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Abstract—We propose a new classification for multi-agent
learning algorithms, with each league of players characterized
by both their possiblestrategiesand possible beliefs. Using this
classification, we review the optimality of existing algorithms
and discuss some insights that can be gained. We propose an
incremental impr ovement to the existing algorithms that seems
to achieve average payoffs that are at leastthe Nash equilibrium
payoffs in the long-run againstfair opponents.

I. INTRODUCTION

The topic of learning in multi-agent ervironments has
recevedincreasingattentionover the pastseveralyears.Game
theoristshave begunto examinelearningmodelsin their study
of repeatedgames,and reinforcementlearning researchers
have begun to extend their single-agentiearning modelsto
the multiple-agentcase.As traditional models and methods
from thesetwo fields are adaptedto tackle the problem of
multi-agentlearning, the centralissueof optimality is worth
revisiting. What do we expecta successfulearnerto do?

A. Matrix gamesand Nashequilibrium

From the game theory perspectie, the repeatedgame is
a generalizationof the traditional one-shotgame,or matrix
game In the one-shotgame, two or more players meet,
chooseactions,receie their rewardsbasedon the simultane-
ous actionstaken, and the game ends. The n-player matrix
game is defined as a reward matrix R; for each player,
R; : A1 x Ay x --- x A, — R, where 4; is the set of
actions available to player i. In this paper we will focus
on two-player games,n = 2. In this contet, R, is often
written asan |A;| x |Az| matrix, with R; (4, j) denotingthe
reward for agentl if agentl playsactioni € A; andagent
2 plays action j € A,. The gameis describedas a tuple
(A1, As, Ry, Ry) andis easilygeneralizedo n players.Purely
competitve gamesare calledzen-sumgamesandmustsatisfy
R, = —R,. Each player simultaneouslychoosesto play a
particularactiona; € A;, or a mixed policy p; = PD(A;),
which is a probability distribution over the possibleactions,
and receves reward basedon the joint action taken. Some
traditionalexamplesof single-shotmatrix gamesareshowvn in
Figure 1.

The traditional assumptionis that eachplayerhasno prior
knowledgeaboutthe otherplayer Thusthereis no opportunity
to tailor our choiceof actionto bestrespondo the opponents
predictedaction. We cannotmake ary true predictions.As is
standardn the gametheoryliterature,it is thusreasonableo
assumehatthe opponenis fully rationalandchoosesactions
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that are in its bestinterest.In return, we must play a best
responseo the opponents choiceof action.

Definition 1.1. A best responsefunction for player i,
BR;(u—;), is definedto be the set of all optimal policies
for player i, given that the other players are playing the
joint policy p—i:  BRi(u—i) = {uj € Mi|Ri(pj,p—i) >
Ri(pi, n—;)Vu; € M;}, where M; is the setof all possible
policiesfor agent:.

If all playersareplayingbestresponseto the otherplayers’
stratgjies, u; € BR;(u—;)Vi, thenthe gameis saidto be in
Nashequilibrium

Definition 1.2. A Nashequilibrium is a joint policy p such
that for every agenti, p; € BR;(1—;).

Once all playersare playing by a Nash equilibrium, no
single playerhasan incentive to unilaterally deviate from his
equilibrium policy. Any two-playermatrix gamecanbe solved
for its Nash equilibria using quadraticprogramming,and a
player can choosean optimal stratgyy in this fashion,given
prior knowledgeof the gamestructure Of course this process
may take computationatime thatis exponentialin the number
of actions.Another problemariseswhen there exist multiple
Nashequilibria. If the playersdo not manageo coordinateon
one equilibrium joint policy, thenthey may all end up worse
off. The Hawk-Dove game shown in Figure 1(c) is a good
example of this problem. The two Nash equilibria occur at
(1,2) and(2,1), but if the playersdo not coordinate they may
end up playing a joint action (1,1) and receve 0 reward.
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B. Stotasticgamesand reinforcementiearning

