

Abstract—This paper describes a system for high resolution
video conferencing. A number of camcorders are used to capture
the video, which are then mosaiced to generate a wide angle
panoramic view. Furthermore this system is made “real-time” by
detecting changes and updating them on the mosaic. This system
can be deployed on a single machine or on a cluster for better
performance. It is also scalable and shows a good real-time
performance. The main application for this system is
videoconferencing for distance learning but it can be used for any
high resolution broadcasting.

Index Terms—real-time, mosaic, parallel, multi-camera

I. INTRODUCTION

n present times distance learning is becoming more and
more prevalent for education. Almost all top universities all

over the world are making efforts to include
telecommunication technologies into educational process.
There are many different mediums in distance learning. Such
as web pages, voice transmission, videoconferencing. It has
been noted that the videoconferencing systems shows the best
results [2], [7]. Knowledge absorption is very high using
conferencing. So, when we speak about distance learning we
usually mean videoconferencing.

Goal of our work is in development and improving
advanced technologies for videoconferencing. Industry video
camcorders usually provide very low resolution because they
are oriented for use with off shelve TV sets. And the most
reasonable way to increase resolution of video is by using
several camcorders. But for using several camcorders we
should solve some problems, such as cameras calibration,
synchronization, video capturing and processing of several
video streams in real time [1], [6].

 We have addressed all these issues in our paper, we have
developed a system that can accept streams of data from

Manuscript received November 1, 2002. This work was supported by

Singapore-MIT alliance.
Anton Klechenov (e-mail: antonkle@comp.nus.edu.sg).
Aditya Kumar Gupta (e-mail: smaakg@nus.edu.sg).
Wong Weng Fai (e-mail: wongwf@comp.nus.edu.sg).
Ng Teck Khim (e-mail: ngtk@comp.nus.edu.sg).
Leow Wee Kheng (e-mail: leowwk@comp.nus.edu.sg).

different pre-calibrated cameras and generate a single mosaic
out of these different streams. Furthermore we have made our
system “real-time” in the sense that we detect changes to the
live mosaic and update it. This application thus gives the
feeling of a single, virtual, wide angle camera instead of the
array of cameras. Thus we can get a wide-angle real time
panoramic video stream, which can be further transmitted in
videoconferences.

We have described the hardware configurations used in the
section 2, followed by the software infrastructure in the section
3. Following which we describe the algorithm and it’s
optimization in the section 4, results in section 5. Future work
and conclusion is discussed in the sections 6 and 7.

II. HARDWARE INFRASTRUCTURE

Industrial grade camcorders were used to develop our system.
Currently we are using the camcorder from Sony corp. V500
series. These camcorders are connected to the PCs using the
Firewire network. We also use a customized hub to connect
more than two cameras to the PCs (PCs just have two ports for
the Firewire network connections). We have used two
configurations of the network: serial as shown in figure 1 and
parallel in the figure 2. For the serial version of our system we
have used a single PC with a network of camcorders. For the
parallel version we have formed a simulated cluster of PCs.
We say simulated cluster because it is not exactly a cluster,
just a group of PCs connected using Ethernet. The windows
implementation of MPI has a facility of setting certain
environment variables on the PCs assigning each PC to be a
certain node number in the cluster. Thus when we run MPI
programs they run as if on a cluster (all the while they
communicate with other nodes via the ether).

Real-time Mosaic
for Multi-Camera Videoconferencing

Anton Klechenov, Aditya Kumar Gupta, Weng Fai Wong, Teck Khim Ng, Wee Kheng Leow
Singapore-MIT Alliance,

National University of Singapore,
Singapore

I

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace@MIT

https://core.ac.uk/display/4381335?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Serial configuration

Figure 1: Machine and camera connected in the serial
configuration

Parallel Configuration

Figure 2: Machines and cameras connected in the parallel
configuration

III. SOFTWARE INFRASTRUCTURE

For video capturing we use a C++ class library called the IC
imaging control. This library lets us set the format of the video
capture, adjust the brightness, contrast, etc…and set the frame
rate on the machines. For the implementation of our algorithms
we have used C++ programming with MS DirectX SDK and
Intel OpenCV libraries. In the case of the parallel
implementation we have used MPI (Message Passing

Interface) programming model.
Software we used:
 MS Windows XP;
 MS VC++;
 IC Imaging control;
 MS DirectX;
 Intel Performance Library;
 Intel OpenCV library;

MPICH for MS Windows

IV. ALGORITHM

Below we define the algorithm of this system.

