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Abstract—Electromagnetic scattering by 3-D arbitrarily 
shaped homogeneous dielectric objects is characterized. In the 
analysis, the method of moments is first employed to solve the 
combined field integral equation for scattering properties of 
these three-dimensional homogeneous dielectric objects of 
arbitrary shape. The fast multipole method, and the multi-level 
fast multipole algorithm are implemented into our codes for 
matrix-vector manipulations. Specifically, four proposals are 
made and discussed to increase convergence and accuracy of 
iterative procedures (conjugate gradient method). Numerical 
results are obtained using various methods and compared to each 
other.  
 

Index Terms—Electromagnetic scattering, Fast multipole 
method,  method of moment.  

I. INTRODUCTION 
There have been a variety of numerical methods developed for 
studying electromagnetic scattering by dielectric objects, both 
asymptotically and numerically. Among those, the numerically 
exact methods include the method of moments (MoM), finite 
element method (FEM), finite-difference time-domain (FDTD) 
method, and their hybrid implementations. Among those 
numerical techniques, the surface integral equation approach is 
found to be very efficient to analyze homogeneous dielectric 
objects, therefore the MoM [1,2] is employed herein this 
paper. The MoM usually results in, however, a matrix of very 
large scale when applied to analyzing electrically large objects. 
In particular, approximately ten (or more) sub-sectional basis 
functions are generally required per wavelength; therefore, the 
number of unknowns, N, becomes quite large when scattering 
by an arbitrary general multi-wavelength, three-dimensional 
target is characterized. For the resultant matrix equation of N 
unknowns, the O(N3) floating-point operations are required in 
the Gaussian elimination; and the O(N2) operations are required 
in iterative method (such as the conjugate gradients method). 
Moreover, the memory requirements for a MoM solution are 
also to O(N2).  
To over come this, the fast multipole method (FMM), a well-
known and poular technique, is used to speed up the MoM 

solution of large-scale electromagnetic scattering and radiation 
problems [3-7]. It reduces both complexity of the matrix-vector 
multiplications and memory requirements to O(N1.5).  Multilevel 
fast mutipole algorithm (MLFMA) is an extension of FMM [4] 
and can further reduce the computational complexity to O(N• 
logN). In this paper, we explore the application of both the 
conjugate gradient method and the fast multipole method to 3-
D dielectric objects of arbitrary shape. Particularly, emphasis 
is given to application of modified Rao-Wilton-Glisson 
(RGW) basis functions to reduce conditioning number of the 
resultant matrix in MoM procedure. This unique feature was 
realized in implementation of MoM into the FMM algorithm.   

II. BRIEF DESCRIPTION OF FORMULATION AND ANALYSIS 
    Consider a 3-D homogeneous dielectric object of arbitrary 
shape shown in Fig. 1. It is characterized by a permittivity ε2 
and permeability µ2, immersed in an infinite and 
homogeneous medium having permittivity ε1 and permeability 
µ1.  The detailed derivation of the combined field integral 
equation can be found in [2]. For completeness, a summary of 
the CFIE is given below. 

 
 

Fig. 1.  Geometry of a dielectric scatterer in an infinite 
dielectric medium 

 
Let the ( )rJ

rr
and ( )rM

rr
 represent the equivalent electric and 

magnetic currents on the surface of homogeneous object. 
Applying the equivalent principle to this electromagnetic 
problem and considering the boundary conditions, we obtain 
the electric and magnetic field integral equations as follows: 
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 for r

r
on the surface S, where  and ( )rE i ( )rH i  are the 

incident electric and magnetic fields in the region 1 and the 
subscript “tan” refers to as tangential components on the surface 
S. The vector potentials, 

r
and ( ) rAi

r (rFi )r
r

 for i , and the 

scalar potentials, V
2,1=

( )ri
r

 and U (ri )r , are given by 
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The Green’s functions, ( rrGi ′,  for , have the form of 2,1=i
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where 
rrR ′−=
rr

   and   iiik εµω ′= .                   (4) 
 As in a conventional MoM solution, the unknown surface 
electric and magnetic currents, ( )rJ

rr
 and ( )rM

rr
, are expanded 

into two sets of basis functions, ( ){ }rJ n
rr

 and ( ){ }rM n
rr

, below: 
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where N denotes the total number of edges on S, ( )rfn
rr

 stands 
for the RWG vector basis functions [2], and  and are 
the unknown expansion coefficients.  
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Substituting (5a) and (5b) into (1a) and (1b), and testing the 
CFIEs in (1a) and (1b) with a set of weighting functions 

( ){ }rfn
rr

 tangential to the scatterer’s surface will result in 2N 
linear equations written in matrix form 
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The sub-matrixes, , , , and , can be also 
obtained, provided that all the superscripts in (7) are changed 
from “1” to “2”. 

JJ
ijZ 2 JM

ijZ 2 MJ
ijZ 2 MM

ijZ 2

The electric and magnetic currents’ expansion coefficients, 
 and , can be obtained directly using the Gaussian 

elimination method for small object. But for large objects, the 
iterative method (for instance, the conjugate gradients method) 
is desirable. In this case where the matrix can be ill-
conditioning, therefore, the convergence becomes an important 
issue that we will address herein. For improving the 
conditioning number of the matrix in (6), we propose four 
different ways to overcome the magnetic current expansion 
coefficients,  and :  
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A: using matrix equations in (6a) and (6b) directly; 
B: multiplying ( )0η−  to both sides of (6b); 

r
C: expanding ( )rM

r
 into a set of modified basis functions 

below 
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rr
D: expanding ( )rM  like in Method C and multiplying 
( )0η−  to both sides of (6b). 

