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Abstract— We propose a new classification for multi-agent
learning algorithms, with each league of players characterized
by both their possiblestrategiesand possiblebeliefs. Using this
classification, we review the optimality of existing algorithms
and discuss some insights that can be gained. We propose an
incremental impr ovement to the existing algorithms that seems
to achieve averagepayoffs that are at least the Nash equilibrium
payoffs in the long-run against fair opponents.

I . INTRODUCTION

The topic of learning in multi-agent environments has
receivedincreasingattentionover thepastseveralyears.Game
theoristshave begunto examinelearningmodelsin their study
of repeatedgames,and reinforcementlearning researchers
have begun to extend their single-agentlearning models to
the multiple-agentcase.As traditional modelsand methods
from thesetwo fields are adaptedto tackle the problem of
multi-agentlearning,the central issueof optimality is worth
revisiting. What do we expecta successfullearnerto do?

A. Matrix gamesand Nashequilibrium

From the game theory perspective, the repeatedgame is
a generalizationof the traditional one-shotgame,or matrix
game. In the one-shot game, two or more players meet,
chooseactions,receive their rewardsbasedon the simultane-
ous actionstaken, and the gameends.The � -player matrix
game is defined as a reward matrix

���
for each player,� �����	��
����
�������
������ �

, where
���

is the set of
actions available to player � . In this paper, we will focus
on two-player games,����� . In this context,

� �
is often

written as an � �	� � 
 � �� � matrix, with
� �� �"!$#&% denotingthe

reward for agent1 if agent1 plays action �(' �)� and agent
2 plays action #*' ��

. The game is describedas a tuple $�	� ! �� ! � � ! �  % andis easilygeneralizedto � players.Purely
competitivegamesarecalledzero-sumgamesandmustsatisfy�)� �,+ �� . Each player simultaneouslychoosesto play a
particularaction - � ' � � , or a mixed policy . � �0/(1  $� � % ,
which is a probability distribution over the possibleactions,
and receives reward basedon the joint action taken. Some
traditionalexamplesof single-shotmatrix gamesareshown in
Figure1.

The traditionalassumptionis that eachplayerhasno prior
knowledgeabouttheotherplayer. Thusthereis no opportunity
to tailor our choiceof actionto bestrespondto theopponent’s
predictedaction.We cannotmake any true predictions.As is
standardin the gametheory literature,it is thusreasonableto
assumethat the opponentis fully rationalandchoosesactions
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Fig. 1. Somecommonexamplesof single-shotmatrix games.

that are in its best interest. In return, we must play a best
responseto the opponent’s choiceof action.

Definition I.1. A best response function for player � ,C;� �D .�E � % , is defined to be the set of all optimal policies
for player � , given that the other players are playing the
joint policy .�E � : C;� �D .�E � % �GF .�H� '0I � � � �J .�H� !$.�E � %LK���  . � !$. E � %NMO. � 'PI �RQ , where I � is the set of all possible
policies for agent� .

If all playersareplayingbestresponsesto theotherplayers’
strategies, . � ' C;� �D .�E � %SMO� , then the gameis said to be in
Nashequilibrium.

Definition I.2. A Nashequilibrium is a joint policy . such
that for every agent� , . � ' C��9�  . E � % .

Once all players are playing by a Nash equilibrium, no
singleplayerhasan incentive to unilaterallydeviate from his
equilibriumpolicy. Any two-playermatrix gamecanbesolved
for its Nash equilibria using quadraticprogramming,and a
player can choosean optimal strategy in this fashion,given
prior knowledgeof thegamestructure.Of course,this process
maytake computationaltime that is exponentialin thenumber
of actions.Another problemariseswhen thereexist multiple
Nashequilibria.If theplayersdo not manageto coordinateon
oneequilibrium joint policy, then they may all endup worse
off. The Hawk-Dove gameshown in Figure 1(c) is a good
example of this problem. The two Nash equilibria occur at
(1,2) and(2,1), but if the playersdo not coordinate,they may
endup playing a joint action (1,1) andreceive 0 reward.
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B. Stochasticgamesand reinforcementlearning

