
Transactions Everywhere
Bradley C. Kuszmaul and Charles E. Leiserson, SMA Fellow

MIT Laboratory for Computer Science

Abstract— Arguably, one of the biggest deterrants for
software developers who might otherwise choose to write
parallel code is that parallelism makes their lives more
complicated. Perhaps the most basic problem inherent in
the coordination of concurrent tasks is the enforcing of
atomicity so that the partial results of one task do not
inadvertently corrupt another task. Atomicity is typically
enforced through locking protocols, but these protocols can
introduce other complications, such as deadlock, unless
restrictive methodologies in their use are adopted. We have
recently begun a research project focusing on transactional
memory [18] as an alternative mechanism for enforcing
atomicity, since it allows the user to avoid many of the
complications inherent in locking protocols.

Rather than viewing transactions as infrequent occur-
rences in a program, as has generally been done in the
past, we have adopted the point of view that all user
code should execute in the context of some transaction. To
make this viewpoint viable requires the development of two
key technologies: effective hardware support for scalable
transactional memory, and linguistic and compiler support.
This paper describes our preliminary research results on
making “transactions everywhere” a practical reality.

I. Introduction

In a seminal paper ten years ago, Herlihy and Moss
[18] proposed transactional memory as a way to ease
the writing of concurrent programs. Transactional mem-
ory is sometimes described as an extension of Load-
Linked/Store-Conditional [24] and other complex in-
structions. The idea of transactional memory is to allow a
program to read and modify multiple, disparate memory
locations as a single atomic operation, much as occurs
within a database transaction [14], [15]. With trans-
actional memory, they argued, programmers can avoid
such concurrency anomalies such as priority inversion,
convoying, and deadlock. Herlihy and Moss proposed
an extension to hardware cache-consistency mechanisms
that can provide hardware transactional memory (HTM)
efficiently.

The traditional way to specify atomicity using trans-
actions is by textually marking the start and end of
the transaction. Within the transaction, all results are
“sandboxed,” which means that the values written by

the transaction are held in abeyance until the end of
the transaction, at which point the transaction commits,
and all these values are atomically made globally avail-
able. If the transaction is unable to commit for any
reason, the commit action returns an abort code, and
no global changes are made. Otherwise, it returns a
committed code, and all global changes are viewable.
If the transaction aborts, it is usually the responsibility
of the programmer to retry the transaction.

This traditional view of transactional memory simply
replaces a locking protocol with a transactional protocol.
Moreover, the common perception among researchers
seems to be that transactions occur infrequently (as
evidenced implicitly by the designs and codes that have
been proposed [18], [28]) and have high overhead.
Many researchers have focused their efforts on software
transactional memory (STM) [30], [17], [16], leading to
a dearth in the exploration of HTM.

We believe that the real advantage of transactional
memory is that programmers can largely be freed from
writing and debugging synchronization protocols. Rather
than viewing transactions as infrequent, our research
explores the notion of transactions everywhere: user code
is always executing within some transaction. This ex-
treme point of view requires both linguistic and hardware
support. In this paper, we describe our research progress
towards justifying a transactions-everywhere approach,
making HTM as familiar a computer subsystem as
cached memory.

The remainder of this paper outlines our research
progress to date. Section II describes our proposal for
adapting software to exploit HTM, focusing on linguistic
issues and compiler technology. Section III describes our
modification to Herlihy and Moss’s scheme to make it
scalable and how we plan to design a Bluespec hardware
specification and simulator for HTM to measure over-
heads. Finally, we offer some conclusions in Section IV.CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4381338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. Linguistic and compiler support
for HTM

Our preliminary investigations of language support for
HTM focus on providing “implicit” atomicity within
Cilk [2], [3], [25], [34], [12], a multithreaded pro-
gramming language developed by our research group
which features a provably efficient, randomized, “work-
stealing” scheduler. The current Cilk-5.3.2 release uses
locking to achieve atomicity, but we wish to investigate
how HTM can be employed to eliminate the use of
locks and other concurrency protocols. In particular, we
are studying the degree to which transactions can be
specified implicitly, rather than explicitly.