 

III. ANALYSIS USING FMM AND MLFMA 
   In the FMM analysis [3,4], fields are divided into “near” and 
“far” terms according to interactions between the source point 
and the field point. The “near” interactions are handled using 
the MoM while the “far” interactions are processed applying the 
addition theorem to free-space scalar Green’s function. As 
discussed previously, the FMM and its extension MLFMA 

 



 

have been applied successfully to electromagnetic scattering 
by various electric-type perfectly conducting objects in free 
space [3-5]. For a dielectric object, eight formulas are 
obtained using FMM. The basic formulas in FMM based on 
Method D are given below: 
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Also, we obtain their corresponding RCS results shown in 

Fig. 3. The RCS result obtained by Method D agrees very well 
with the Mie theory result, but the results by Methods A, B, 
and C are not good at all.  
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Fig. 3. Bistatic RCS of dielectric sphere whose ka = 3.14 (3398 

unknowns). 
 
In the above formulas,  denotes the center of the m  group 

(where ), )  identifies a spherical Hankel 
function of the second kind,  stands for a Legendre 
polynomial of degree l, and L denotes the number of multipole 
expansion terms [6]. Also, , , , , , 
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changing sub- and super-scripts from “1” to “2”.  

 
To further check and confirm our observation, we consider 
another example, that is, a semi-spherical dielectric bowl 
shown in Fig. 4. The outer radius and inner radius of this 
dielectric bowl are 1 m and 0.8 m, respectively. Its relative 
permittivity and permeability are 4 and 1, respectively.  
 

 

In the MLFMA, the same idea is used to characterize 
dielectric objects. Based on the FMM formulas given above, the 
MLFMA can be implemented for the dielectric objects as 
described in [4]. Subsequently, we will show some numerical 
examples for which we have developed our own FMM 
algorithms which cannot be obtained elsewhere.  

IV. RESULTS 
 

Fig. 4. Structure of a dielectric semi-sphere bowl whose inner 
and outer radii are 0.8 m and 1 m, respectively. 

To compare among these four techniques, we first consider a 
dielectric sphere in free space whose ka = 3.14. Its relative 
permittivity and permeability are 4 and 1, respectively. Fig. 2 
depicts the normalized residual norm in the CG method as 
functions of the number of iterations for Methods A, B, C, and 
D. It is found that Method D converges very much faster than 
Methods A, B, and C. This suggests the Method D instead of 
the conventional Method A and other alternatives.  

 
Subsequently, consider a plane wave incident at an angle of θ = 
0o and φ = 0o. Again, the normalized residual norm used in the 
CG method is obtained and shown in Fig. 5 as functions of the 
number of iterations based on the four methods at f = 150 
MHz. It is further confirmed that Method D is still the best 
choice among the four proposals. This means that to speed up  

 



 

 the matrix-vector manipulations in the method of moments, it 
is best to employ Method D. To check the accuracy of the 
results, the bistatic RCS of this dielectric semi-sphere bowl is 
shown in Fig. 6. And a comparison of the results between the 
iterative method and Gaussian elimination method is shown and 
a good agreement is obtained. It again verifies our conclusion. 

Also, Fig. 8 shows the monostatic RCSs obtained using 
FMM and the standard MoM for a lossy dielectric box having 
dimensions of 3.5λ×2.0λ×0.25λ and relative permittivity and 
permeability of 3-0.09i and 1, respectively. The incident angle 
is assumed to be at φ = 0o plane. It is seen that both results are 
very close for both polarizations.   
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 Fig. 5. Convergence test for a dielectric semi-spherical bowl 
using Methods A-D at f = 150 MHz (4068 unknowns). (a)   ϕϕ-polarization 
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Fig. 6. Bistatic  RCS of a semi-sphere dielectric bowl (Incident 

angle: θ=0 o,φ=0o) 
 (b)   θθ-polarization 

Fig. 8 Monostatic RCS of a lossy dielectric box where εr = 3-
0.09i and at φ=0o incident angle.   

     Fig. 7 shows the bistatic RCS of a dielectric sphere whose 
ka = 3.14 and for which 3398 unknowns are assumed in our 
FMM. The RCS results are compared to those obtained using 
the MoM and Mie theory and a good agreement is observed.   

V. CONCLUSION 
In this work, electromagnetic scattering by 3D arbitrarily 

shaped homogeneous dielectric objects is characterized using 
the MoM together with CG method, FMM, and MLFMA. In the 
Galerkin’s procedure, the RWG functions as used as both basis 
and test functions. Also, four proposals are made for improving 
the conditioning number of the matrix so as to increase the 
convergence and accuracy of the solution to the CFIE. It is 
realized that only Method D among the four proposals results in 
fast convergence and high accuracy. Furthermore, the FMM 
formulas based on Method D are made and some numerical 
results of RCSs are obtained using the FMM and MLFMA.  
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