Despite these problems, there is general agreementthat
Nashequilibrium is an appropriatesolution conceptfor one-
shotgames.In contrast,for repeatedgamesthereare a range
of different perspecties. Repeatedgames generalize one-
shot gamesby assumingthat the playersrepeatthe matrix
gameover mary time periods.Researcherin reinforcement
learningview repeatedgamesas a specialcaseof stochastic,
or Markov, games.Researchergn gametheory on the other
hand,view repeatedgamesas an extensionof their theory of
one-shotmatrix games.The resultingframeaworks are similar,
but with a key differencein their treatmentof gamehistory.
Reinforcementearningresearchersften focustheir attention
on choosinga single stationarypolicy p that will maximize
the learners expectedrewardsin all future time periodsgiven
thatwe arein time ¢, max,, £, Zf:t YT 'RT(u) |, whereT
may befinite or infinite, andy = PD(A). In the infinite time-
horizoncase we oftenincludethe discountfactor0 < v < 1.

Underthe generalstochastiqggameframework, the policy
alsodependon the states € S of the agent.Thusthe policy
1 becomesa mappingfrom statesS to action distributions,
u: S — PD(A). Transitionsbetweenstatesof the world
dependnthejoint actionof the playersaswell asthe previous
state,i.e. thereis a probability function p(s’|s, a1,az3) : S X
SXAl XA2—>[O,].].

Littman [1] analyzesthis framawork for zero-sumgames,
proving cornvergenceto the Nashequilibriumfor his minimax-
Q algorithm playing againstanotherminimax-Q agent.Claus
andBoutilier [2] examinecooperatie gameswvhereR; = Ry,
and Hu and Wellman [3] focus on general-sungames.These
algorithmssharethe commongoal of finding and playing a
Nash equilibrium. Littman [4] and Hall and Greenvald [5]
further extend this approachto considervariants of Nash
equilibrium for which corvergencecan be guaranteedBowl-
ing and Veloso[6] and Nagayukiet al. [7] proposeto relax
the mutual optimality requirementof Nash equilibrium by
consideringrational agents,which always learn to play a
stationarybest-responséo their opponents strat@y, even if
the opponentis not playing an equilibrium strateyy. The
motivation is that it allows our agentsto act rationally even
if the opponentis not acting rationally becauseof physical
or computationallimitations. Fictitious play [8] is a similar
algorithmfrom gametheory

C. Gametheoretic perspectiveof repeatedgames

As alludedto in the previous section,gametheoristsoften
take a more generalview of optimality in repeatedgames.
The key differenceis the treatmentof the history of actions
taken in the game.Recallthatin the stochasticgamemodel,
we took policiesto be u; = PD(A;) for repeatedgames,or
ui(s) :+ S — PD(A;) for generalstochastiogames.Here we
redefineu;(s,h) : S x H — PD(A;), whereH = J, H* and
Ht is the set of all possiblehistoriesof length t. Histories
are obsenationsof joint actions,h! = (a;,a_;, h*~1). Player
i’s strat@y attime ¢ is thenexpressedas; (s, h'~1). Policies

arenow mapsfrom historiesandstatesto actiondistributions,
rather than simply mapsfrom statesto action distributions.
For repeatedyames policies are simply mapsfrom histories
to actiondistributions, u;(h) : H — PD(4;). In essencewe
areendaving our agentwith memory

Moreover, the agentoughtto be ableto form beliefsabout
the opponents stratgy, andthesebeliefsoughtto corvergeto
the opponents actual strateyy given suficient learningtime.
For therepeatedyamecasewe defines;(h) : H — PD(A_;)
to be playeri’s belief aboutthe opponents strategyy giventhe
obsered history h. Then a learning path is definedto be a
sequencef histories beliefs,andpersonaktrateies.Now we
candefinethe Nashequilibrium of a repeatedyamein terms
of our personaktrategly and our beliefsaboutthe opponentlf
our predictionaboutthe opponents stratayy is accuratethen
we can choosean appropriatebest-responsetrategy. If this
holds for all playersin the game,then we are guaranteedo
be in Nashequilibrium.