In this section, we first offer a brief introduction to
Cilk.1 We then describe our proposal to extend Cilk to
specify atomicity. Finally, we report on some preliminary
studies of the implications of this language extension.

The Cilk multithreaded language extends the C pro-
gramming language with five keywords:

• cilk before a function definition indicates that
this function can operate in parallel;

• spawn before the call to a Cilk function indicates
that this call can execute in parallel with the caller;

• sync waits until all spawned functions have fin-
ished;

• inlet allows the result from a spawned function
to be incorporated into the caller in a user-defined
fashion;

• abort stops the execution of a spawned function.

Cilk is a faithful extension of the C programming
language: if the Cilk keywords for parallel control are
elided from a Cilk program, a syntactically and seman-
tically correct C program results. Consequently, just by
#define’ing all Cilk keywords to nil, a Cilk program
becomes an ordinary C program.

The current Cilk-5.3.2 release uses locks to implement
mutual exclusion when data structures are operated on
concurrently by Cilk threads. Locking introduces many
concurrency anomalies, such as deadlock, into “pure”
Cilk programming. In previous work, we have developed
a tool, called the “Nondeterminator” [10], [7], [8], [32],
which helps with the debugging of locking protocols, but
specifying locks remains an error-prone exercise.

Replacing locking protocols with transactions may
mitigate some of the problems with concurrency control,
but specifying the start and end of each transaction
seems to be no simpler than specifying where to grab a
lock and where to release it. Although locking protocols

1More detailed information on Cilk can be found at http://
supertech.lcs.mit.edu/cilk.

must be wary of deadlock, transactions can have livelock
problems. When a transaction aborts, recovery code
must roll back and restart the transaction. Having the
programmer worry about livelock instead of deadlock
seems tantamount to replacing one protocol poison with
another.

Although specifying locations in code where atom-
icity needs to be enforced seems to be a popular op-
tion (see, for example, [18], [17], [16], [9], [27]), our
transactions-everywhere philosophy encourages a differ-
ent tack. Rather than specifying where atomicity should
be enforced, we take the view that atomicity is always
enforced, but it is implicitly “cut” at certain reasonable
points in the code. Of course, what is linguistically
“reasonable” is a matter of debate and personal taste. Our
initial studies for Cilk assume that atomicity is broken
implicitly at the following cutpoints:

• at backward branches (such as the end of a loop);
• when a C function is called or returns;
• when a Cilk function is spawned or returns;
• at a sync.

Intuitively, these cutpoints partition the program into
atomic sections. In other programming environments,
such as pthreads [23], similar cutpoints could be defined.

The compiler needs not only to partition the code
into atomic sections, it must generate code to recover
and restart transactions in case they abort. Intuitively,
this job is not hard. The transaction variables are rolled
back to their states from before the transaction began,
and the transaction is reexecuted. Of course, the pro-
grammer need not be aware that transactions are being
aborted during execution. The mechanisms to implement
transactions are beneath the layer of abstraction provided
by the programming language. The programmer need
only understand where the cutpoints are that divide the
program into atomic sections.

We have modified the Cilk compiler to atomize C
and Cilk code by inserting cutpoints. We then compiled
our Cilk benchmark programs to determine which would
operate correctly without locks. Although many run
correctly with this implicit atomization, several do not.
For example, one benchmark uses linked lists. In the
benchmark’s implementation with locks, each list is
locked in its entirety while it is operated on. In another, a
call to a simple arithmetic function breaks the atomicity
in the middle of what one would want to be an atomic
section.

We did not want to introduce explicit locking or a
transactional protocol into the Cilk language to cope
with situations where implicit atomicity seems to be
inadequate. Our goal is to determine the extent to which

an HTM computing environment can rid concurrent
computing of error-prone protocols altogether.