Despite these problems, there is general agreementthat
Nashequilibrium is an appropriatesolution conceptfor one-
shotgames.In contrast,for repeatedgamestherearea range
of different perspectives. Repeatedgames generalizeone-
shot gamesby assumingthat the players repeatthe matrix
gameover many time periods.Researchersin reinforcement
learningview repeatedgamesasa specialcaseof stochastic,
or Markov, games.Researchersin gametheory, on the other
hand,view repeatedgamesasan extensionof their theoryof
one-shotmatrix games.The resultingframeworks aresimilar,
but with a key differencein their treatmentof gamehistory.
Reinforcementlearningresearchersoften focustheir attention
on choosinga single stationarypolicy . that will maximize
the learner’s expectedrewardsin all future time periodsgiven
thatwe arein time T , UWVYX[Z]\�Z ^_"`badc _ E a � _  .�% , wheree
maybefinite or infinite, and . �f/(1  $� % . In the infinite time-
horizoncase,we often includethe discountfactor gihjckhPl .

Underthe generalstochasticgameframework, the policy .
alsodependson the state m	'kn of the agent.Thusthe policy
. becomesa mappingfrom states n to action distributions,
. � n � /(1  $� % . Transitionsbetweenstatesof the world
dependon thejoint actionof theplayersaswell astheprevious
state,i.e. thereis a probability function o  mqpr�smt!�- � !�-  % � n 

n 
u�	�v
w��;�yx gz!{l"| .

Littman [1] analyzesthis framework for zero-sumgames,
proving convergenceto theNashequilibriumfor his minimax-
Q algorithmplaying againstanotherminimax-Qagent.Claus
andBoutilier [2] examinecooperative gameswhere

� � � �  ,
andHu andWellman[3] focuson general-sumgames.These
algorithmssharethe commongoal of finding and playing a
Nash equilibrium. Littman [4] and Hall and Greenwald [5]
further extend this approachto consider variants of Nash
equilibrium for which convergencecanbe guaranteed.Bowl-
ing and Veloso[6] and Nagayukiet al} [7] proposeto relax
the mutual optimality requirementof Nash equilibrium by
considering rational agents,which always learn to play a
stationarybest-responseto their opponent’s strategy, even if
the opponent is not playing an equilibrium strategy. The
motivation is that it allows our agentsto act rationally even
if the opponentis not acting rationally becauseof physical
or computationallimitations. Fictitious play [8] is a similar
algorithmfrom gametheory.

C. Gametheoretic perspectiveof repeatedgames

As alludedto in the previous section,gametheoristsoften
take a more generalview of optimality in repeatedgames.
The key differenceis the treatmentof the history of actions
taken in the game.Recall that in the stochasticgamemodel,
we took policies to be . � �P/(1  ~� � % for repeatedgames,or
. �  md% � n � /(1  ~� � % for generalstochasticgames.Here we
redefine. �  mt!���% � n 
W��� /(1  ~� � % , where

� � a � a and� a
is the set of all possiblehistoriesof length T . Histories

areobservationsof joint actions, � a �  - � !�-OE � !�� a E
�
% . Player

� ’s strategy at time T is thenexpressedas . �D mt!�� a E
�
% . Policies

arenow mapsfrom historiesandstatesto actiondistributions,
rather than simply maps from statesto action distributions.
For repeatedgames,policies are simply mapsfrom histories
to actiondistributions, . �J ��% �O��� /(1  $�9� % . In essence,we
areendowing our agentwith memory.

Moreover, the agentought to be able to form beliefsabout
theopponent’s strategy, andthesebeliefsoughtto convergeto
the opponent’s actualstrategy given sufficient learning time.
For therepeatedgamecase,we define� �J ��% ����� /(1  ~� E � %
to be player � ’s belief aboutthe opponent’s strategy given the
observed history � . Then a learning path is definedto be a
sequenceof histories,beliefs,andpersonalstrategies.Now we
candefinethe Nashequilibrium of a repeatedgamein terms
of our personalstrategy andour beliefsabouttheopponent.If
our predictionaboutthe opponent’s strategy is accurate,then
we can choosean appropriatebest-responsestrategy. If this
holds for all playersin the game,then we are guaranteedto
be in Nashequilibrium.