Proposition 1.3. A learning path
{(nt, pi(R1), (=)t = 1,2,...} corverges to a
Nashequilibrium iff the following two conditionshold:

« Optimization:Vt, u;(h*~') € BR;(B:(ht™1)). We always
play a best-responséo our predictionof the opponents
strat@y.

« Prediction:lim;_. |3;(h*~!) — p_;(R*=1)] = 0. Over
time, our belief aboutthe opponents stratgly corverges
to the opponents actualstratayy.

However, NachbarandZame[9] shaw thatthis requirement
of simultaneousprediction and optimizationis impossibleto
achieve, given certainassumptions@boutour possiblestrate-
gies and possiblebeliefs. We can never designan agentthat
will learn to both predict the opponents future stratgly and
optimize over thosebeliefs at the sametime.

Despite this fact, if we do not insist on achiezing Nash
equilibrium, we can hopeto attain other forms of solutions.
Insteadof requiringNashequilibrium, we may simply hopeto
achieve rewardsthat are almostas goodthe rewardsobtained
by the best-responsstationarypolicy over time againstary
opponent.In the gametheory literature, this conceptis often
called universal consistency Fudenhlurg and Levine [8] and
Auer, Cesa-BianchiFreund,and Schapire[11] [12] indepen-
dently showv that an exponentiallyweightedmixture algorithm
(dubbedexponentialfictitious play and Exp3 by the respectie
authors)exhibits universalconsisteng from the gametheory
and machinelearningperspecties. This type of resultinsures
that we will not play too badly by aiming to minimize our
regret, which is the difference betweenour expected total
payofs at time ¢ and the actual payof is we had played
an optimal policy taken from some class of policies. For
universal consisteny, this comparisonclassis the class of
stationarypolicies. Clearly, if we could model the opponent
and adaptvely choosethe bestresponsdan eachtime period,
we could achiese higher rewardsthan a player that can only
play stationarypolicies, albeit with the benefitof hindsight.
However, theseresults give us a good lower bound on our



TABLE |
SUMMARY OF MULTI-AGENT LEARNING ALGORITHMS UNDER OUR NEW
CLASSIFICATION.

| | Bo | By | B |
Ho minimax-Q, Nash-Q Bully
H1 Godfather
Hoo || Q-learning (Qo), | @1 Exp3
(WoLF-)PHC,
fictitious play

performanceand are useful as a benchmarkfor testingfuture
algorithms. Against unknovn opponentsutilizing comple
stratgies, universally consistentpolicies may also be a good
choicefor guiding our play.

Il. A NEW CLASSIFICATION

We proposea generalclassificationthat cateyorizesalgo-
rithms by the cross-productof their possible stratgies and
their possiblebeliefs aboutthe opponents stratey, H x B.
An agents possiblestratgiescanbe classifiedbaseduponthe
amountof history it hasin memory from Hy to H.. Given
morememory theagentcanformulatemorecomple policies,
sincepolicies are mapsfrom historiesto actiondistributions.
We can classify agentsfrom H, to H. basedupon the
amountof memorythey possessH, agentsare memoryless
and can only play stationarypolicies. Agentsthat can recall
the actionsfrom the previous time period are classifiedas H;
and can executereactve policies. At the other extreme, H .
agentshave unboundednemoryand canformulateever more
comple stratgies as the gameis played over time. Finally,
in betweentheseextremesare’H; agentswhich possessip to
t periodsof history.

An agents belief classificationmirrors the stratgy classifi-
cationin the obvious way. Agentsthat believe their opponent
is memorylessare classifiedas B, players,B; playersbelieve
that the opponentbasests stratgy on the previous ¢-periods
of play, and so forth. Although not explicitly stated, most
existing algorithms make assumptionsand thus hold beliefs
about the types of possibleopponentsin the world. These
assumptionsare embodiedin the kinds of beliefs they hold
aboutthe opponent.