A. Camera calibration

 Initially we need to set up the cameras to capture
the scene and develop the mosaic. All camcorders we use are
adjusted in such a way to have an overlapped area for each
pair of them. In each overlapped area we have chessboard for
camera calibration. The affine transformation parameters are
obtained using the Kanade-Lucas-Tomasi [4] feature detector.
This way, the process of cameras calibration is made
automatic. Currently, 2D model of the scene is used. And for
panoramic image affine transformation is suitable. But this
approach works correctly only for the same depth object. In
other words all objects of the scene are supposed to be at
almost the same distance from the camera. Otherwise we have
to build 3D models for the objects at the scene and affine
transformation will not be suitable for mosaicing. For our
current implementation difference in distance from camera to
objects cause distortion on the panoramic image. In future we
plan to add some stereo vision features for obtaining depth
information.

B. Mosaic generation

After the camera calibration, we generate a mosaic of the
screen where the subject in the video will appear [3], [5]. This
would ideally be a blackboard, but for the purpose of
calibrating the camera and generating the mosaic, we use some
chess boards on the screen. Pairs of cameras will have a board
that is overlapping and this will be used to generate the
mosaic. This part has been implemented as a separate class,
called BigMosaicing.

 Mosaicing of complete set of cameras is done in two
steps: first mosaic two adjacent camera images and apply the
process iteratively to all the camera images until we get the
complete mosaic.

1) Mosaicing Two Images

Mosaicing two images, image I and image I’, involves

several steps:

1. Identify corresponding point’s p in I and p’ in I’.
2. Compute affine transformation from p to p’.
3. Create resulting image R, for pixels p that exists only in I,

Cameras
Slave
machine

Master
machin

Ethernet
connection
Firewire
network

Cameras

Machine

Firewire

HUB

result R(p) = I(p).
4. For pixels p that are outside I but inside I’ , map p in I to

p’ = Ap in I’ . Compute I’ (p’) using bilinear interpolation, and
assign I’ (p’) to R(p).

5. For pixels p that are inside in the overlapping area of I
and I’ , use a weighted average of both.

This program implements step 1 with two sub-steps. First,

identify feature points in image I. We provide the method
called findFeatures() in the Class BigMosaicing to find the
feature points of an image. In the function, we call the routine
provided in OpenCV (Intel Open Source Computer Vision
Library) [10], cvGoodFeaturesToTrack() to identify the
feature points. Secondly, find the corresponding points to
those feature points of image I in image I’ . Here we apply
Lucas & Kanade Technique with pyramid approach, which is
also implemented in OpenCV, called
cvCalcOpticalFlowPyrLK(). We provide the method called
findCorrespondingPointsSub() in the Class of BigMosaicing to
identify corresponding points of two images. In this function,
we use a modified version of the Lucas & Kanade Technique
[8], [9]. Because we consider that Lucas & Kanade technique
works only when the movement between the two images is
small, this requires that the overlapping area of the two images
must be very large. But in our application, it is meaningless if
two images have a large overlapping area. So we assume that
the two input images are in such a sequence that the first
image’ s right part overlaps with the second image’ s left part,
and that the overlapping area is within the half of the width of
the two images. And since the two images are taken by the
same type of camera, they have the same size. With this
assumption, when we find the corresponding points of two
images, we apply Lucas & Kanade Technique to the right half
of the first image and the left half of the second image instead
of the two original images so that the method can successfully
find the corresponding points of the two images.

When we get the corresponding points of the two images,

we compute the affine transformation of the two images with
them. The method called getAffineTransform() in the Class of
BigMosaicing calculates the affine transformation matrix from
two sets of corresponding points.

With the affine transformation matrix of the two images, we

can mosaic the two images as described above in step 3, 4 and
5. We implement it in the function named mosaicingGlobal()
in the Class of BigMosaicing.