Proposition I.3. A learning pathF  � a !~. �  � a E
�
%$!~� �  � a E

�
%R%~� T � ld! � !�}�}�} Q converges to a

Nashequilibrium iff the following two conditionshold:
� Optimization:MOT�!$. �D � a E

�
%�' C;� �J � �R � a E

�
%J% . We always

play a best-responseto our predictionof the opponent’s
strategy.� Prediction: ���sU a��4� � � �  � a E

�
% + . E �  � a E

�
%~� � g . Over

time, our belief aboutthe opponent’s strategy converges
to the opponent’s actualstrategy.

However, NachbarandZame[9] show that this requirement
of simultaneouspredictionand optimization is impossibleto
achieve, given certainassumptionsaboutour possiblestrate-
gies and possiblebeliefs.We can never designan agentthat
will learn to both predict the opponent’s future strategy and
optimizeover thosebeliefsat the sametime.

Despite this fact, if we do not insist on achieving Nash
equilibrium, we can hope to attain other forms of solutions.
Insteadof requiringNashequilibrium,we maysimply hopeto
achieve rewardsthat arealmostasgoodthe rewardsobtained
by the best-responsestationarypolicy over time againstany
opponent.In the gametheory literature,this conceptis often
called universal consistency. Fudenburg and Levine [8] and
Auer, Cesa-Bianchi,Freund,andSchapire[11] [12] indepen-
dentlyshow thatanexponentiallyweightedmixturealgorithm
(dubbedexponentialfictitious play andExp3by therespective
authors)exhibits universalconsistency from the gametheory
andmachinelearningperspectives.This type of result insures
that we will not play too badly by aiming to minimize our
regret, which is the differencebetweenour expected total
payoffs at time T and the actual payoff is we had played
an optimal policy taken from some class of policies. For
universal consistency, this comparisonclass is the class of
stationarypolicies. Clearly, if we could model the opponent
andadaptively choosethe bestresponsein eachtime period,
we could achieve higher rewardsthan a player that can only
play stationarypolicies, albeit with the benefit of hindsight.
However, theseresultsgive us a good lower bound on our



TABLE I

SUMMARY OF MULTI -AGENT LEARNING ALGORITHMS UNDER OUR NEW

CLASSIFICATION.

��� � 3 �&�
� �

minimax-Q,Nash-Q Bully� 3
Godfather� � �

-learning (
���

),
(WoLF-)PHC,
fictitious play

� 3
Exp3

performanceandareusefulasa benchmarkfor testingfuture
algorithms. Against unknown opponentsutilizing complex
strategies,universallyconsistentpolicies may also be a good
choicefor guiding our play.

I I . A NEW CLASSIFICATION

We proposea generalclassificationthat categorizesalgo-
rithms by the cross-productof their possiblestrategies and
their possiblebeliefs about the opponent’s strategy, � 
��

.
An agent’s possiblestrategiescanbeclassifiedbaseduponthe
amountof history it hasin memory, from �L� to � � . Given
morememory, theagentcanformulatemorecomplex policies,
sincepoliciesare mapsfrom historiesto actiondistributions.
We can classify agents from �L� to � � basedupon the
amountof memory they possess.�L� agentsare memoryless
and can only play stationarypolicies. Agents that can recall
the actionsfrom the previous time periodareclassifiedas � �
and can executereactive policies.At the other extreme, � �
agentshave unboundedmemoryandcanformulateever more
complex strategies as the gameis playedover time. Finally,
in betweentheseextremesare � a agents,which possessup to
T periodsof history.

An agent’s belief classificationmirrors the strategy classifi-
cation in the obvious way. Agentsthat believe their opponent
is memorylessareclassifiedas

� � players,
� a playersbelieve

that the opponentbasesits strategy on the previous T -periods
of play, and so forth. Although not explicitly stated,most
existing algorithmsmake assumptionsand thus hold beliefs
about the types of possibleopponentsin the world. These
assumptionsare embodiedin the kinds of beliefs they hold
aboutthe opponent.

We can think of each ��� 
�� a as a different league of
players, with players in each leagueroughly equal to one
anotherin terms of their capabilities.Clearly someleagues
containlesscapableplayersthanothers.We canthusdefinea
fair opponentasan opponentfrom an equalor lesserleague.
The idea is that new learning algorithmsshould ideally be
designedto beatany fair opponent.