We can think of each™, x B; as a different league of
players, with playersin each leagueroughly equal to one
anotherin terms of their capabilities.Clearly someleagues
containlesscapableplayersthan others.We canthusdefinea
fair opponentas an opponentirom an equalor lesserleague.
The ideais that new learning algorithms should ideally be
designedo beatary fair opponent.

Definition 11.1. A fair opponenfor aplayerin leagueH s x 5;
is ary playerfrom aleagueH,: x B/, wheres’ < s andt’ < t.
A. Thekey role of beliefs

Within eachleague we assumehatplayersarefully rational
in the sensethatthey canfully usetheir available historiesto

constructtheir future policy. However, an importantobsena-
tion is that the definition of full rationality dependson their
beliefs aboutthe opponent.If we believe that our opponent
is a memorylessplayer, then even if we are an H., player,
our fully rational stratgy is to simply model the opponents
stationarystratgy andplay our stationarybestresponseThus,
our belief capacityand our history capacityare inter-related.
Without a rich set of possible beliefs about our opponent,
we cannotmalke good useof our available history. Similarly,
and perhapsmore obviously, without a rich set of historical
obsenations,we cannothopeto model comple< opponents.

B. Discussionof current algorithms

Many of the existing algorithmsfall within the H,, x By
league As discussedn the previous section,the problemwith
theseplayersis that even thoughthey have full accesso the
history, their fully rational strateyy is stationarydue to their
limited belief set. A generalexampleof a H., x By playeris
thepolicy hill climber(PHC).It maintainsa policy andupdates
the policy baseduponits history in an attemptto maximize
its rewards.Originally PHC was createdfor stochastiggames,
and thus eachpolicy also dependson the currentstates. In
our repeatedyamesthereis only one state.

For agenti, Policy Hill Climbing (PHC) proceedsas fol-
lows:

1. Let « and¢ be the learningrates.Initialize

1
Q(s,a) «— 0, ui(s,a) — st € S,a€A,;.
1
2. Repeat,
a.Fromstates, selectactiona accordingto the mixedpolicy
wi(s) with someexploration.

b. Observingreward r and next states’, update
Q(s,a) — (1 = )Q(s,a) + a(r + ymaxQ(s', a')).

c. Update u(s,a) and constrainit to a legal probability
distribution:

) if a =argmax, Q(s,a’)

ﬁ otherwise

p(ssa) s a) + {

Thebasicideaof PHC s thatthe -valueshelpusto define
a gradientuponwhich we executehill-climbing. Bowling and
Velosos WoLF-PHC (Win-or-Lose-Fast-PHC) [6] modifies
PHC by adjusting § dependingon whether the agent is
“winning” or “losing.” Trueto their league PHC playersplay
well againststationaryopponents.

At the oppositeendof the spectrumLittman and Stone[13]
proposealgorithmsin Hy x B, andH; x B, thatareleader
stratgies in the sensethat they choosea fixed strateyy and
hopethat their opponentwill “follow” by learninga bestre-
sponsdo that fixed strategy. Their “Bully” algorithmchooses
a fixed memorylessstationarypolicy, while “Godfather” has
memory of the last time period. Opponentsncluded normal
Q-learningand @ players,which are similar to Q-learners
exceptthat they explicitly learnusing one period of memory
becausehey believe thattheir opponents alsousingmemory



to learn. The interestingresultis that “Godfather” is able to
achieve non-stationaryequilibria against@; in the repeated
prisoners dilemnagame,with rewards for both playersthat
are higherthanthe stationaryNashequilibrium rewards. This
demonstrateghe power of having belief models. However,
becausehesealgorithmsdo not have acces4o morethanone
period of history, they cannotbegin to attemptto construct
statisticalmodelsthe opponent.“Godfather” works well be-
causeit hasa built-in bestresponsédo @), learnersratherthan
attemptingto learna bestresponsdrom experience.