2) Combine Multiple Overlapped Images

The goal of the application is to combine multiple images

taken by multiple cameras into a big image. Suppose there are
n cameras, which take n images. When we combine the n
images, we assume the n images are in the sequence that the i-
th image overlaps with the (i-1)-th image on its left part, and

overlaps with the (i+1)-th image on its right part. As
mentioned in the previous part, the overlapping area with each
other is within half width of the image.

When combining n images, we first mosaic the first image

and the second image. Then mosaic the resulting image with
the next image iteratively until we get the whole mosaicing
result of the n images. We implemented it in the function
named getBigMosaicing() in the Class of BigMosaicing.

Additionally, for each image, we provide a transformation

matrix that transforms the pixel on the image to the
corresponding pixel on the mosaiced result image. With the
transformation, we can update the pixel on the mosaiced image
which corresponds to the changed pixel of the original image.
The function getMosPosition() of the Class BigMosaicing
takes the pixel position of one of the original image, and
returns the corresponding pixel position on the mosaicing
image.

C. Real time updating

After we have the whole panoramic image we update it in
real time. Each camera sends frames to central PC where
position of each point is calculated using affine transformation
matrix. We multiply coordinates of each point by
transformation matrix to find the corresponding coordinates on
the panoramic image.

For better performance we check the differences between
consecutively appearing images from a camera and do change
detection between the two images. From this it is possible to
obtain the bounding rectangle of the changed area and update
only this area in the mosaic.

D. Serial implementation

Serial version uses several video cameras connected to one
PC using a FireWire hub. Here we found difficulties with
frame rate of resulting mosaic video; the firewire network
could not support the high resolution bandwidth which is need.
Also, we found that updating is too slow in the serial version.
Updating is done sequentially from all the cameras, thus the
changes from camera one is updated, following which the
changes from camera two and so on. This way there is a
considerable delay in updating. Hence we had to resort to a
parallel architecture for our system.

E. Parallel implementation

In the parallel configuration one PC is connected to each
camera and one "central" PC for does the video mosaicing and
updating. We tried configuration with one "master" PC for
mosaicing and two "slave" PCs connected to two FireWire
cameras. Connections between computers were built using
different types of network.

We have implemented the parallel version using MPI
programming on several MS Windows XP machines. We tried
our parallel implementation using FireWire networking, 10
MBit Ethernet and 100 MBit Ethernet. Best results can be
demonstrated with 100 MBit Ethernet. Performance of parallel
system with 100 MBit Ethernet is much higher than serial
version and other parallel versions.

We found difficulties with the FireWire network in the
parallel implementation because of the bandwidth constraints
in FireWire. The bandwidth of FireWire is 400Mb, but this
network is transparent and this bandwidth is shared between
all the cameras. When we try to send images from the cameras
at the rate of 30 frames per second, the network over loads.
Hence we use the FireWire network only to update the slave
PC with the images from the cameras, but to transfer the
updated from the slave to the master PCs, we use the Ethernet.

Parallel implementation of our approach for video
mosaicing has an advantage - performance, because we can
compute the changing rectangle on a "slave" PC and transmit
information only within that rectangle to the "master" PC as a
MPI message. On the "master" PC we should only update this
changing rectangle. So, by using a parallel approach we have
the possibility of increasing the number of cameras without a
large decreasing in performance.

Each camera PC sends message to a central node. This is
used for updating the rectangle on the panoramic image. This
message contains the camera number, captured frame number,
parameters of rectangle, such as coordinates and size, and
array of points inside the rectangle. Size of the message
depends on the size of the changing rectangle. So, every time
“slave” node packs the data into a message and central PC
unpacks it and updates the rectangle area on the result image.

F. Optimizations

First we implemented a version of video mosaicing for one
PC connected to camcorders in a serial configuration. We
found difficulties with frame rate of the resulting mosaicing
video. Updating was too slow in serial version. For each
updating, a frame from first camera is first updated, after that
the frame from second camera and so on. And it takes some
time to update frames from all the cameras. Frame rate for
serial version with 2 cameras is only 6 frames per second. And
it’ s much slower for more cameras. We can use FireWire hub
connect several camcorders to one PC. But the problem is
performance. Updating is too slow and hence it is impossible
to use serial version for videoconferencing. To address this
problem we made a parallel implementation of program using
cluster of PC’ s. Another step for performance improving is
transferring and updating not all frames but only changing
regions.