Definition II.1. A fair opponentfor a playerin league��� 
�� a
is any playerfrom a league���R� 
�� a � , where mqpb�fm andTRpb��T .
A. Thekey role of beliefs

Within eachleague,weassumethatplayersarefully rational
in the sensethat they canfully usetheir availablehistoriesto

constructtheir future policy. However, an importantobserva-
tion is that the definition of full rationality dependson their
beliefs about the opponent.If we believe that our opponent
is a memorylessplayer, then even if we are an � � player,
our fully rational strategy is to simply model the opponent’s
stationarystrategy andplay our stationarybestresponse.Thus,
our belief capacityand our history capacityare inter-related.
Without a rich set of possiblebeliefs about our opponent,
we cannotmake gooduseof our availablehistory. Similarly,
and perhapsmore obviously, without a rich set of historical
observations,we cannothopeto modelcomplex opponents.

B. Discussionof current algorithms

Many of the existing algorithmsfall within the � � 
�� �
league.As discussedin theprevioussection,theproblemwith
theseplayersis that even thoughthey have full accessto the
history, their fully rational strategy is stationarydue to their
limited belief set.A generalexampleof a � � 
(� � player is
thepolicy hill climber(PHC).It maintainsapolicy andupdates
the policy basedupon its history in an attemptto maximize
its rewards.Originally PHC wascreatedfor stochasticgames,
and thus eachpolicy also dependson the currentstate m . In
our repeatedgames,thereis only onestate.

For agent � , Policy Hill Climbing (PHC) proceedsas fol-
lows:

1. Let � and � be the learningrates.Initialize

�  mt!�-[%���g&!$. �R mt!�-[%B� l
� � � � Mbmv'�n !�-¡'

�9� }
2. Repeat,
a.Fromstatem , selectaction - accordingto themixedpolicy

. �  m¢% with someexploration.
b. Observingreward £ andnext state mqp , update
�  mt!�-[%��  l + �B% �  m{!�-[% ¤¥�  £�¤wc	UWVYX¦ �

�  m p !�- p %R%$}
c. Update .  mt!�-O% and constrain it to a legal probability

distribution:

. �R mt!�-[%B�§. �D mt!�-[%�¤ � if - � VY¨D©YUWVYX ¦ � �  m{!�-tpª%Ez«¬ 6®¯¬ E � otherwise }
Thebasicideaof PHCis that the

�
-valueshelpusto define

a gradientuponwhich we executehill-climbing. Bowling and
Veloso’s WoLF-PHC (Win-or-Lose-Fast-PHC) [6] modifies
PHC by adjusting � dependingon whether the agent is
“winning” or “losing.” True to their league,PHC playersplay
well againststationaryopponents.

At theoppositeendof thespectrum,Littman andStone[13]
proposealgorithmsin �L� 
(� � and � �>
)� � that are leader
strategies in the sensethat they choosea fixed strategy and
hopethat their opponentwill “follo w” by learninga bestre-
sponseto that fixed strategy. Their “Bully” algorithmchooses
a fixed memorylessstationarypolicy, while “Godfather” has
memoryof the last time period. Opponentsincludednormal�

-learning and
� �

players,which are similar to
�

-learners
except that they explicitly learnusing oneperiod of memory
becausethey believe that their opponentis alsousingmemory



to learn. The interestingresult is that “Godfather” is able to
achieve non-stationaryequilibria against

� �
in the repeated

prisoner’s dilemnagame,with rewards for both playersthat
arehigher thanthe stationaryNashequilibrium rewards.This
demonstratesthe power of having belief models.However,
becausethesealgorithmsdo not have accessto morethanone
period of history, they cannotbegin to attempt to construct
statisticalmodelsthe opponent.“Godfather” works well be-
causeit hasa built-in bestresponseto

� �
learnersratherthan

attemptingto learna bestresponsefrom experience.
Finally, Hu andWellman’s Nash-QandLittman’s minimax-

Q are classifiedas � � 
�� � players,becauseeven though
they attemptto learntheNashequilibriumthroughexperience,
their play is fixed once this equilibrium has been learned.
Furthermore,they assumethat the opponentalsoplaysa fixed
stationaryNash equilibrium, which they hope is the other
half of their own equilibrium strategy. Thesealgorithmsare
summarizedin Table1.