Consequently, we decided to add a new keyword
atomic to the Cilk language, which can be used as a
type qualifier in function declarations or as a statement
qualifier. When atomic is applied to a function dec-
laration, calling the function does not break atomicity.
When atomic occurs before a statement, it forces the
statement to be atomic. The compiler signals an error
if a function declaration or statement is declared atomic
and it contains, for example, a spawn or a function call
to a nonatomic function.

As an example, labeling a while loop as atomic
causes all iterations of the loop to form a single trans-
action, rather than each individual iteration, as would
normally be the case. In our benchmarks, few loops need
to be labeled atomic. Many built-in library functions,
such as those in math.h, need to be declared atomic,
but only a few functions in user code need the type
qualifier.

After modifying the Cilk compiler to C and Cilk code,
we ran it on many of our Cilk benchmarks. We then
investigated the character of the resulting atomic sections
in order to determine whether a hardware implementa-
tion of transactional memory was reasonable under our
linguistic model. Figure 1 shows the results, which al-
though preliminary, are nevertheless encouraging. These
statistics are conservative and do not exploit the fact that
many variables cannot escape their lexical context and
need not be included in the general HTM mechanism.

As can be seen from the table in the figure, the average
number of variables per transaction is about 4, which
indicates that hardware support can reasonably expect
to handle the common case. The FFT code has 380

variables in its largest transaction, which suggests that a
scalable HTM mechanism, rather than a fixed-size HTM
mechanism, will probably be necessary for some codes.
Of course, all these benchmarks are small, and we must
do a more complete and scientific study to validate any
proposed strategy for providing atomicity in a largely
automatic fashion.

The compiler modifications we have just described
simply break code into atomic sections. They do not
actually produce running code with embedded transac-
tions. In the future, we plan to modify the Cilk compiler
to execute on the HTM system described in Section III.
We shall measure the efficiency of the software/hardware
support for HTM on the HTM simulator. These measure-
ments should allow us, among other things, to explore
compiler optimizations. For example, the compiler can
identify some variables in an atomic section as being

Program name
Max # var
in any
transaction

avg # var
per
transaction

atomic
blocks

lines

blockedmul.cilk 68 12.0 7 352

bucket.cilk 13 3.7 12 295

cholesky.cilk 14 3.6 28 908

cilksort.cilk 2 1.5 22 510

ck.cilk 37 5.0 25 542

fft.cilk 380 37.9 31 3242

fib-benchmark.cilk 2 2.0 3 107

game.cilk 3 1.9 9 234

heat.cilk 14 4.8 13 414

kalah.cilk 26 4.3 46 911

knapsack.cilk 2 1.8 4 205

knary.cilk 5 3.0 3 158

lu.cilk 25 5.7 16 560

magic.cilk 5 1.8 81 993

matmul.cilk 2 1.6 9 177

notempmul.cilk 68 11.0 7 352

plu.cilk 7 2.7 25 432

queens.cilk 1 1.0 3 126

rand.cilk 1 1.0 2 40

rectmul.cilk 68 19.6 8 493

spacemul.cilk 68 19.0 8 468

testall.cilk 8 1.5 47 1334

test-locks.cilk 1 1.0 2 42

Fig. 1. Statistics on transaction sizes for Cilk benchmarks.

unsharable. Although these variables may need to be
rolled back if the transaction is aborted, the mechanism
is much simpler than with shared variables. A working
compiler and a hardware simulator will allow us to make
reasonable tradeoffs between what the compiler should
implement and what should be put into hardware.

We also plan to make the compiler produce output
that can execute on a software transactional memory
(STM) system. Although compiling for STM will gen-
erally produce low-performance codes, it will allow us
to experiment with real applications to learn about the
strengths and inadequacies of our linguistic framework
for HTM. In addition, a running implementation will
allow us to experiment real programs with algorithms
for contention resolution.

III. Architectural support for an
HTM computing environment

We want an HTM computing environment to be imple-
mentable for single processors; for bus-based multipro-
cessors using, for example, snoopy caches [13]; and for

scalable multiprocessors using, for example, directory-
based cache coherence [4], [6], [5]. Herlihy and Moss
[19] showed how to implement transactional memory for
these various architectures, but their implementation is
not scalable in that it would not work if the transac-
tion size exceeds the hardware resources. This section
presents the outline of a design for a scalable HTM
mechanism.