Finally, Hu andWellman's Nash-QandLittman’s minimax-
Q are classifiedas Hy x By players, becauseeven though
they attemptto learnthe Nashequilibriumthroughexperience,
their play is fixed once this equilibrium has beenlearned.
Furthermorethey assumehatthe opponentalsoplaysa fixed
stationary Nash equilibrium, which they hope is the other
half of their own equilibrium stratgyy. Thesealgorithmsare
summarizedn Table 1.

C. Simplestratggies are often good strategies

It is interestingto obsere that sometimesthe “dumb”
stratgy resultsin betterrewardsthana moreelaboratestrateyy
that takes into accountbeliefs about the other agent. For
example,“Bully” is essentiallya “dumb” stratey, sinceit is
memorylessandplaysoneactionregardlessof the opponents
actions.However, in a gamewith multiple equilibria, “Bully”
is alwaysableto obtainits preferredequilibrium point against
a suitably“smart” opponentThis is animportantattribute due
to the fact that mostrepeatedgameshave multiple equilibria,
each of which may result in very different payofs for the
different players. The “folk theorem” [8] of game theory
shavs that for infinitely repeatedgames,there are almost
alwaysinfinitely mary Nashequilibriumpoints.Usingvarious
refinementsof Nash equilibrium, we can narrov the set of
good equilibrium points by choosingthose which are more
robust.Evenso, it is oftenthe casethateachplayerwill prefer
a different equilibrium point due to their differentindividual
payof functions, again causinga coordinationproblem. In
thesecases,'dumb” playerssuchas“Bully” may actuallydo
quite well, aslong as they are able to analyzethe gamein
adwanceand choosetheir preferredequilibrium point.

The ideathat simple stratgjies are good stratgjies extends
further than this. In mary casesit is beneficialfor a player
to allow its opponentto recognizeits policy. In coordination
gamesijt is importantto announcene'sintendedplay. In gen-
eral, this is true for ary gamethat requirescooperatie action
to attaina mutually beneficialNashequilibrium. For example,
in the Prisoners Dilemma, one possible Nash equilibrium
is attainedwhen both players play the Tit-for-Tat strateyy:
(-, D) = D, ps (-, C) = C, andsimilarly for p. However, in
orderto learnto play this policy, an agentmustfirst recognize
thatits opponentis playing Tit-for-Tat. Luckily, Tit-for-Tat is
a relatively simple policy, mappingonly one periodof history
to a deterministicaction, u(a;—1) : H — A. We can quickly
recognizethis stratgy using minimal exploration. However,
this task would be much more complicatedif the opponents

stratgly was 1) probabilistic, or 2) dependedon a large
amountof history. Predictionof suchstrateieswould require
copius amountsof datafrom previous play. We would also
needto assumethat the opponents policy remainsrelatively
stationaryduring this learning period. Without knowledge of
the opponents policy, we cannotchoosean optimal response
in thesecoordinationgamesandwe would have to settlefor
a sub-optimalequilibrium point.

I1l. A NEW CLASS OF PLAYERS

As discussedabore, most existing algorithmsdo not form
beliefs about the opponentbeyond 5B,. None of these ap-
proachesare able to capturethe essenceof game-playing,
which is a world of threats,deceits,and generallyout-witting
the opponent\We wish to openthe door to suchpossibilities
by designinglearnersthat can model the opponentand use
that information to achieve betterrewards. Ideally we would
like to designan algorithmin H., x B thatis ableto win
or cometo an equilibrium againstary fair opponent.Since
this is impossible[9], we startby proposingan algorithmin
the leagueH, x B thatplayswell againsta restrictedclass
of opponentsSincemary of the currentalgorithmsare best-
responseplayers,we choosean opponentclasssuchas PHC,
whichis agoodexampleof abest-responsplayerin Ho x By.
We will demonstratehat our algorithmindeedbeatsits PHC
opponentsand in fact doeswell againstmost of the existing
fair opponents.