C. Simplestrategiesare oftengoodstrategies

It is interesting to observe that sometimesthe “dumb”
strategy resultsin betterrewardsthana moreelaboratestrategy
that takes into account beliefs about the other agent. For
example,“Bully” is essentiallya “dumb” strategy, sinceit is
memorylessandplaysoneactionregardlessof the opponent’s
actions.However, in a gamewith multiple equilibria, “Bully”
is alwaysableto obtainits preferredequilibriumpoint against
a suitably“smart” opponent.This is animportantattributedue
to the fact that most repeatedgameshave multiple equilibria,
each of which may result in very different payoffs for the
different players. The “folk theorem” [8] of game theory
shows that for infinitely repeatedgames,there are almost
alwaysinfinitely many Nashequilibriumpoints.Usingvarious
refinementsof Nash equilibrium, we can narrow the set of
good equilibrium points by choosingthosewhich are more
robust.Evenso,it is oftenthecasethateachplayerwill prefer
a different equilibrium point due to their different individual
payoff functions, again causinga coordinationproblem. In
thesecases,“dumb” playerssuchas“Bully” may actuallydo
quite well, as long as they are able to analyzethe gamein
advanceandchoosetheir preferredequilibrium point.

The idea that simple strategies are good strategies extends
further than this. In many cases,it is beneficialfor a player
to allow its opponentto recognizeits policy. In coordination
games,it is importantto announceone’s intendedplay. In gen-
eral, this is true for any gamethat requirescooperative action
to attaina mutuallybeneficialNashequilibrium.For example,
in the Prisoner’s Dilemma, one possible Nash equilibrium
is attainedwhen both players play the Tit-for-Tat strategy:
. �  ~� ! 1 % ��1 !$. �  R� !�°;% � ° , andsimilarly for .  . However, in
orderto learnto play this policy, anagentmustfirst recognize
that its opponentis playing Tit-for-Tat. Luckily, Tit-for-Tat is
a relatively simplepolicy, mappingonly oneperiodof history
to a deterministicaction, .  - a E � % �&���±�

. We can quickly
recognizethis strategy using minimal exploration. However,
this task would be much more complicatedif the opponent’s

strategy was 1) probabilistic, or 2) dependedon a large
amountof history. Predictionof suchstrategieswould require
copius amountsof data from previous play. We would also
needto assumethat the opponent’s policy remainsrelatively
stationaryduring this learningperiod.Without knowledgeof
the opponent’s policy, we cannotchoosean optimal response
in thesecoordinationgames,andwe would have to settlefor
a sub-optimalequilibrium point.

I I I . A NEW CLASS OF PLAYERS

As discussedabove, most existing algorithmsdo not form
beliefs about the opponentbeyond

� � . None of these ap-
proachesare able to capture the essenceof game-playing,
which is a world of threats,deceits,andgenerallyout-witting
the opponent.We wish to openthe door to suchpossibilities
by designinglearnersthat can model the opponentand use
that information to achieve betterrewards.Ideally we would
like to designan algorithm in � � 
L� � that is able to win
or come to an equilibrium againstany fair opponent.Since
this is impossible[9], we start by proposingan algorithm in
the league� � 
)� � that playswell againsta restrictedclass
of opponents.Sincemany of the currentalgorithmsare best-
responseplayers,we choosean opponentclasssuchasPHC,
which is agoodexampleof abest-responseplayerin � � 
6� � .
We will demonstratethat our algorithmindeedbeatsits PHC
opponentsand in fact doeswell againstmost of the existing
fair opponents.

