+ λ = 0, (71)
y ≥ 0, λ ≥ 0, yλ = 0. (72)

The standard starting point is (0, 0.02, 1), and the optimal
solution is (−1, 0, 2). Our algorithm solves it successfully
after 11 iterations. FN=GR=12, ρ∗ = 1, RD=1.9281e-10,
RP=2.2204e-16, RC=5.0020e-07 and CC=7.6393e-08.

The second example is

min (x− 2)2 + y2 (73)
s.t. x ≥ 0, (74)

(1 − x)3 − λ = 0, (75)
y ≥ 0, λ ≥ 0, yλ = 0, (76)

of which the optimal point is (1, 0, 0) and is also a sin-
gular stationary point of the problem. The initial point
is (−2,−2,−2). The algorithm stops at the approxi-
mate point (0.9998, 0.0011, 0.0) with the multiplier vec-
tor is (0.0,−7.9505e+06, 7.9505e+06, 0.0, 0.0) after 42
iterations, µ = 1.0e-05, ρ∗ = 3.8724e+05, FN= 43,
GR= 42, RD= 1.0281, RP= 6.1176e-12, RC= 0.0 and
CC= 2.3229e-15.

The third example is

min x+ (y − 1) (77)
s.t. x2 + 1 ≤ 0, (78)

−x− λ = 0, (79)
y ≥ 0, λ ≥ 0, yλ = 0, (80)

which is obviously an infeasible MPEC. (0, 0, 0) minimizes
the �2-infeasibility of constraints. The initial point is



(1, 1, 1). Our algorithm stops at (−0.0, 0.0010, 0.0007),
an approximate infeasible stationary point after 87 iter-
ations, FN= 125, GR= 87, µ = 1.0e-03, ρ∗ = 2.8882e+11.
These results are interesting since they show that Algo-
rithm V.1 may obtain certain weak stationary points when
other methods fail to find meaningful solutions.
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