A. A new algorithm: PHC-Exploiter

Our algorithmis differentfrom mostprevious work in that
we are explicitly modelingthe opponents learningalgorithm
andnot simply his currentpolicy. In particular we would like
to modelplayersfrom H, x By. Sincewe arein Ho, X By, it
is rationalfor usto constructsuchmodelsbecauseve believe
that the opponentis learning and adaptingto us over time
usingits history The ideais thatwe will “fool” our opponent
into thinking that we are stupid by playing a decq policy
for a numberof time periodsand then switch to a different
policy thattakesadwantageof their bestresponseo our decq
policy. From a learningperspectie, the ideais that we adapt
muchfasterthanthe opponent;in fact, whenwe switch away
from our decq policy, our adjustmentto the new policy is
immediate.In contrast,the H., x By opponentadjustsits
policy by smallincrementsandis furthermoreunableto model
our changingbehavior. We can repeatthis “bait and switch”
cycle ad infinitum, therebyachieving infinite total rewardsas
t — oo. The opponentnever catcheson to us becauseit
believesthat we only play stationarypolicies.

A good exampleof a H,, x By playeris PHC. Bowling
and Veloso shaved that in self-play a restrictedversion of
WOLF-PHC always reachesa stationaryNashequilibrium in
two-playertwo-actiongamesandthatthe generaWoLF-PHC
seemsto do the samein experimentaltrials. Thus, in the
long run, a WoLF-PHC player achieves its stationaryNash
equilibrium payof againstary other PHC player We wish
to do better than that by exploiting our knowledge of the



PHC opponents learning stratgy. We can constructa PHC-
Exploiteralgorithmfor agent; thatproceeddike PHCin steps
1-2b, and then continuesas follows:

c. Observingactiona® ; attime ¢, updateour history 4 and
calculatean estimateof the opponents policy:

it (s,a) = Dr—t—w i/cu(h,[r] =a) ‘e

wherew is the window of estimationand #(h[r] = a) = 1 if
the opponents actionat time 7 is equalto a, and0 otherwise.
We estimatesi® ;" (s) similarly.

d. Update s by estimatingthe learning rate of the PHC
opponent:

e. Update pu;(s,a ie.

Do Hils,a)Q(s,a’) >
jis,a) — { 1 if a = argmax, Q(s,a’)

0 otherwise ’
otherwisewe are losing, thenupdate

). If we are winning,
R;(jix (s), i_i(s)), thenupdate

) if @ = argmax,, Q(s,a’)

(s, a) < pi(s,a) + { otherwise

=5
[4i]-1
Note that we derive both the opponents learning rate 6
and the opponents policy fi—;(s) from estimatesusing the
obsenable history of actions.If we assumehe gamematrix
is public information, then we can solve for the equilibrium
stratgy /i; (s), otherwisewe can run WoLF-PHC for some
finite numberof time periodsto obtain an estimatethis equi-
librium stratgy. Themainideaof this algorithmis thatwe take
full advantageof all time periodsin which we are winning,
thatis, when)_ , pi(s,a’)Q(s,a’) > R;(f1; (), fr—i(s)).

IV. EXAMPLE AND ANALYSIS

The PHC-Exploiteralgorithmis basedupon PHC andthus
exhibits the samebehaior as PHC in gameswith a single
pure Nashequilibrium. Both agentsgenerallycorverge to the
single pure equilibrium point. The interestingcasearisesin
competitve gameswhere the only equilibria require mixed
stratgies, as discussedvy Singh, Kearns,and Mansour[14]
and Bowling and Veloso [6]. Matching pennies,shovn in
Figure 1(a), is one such game.In this type of game,PHC-
Exploiter is able to useits model of the opponents learning
algorithmto choosebetteractionsto play.

In the full knowledge casewherewe know our opponents
policy 2 and learningrate 4, at every time period, we can
prove thata PHC-Exploiterlearningalgorithmwill guarantee
us unboundedreward in the long run playing gamessuch
as matchingpennies.The centralidea s that play will keep
cycling, alternatingbetweenstagesvherewe aregaininghigh
rewardandstagesvherewe arelosing somerewardbut setting
up the systemfor anotherstageof high gain.