A. A new algorithm: PHC-Exploiter

Our algorithmis different from mostprevious work in that
we areexplicitly modelingthe opponent’s learningalgorithm
andnot simply his currentpolicy. In particular, we would like
to modelplayersfrom � � 
9� � . Sincewe arein � � 
9� � , it
is rationalfor us to constructsuchmodelsbecausewe believe
that the opponentis learning and adaptingto us over time
usingits history. The ideais thatwe will “fool” our opponent
into thinking that we are stupid by playing a decoy policy
for a numberof time periodsand then switch to a different
policy that takesadvantageof their bestresponseto our decoy
policy. From a learningperspective, the idea is that we adapt
muchfasterthanthe opponent;in fact,whenwe switch away
from our decoy policy, our adjustmentto the new policy is
immediate.In contrast,the � � 
²� � opponentadjusts its
policy by small incrementsandis furthermoreunableto model
our changingbehavior. We can repeatthis “bait and switch”
cycle ad infinitum, therebyachieving infinite total rewardsas
T � ³

. The opponentnever catcheson to us becauseit
believesthat we only play stationarypolicies.

A good example of a � � 
�� � player is PHC. Bowling
and Veloso showed that in self-play, a restrictedversion of
WoLF-PHC always reachesa stationaryNashequilibrium in
two-playertwo-actiongames,andthat thegeneralWoLF-PHC
seemsto do the same in experimental trials. Thus, in the
long run, a WoLF-PHC player achieves its stationaryNash
equilibrium payoff againstany other PHC player. We wish
to do better than that by exploiting our knowledge of the



PHC opponent’s learningstrategy. We can constructa PHC-
Exploiteralgorithmfor agent� thatproceedslike PHCin steps
1-2b, and thencontinuesas follows:

c. Observingaction - a E � at time T , updateour history � and
calculatean estimateof the opponent’s policy:

´. a E �  m{!�-[% �
a_"`ba E&µ(¶  � x · | � -O%¸ M�-�!

wherȩ is the window of estimationand ¶  � x · | � -[% � l if
the opponent’s actionat time

·
is equalto - , and0 otherwise.

We estimate
´. a E&µE �  m¢% similarly.

d. Update � by estimatingthe learning rate of the PHC
opponent:

�)�
´. a E �  m¢% + ´. a E&µE �  m¢%¸ }

e. Update . �J mt!�-[% . If we are winning, i.e.
¦ � . �  mt!�-{p$% �  mt!�-tp$%�¹ ���  t´. H�  m¢%$! ´. E �  m¢%R% , thenupdate

. �  m{!�-[%�� l if - � Vº¨J©ºUWVYX ¦ � �  mt!�-tp$%g otherwise
!

otherwisewe are losing, thenupdate

. �J m{!�-[%��§. �J mt!�-[%�¤ � if - � Vº¨J©ºUWVYX ¦ � �  mt!�-{pª%E&«¬ 6®¯¬ E � otherwise }
Note that we derive both the opponent’s learning rate �

and the opponent’s policy
´.�E �R m¢% from estimatesusing the

observablehistory of actions.If we assumethe gamematrix
is public information, then we can solve for the equilibrium
strategy

´. H�  m¢% , otherwisewe can run WoLF-PHC for some
finite numberof time periodsto obtainan estimatethis equi-
librium strategy. Themainideaof thisalgorithmis thatwetake
full advantageof all time periodsin which we are winning,
that is, when ¦ � . �  mt!�-tp~% �  m{!�-tpª%6¹ �9�  t´. H�  m¢%~! ´. E �  m¢%J% .

IV. EXAMPLE AND ANALYSIS

The PHC-Exploiteralgorithmis baseduponPHC andthus
exhibits the samebehavior as PHC in gameswith a single
pureNashequilibrium.Both agentsgenerallyconverge to the
single pure equilibrium point. The interestingcasearisesin
competitive gameswhere the only equilibria require mixed
strategies, as discussedby Singh, Kearns,and Mansour[14]
and Bowling and Veloso [6]. Matching pennies,shown in
Figure 1(a), is one such game.In this type of game,PHC-
Exploiter is able to useits model of the opponent’s learning
algorithmto choosebetteractionsto play.

In the full knowledgecasewherewe know our opponent’s
policy .  and learning rate �  at every time period, we can
prove that a PHC-Exploiterlearningalgorithmwill guarantee
us unboundedreward in the long run playing gamessuch
as matchingpennies.The central idea is that play will keep
cycling, alternatingbetweenstageswherewe aregaininghigh
rewardandstageswherewe arelosingsomerewardbut setting
up the systemfor anotherstageof high gain.