G. Removal of artifacts/flickering

We eliminated image flickering in the overlapped area. The
reason for flickering was updating overlapped area from both

cameras. We calculate coordinates of overlapped area and
update pixels in it only once using information obtained only
from one camera. This simple procedure improved visual
quality of resulting panoramic video.

V. RESULTS

We have measured the parameters in terms of the speed of
the updates to the mosaic. We have chosen this parameter
because this can give an estimate of the real time functioning
of the system. We ran the tests under the two configurations of
the system.

A. Serial implementation

In this configuration, we used 2 and 3 camcorders connected
to a PC. This system gives a mosaic that is updated at a rate of
6 and 4 frames per second for 2 and 3 camcorders accordingly.
This update is a little slow which is clearly visible. We find
that the update rate decreases as we add more cameras to the
system. This is because we have to update from multiple
cameras and as this quantity increases, so does the overhead in
updating.

B. Parallel implementation

In this configuration we used 2, 3 or 4 camcorders
connected to PCs. Each of these slave machines were
connected to the master machine. Here we got an update rate
for the system as 12 frames per second. This shows significant
improvements over the serial version.

Update rate for parallel configuration almost does not
depend on number of cameras. It depends on size and speed of
moving object at the scene. As far as we update only changing
region value of update region is not a constant. If there are no
changes at scene it will be no update at all. So, we measured
frame rate for scene with moving object. It was one man, who
walked near the wall all the time. For parallel version we can
say that system working in real time and suitable for
videoconferencing. Transferring and updating of only
changing rectangle improved performance drastically. For
parallel version it improves from 4 to 12 frames per second in
average.

VI. FUTURE WORK

This application currently is in the form of a demonstration
of the technology, this can be further enhanced. Currently, we
have just developed the end part which generates the mosaic
and does the real time change detection and updates it on a
local machine. For the purpose of distance education it would
be more practical to do the updating on a remote machine.
Hence the part of system for data packing and transmitting has
to be implemented. It is also possible to add some additional
features like stereo vision for calculating depth of objects. For
real tasks of videoconferencing lasers for camera calibration
and mosaic parameters extraction can be useful. This would

make the initial setting of the mosaic more accurate. We see
further development of our work in applying object tracking
algorithms for panoramic video. It will allow us to track
objects in field of view of several video cameras. Currently we
use MPI for communication between slave nodes and master
PC. In the future we planning to implement network module
and use architecture client-server like in [6] for real time
object tracking.

VII. CONCLUSION

In this paper we have described a system for real time, high
resolution video generation. This has been done by doing an
install time mosaic generation of the screen and subsequently
doing a change generation. We have also added some
optimizations to the system to make it run within acceptable
delays. Furthermore we have deployed this system on a serial
as well as a cluster of machines. And we see real time
performance on the parallel version.

REFERENCES

[1] G. Kogut, M. Trivedi. Real-time wide area tracking: hardware and
software infrastructure. IEEE CITS, September 2002.

[2] Y. Rui, A. Gupta, J. Grudin. Videography for telepresentations.
Microsoft research technical report MSR-TR-2001-92, April 2002.

[3] R. Szelski. Video mosaic for virtual environments. IEEE Computer
graphics and applications, 1996.

[4] J. Shi, C. Tomasi. Good features to track. IEEE CVPR, June 1994.
[5] A. Smolic, T. Wiegand. High-resolution video mosaicing. ICIP, 2001.
[6] X. Chen. Design of many-cameras tracking systems for scalability and

efficient resource allocation. PhD thesis, Stanford University, July 2002.
[7] J. Cadiz, A. Balachandran, E. Sanocki, A. Gupta, J. Grudin, G. Jancke.

Distance learning through distributed collaborative video viewing.
Microsoft research technical report MSR-TR-2000-42, May 2000.

[8] C. Tomasi, T. Kanade. "Detection and tracking of point features",
Technical report CMU-CS-91-132, Carnegie Mellon University, April
1991.

[9] S. Birchfield, Derivation of Kanade-Lucas-Tomasi tracking equation,
Unpublished, May 1996.

[10] Intel Open Source Computer Vision Library,
http://www.intel.com/research/mrl/research/opencv