Since we wish to put transactions everywhere in the
code, rather than in just a few critical sections, almost all
memory operations will take place within a transaction.
Achieving high performance will require hardware sup-
port, since in a software-only scheme, nearly every load
and store instruction would incur significant overhead.

To support an HTM programming environment, the
common case must be fast and correct, and the uncom-
mon cases must interact correctly with the common case.
Our compiler studies (described in Section II) indicate
that when transactions are everywhere, the common case
is a small transaction that fits within the on-processor
cache. Herlihy and Moss showed how to implement
small transactions efficiently by extending the MESI
protocol [13]. We would like small transactions to run
just as efficiently in a scalable system.

The uncommon case, in which a transaction is too big
to fit in cache, must run correctly. Limiting transactions
to the size of on-processor caches, or any other fixed size,
makes the compiler’s job difficult, because it is unwise
for executable binaries to depend on implementation-
specific, as opposed to architectural, parameters. One
might propose that the compiler could, for large transac-
tions, simply generate code to obtain a global lock, but
locking protocols and transactions do not interact seam-
lessly. Specifically, every small transaction may now
need to check the lock, resulting in increased overhead
for the common case, or increased system complexity to
mitigate the overhead.

We want to allow transactions to be huge, perhaps
requiring many gigabytes of memory for the transac-
tion’s “undo log.” If an application is willing to devote
the memory, then the hardware should interact smoothly
with software to support that application. A scalable
HTM computing environment must support large trans-
actions whether they access a large number of memory
locations or run for a long time.

To solve the scalability problem, we plan to add
memory to the computer architecture in three places: a
commit record, a transaction log, and extra status for
every cache line of main memory. The commit record
is simply a location in memory that contains one of
three values, indicating whether a transaction is pending,

committed, or aborted. The idea is that a single write to
the commit record will have the effect of committing
(or aborting) all of the writes of a whole transaction.
The transaction log contains, for each memory operation,
the information needed to abort or commit a transaction.
For each memory store, the transaction log contains the
new value of memory. For each memory location that is
read, the transaction log also contains some bookkeeping
information. Thus, the extra status for each cache line
indicates whether the cache line has been operated on
as part of a transaction, in which case it points to a
transaction log entry.

Surprisingly, reads are trickier than writes, because
our protocol requires writers to gain exclusive access to
each memory location. But, there can be many readers
of a memory location, and the hardware must be able to
find them all when a conflict is discovered. To make the
protocol work, we allocate one entry in the transaction
log for every read operation. The entry makes up one
cell of a doubly linked list of all the transactions that
read that location. The doubly linked list is constructed
from the transaction logs of the various transactions that
have performed reads. The extra status simply points to
the head of the list.

Whenever a processor performs a load, the extra status
must be checked. If the extra status indicates that the
cache line is not part of a write in a transaction, then
the read may proceed. If the extra status points to a
write in the log of a transaction whose commit record is
pending, then there is a conflict. If the extra status points
to a write in the log of a transaction whose commit
record indicates that the transaction has aborted, then
the read may proceed (since the old value is stored in
the memory location). If the extra status points to a
write transaction and the commit record indicates that
the transaction has committed, then the data must be
read out of the transaction log. A similar set of rules
applies when writing to a memory location.

The commit record and transaction log are only
needed for memory locations that spill from the cache
during the transaction. If indeed the common case is that
most transactions do not spill from the cache, as we are
hypothesizing, then transactions will usually incur little
or no overhead.

Implementing our protocol requires additional mem-
ory. In our current design, the commit record and the
transaction log are provided from ordinary program
memory by the language runtime system. If the memory
provided for the transaction log turns out to be too small,
then the transaction can abort, and the runtime system
can retry with a bigger transaction log. The memory for

extra status on a cache line, in contrast, must be added to
the hardware main-memory system. In a directory-based
cache system, it may be possible to conscript unused bits
in the directory entry to keep track of the status. Thus,
part of the memory is architecturally visible (the commit
record and transaction log) and part is architecturally
invisible (the extra status).