Proposition IV.1. In thezero-sumgameof matchingpennies,
where the only Nash equilibrium requiresthe use of mixed

strategies, PHC-Exploiter is able to achieve unboundedre-
wardsas T �»³

againstany PHC opponentgiven that play
follows the cycle ° definedby the arrowed segmentsshown
in Figure2.

Play proceedsalong °>µ , °>¼ , then jumps from (0.5, 0) to
(1,0), follows the line segmentsto (0.5, 1), then jumps back
to (0, 1). Given a point

 �½ !~¾b% �  . �� Heads%~!$. O Heads%J% on
the graphin Figure 2, where . �D Heads% is the probability by
which player� playsHeads,we know thatour expectedreward
is
�(�  �½ !$¾b% �f+  �½ ¾i¤  l + ½ %  l + ¾b%R%�¤  J l + ½ %�¾W¤ ½> l + ¾b%R%~}

We wish to show that

¿ � �� �½ !$¾b%$À�T �¥� ¿ Á � �� S½ !~¾�%~À"T�¤ ¿bÂ � �� S½ !$¾b%~À"T ¹Ãgz}
We considereachpart separately. In the losing section,we letÄ  T{% � ½ � T and �  T{% � ¾ � ldÅ �;+ T , where gk�fT��0l¢Å � .
Then

¿bÂ � �� S½ !~¾�%~À"T �
�rÆJ
�

� �� Ä  T{%~!��  T{%J%$À�T �Ç+ ll � }
Similarly, we canshow thatwe receive 1/4 rewardover ° µ .

Thus, ¿ �(�  S½ !$¾b%~À"T � ldÅ�Èi¹�g , andwe have shown that we
receive a payoff greaterthan the Nashequilibrium payoff of
zero over every cycle. It is easyto seethat play will indeed
follow the cycle ° to a good approximation,dependingon
thesizeof �  . In thenext section,we demonstratethatwe can
estimate.  and �  sufficiently well from past observations,
thus eliminating the full knowledge requirementsthat were
usedto ensurethe cyclic natureof play above.

V. EXPERIMENTAL RESULTS

We usedthe PHC-Exploiteralgorithm describedabove to
play againstseveral PHC variantsin different iteratedmatrix
games,including matchingpennies,prisoner’s dilemna, and
rock-paper-scissors.Herewe give the resultsfor the matching
penniesgame analyzedabove, playing againstWoLF-PHC.
We useda window of ¸É�jÊ gYgºg time periodsto estimatethe
opponent’s currentpolicy .  andthe opponent’s learningrate
�  . As shown in Figure 2, the play exhibits the cyclic nature
thatwe predicted.Thetwo solid vertical lines indicateperiods
in which ourPHC-Exploiterplayeris winning,andthedashed,
roughly diagonal,lines indicateperiodsin which it is losing.

In the analysisgiven in the previoussection,we derivedan
upperboundfor our total rewardsover time,which was1/6 for
eachtime step.Sincewe have to estimatevariousparameters
in ourexperimentalrun,wedonot achievethis level of reward.
We gainan averageof 0.08total reward for eachtime period.
Figure 3 plots the total reward for our PHC-Exploiteragent
over time. The periodsof winning and losing are very clear
from thisgraph.Furtherexperimentstestedtheeffectivenessof
PHC-Exploiteragainstother fair opponents,including itself.
Against all the existing fair opponentsshown in Table 1, it
achieved at leastits averageequilibrium payoff of zeroin the
long-run.
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Fig. 2. Theoretical(top), Empirical (bottom).The cyclic play is evident in
our empiricalresults,wherewe play a PHC-Exploiterplayer1 againsta PHC
player2.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presenteda new classificationfor
multi-agent learning algorithmsand suggestedan algorithm
that seemsto dominate existing algorithms from the fair
opponentleagueswhen playing certain games.Ideally, we
would like to createanalgorithmin the league� � 
�� � that
provably dominateslarger classesof fair opponentsin any
game.Moreover, all of the discussioncontainedwithin this
paperdealtwith the caseof iteratedmatrix games.We would
like to extendour framework to moregeneralstochasticgames
with multiple statesandmultiple players.Finally, it would be
interestingto find practicalapplicationsof thesemulti-agent
learningalgorithms.
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