Proposition IV.1. In the zero-sumgameof matchingpennies,
where the only Nash equilibrium requiresthe use of mixed

stratgyies, PHC-Exploiteris able to achieve unboundedre-
wardsast — oo againstary PHC opponentgiven that play
follows the cycle C' definedby the arroved sggmentsshavn
in Figure 2.

Play proceedsalong C,,, C;, thenjumps from (0.5, 0) to
(1,0), follows the line segmentsto (0.5, 1), then jumps back
to (0, 1). Givena point (z,y) = (u1(Head$, uz(Heads) on
the graphin Figure 2, where 11, (Heads is the probability by
which playeri playsHeadswe know thatour expectedreward
is

Ry(z,y) = —(zy+ (L —2)(1 —y)) + (1 —z)y + z(1 — y)).

We wish to shaw that

/c Ry(z,y)dt =2 </Cw Ry (z,y)dt + /cl Ry (ﬂv,y)dt> < 0.

We considereachpart separatelyln the losing section,we let
g(t)y=ao =t andh(t) =y =1/2—t, where0 < ¢ < 1/2.
Then

1/2 1

Ri(g(t),h(t))dt = ——

Ry(z,y)dt = B

fe] 0

Similarly, we canshav thatwe receve 1/4 rewardover C,,,.
Thus, [, Ri(x,y)dt = 1/3 > 0, andwe have shavn that we
recevve a payof greaterthanthe Nashequilibrium payof of
zero over every cycle. It is easyto seethat play will indeed
follow the cycle C to a good approximation,dependingon
thesizeof d,. In the next section,we demonstrat¢hatwe can
estimateu, and d, sufficiently well from pastobsenations,
thus eliminating the full knowledge requirementsthat were
usedto ensurethe cyclic natureof play above.

V. EXPERIMENTAL RESULTS

We usedthe PHC-Exploiteralgorithm describedabove to
play againstseveral PHC variantsin differentiteratedmatrix
games,including matchingpennies,prisoners dilemna, and
rock-paperscissorsHerewe give the resultsfor the matching
penniesgame analyzedabove, playing againstWolLF-PHC.
We useda window of w = 5000 time periodsto estimatethe
opponents currentpolicy 12 andthe opponents learningrate
02. As shown in Figure 2, the play exhibits the cyclic nature
thatwe predicted.Thetwo solid vertical linesindicateperiods
in which our PHC-Exploiterplayeris winning, andthe dashed,
roughly diagonal,lines indicate periodsin which it is losing.

In the analysisgivenin the previous section,we derived an
upperboundfor our total rewardsover time, whichwas1/6 for
eachtime step.Sincewe have to estimatevariousparameters
in our experimentakun, we do notachieve this level of reward.
We gainan averageof 0.08total reward for eachtime period.
Figure 3 plots the total reward for our PHC-Exploiteragent
over time. The periodsof winning and losing are very clear
from this graph.Furtherexperimentdestedthe effectivenesof
PHC-Exploiteragainstother fair opponentsjncluding itself.
Against all the existing fair opponentsshavn in Table 1, it
achieved at leastits averageequilibrium payof of zeroin the
long-run.
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Fig. 2. Theoretical(top), Empirical (bottom). The cyclic play is evidentin
our empiricalresults,wherewe play a PHC-Exploiterplayer 1 againsta PHC
player2.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presenteda new classificationfor
multi-agentlearning algorithms and suggestedan algorithm
that seemsto dominate existing algorithms from the fair
opponentleagueswhen playing certain games.ldeally, we
would like to createanalgorithmin theleagueH . x B, that
provably dominateslarger classesof fair opponentsin ary
game.Moreover, all of the discussioncontainedwithin this
paperdealtwith the caseof iteratedmatrix games.We would
like to extendour frameawork to moregeneralktochastigames
with multiple statesand multiple players.Finally, it would be
interestingto find practical applicationsof thesemulti-agent
learningalgorithms.
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