Thus, our implementation of scalable HTM extends
the transactional memory instruction-set architecture
(ISA) of Herlihy and Moss [18] to support scalable
transactions, even those that do not fit within an on-
processor cache. The ISA our scheme will use is es-
sentially identical to that given by [18], except that
the language runtime system provides memory to the
transaction. We have not yet determined the policy and
mechanism by which the HTM system decides which
transaction to abort in the case of a conflict.

We are implementing a Bluespec [29] model of our
HTM design to show that we have not missed any
important details. Bluespec is a high-level hardware
description language developed at Sandburst Corporation
which makes it easier to write term-rewriting descrip-
tions of hardware. Bluespec developed out of work
by others in our Laboratory on using term-rewriting
systems to design and verify cache-coherence protocols
[1], [20], [21], [26], [22], [31], [33], [29]. Bluespec
can be compiled into circuits or to a cycle-accurate C-
language simulator. Bluespec produces Verilog output,
which can then be used to program an FPGA, as well
as a cycle-accurate C-language backend.

IV. Conclusion

The overall goal of this research is to make parallel
computing easier for ordinary programmers, not just for
expert computer scientists. Today, it makes little sense
for most programmers to take on the complexities of
parallel programming. Consequently, high-performance
programming is a niche business, codes are expensive to
develop, and they often underperform expectations. For
parallel programming to advance significantly into the
mainstream, it must become simpler. Although it will
be intellectually challenging to address all the problems
inherent in developing an HTM computing environment,
we believe that HTM represents a path towards overall
programming simplicity. Our thesis is that the ability
of programmers to exploit the high-level structure of
their applications (such as exploiting sparsity in a matrix)
will outweigh the complexities of the low-level imple-
mention, leading to a large net improvement in overall
performance.

V. Acknowledgments

Special thanks to Clement Menier of ENS Lyon. As a
summer intern in the Laboratory for Computer Science,
Clement implemented the changes to the Cilk compiler
so that we could study the tradeoffs between implicit and
explicit atomicity. Thanks to Victor Luchangco of Sun
Labs and Larry Rudolph of MIT for helpful discussions.
Thanks to the many people at Silicon Graphics for their
interest in our ideas.

References

[1] Arvind and Xiaowei Shen. Using term rewriting systems to
design and verify processors. IEEE Micro, 19(3):36–46, May–
June 1999. http://csg.lcs.mit.edu/pubs/memos/
Memo-419/memo-419.pdf.

[2] Robert D. Blumofe. Executing Multithreaded Programs Ef-
ficiently. PhD thesis, MIT Department of Electrical En-
gineering and Computer Science, Cambridge, Massachusetts,
Sept. 1995. ftp://theory.lcs.mit.edu/pub/cilk/
rdb-phdthesis.ps.Z.

[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:
An efficient multithreaded runtime system. Journal of Parallel
and Distributed Computing, 37(1):55–69, August 25 1996. (An
early version appeared in the Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’95), pages 207–216, Santa Barbara, Cal-
ifornia, July 1995.), ftp://theory.lcs.mit.edu/pub/
cilk/cilkjpdc96.ps.gz.

[4] L. M. Censier and P. Feautrier. A new solution to cache
coherence problems in multicache systems. IEEE Transactions
on Computers, pages 1112–1118, Dec. 1978.

[5] David Chaiken, John Kubiatowicz, and Anant Agarwal. Limitless
directories: A scalable cache coherence scheme. In Proceed-
ings of the Fourth Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS IV),
pages 224–234, Santa Clara, California, Apr. 8–11 1991. Pro-
ceedings published as SIGARCH Computer Architecture News,
Volume 19, Number 2, April 1991. SIGOPS Operating Systems
Review, Volume 25, Special Issue, April 1991. SIGPLAN Sigplan
Notices, Volume 26, Number 4, April 1991, ftp://ftp.cag.
lcs.mit.edu/pub/papers/pdf/asplos4.pdf.

[6] David Lars Chaiken. Cache coherence protocols for large-
scale multiprocessors. Master’s thesis, MIT Department of
Electrical Engineering and Computer Science, Cambridge, Mas-
sachusetts, Sept. 1990. Also available as MIT/LCS Technical Re-
port 489., ftp://ftp.cag.lcs.mit.edu/pub/papers/
pdf/chaiken-thesis.pdf.

[7] Guang-Ien Cheng. Algorithms for data-race detection in multi-
threaded programs. Master’s thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, Massachusetts,
June 1998. ftp://theory.lcs.mit.edu/pub/cilk/
cheng-thesis.ps.gz.

[8] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson,
Keith H. Randall, and Andrew F. Stark. Detecting data races
in cilk programs that use locks. In Proceedings of the Tenth An-
nual ACM Symposium on Parallel Algorithms and Architectures
(SPAA ’98), pages 298–309, Puerto Vallarta, Mexico, June 28–
July 2 1998. ftp://theory.lcs.mit.edu/pub/cilk/
brelly.ps.gz.

[9] Digital Equipment Corporation, Maynard, Massachusetts. DIG-
ITAL Fortran 90—User Manual for DIGITAL UNIX Systems,
Mar. 1998. http://www.helsinki.fi/atk/unix/dec_
manuals/df90au52/dfum.htm.

[10] Mingdong Feng and Charles E. Leiserson. Efficient detection
of determinacy races in cilk programs. Theory of Computing
Systems, 32(3):301–326, 199. A preliminary version appeared as
[11].

[11] Mingdong Feng and Charles E. Leiserson. Efficient detection
of determinacy races in cilk programs. In Proceedings of
the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’97), pages 1–11, Newport, Rhode Island,
June 22–25 1997. ftp://theory.lcs.mit.edu/pub/
cilk/spbags.ps.gz.

[12] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.
The implementation of the Cilk-5 multithreaded language. In
Proceedings of the ACM SIGPLAN ’98 Conference on Program-
ming Language Design and Implementation, pages 212–223,
Montreal, Quebec, Canada, June 1998. Proceedings published
ACM SIGPLAN Notices, Vol. 33, No. 5, May, 1998., ftp:
//theory.lcs.mit.edu/pub/cilk/cilk5.ps.gz.

[13] James R. Goodman. Using cache memory to reduce processor-
memory traffic. In Conference Proceedings of the tenth Inter-
national Symposium on Computer Architecture, pages 124–131,
Stockholm, Sweden, June 1983. ftp://ftp.cs.wisc.edu/
galileo/papers/retro-goodman.pdf.

[14] Jim Gray. The transaction concept: Virtues and limitations. In
Seventh International Conference of Very Large Data Bases,
pages 144–154, Sept. 1981. Also published as [15].

[15] Jim Gray. The transaction concept: Virtues and limitations.
Technical Report 81.3, Tandem Computers, June 1981.
http://www.hpl.hp.com/techreports/tandem/
TR-81.3.html.

[16] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-
free software transactional memory for supporting dynamic
data structures. Unpublished manuscript received from Victor
Luchangco, Oct. 2002.

[17] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-
free synchronization: Double-ended queues as an example. Un-
published manuscript received from Victor Luchangco, Oct.
2002.

[18] Maurice Herlihy and J. Eliot B. Moss. Transactional memory:
Architectural support for lock-free data structures. In Interna-
tional Conference on Computer Architecture. (Also published as
ACM SIGARCH Computer Architecture News, Volume 21, Issue
2, May 1993.), pages 289–300, San Diego, California, 1993.
http://www.cs.brown.edu/people/mph/isca2.ps.

[19] M. P. Herlihy and J.E.B. Moss. Transactional support for lock-
free data structures. Technical Report 92/07, Digital Cambridge
Research Lab, One Kendal Square, Cambridge, MA 02139, Dec.
1992. ftp://ftp.cs.umass.edu/pub/osl/papers/
crl-92-07.ps.Z.

[20] James C. Hoe. Operation-Centric Hardware Description
and Synthesis. PhD thesis, MIT Department of Electri-
cal Engineering and Computer Science, Cambridge, Mas-
sachusetts, June 2000. http://www.ece.cmu.edu/
˜jhoe/distribution/thesis.ps.

[21] James C. Hoe and Arvind. Hardware synthesis from
term rewriting systems. In Proceedings of X IFIP Inter-
national Confernce on VLSI (VLSI 99), Lisbon, Portugal,
Dec. 1–4 1999. http://www.ece.cmu.edu/˜jhoe/
distribution/csgmemo/memo-421a.ps.

[22] James C. Hoe and Arvind. Synthesis of operation-centric
hardware descriptions. In Proceedings of 2000 International
Conference on Computer-Aided Design, pages 511–518, San
Jose, California, Nov. 5–9 2000. http://www.ece.cmu.
edu/˜jhoe/distribution/csgmemo/memo-426a.ps.

[23] Institute of Electrical and Electronic Engineers. Information
technology — Portable Operating System Interface (POSIX) —
part 1: System application program interface (API) [C language].
IEEE Std 1003.1, 1996 Edition.

[24] E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A new
approach to exclusive data access in shared memory multipro-
cessors. Technical Report UCRL-97663, Lawrence Livermore
National Laboratory, Livermore, California, Nov. 1987.

[25] Christopher F. Joerg. The Cilk System for Parallel Multithreaded
Computing. PhD thesis, MIT Department of Electrical En-
gineering and Computer Science, Cambridge, Massachusetts,
Jan. 1996. ftp://theory.lcs.mit.edu/pub/cilk/
joerg-phd-thesis.ps.gz.

[26] Jan-Willem Maessen, Arvind, and Xiaowei Shen. Improving
the Java memory model using CRF. Computation Structures
Group Memo 428, MIT Laboratory for Computer Science,
Oct. 6 2000. http://csg.lcs.mit.edu/pubs/memos/
Memo-428/memo-428.pdf.

[27] OpenMP: A proposed industry standard API for shared
memory programming. OpenMP white paper, Oct. 1997.
http://www.openmp.org/specs/mp-documents/
paper/paper.ps.

[28] Ravi Rajwar and James R. Goodman. Transactional lock-free
execution of lock-based programs. In Tenth International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems, pages 5–17, San Jose, California, Oct. 5–
9 2002. http://www.cs.wisc.edu/˜rajwar/papers/
asplos02.pdf.

[29] Sandburst Corporation. Bluespec. Web page, Oct. 2002. http:
//bluespec.org.

[30] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the 14th Annual ACM Symposium on Principles
of Distributed, pages 204–213, Ottawa, Ontario, Canada, 1995.

[31] Xiaowei Shen. Design and Verification of Adaptive Cache
Coherence Protocols. PhD thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, Massachusetts,
Jan. 2000.

[32] Andrew F. Stark. Debugging multithreaded programs that in-
corporate user-level locking. Master’s thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge,
Massachusetts, May 1998. ftp://theory.lcs.mit.edu/
pub/cilk/astark-thesis.ps.gz.

[33] Joseph Stoy, Xiaowei Shen, and Arvind. Proofs of correctness
of cache-coherence protocols. In J. N. Oliveira and Pamela
Save, editors, Proceedings of the Formal Methods for Increas-
ing Software Productivity, International Symposium of Formal
Methods Europe (FME 2001), volume 2021 of Lecture Notes in
Computer Science, pages 43–71, Berlin, Germany, Mar. 12–16
2001. Springer-Verlag. http://csg.lcs.mit.edu/pubs/
memos/Memo-432/memo-432.pdf.

[34] Supercomputing Technologies Group, MIT Laboratory for
Computer Science. Cilk 5.3.2 Reference Manual, Nov. 2001.
http://supertech.lcs.mit.edu/cilk/manual-5.
3.2.pdf.

